MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code

磁力链接/BT种子名称

[Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code

磁力链接/BT种子简介

种子哈希:01e1cbfe829774cf8a044c9227d0cfbf4675c91b
文件大小: 12.84G
已经下载:1794次
下载速度:极快
收录时间:2022-01-09
最近下载:2025-12-20

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:01E1CBFE829774CF8A044C9227D0CFBF4675C91B
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 小蓝俱乐部 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 母狗园 51动漫 91短视频 抖音Max 海王TV TikTok成人版 PornHub 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 搜同 91暗网

最近搜索

ebod-856 ddn-181 filosofia de la redencion 哪吒 藤井绫 mimk-175j keira croft he made her squirt 2 fc2-ppv-3962966 ai+nude kk园区 梦楠 孕期 jur+431 处男 年年+护士长の秘密 start-350 miaomiaoartisan dance pedo 妹妹 thu-031 angela white fc2-ppv-3177147 娜娜 没日没夜 妈妈 shinen2022 e637 the+bearded+girl+2025 91大神猫先生千人斩之我的小宝贝艺校美女终于要毕业了 国模曲奇

文件列表

  • 06 - Descriptive statistics/004 Code_ data from different distributions.mp4 317.8 MB
  • 16 - Clustering and dimension-reduction/006 Code_ dbscan.mp4 302.1 MB
  • 12 - Correlation/006 Code_ correlation matrix.mp4 296.2 MB
  • 06 - Descriptive statistics/012 Code_ Computing dispersion.mp4 279.0 MB
  • 18 - A real-world data journey/007 Python_ Import and clean the marriage data.mp4 262.0 MB
  • 10 - The t-test family/013 Code_ permutation testing.mp4 252.6 MB
  • 16 - Clustering and dimension-reduction/002 Code_ k-means clustering.mp4 241.5 MB
  • 12 - Correlation/003 Code_ correlation coefficient.mp4 224.5 MB
  • 10 - The t-test family/006 Code_ Two-samples t-test.mp4 221.6 MB
  • 18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data.mp4 211.1 MB
  • 12 - Correlation/018 Code_ Kendall correlation.mp4 193.2 MB
  • 16 - Clustering and dimension-reduction/011 Code_ PCA.mp4 183.6 MB
  • 13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples).mp4 181.1 MB
  • 14 - Regression/009 Code_ Multiple regression.mp4 179.3 MB
  • 08 - Probability theory/021 Code_ Law of Large Numbers in action.mp4 173.6 MB
  • 10 - The t-test family/009 Code_ Signed-rank test.mp4 169.7 MB
  • 10 - The t-test family/003 Code_ One-sample t-test.mp4 165.6 MB
  • 08 - Probability theory/015 Code_ sampling variability.mp4 162.3 MB
  • 08 - Probability theory/004 Code_ compute probabilities.mp4 155.6 MB
  • 13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1.mp4 144.4 MB
  • 18 - A real-world data journey/008 Python_ Import the divorce data.mp4 143.8 MB
  • 07 - Data normalizations and outliers/010 Code_ z-score for outlier removal.mp4 143.5 MB
  • 11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals.mp4 143.4 MB
  • 08 - Probability theory/007 Probability mass vs. density.mp4 140.7 MB
  • 05 - Visualizing data/007 Code_ histograms.mp4 140.0 MB
  • 14 - Regression/011 Code_ polynomial modeling.mp4 135.4 MB
  • 08 - Probability theory/012 Creating sample estimate distributions.mp4 130.9 MB
  • 14 - Regression/015 Under- and over-fitting.mp4 126.7 MB
  • 12 - Correlation/001 Motivation and description of correlation.mp4 124.2 MB
  • 06 - Descriptive statistics/019 Code_ Histogram bins.mp4 123.9 MB
  • 18 - A real-world data journey/009 Python_ Inferential statistics.mp4 121.2 MB
  • 08 - Probability theory/018 Code_ conditional probabilities.mp4 120.7 MB
  • 13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA.mp4 119.7 MB
  • 18 - A real-world data journey/006 MATLAB_ Inferential statistics.mp4 119.0 MB
  • 16 - Clustering and dimension-reduction/009 Code_ KNN.mp4 113.6 MB
  • 12 - Correlation/010 Code_ partial correlation.mp4 113.5 MB
  • 17 - Signal detection theory/006 F-score.mp4 112.5 MB
  • 09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations.mp4 111.6 MB
  • 08 - Probability theory/014 Sampling variability, noise, and other annoyances.mp4 111.2 MB
  • 06 - Descriptive statistics/021 Code_ violin plots.mp4 110.1 MB
  • 13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA.mp4 109.5 MB
  • 12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation.mp4 107.1 MB
  • 16 - Clustering and dimension-reduction/005 Clustering via dbscan.mp4 105.2 MB
  • 05 - Visualizing data/002 Code_ bar plots.mp4 104.9 MB
  • 06 - Descriptive statistics/024 Code_ entropy.mp4 101.5 MB
  • 18 - A real-world data journey/004 MATLAB_ Import the divorce data.mp4 101.0 MB
  • 08 - Probability theory/010 Code_ cdfs and pdfs.mp4 100.6 MB
  • 11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula.mp4 98.9 MB
  • 10 - The t-test family/005 Two-samples t-test.mp4 98.4 MB
  • 08 - Probability theory/023 Code_ the CLT in action.mp4 97.9 MB
  • 09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo.mp4 95.6 MB
  • 06 - Descriptive statistics/016 Code_ QQ plots.mp4 94.7 MB
  • 09 - Hypothesis testing/008 Parametric vs. non-parametric tests.mp4 91.7 MB
  • 08 - Probability theory/017 Conditional probability.mp4 89.8 MB
  • 13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2.mp4 88.3 MB
  • 05 - Visualizing data/004 Code_ box plots.mp4 87.7 MB
  • 06 - Descriptive statistics/014 Code_ IQR.mp4 87.4 MB
  • 14 - Regression/014 Code_ Logistic regression.mp4 85.2 MB
  • 05 - Visualizing data/010 Code_ pie charts.mp4 82.8 MB
  • 14 - Regression/008 Standardizing regression coefficients.mp4 78.8 MB
  • 16 - Clustering and dimension-reduction/014 Code_ ICA.mp4 76.9 MB
  • 13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA.mp4 76.7 MB
  • 12 - Correlation/004 Code_ Simulate data with specified correlation.mp4 73.5 MB
  • 17 - Signal detection theory/003 Code_ d-prime.mp4 72.9 MB
  • 07 - Data normalizations and outliers/003 Code_ z-score.mp4 70.0 MB
  • 06 - Descriptive statistics/009 Code_ computing central tendency.mp4 69.8 MB
  • 08 - Probability theory/008 Code_ compute probability mass functions.mp4 69.4 MB
  • 07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers.mp4 68.5 MB
  • 17 - Signal detection theory/007 Receiver operating characteristics (ROC).mp4 67.5 MB
  • 10 - The t-test family/012 Permutation testing for t-test significance.mp4 66.6 MB
  • 13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons.mp4 66.4 MB
  • 14 - Regression/001 Introduction to GLM _ regression.mp4 65.0 MB
  • 08 - Probability theory/016 Expected value.mp4 62.5 MB
  • 04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc.mp4 62.2 MB
  • 12 - Correlation/009 Partial correlation.mp4 62.2 MB
  • 17 - Signal detection theory/008 Code_ ROC curves.mp4 57.3 MB
  • 16 - Clustering and dimension-reduction/001 K-means clustering.mp4 56.9 MB
  • 11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling).mp4 56.9 MB
  • 06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation).mp4 56.7 MB
  • 10 - The t-test family/002 One-sample t-test.mp4 56.6 MB
  • 18 - A real-world data journey/002 Introduction.mp4 55.6 MB
  • 14 - Regression/013 Logistic regression.mp4 55.3 MB
  • 14 - Regression/005 Code_ simple regression.mp4 54.8 MB
  • 10 - The t-test family/011 Code_ Mann-Whitney U test.mp4 54.6 MB
  • 09 - Hypothesis testing/002 What is an hypothesis and how do you specify one_.mp4 51.5 MB
  • 01 - Introductions/003 Statistics guessing game_.mp4 50.7 MB
  • 14 - Regression/010 Polynomial regression models.mp4 50.5 MB
  • 04 - What are (is_) data_/004 Code_ representing types of data on computers.mp4 50.2 MB
  • 09 - Hypothesis testing/007 Type 1 and Type 2 errors.mp4 48.1 MB
  • 13 - Analysis of Variance (ANOVA)/003 Sum of squares.mp4 48.1 MB
  • 16 - Clustering and dimension-reduction/013 Independent components analysis (ICA).mp4 47.7 MB
  • 08 - Probability theory/009 Cumulative distribution functions.mp4 47.6 MB
  • 14 - Regression/007 Multiple regression.mp4 47.3 MB
  • 13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example.mp4 46.5 MB
  • 18 - A real-world data journey/010 Take-home messages.mp4 45.9 MB
  • 09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses.mp4 45.9 MB
  • 05 - Visualizing data/006 Histograms.mp4 45.9 MB
  • 07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal.mp4 45.8 MB
  • 07 - Data normalizations and outliers/007 What are outliers and why are they dangerous_.mp4 45.1 MB
  • 12 - Correlation/014 Code_ Spearman correlation and Fisher-Z.mp4 44.8 MB
  • 16 - Clustering and dimension-reduction/010 Principal components analysis (PCA).mp4 44.6 MB
  • 09 - Hypothesis testing/012 Statistical significance vs. classification accuracy.mp4 44.6 MB
  • 12 - Correlation/002 Covariance and correlation_ formulas.mp4 43.9 MB
  • 14 - Regression/002 Least-squares solution to the GLM.mp4 43.4 MB
  • 08 - Probability theory/001 What is probability_.mp4 43.1 MB
  • 08 - Probability theory/020 The Law of Large Numbers.mp4 42.5 MB
  • 07 - Data normalizations and outliers/005 Code_ min-max scaling.mp4 42.4 MB
  • 15 - Statistical power and sample sizes/001 What is statistical power and why is it important_.mp4 41.4 MB
  • 14 - Regression/017 Comparing _nested_ models.mp4 41.0 MB
  • 06 - Descriptive statistics/007 Measures of central tendency (mean).mp4 40.6 MB
  • 01 - Introductions/001 [Important] Getting the most out of this course.mp4 40.1 MB
  • 14 - Regression/003 Evaluating regression models_ R2 and F.mp4 39.9 MB
  • 08 - Probability theory/003 Computing probabilities.mp4 39.3 MB
  • 08 - Probability theory/002 Probability vs. proportion.mp4 39.3 MB
  • 05 - Visualizing data/013 Code_ line plots.mp4 39.1 MB
  • 04 - What are (is_) data_/005 Sample vs. population data.mp4 38.9 MB
  • 05 - Visualizing data/001 Bar plots.mp4 38.6 MB
  • 14 - Regression/004 Simple regression.mp4 38.6 MB
  • 07 - Data normalizations and outliers/002 Z-score standardization.mp4 38.0 MB
  • 15 - Statistical power and sample sizes/002 Estimating statistical power and sample size.mp4 37.9 MB
  • 13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example.mp4 37.7 MB
  • 04 - What are (is_) data_/002 Where do data come from and what do they mean_.mp4 37.3 MB
  • 18 - A real-world data journey/005 MATLAB_ More data visualizations.mp4 36.0 MB
  • 06 - Descriptive statistics/008 Measures of central tendency (median, mode).mp4 35.9 MB
  • 17 - Signal detection theory/002 d-prime.mp4 35.8 MB
  • 07 - Data normalizations and outliers/017 Nonlinear data transformations.mp4 35.3 MB
  • 07 - Data normalizations and outliers/008 Removing outliers_ z-score method.mp4 35.1 MB
  • 06 - Descriptive statistics/023 Shannon entropy.mp4 34.7 MB
  • 09 - Hypothesis testing/006 Degrees of freedom.mp4 34.5 MB
  • 10 - The t-test family/014 _Unsupervised learning__ How many permutations_.mp4 34.1 MB
  • 10 - The t-test family/001 Purpose and interpretation of the t-test.mp4 33.7 MB
  • 06 - Descriptive statistics/003 Data distributions.mp4 33.5 MB
  • 15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power.mp4 32.7 MB
  • 12 - Correlation/005 Correlation matrix.mp4 32.5 MB
  • 12 - Correlation/017 Kendall's correlation for ordinal data.mp4 31.6 MB
  • 11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them_.mp4 31.3 MB
  • 09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction.mp4 31.0 MB
  • 10 - The t-test family/004 _Unsupervised learning__ The role of variance.mp4 30.0 MB
  • 12 - Correlation/013 Fisher-Z transformation for correlations.mp4 29.9 MB
  • 09 - Hypothesis testing/011 Cross-validation.mp4 29.6 MB
  • 02 - Math prerequisites/001 Should you memorize statistical formulas_.mp4 29.4 MB
  • 01 - Introductions/002 About using MATLAB or Python.mp4 28.4 MB
  • 08 - Probability theory/022 The Central Limit Theorem.mp4 28.0 MB
  • 10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test).mp4 27.2 MB
  • 05 - Visualizing data/012 Linear vs. logarithmic axis scaling.mp4 26.9 MB
  • 06 - Descriptive statistics/002 Accuracy, precision, resolution.mp4 26.7 MB
  • 07 - Data normalizations and outliers/012 Multivariate outlier detection.mp4 26.3 MB
  • 01 - Introductions/004 Using the Q&A forum.mp4 25.5 MB
  • 12 - Correlation/012 Nonparametric correlation_ Spearman rank.mp4 24.9 MB
  • 06 - Descriptive statistics/018 Histograms part 2_ Number of bins.mp4 24.6 MB
  • 07 - Data normalizations and outliers/016 Non-parametric solutions to outliers.mp4 24.1 MB
  • 17 - Signal detection theory/005 Code_ Response bias.mp4 23.9 MB
  • 17 - Signal detection theory/004 Response bias.mp4 22.9 MB
  • 06 - Descriptive statistics/017 Statistical _moments_.mp4 22.7 MB
  • 12 - Correlation/020 The subgroups correlation paradox.mp4 22.6 MB
  • 06 - Descriptive statistics/001 Descriptive vs. inferential statistics.mp4 22.5 MB
  • 10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test).mp4 21.3 MB
  • 16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means.mp4 20.9 MB
  • 13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table.mp4 20.9 MB
  • 04 - What are (is_) data_/007 The ethics of making up data.mp4 20.6 MB
  • 09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance.mp4 20.0 MB
  • 11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals.mp4 19.5 MB
  • 12 - Correlation/007 _Unsupervised learning__ average correlation matrices.mp4 19.4 MB
  • 05 - Visualizing data/011 When to use lines instead of bars.mp4 18.9 MB
  • 02 - Math prerequisites/007 The logistic function.mp4 18.8 MB
  • 04 - What are (is_) data_/006 Samples, case reports, and anecdotes.mp4 18.7 MB
  • 07 - Data normalizations and outliers/018 An outlier lecture on personal accountability.mp4 18.6 MB
  • 11 - Confidence intervals on parameters/002 Computing confidence intervals via formula.mp4 18.2 MB
  • 06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots.mp4 18.2 MB
  • 09 - Hypothesis testing/005 P-z combinations that you should memorize.mp4 18.2 MB
  • 07 - Data normalizations and outliers/014 Removing outliers by data trimming.mp4 17.7 MB
  • 10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test.mp4 17.6 MB
  • 06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers.mp4 17.6 MB
  • 12 - Correlation/011 The problem with Pearson.mp4 17.4 MB
  • 05 - Visualizing data/009 Pie charts.mp4 17.3 MB
  • 06 - Descriptive statistics/015 QQ plots.mp4 17.0 MB
  • 14 - Regression/018 What to do about missing data.mp4 16.8 MB
  • 12 - Correlation/015 _Unsupervised learning__ Spearman correlation.mp4 16.7 MB
  • 12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4 15.7 MB
  • 03 - IMPORTANT_ Download course materials/001 Download materials for the entire course_.mp4 15.2 MB
  • 12 - Correlation/021 Cosine similarity.mp4 14.9 MB
  • 17 - Signal detection theory/001 The two perspectives of the world.mp4 14.6 MB
  • 08 - Probability theory/019 Tree diagrams for conditional probabilities.mp4 14.2 MB
  • 02 - Math prerequisites/008 Rank and tied-rank.mp4 13.6 MB
  • 16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization.mp4 13.5 MB
  • 02 - Math prerequisites/003 Scientific notation.mp4 13.5 MB
  • 16 - Clustering and dimension-reduction/008 K-nearest neighbor classification.mp4 13.1 MB
  • 02 - Math prerequisites/006 Natural exponent and logarithm.mp4 12.8 MB
  • 08 - Probability theory/005 Probability and odds.mp4 12.6 MB
  • 05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion.mp4 12.4 MB
  • 07 - Data normalizations and outliers/004 Min-max scaling.mp4 12.3 MB
  • 07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO).mp4 12.1 MB
  • 16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data.mp4 12.1 MB
  • 17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer_.mp4 12.1 MB
  • 05 - Visualizing data/003 Box-and-whisker plots.mp4 11.7 MB
  • 04 - What are (is_) data_/001 Is _data_ singular or plural_______.mp4 11.5 MB
  • 12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation.mp4 10.8 MB
  • 06 - Descriptive statistics/006 The beauty and simplicity of Normal.mp4 10.7 MB
  • 06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions.mp4 10.7 MB
  • 12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix.mp4 10.6 MB
  • 06 - Descriptive statistics/013 Interquartile range (IQR).mp4 10.3 MB
  • 07 - Data normalizations and outliers/009 The modified z-score method.mp4 10.1 MB
  • 08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers.mp4 9.9 MB
  • 08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions.mp4 9.8 MB
  • 07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z.mp4 9.5 MB
  • 08 - Probability theory/013 Monte Carlo sampling.mp4 9.3 MB
  • 11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance.mp4 9.0 MB
  • 06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins.mp4 8.7 MB
  • 05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4 8.6 MB
  • 16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur.mp4 8.3 MB
  • 02 - Math prerequisites/004 Summation notation.mp4 8.1 MB
  • 02 - Math prerequisites/002 Arithmetic and exponents.mp4 7.9 MB
  • 01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player.mp4 7.4 MB
  • 02 - Math prerequisites/005 Absolute value.mp4 7.3 MB
  • 07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling.mp4 7.1 MB
  • 06 - Descriptive statistics/020 Violin plots.mp4 6.8 MB
  • 08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space.mp4 6.2 MB
  • 14 - Regression/006 _Unsupervised learning__ Compute R2 and F.mp4 5.6 MB
  • 14 - Regression/016 _Unsupervised learning__ Overfit data.mp4 5.1 MB
  • 14 - Regression/012 _Unsupervised learning__ Polynomial design matrix.mp4 5.0 MB
  • 05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots.mp4 3.9 MB
  • 03 - IMPORTANT_ Download course materials/32684220-statsML.zip 1.4 MB
  • 16 - Clustering and dimension-reduction/006 Code_ dbscan_en.srt 50.6 kB
  • 06 - Descriptive statistics/004 Code_ data from different distributions_en.srt 47.0 kB
  • 16 - Clustering and dimension-reduction/006 Code_ dbscan_en.vtt 43.2 kB
  • 12 - Correlation/003 Code_ correlation coefficient_en.srt 41.4 kB
  • 06 - Descriptive statistics/004 Code_ data from different distributions_en.vtt 40.4 kB
  • 08 - Probability theory/015 Code_ sampling variability_en.srt 39.2 kB
  • 06 - Descriptive statistics/012 Code_ Computing dispersion_en.srt 38.1 kB
  • 10 - The t-test family/013 Code_ permutation testing_en.srt 38.0 kB
  • 12 - Correlation/003 Code_ correlation coefficient_en.vtt 35.5 kB
  • 16 - Clustering and dimension-reduction/002 Code_ k-means clustering_en.srt 35.2 kB
  • 07 - Data normalizations and outliers/010 Code_ z-score for outlier removal_en.srt 34.5 kB
  • 17 - Signal detection theory/006 F-score_en.srt 33.9 kB
  • 08 - Probability theory/015 Code_ sampling variability_en.vtt 33.7 kB
  • 06 - Descriptive statistics/012 Code_ Computing dispersion_en.vtt 33.1 kB
  • 10 - The t-test family/006 Code_ Two-samples t-test_en.srt 32.9 kB
  • 12 - Correlation/006 Code_ correlation matrix_en.srt 32.6 kB
  • 10 - The t-test family/013 Code_ permutation testing_en.vtt 32.5 kB
  • 12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation_en.srt 32.0 kB
  • 10 - The t-test family/003 Code_ One-sample t-test_en.srt 32.0 kB
  • 06 - Descriptive statistics/024 Code_ entropy_en.srt 31.0 kB
  • 14 - Regression/001 Introduction to GLM _ regression_en.srt 30.4 kB
  • 08 - Probability theory/018 Code_ conditional probabilities_en.srt 30.3 kB
  • 12 - Correlation/010 Code_ partial correlation_en.srt 30.1 kB
  • 16 - Clustering and dimension-reduction/002 Code_ k-means clustering_en.vtt 30.1 kB
  • 13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA_en.srt 30.1 kB
  • 18 - A real-world data journey/007 Python_ Import and clean the marriage data_en.srt 30.0 kB
  • 07 - Data normalizations and outliers/010 Code_ z-score for outlier removal_en.vtt 29.5 kB
  • 17 - Signal detection theory/006 F-score_en.vtt 29.4 kB
  • 13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2_en.srt 29.1 kB
  • 14 - Regression/009 Code_ Multiple regression_en.srt 28.6 kB
  • 08 - Probability theory/021 Code_ Law of Large Numbers in action_en.srt 28.5 kB
  • 08 - Probability theory/012 Creating sample estimate distributions_en.srt 28.4 kB
  • 10 - The t-test family/006 Code_ Two-samples t-test_en.vtt 28.2 kB
  • 12 - Correlation/001 Motivation and description of correlation_en.srt 28.0 kB
  • 12 - Correlation/006 Code_ correlation matrix_en.vtt 27.8 kB
  • 12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation_en.vtt 27.6 kB
  • 10 - The t-test family/009 Code_ Signed-rank test_en.srt 27.5 kB
  • 10 - The t-test family/003 Code_ One-sample t-test_en.vtt 27.3 kB
  • 16 - Clustering and dimension-reduction/011 Code_ PCA_en.srt 27.2 kB
  • 06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation)_en.srt 26.9 kB
  • 13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1_en.srt 26.8 kB
  • 06 - Descriptive statistics/024 Code_ entropy_en.vtt 26.5 kB
  • 13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples)_en.srt 26.3 kB
  • 11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula_en.srt 26.3 kB
  • 13 - Analysis of Variance (ANOVA)/003 Sum of squares_en.srt 26.2 kB
  • 14 - Regression/001 Introduction to GLM _ regression_en.vtt 26.1 kB
  • 18 - A real-world data journey/007 Python_ Import and clean the marriage data_en.vtt 26.1 kB
  • 14 - Regression/013 Logistic regression_en.srt 26.1 kB
  • 09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations_en.srt 26.0 kB
  • 05 - Visualizing data/002 Code_ bar plots_en.srt 26.0 kB
  • 14 - Regression/015 Under- and over-fitting_en.srt 26.0 kB
  • 08 - Probability theory/018 Code_ conditional probabilities_en.vtt 26.0 kB
  • 12 - Correlation/010 Code_ partial correlation_en.vtt 25.8 kB
  • 13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA_en.vtt 25.8 kB
  • 13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2_en.vtt 25.2 kB
  • 09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo_en.srt 24.9 kB
  • 05 - Visualizing data/007 Code_ histograms_en.srt 24.8 kB
  • 14 - Regression/009 Code_ Multiple regression_en.vtt 24.5 kB
  • 08 - Probability theory/021 Code_ Law of Large Numbers in action_en.vtt 24.4 kB
  • 08 - Probability theory/012 Creating sample estimate distributions_en.vtt 24.4 kB
  • 14 - Regression/003 Evaluating regression models_ R2 and F_en.srt 24.4 kB
  • 18 - A real-world data journey/35855730-state-marriage-rates-90-95-99-19.xlsx 24.2 kB
  • 08 - Probability theory/023 Code_ the CLT in action_en.srt 24.1 kB
  • 12 - Correlation/001 Motivation and description of correlation_en.vtt 24.1 kB
  • 18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data_en.srt 24.1 kB
  • 06 - Descriptive statistics/016 Code_ QQ plots_en.srt 24.0 kB
  • 06 - Descriptive statistics/014 Code_ IQR_en.srt 24.0 kB
  • 09 - Hypothesis testing/002 What is an hypothesis and how do you specify one__en.srt 23.8 kB
  • 16 - Clustering and dimension-reduction/010 Principal components analysis (PCA)_en.srt 23.8 kB
  • 10 - The t-test family/009 Code_ Signed-rank test_en.vtt 23.6 kB
  • 12 - Correlation/018 Code_ Kendall correlation_en.vtt 23.5 kB
  • 05 - Visualizing data/002 Code_ bar plots_en.vtt 23.2 kB
  • 13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1_en.vtt 23.2 kB
  • 16 - Clustering and dimension-reduction/011 Code_ PCA_en.vtt 23.1 kB
  • 06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation)_en.vtt 23.1 kB
  • 18 - A real-world data journey/35855734-state-divorce-rates-90-95-99-19.xlsx 23.0 kB
  • 14 - Regression/011 Code_ polynomial modeling_en.srt 23.0 kB
  • 13 - Analysis of Variance (ANOVA)/003 Sum of squares_en.vtt 22.9 kB
  • 09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations_en.vtt 22.8 kB
  • 09 - Hypothesis testing/007 Type 1 and Type 2 errors_en.srt 22.7 kB
  • 11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula_en.vtt 22.6 kB
  • 08 - Probability theory/004 Code_ compute probabilities_en.srt 22.6 kB
  • 13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples)_en.vtt 22.5 kB
  • 17 - Signal detection theory/003 Code_ d-prime_en.srt 22.4 kB
  • 14 - Regression/013 Logistic regression_en.vtt 22.3 kB
  • 14 - Regression/015 Under- and over-fitting_en.vtt 22.2 kB
  • 16 - Clustering and dimension-reduction/005 Clustering via dbscan_en.srt 22.2 kB
  • 11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals_en.srt 22.2 kB
  • 07 - Data normalizations and outliers/007 What are outliers and why are they dangerous__en.srt 22.1 kB
  • 13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA_en.srt 22.0 kB
  • 16 - Clustering and dimension-reduction/001 K-means clustering_en.srt 21.5 kB
  • 04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc_en.srt 21.4 kB
  • 09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo_en.vtt 21.4 kB
  • 05 - Visualizing data/007 Code_ histograms_en.vtt 21.3 kB
  • 12 - Correlation/002 Covariance and correlation_ formulas_en.srt 21.3 kB
  • 13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example_en.srt 21.1 kB
  • 18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data_en.vtt 21.0 kB
  • 14 - Regression/003 Evaluating regression models_ R2 and F_en.vtt 21.0 kB
  • 08 - Probability theory/009 Cumulative distribution functions_en.srt 20.9 kB
  • 08 - Probability theory/023 Code_ the CLT in action_en.vtt 20.8 kB
  • 16 - Clustering and dimension-reduction/010 Principal components analysis (PCA)_en.vtt 20.7 kB
  • 06 - Descriptive statistics/014 Code_ IQR_en.vtt 20.6 kB
  • 06 - Descriptive statistics/009 Code_ computing central tendency_en.srt 20.6 kB
  • 06 - Descriptive statistics/016 Code_ QQ plots_en.vtt 20.6 kB
  • 12 - Correlation/004 Code_ Simulate data with specified correlation_en.srt 20.5 kB
  • 07 - Data normalizations and outliers/017 Nonlinear data transformations_en.srt 20.3 kB
  • 09 - Hypothesis testing/002 What is an hypothesis and how do you specify one__en.vtt 20.2 kB
  • 14 - Regression/004 Simple regression_en.srt 20.2 kB
  • 05 - Visualizing data/010 Code_ pie charts_en.srt 19.8 kB
  • 14 - Regression/011 Code_ polynomial modeling_en.vtt 19.8 kB
  • 07 - Data normalizations and outliers/003 Code_ z-score_en.srt 19.7 kB
  • 17 - Signal detection theory/002 d-prime_en.srt 19.7 kB
  • 14 - Regression/007 Multiple regression_en.srt 19.6 kB
  • 09 - Hypothesis testing/007 Type 1 and Type 2 errors_en.vtt 19.5 kB
  • 06 - Descriptive statistics/007 Measures of central tendency (mean)_en.srt 19.4 kB
  • 10 - The t-test family/005 Two-samples t-test_en.srt 19.4 kB
  • 10 - The t-test family/001 Purpose and interpretation of the t-test_en.srt 19.4 kB
  • 08 - Probability theory/004 Code_ compute probabilities_en.vtt 19.3 kB
  • 13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons_en.srt 19.3 kB
  • 08 - Probability theory/017 Conditional probability_en.srt 19.3 kB
  • 17 - Signal detection theory/003 Code_ d-prime_en.vtt 19.2 kB
  • 16 - Clustering and dimension-reduction/005 Clustering via dbscan_en.vtt 19.1 kB
  • 18 - A real-world data journey/008 Python_ Import the divorce data_en.srt 19.0 kB
  • 07 - Data normalizations and outliers/007 What are outliers and why are they dangerous__en.vtt 19.0 kB
  • 16 - Clustering and dimension-reduction/014 Code_ ICA_en.srt 18.9 kB
  • 08 - Probability theory/007 Probability mass vs. density_en.srt 18.9 kB
  • 11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals_en.vtt 18.9 kB
  • 13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA_en.srt 18.8 kB
  • 13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA_en.vtt 18.8 kB
  • 14 - Regression/008 Standardizing regression coefficients_en.srt 18.8 kB
  • 16 - Clustering and dimension-reduction/009 Code_ KNN_en.srt 18.6 kB
  • 06 - Descriptive statistics/008 Measures of central tendency (median, mode)_en.srt 18.6 kB
  • 04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc_en.vtt 18.5 kB
  • 16 - Clustering and dimension-reduction/001 K-means clustering_en.vtt 18.5 kB
  • 08 - Probability theory/001 What is probability__en.srt 18.4 kB
  • 12 - Correlation/002 Covariance and correlation_ formulas_en.vtt 18.3 kB
  • 06 - Descriptive statistics/019 Code_ Histogram bins_en.srt 18.3 kB
  • 08 - Probability theory/009 Cumulative distribution functions_en.vtt 18.2 kB
  • 13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example_en.vtt 18.1 kB
  • 12 - Correlation/018 Code_ Kendall correlation_en.srt 18.0 kB
  • 06 - Descriptive statistics/009 Code_ computing central tendency_en.vtt 17.8 kB
  • 07 - Data normalizations and outliers/017 Nonlinear data transformations_en.vtt 17.8 kB
  • 12 - Correlation/004 Code_ Simulate data with specified correlation_en.vtt 17.7 kB
  • 14 - Regression/017 Comparing _nested_ models_en.srt 17.7 kB
  • 16 - Clustering and dimension-reduction/013 Independent components analysis (ICA)_en.srt 17.7 kB
  • 04 - What are (is_) data_/005 Sample vs. population data_en.srt 17.6 kB
  • 05 - Visualizing data/001 Bar plots_en.srt 17.4 kB
  • 09 - Hypothesis testing/012 Statistical significance vs. classification accuracy_en.srt 17.4 kB
  • 14 - Regression/004 Simple regression_en.vtt 17.4 kB
  • 06 - Descriptive statistics/003 Data distributions_en.srt 17.2 kB
  • 05 - Visualizing data/010 Code_ pie charts_en.vtt 17.1 kB
  • 07 - Data normalizations and outliers/003 Code_ z-score_en.vtt 17.0 kB
  • 15 - Statistical power and sample sizes/002 Estimating statistical power and sample size_en.srt 17.0 kB
  • 14 - Regression/007 Multiple regression_en.vtt 16.9 kB
  • 17 - Signal detection theory/002 d-prime_en.vtt 16.8 kB
  • 09 - Hypothesis testing/011 Cross-validation_en.srt 16.8 kB
  • 10 - The t-test family/001 Purpose and interpretation of the t-test_en.vtt 16.8 kB
  • 10 - The t-test family/005 Two-samples t-test_en.vtt 16.8 kB
  • 10 - The t-test family/012 Permutation testing for t-test significance_en.srt 16.7 kB
  • 06 - Descriptive statistics/007 Measures of central tendency (mean)_en.vtt 16.7 kB
  • 07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers_en.srt 16.7 kB
  • 13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons_en.vtt 16.6 kB
  • 08 - Probability theory/017 Conditional probability_en.vtt 16.5 kB
  • 18 - A real-world data journey/008 Python_ Import the divorce data_en.vtt 16.5 kB
  • 18 - A real-world data journey/009 Python_ Inferential statistics_en.srt 16.5 kB
  • 13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example_en.srt 16.5 kB
  • 08 - Probability theory/008 Code_ compute probability mass functions_en.srt 16.4 kB
  • 09 - Hypothesis testing/006 Degrees of freedom_en.vtt 16.4 kB
  • 08 - Probability theory/007 Probability mass vs. density_en.vtt 16.3 kB
  • 16 - Clustering and dimension-reduction/014 Code_ ICA_en.vtt 16.3 kB
  • 13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA_en.vtt 16.3 kB
  • 05 - Visualizing data/006 Histograms_en.srt 16.2 kB
  • 14 - Regression/008 Standardizing regression coefficients_en.vtt 16.1 kB
  • 06 - Descriptive statistics/008 Measures of central tendency (median, mode)_en.vtt 16.1 kB
  • 08 - Probability theory/022 The Central Limit Theorem_en.srt 15.9 kB
  • 06 - Descriptive statistics/023 Shannon entropy_en.srt 15.9 kB
  • 16 - Clustering and dimension-reduction/009 Code_ KNN_en.vtt 15.9 kB
  • 08 - Probability theory/001 What is probability__en.vtt 15.9 kB
  • 06 - Descriptive statistics/021 Code_ violin plots_en.srt 15.8 kB
  • 12 - Correlation/009 Partial correlation_en.srt 15.8 kB
  • 06 - Descriptive statistics/019 Code_ Histogram bins_en.vtt 15.8 kB
  • 08 - Probability theory/016 Expected value_en.srt 15.7 kB
  • 18 - A real-world data journey/006 MATLAB_ Inferential statistics_en.srt 15.7 kB
  • 05 - Visualizing data/001 Bar plots_en.vtt 15.6 kB
  • 12 - Correlation/017 Kendall's correlation for ordinal data_en.srt 15.6 kB
  • 08 - Probability theory/003 Computing probabilities_en.srt 15.5 kB
  • 14 - Regression/017 Comparing _nested_ models_en.vtt 15.5 kB
  • 16 - Clustering and dimension-reduction/013 Independent components analysis (ICA)_en.vtt 15.4 kB
  • 04 - What are (is_) data_/005 Sample vs. population data_en.vtt 15.3 kB
  • 09 - Hypothesis testing/012 Statistical significance vs. classification accuracy_en.vtt 15.0 kB
  • 09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses_en.srt 15.0 kB
  • 06 - Descriptive statistics/003 Data distributions_en.vtt 14.9 kB
  • 08 - Probability theory/010 Code_ cdfs and pdfs_en.srt 14.8 kB
  • 08 - Probability theory/020 The Law of Large Numbers_en.srt 14.8 kB
  • 07 - Data normalizations and outliers/012 Multivariate outlier detection_en.srt 14.7 kB
  • 15 - Statistical power and sample sizes/002 Estimating statistical power and sample size_en.vtt 14.7 kB
  • 15 - Statistical power and sample sizes/001 What is statistical power and why is it important__en.srt 14.7 kB
  • 14 - Regression/002 Least-squares solution to the GLM_en.srt 14.7 kB
  • 09 - Hypothesis testing/011 Cross-validation_en.vtt 14.7 kB
  • 06 - Descriptive statistics/018 Histograms part 2_ Number of bins_en.srt 14.7 kB
  • 07 - Data normalizations and outliers/002 Z-score standardization_en.srt 14.6 kB
  • 10 - The t-test family/012 Permutation testing for t-test significance_en.vtt 14.5 kB
  • 14 - Regression/014 Code_ Logistic regression_en.srt 14.5 kB
  • 07 - Data normalizations and outliers/008 Removing outliers_ z-score method_en.srt 14.5 kB
  • 08 - Probability theory/002 Probability vs. proportion_en.srt 14.5 kB
  • 07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers_en.vtt 14.4 kB
  • 18 - A real-world data journey/009 Python_ Inferential statistics_en.vtt 14.4 kB
  • 08 - Probability theory/008 Code_ compute probability mass functions_en.vtt 14.4 kB
  • 13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example_en.vtt 14.3 kB
  • 05 - Visualizing data/006 Histograms_en.vtt 14.0 kB
  • 12 - Correlation/005 Correlation matrix_en.srt 13.9 kB
  • 08 - Probability theory/022 The Central Limit Theorem_en.vtt 13.8 kB
  • 06 - Descriptive statistics/023 Shannon entropy_en.vtt 13.8 kB
  • 14 - Regression/005 Code_ simple regression_en.srt 13.7 kB
  • 12 - Correlation/009 Partial correlation_en.vtt 13.7 kB
  • 18 - A real-world data journey/006 MATLAB_ Inferential statistics_en.vtt 13.7 kB
  • 01 - Introductions/003 Statistics guessing game__en.srt 13.6 kB
  • 08 - Probability theory/016 Expected value_en.vtt 13.5 kB
  • 06 - Descriptive statistics/021 Code_ violin plots_en.vtt 13.5 kB
  • 12 - Correlation/017 Kendall's correlation for ordinal data_en.vtt 13.4 kB
  • 11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them__en.srt 13.4 kB
  • 02 - Math prerequisites/007 The logistic function_en.srt 13.4 kB
  • 04 - What are (is_) data_/004 Code_ representing types of data on computers_en.srt 13.4 kB
  • 08 - Probability theory/003 Computing probabilities_en.vtt 13.4 kB
  • 06 - Descriptive statistics/017 Statistical _moments__en.srt 13.4 kB
  • 08 - Probability theory/014 Sampling variability, noise, and other annoyances_en.srt 13.4 kB
  • 09 - Hypothesis testing/008 Parametric vs. non-parametric tests_en.srt 13.2 kB
  • 11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling)_en.srt 13.1 kB
  • 09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses_en.vtt 13.1 kB
  • 07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal_en.srt 13.1 kB
  • 05 - Visualizing data/004 Code_ box plots_en.srt 13.1 kB
  • 08 - Probability theory/010 Code_ cdfs and pdfs_en.vtt 12.9 kB
  • 07 - Data normalizations and outliers/005 Code_ min-max scaling_en.srt 12.9 kB
  • 15 - Statistical power and sample sizes/001 What is statistical power and why is it important__en.vtt 12.8 kB
  • 09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction_en.srt 12.8 kB
  • 05 - Visualizing data/012 Linear vs. logarithmic axis scaling_en.srt 12.8 kB
  • 08 - Probability theory/020 The Law of Large Numbers_en.vtt 12.8 kB
  • 06 - Descriptive statistics/018 Histograms part 2_ Number of bins_en.vtt 12.7 kB
  • 14 - Regression/002 Least-squares solution to the GLM_en.vtt 12.6 kB
  • 18 - A real-world data journey/004 MATLAB_ Import the divorce data_en.srt 12.6 kB
  • 07 - Data normalizations and outliers/002 Z-score standardization_en.vtt 12.6 kB
  • 07 - Data normalizations and outliers/012 Multivariate outlier detection_en.vtt 12.6 kB
  • 17 - Signal detection theory/004 Response bias_en.srt 12.5 kB
  • 14 - Regression/010 Polynomial regression models_en.srt 12.5 kB
  • 07 - Data normalizations and outliers/008 Removing outliers_ z-score method_en.vtt 12.5 kB
  • 14 - Regression/014 Code_ Logistic regression_en.vtt 12.4 kB
  • 08 - Probability theory/002 Probability vs. proportion_en.vtt 12.4 kB
  • 12 - Correlation/005 Correlation matrix_en.vtt 12.0 kB
  • 17 - Signal detection theory/008 Code_ ROC curves_en.srt 11.9 kB
  • 10 - The t-test family/002 One-sample t-test_en.srt 11.9 kB
  • 14 - Regression/005 Code_ simple regression_en.vtt 11.8 kB
  • 01 - Introductions/003 Statistics guessing game__en.vtt 11.8 kB
  • 06 - Descriptive statistics/002 Accuracy, precision, resolution_en.srt 11.7 kB
  • 08 - Probability theory/014 Sampling variability, noise, and other annoyances_en.vtt 11.6 kB
  • 11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them__en.vtt 11.6 kB
  • 09 - Hypothesis testing/008 Parametric vs. non-parametric tests_en.vtt 11.6 kB
  • 02 - Math prerequisites/007 The logistic function_en.vtt 11.5 kB
  • 11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling)_en.vtt 11.4 kB
  • 06 - Descriptive statistics/017 Statistical _moments__en.vtt 11.4 kB
  • 04 - What are (is_) data_/004 Code_ representing types of data on computers_en.vtt 11.4 kB
  • 12 - Correlation/014 Code_ Spearman correlation and Fisher-Z_en.srt 11.4 kB
  • 07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal_en.vtt 11.3 kB
  • 17 - Signal detection theory/007 Receiver operating characteristics (ROC)_en.srt 11.2 kB
  • 05 - Visualizing data/004 Code_ box plots_en.vtt 11.2 kB
  • 05 - Visualizing data/013 Code_ line plots_en.srt 11.1 kB
  • 09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction_en.vtt 11.0 kB
  • 05 - Visualizing data/012 Linear vs. logarithmic axis scaling_en.vtt 11.0 kB
  • 07 - Data normalizations and outliers/005 Code_ min-max scaling_en.vtt 11.0 kB
  • 12 - Correlation/012 Nonparametric correlation_ Spearman rank_en.srt 11.0 kB
  • 14 - Regression/010 Polynomial regression models_en.vtt 10.9 kB
  • 18 - A real-world data journey/004 MATLAB_ Import the divorce data_en.vtt 10.9 kB
  • 17 - Signal detection theory/004 Response bias_en.vtt 10.8 kB
  • 13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table_en.srt 10.7 kB
  • 10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test)_en.srt 10.7 kB
  • 04 - What are (is_) data_/007 The ethics of making up data_en.srt 10.5 kB
  • 06 - Descriptive statistics/015 QQ plots_en.srt 10.4 kB
  • 17 - Signal detection theory/008 Code_ ROC curves_en.vtt 10.4 kB
  • 10 - The t-test family/002 One-sample t-test_en.vtt 10.3 kB
  • 09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance_en.srt 10.2 kB
  • 08 - Probability theory/019 Tree diagrams for conditional probabilities_en.srt 10.2 kB
  • 12 - Correlation/011 The problem with Pearson_en.srt 10.1 kB
  • 12 - Correlation/013 Fisher-Z transformation for correlations_en.srt 10.1 kB
  • 06 - Descriptive statistics/002 Accuracy, precision, resolution_en.vtt 10.0 kB
  • 12 - Correlation/014 Code_ Spearman correlation and Fisher-Z_en.vtt 9.8 kB
  • 14 - Regression/018 What to do about missing data_en.srt 9.8 kB
  • 17 - Signal detection theory/007 Receiver operating characteristics (ROC)_en.vtt 9.8 kB
  • 02 - Math prerequisites/008 Rank and tied-rank_en.srt 9.8 kB
  • 11 - Confidence intervals on parameters/002 Computing confidence intervals via formula_en.srt 9.7 kB
  • 05 - Visualizing data/013 Code_ line plots_en.vtt 9.6 kB
  • 12 - Correlation/012 Nonparametric correlation_ Spearman rank_en.vtt 9.5 kB
  • 18 - A real-world data journey/005 MATLAB_ More data visualizations_en.srt 9.5 kB
  • 13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table_en.vtt 9.4 kB
  • 10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test)_en.vtt 9.3 kB
  • 11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals_en.srt 9.3 kB
  • 09 - Hypothesis testing/005 P-z combinations that you should memorize_en.srt 9.3 kB
  • 16 - Clustering and dimension-reduction/008 K-nearest neighbor classification_en.srt 9.2 kB
  • 04 - What are (is_) data_/007 The ethics of making up data_en.vtt 9.1 kB
  • 06 - Descriptive statistics/015 QQ plots_en.vtt 9.1 kB
  • 10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test)_en.srt 9.1 kB
  • 18 - A real-world data journey/010 Take-home messages_en.srt 8.9 kB
  • 02 - Math prerequisites/003 Scientific notation_en.srt 8.9 kB
  • 17 - Signal detection theory/001 The two perspectives of the world_en.srt 8.9 kB
  • 12 - Correlation/011 The problem with Pearson_en.vtt 8.9 kB
  • 09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance_en.vtt 8.8 kB
  • 12 - Correlation/013 Fisher-Z transformation for correlations_en.vtt 8.8 kB
  • 05 - Visualizing data/011 When to use lines instead of bars_en.srt 8.8 kB
  • 08 - Probability theory/019 Tree diagrams for conditional probabilities_en.vtt 8.8 kB
  • 07 - Data normalizations and outliers/014 Removing outliers by data trimming_en.srt 8.7 kB
  • 05 - Visualizing data/009 Pie charts_en.srt 8.7 kB
  • 04 - What are (is_) data_/002 Where do data come from and what do they mean__en.srt 8.6 kB
  • 14 - Regression/018 What to do about missing data_en.vtt 8.6 kB
  • 02 - Math prerequisites/008 Rank and tied-rank_en.vtt 8.4 kB
  • 11 - Confidence intervals on parameters/002 Computing confidence intervals via formula_en.vtt 8.4 kB
  • 18 - A real-world data journey/005 MATLAB_ More data visualizations_en.vtt 8.4 kB
  • 01 - Introductions/004 Using the Q&A forum_en.srt 8.3 kB
  • 02 - Math prerequisites/006 Natural exponent and logarithm_en.srt 8.2 kB
  • 11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals_en.vtt 8.1 kB
  • 09 - Hypothesis testing/005 P-z combinations that you should memorize_en.vtt 8.1 kB
  • 16 - Clustering and dimension-reduction/008 K-nearest neighbor classification_en.vtt 8.0 kB
  • 05 - Visualizing data/003 Box-and-whisker plots_en.srt 8.0 kB
  • 10 - The t-test family/011 Code_ Mann-Whitney U test_en.srt 7.9 kB
  • 10 - The t-test family/014 _Unsupervised learning__ How many permutations__en.srt 7.9 kB
  • 04 - What are (is_) data_/006 Samples, case reports, and anecdotes_en.srt 7.9 kB
  • 10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test)_en.vtt 7.8 kB
  • 06 - Descriptive statistics/006 The beauty and simplicity of Normal_en.srt 7.8 kB
  • 18 - A real-world data journey/010 Take-home messages_en.vtt 7.8 kB
  • 17 - Signal detection theory/001 The two perspectives of the world_en.vtt 7.7 kB
  • 12 - Correlation/021 Cosine similarity_en.srt 7.7 kB
  • 02 - Math prerequisites/003 Scientific notation_en.vtt 7.7 kB
  • 05 - Visualizing data/011 When to use lines instead of bars_en.vtt 7.6 kB
  • 07 - Data normalizations and outliers/014 Removing outliers by data trimming_en.vtt 7.6 kB
  • 05 - Visualizing data/009 Pie charts_en.vtt 7.5 kB
  • 04 - What are (is_) data_/002 Where do data come from and what do they mean__en.vtt 7.5 kB
  • 07 - Data normalizations and outliers/004 Min-max scaling_en.srt 7.4 kB
  • 01 - Introductions/004 Using the Q&A forum_en.vtt 7.2 kB
  • 06 - Descriptive statistics/013 Interquartile range (IQR)_en.srt 7.2 kB
  • 02 - Math prerequisites/006 Natural exponent and logarithm_en.vtt 7.2 kB
  • 12 - Correlation/020 The subgroups correlation paradox_en.srt 7.1 kB
  • 08 - Probability theory/005 Probability and odds_en.srt 7.1 kB
  • 10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test_en.srt 7.0 kB
  • 15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power_en.srt 7.0 kB
  • 05 - Visualizing data/003 Box-and-whisker plots_en.vtt 6.9 kB
  • 04 - What are (is_) data_/006 Samples, case reports, and anecdotes_en.vtt 6.9 kB
  • 10 - The t-test family/014 _Unsupervised learning__ How many permutations__en.vtt 6.9 kB
  • 06 - Descriptive statistics/006 The beauty and simplicity of Normal_en.vtt 6.9 kB
  • 10 - The t-test family/011 Code_ Mann-Whitney U test_en.vtt 6.9 kB
  • 12 - Correlation/021 Cosine similarity_en.vtt 6.7 kB
  • 06 - Descriptive statistics/001 Descriptive vs. inferential statistics_en.srt 6.5 kB
  • 17 - Signal detection theory/005 Code_ Response bias_en.srt 6.5 kB
  • 07 - Data normalizations and outliers/016 Non-parametric solutions to outliers_en.srt 6.5 kB
  • 07 - Data normalizations and outliers/004 Min-max scaling_en.vtt 6.4 kB
  • 18 - A real-world data journey/002 Introduction_en.srt 6.4 kB
  • 12 - Correlation/020 The subgroups correlation paradox_en.vtt 6.3 kB
  • 06 - Descriptive statistics/013 Interquartile range (IQR)_en.vtt 6.2 kB
  • 01 - Introductions/001 [Important] Getting the most out of this course_en.srt 6.2 kB
  • 08 - Probability theory/005 Probability and odds_en.vtt 6.2 kB
  • 02 - Math prerequisites/004 Summation notation_en.srt 6.1 kB
  • 10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test_en.vtt 6.1 kB
  • 01 - Introductions/002 About using MATLAB or Python_en.srt 6.1 kB
  • 07 - Data normalizations and outliers/009 The modified z-score method_en.srt 6.0 kB
  • 12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix_en.srt 6.0 kB
  • 15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power_en.vtt 5.9 kB
  • 07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO)_en.srt 5.8 kB
  • 02 - Math prerequisites/002 Arithmetic and exponents_en.srt 5.8 kB
  • 06 - Descriptive statistics/001 Descriptive vs. inferential statistics_en.vtt 5.7 kB
  • 07 - Data normalizations and outliers/016 Non-parametric solutions to outliers_en.vtt 5.7 kB
  • 17 - Signal detection theory/005 Code_ Response bias_en.vtt 5.6 kB
  • 18 - A real-world data journey/002 Introduction_en.vtt 5.6 kB
  • 03 - IMPORTANT_ Download course materials/001 Download materials for the entire course__en.srt 5.5 kB
  • 01 - Introductions/001 [Important] Getting the most out of this course_en.vtt 5.5 kB
  • 02 - Math prerequisites/004 Summation notation_en.vtt 5.3 kB
  • 01 - Introductions/002 About using MATLAB or Python_en.vtt 5.3 kB
  • 07 - Data normalizations and outliers/009 The modified z-score method_en.vtt 5.2 kB
  • 12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix_en.vtt 5.2 kB
  • 07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO)_en.vtt 5.1 kB
  • 06 - Descriptive statistics/020 Violin plots_en.srt 5.1 kB
  • 02 - Math prerequisites/002 Arithmetic and exponents_en.vtt 5.1 kB
  • 03 - IMPORTANT_ Download course materials/001 Download materials for the entire course__en.vtt 4.9 kB
  • 16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means_en.srt 4.5 kB
  • 06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers_en.srt 4.4 kB
  • 06 - Descriptive statistics/020 Violin plots_en.vtt 4.4 kB
  • 02 - Math prerequisites/005 Absolute value_en.srt 4.3 kB
  • 02 - Math prerequisites/001 Should you memorize statistical formulas__en.srt 4.3 kB
  • 07 - Data normalizations and outliers/018 An outlier lecture on personal accountability_en.srt 4.2 kB
  • 10 - The t-test family/004 _Unsupervised learning__ The role of variance_en.srt 4.2 kB
  • 12 - Correlation/007 _Unsupervised learning__ average correlation matrices_en.srt 4.2 kB
  • 16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means_en.vtt 4.0 kB
  • 06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots_en.srt 3.9 kB
  • 07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z_en.srt 3.9 kB
  • 08 - Probability theory/013 Monte Carlo sampling_en.srt 3.9 kB
  • 06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers_en.vtt 3.9 kB
  • 05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.srt 3.8 kB
  • 01 - Introductions/25299297-stats-intro-GuessTheTest.zip 3.8 kB
  • 02 - Math prerequisites/001 Should you memorize statistical formulas__en.vtt 3.8 kB
  • 02 - Math prerequisites/005 Absolute value_en.vtt 3.8 kB
  • 07 - Data normalizations and outliers/018 An outlier lecture on personal accountability_en.vtt 3.7 kB
  • 19 - Bonus section/002 Bonus content.html 3.7 kB
  • 07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling_en.srt 3.7 kB
  • 10 - The t-test family/004 _Unsupervised learning__ The role of variance_en.vtt 3.7 kB
  • 12 - Correlation/007 _Unsupervised learning__ average correlation matrices_en.vtt 3.7 kB
  • 05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion_en.srt 3.5 kB
  • 07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z_en.vtt 3.4 kB
  • 08 - Probability theory/013 Monte Carlo sampling_en.vtt 3.4 kB
  • 08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions_en.srt 3.4 kB
  • 12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation_en.srt 3.4 kB
  • 06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots_en.vtt 3.4 kB
  • 12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.srt 3.4 kB
  • 05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.vtt 3.3 kB
  • 08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers_en.srt 3.3 kB
  • 07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling_en.vtt 3.2 kB
  • 08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space_en.srt 3.2 kB
  • 01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player_en.srt 3.2 kB
  • 06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions_en.srt 3.1 kB
  • 05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion_en.vtt 3.0 kB
  • 12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.vtt 3.0 kB
  • 08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions_en.vtt 3.0 kB
  • 12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation_en.vtt 3.0 kB
  • 08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space_en.vtt 2.8 kB
  • 08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers_en.vtt 2.8 kB
  • 14 - Regression/016 _Unsupervised learning__ Overfit data_en.srt 2.8 kB
  • 01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player_en.vtt 2.7 kB
  • 06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions_en.vtt 2.7 kB
  • 09 - Hypothesis testing/006 Degrees of freedom_en.srt 2.7 kB
  • 16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization_en.srt 2.5 kB
  • 05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots_en.srt 2.5 kB
  • 14 - Regression/016 _Unsupervised learning__ Overfit data_en.vtt 2.4 kB
  • 17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer__en.srt 2.4 kB
  • 04 - What are (is_) data_/001 Is _data_ singular or plural________en.srt 2.4 kB
  • 16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data_en.srt 2.3 kB
  • 16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization_en.vtt 2.2 kB
  • 05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots_en.vtt 2.2 kB
  • 17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer__en.vtt 2.1 kB
  • 04 - What are (is_) data_/001 Is _data_ singular or plural________en.vtt 2.1 kB
  • 06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins_en.srt 2.1 kB
  • 16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur_en.srt 2.0 kB
  • 16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data_en.vtt 2.0 kB
  • 11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance_en.srt 1.9 kB
  • 12 - Correlation/015 _Unsupervised learning__ Spearman correlation_en.srt 1.9 kB
  • 06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins_en.vtt 1.8 kB
  • 16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur_en.vtt 1.8 kB
  • 11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance_en.vtt 1.7 kB
  • 12 - Correlation/015 _Unsupervised learning__ Spearman correlation_en.vtt 1.7 kB
  • 14 - Regression/006 _Unsupervised learning__ Compute R2 and F_en.srt 1.5 kB
  • 14 - Regression/006 _Unsupervised learning__ Compute R2 and F_en.vtt 1.3 kB
  • 14 - Regression/012 _Unsupervised learning__ Polynomial design matrix_en.srt 1.1 kB
  • 14 - Regression/012 _Unsupervised learning__ Polynomial design matrix_en.vtt 1.0 kB
  • 19 - Bonus section/001 About deep learning.html 619 Bytes
  • 18 - A real-world data journey/001 Note about the code for this section.html 135 Bytes
  • 01 - Introductions/[Tutorialsplanet.NET].url 128 Bytes
  • 12 - Correlation/[Tutorialsplanet.NET].url 128 Bytes
  • 19 - Bonus section/[Tutorialsplanet.NET].url 128 Bytes
  • [Tutorialsplanet.NET].url 128 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!