搜索
Learn To Create Artificially Intelligent Games Using Python3
磁力链接/BT种子名称
Learn To Create Artificially Intelligent Games Using Python3
磁力链接/BT种子简介
种子哈希:
02ee36fb1a2ba0f6967861ecfefda14652591bd4
文件大小:
12.61G
已经下载:
5076
次
下载速度:
极快
收录时间:
2023-12-20
最近下载:
2025-12-14
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:02EE36FB1A2BA0F6967861ECFEFDA14652591BD4
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
小蓝俱乐部
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
母狗园
51动漫
91短视频
抖音Max
海王TV
TikTok成人版
PornHub
暗网Xvideo
草榴社区
哆哔涩漫
呦乐园
萝莉岛
搜同
91暗网
最近搜索
季节
achj-076
日本+解剖
在姥姥房隔壁和妈妈激情
little
我的枪好长白丝
same-176ch
1岁
looks199
巨乳
上田紗奈
bobs burgers s16
【快手】東北妍姐-熟女絲腿福利視頻全集
金戈
八人
苗条瑜伽老师被猛干
avatar
breeder+fuckers
回复术士的重启人生05
kfc
李研雨
vrkm-422
natasha nice interracial gangbang
[potato+usushio]+class+no+gal+o+iinari+ero+maid+ni
泥醉
老嫖探花前女友
永野一夏+3d映像
jezebel
qq
hindi
文件列表
11 - Introduction to gym module/008 Tennis Game with Random Policy.mp4
214.2 MB
21 - Deep Convolution Q-Learning Practical Pacman game/006 Build Convolution Neural Network.mp4
203.4 MB
18 - TicTacToe Tensorflow/003 Preprocess the state.mp4
186.9 MB
11 - Introduction to gym module/006 Transitional Probability.mp4
180.6 MB
18 - TicTacToe Tensorflow/009 Creating Neural Network Player.mp4
180.1 MB
03 - Python Essentials/013 Logical statements.mp4
177.8 MB
03 - Python Essentials/033 Multiple Inheritance.mp4
167.1 MB
11 - Introduction to gym module/007 CartPole Example.mp4
155.7 MB
18 - TicTacToe Tensorflow/002 Creating model for the Game.mp4
149.1 MB
14 - Creating BlackJack Game/002 Introduction to Project Files.mp4
147.9 MB
03 - Python Essentials/032 What is Inheritance.mp4
147.7 MB
18 - TicTacToe Tensorflow/008 TicTacToe Neural Network.mp4
147.0 MB
03 - Python Essentials/003 Basic Arithmetic in Python.mp4
147.0 MB
09 - Bellman Equation and Dynamic Programming/012 Temporal Difference.mp4
140.5 MB
04 - Pygame Refresher/002 Pygame coordinate System.mp4
138.0 MB
13 - Implementing Monte Carlo Predictions/005 Implementing MC simulation.mp4
136.0 MB
17 - Tensorflow and Keras/006 Keras models (Important).mp4
128.5 MB
03 - Python Essentials/031 Constructor in Python.mp4
127.9 MB
16 - Scratch Implementation of Neural Network/004 Coding dense layer [must know Object Oriented Programming].mp4
127.2 MB
13 - Implementing Monte Carlo Predictions/001 BlackJack Game and Rules of the Game.mp4
125.4 MB
15 - Neural Network Refresher/002 Introduction to Neural Networks.mp4
122.0 MB
21 - Deep Convolution Q-Learning Practical Pacman game/013 Training model for multiple iterations.mp4
120.2 MB
06 - Creating TicTacToe using MinMax algorithm/006 Implementing MinMax algorithm.mp4
118.6 MB
21 - Deep Convolution Q-Learning Practical Pacman game/002 Mean Squared Error.mp4
118.4 MB
03 - Python Essentials/006 Access elements of String.mp4
118.2 MB
13 - Implementing Monte Carlo Predictions/006 Calculate Value of State using MC simulation.mp4
117.3 MB
14 - Creating BlackJack Game/010 Training the Q-Learning model and Running Game.mp4
113.5 MB
10 - Implementation of Q-Learning to Find Optimal Path/002 Introduction to Project Files.mp4
112.6 MB
15 - Neural Network Refresher/008 Introduction to the Activation Function.mp4
110.7 MB
14 - Creating BlackJack Game/007 Implementing Temporal Difference (update Q-values).mp4
110.2 MB
16 - Scratch Implementation of Neural Network/005 Introduction to Activation Function.mp4
110.0 MB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/002 Action Selection Policy.mp4
109.1 MB
21 - Deep Convolution Q-Learning Practical Pacman game/001 Introduction to Replay Buffer.mp4
108.3 MB
03 - Python Essentials/030 Class and Objects Continued.mp4
107.6 MB
21 - Deep Convolution Q-Learning Practical Pacman game/005 Solving ROM error.mp4
106.7 MB
21 - Deep Convolution Q-Learning Practical Pacman game/009 Epsilon Greedy (Action-Selection Policy).mp4
106.4 MB
17 - Tensorflow and Keras/004 Examples.mp4
102.8 MB
20 - Convolution Neural Network/003 Convolution Layer.mp4
101.0 MB
03 - Python Essentials/023 Important List Comprehension for Game Development.mp4
101.0 MB
06 - Creating TicTacToe using MinMax algorithm/008 Playing against AI player and Tuning algorithm.mp4
100.4 MB
21 - Deep Convolution Q-Learning Practical Pacman game/014 Simulating the game and storing transitions.mp4
100.3 MB
10 - Implementation of Q-Learning to Find Optimal Path/011 Executing Gameq-Learning Algorithm.mp4
99.7 MB
16 - Scratch Implementation of Neural Network/002 Coding neuron layer.mp4
99.2 MB
03 - Python Essentials/022 For loop.mp4
97.6 MB
04 - Pygame Refresher/003 Introduction to Pygame shape.mp4
97.3 MB
15 - Neural Network Refresher/006 Updating the weights [partial differentiation].mp4
97.0 MB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/003 Exploration vs Exploitation.mp4
96.8 MB
21 - Deep Convolution Q-Learning Practical Pacman game/010 Training the neural network.mp4
94.3 MB
03 - Python Essentials/015 if else statements.mp4
93.3 MB
04 - Pygame Refresher/006 Fundamentals of Pygame -- skeleton code.mp4
93.2 MB
13 - Implementing Monte Carlo Predictions/003 Defining Policy.mp4
89.8 MB
21 - Deep Convolution Q-Learning Practical Pacman game/008 Build Main Network and Target Network.mp4
88.5 MB
02 - Setup Anaconda and Install Dependencies for Project/003 Install DependenciesLibraries for the Course.mp4
87.4 MB
04 - Pygame Refresher/004 Draw shapes using Pygame.mp4
87.0 MB
09 - Bellman Equation and Dynamic Programming/008 Markov Decision Process + Bellman.mp4
85.4 MB
03 - Python Essentials/025 Learn to create Functions.mp4
83.1 MB
04 - Pygame Refresher/010 Make movement within Boundary.mp4
82.5 MB
14 - Creating BlackJack Game/009 Making AI to play game.mp4
82.2 MB
15 - Neural Network Refresher/012 Introduction to Stochastic Gradient Descent and Adam Optimizer.mp4
81.7 MB
21 - Deep Convolution Q-Learning Practical Pacman game/004 Creating Environment.mp4
81.6 MB
11 - Introduction to gym module/009 CartPole with Random Policy.mp4
80.9 MB
15 - Neural Network Refresher/003 Inspiration and representation for Neural Network.mp4
80.8 MB
03 - Python Essentials/004 Operations on Numbers.mp4
80.3 MB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/001 Introduction to Deep Q-Learning.mp4
79.6 MB
13 - Implementing Monte Carlo Predictions/004 Generating Episodes.mp4
79.5 MB
10 - Implementation of Q-Learning to Find Optimal Path/010 Implementing Temporal Difference.mp4
78.7 MB
10 - Implementation of Q-Learning to Find Optimal Path/001 Introduction to Project.mp4
78.4 MB
09 - Bellman Equation and Dynamic Programming/010 Equation of Q-Learning.mp4
78.0 MB
12 - Monte Carlo Simulation/003 Monte Carlo Method (MC - method).mp4
76.8 MB
08 - Key Terms of Artificial Intelligence (Important)/003 Markov Decision Process.mp4
76.5 MB
10 - Implementation of Q-Learning to Find Optimal Path/005 Example of Q-Table.mp4
76.3 MB
14 - Creating BlackJack Game/008 AI Player steps.mp4
76.2 MB
03 - Python Essentials/020 Infinite while loop (Game Loop).mp4
76.2 MB
06 - Creating TicTacToe using MinMax algorithm/005 Calculating ValueHeuristic for Min Max player.mp4
75.8 MB
03 - Python Essentials/018 How to access the items from the list.mp4
74.1 MB
04 - Pygame Refresher/005 Color Picker.mp4
73.2 MB
15 - Neural Network Refresher/004 History and Application of Neural Network.mp4
72.9 MB
16 - Scratch Implementation of Neural Network/006 Implementation of activation function [step and sigmoid].mp4
72.6 MB
16 - Scratch Implementation of Neural Network/001 Setting up environment and coding single neuron.mp4
72.1 MB
11 - Introduction to gym module/003 Creating Gym Environment.mp4
72.0 MB
15 - Neural Network Refresher/001 Introduction to Artificial Intelligence.mp4
71.6 MB
05 - Introduction to MinMax Algorithm/006 Example of Heuristic.mp4
71.2 MB
10 - Implementation of Q-Learning to Find Optimal Path/004 Briefing about Q-Table.mp4
70.8 MB
06 - Creating TicTacToe using MinMax algorithm/002 Introduction to Project Files.mp4
70.4 MB
10 - Implementation of Q-Learning to Find Optimal Path/009 Action Selection Policy (Returning max Q value).mp4
70.0 MB
21 - Deep Convolution Q-Learning Practical Pacman game/012 Preprocess the state.mp4
67.9 MB
05 - Introduction to MinMax Algorithm/008 Example of MinMax.mp4
67.8 MB
12 - Monte Carlo Simulation/001 Why Monte Carlo Simulation is important.mp4
67.8 MB
02 - Setup Anaconda and Install Dependencies for Project/001 Install Anaconda.mp4
67.7 MB
03 - Python Essentials/029 Class and Objects.mp4
66.9 MB
15 - Neural Network Refresher/010 Why we use regularization in the Neural Network.mp4
66.2 MB
16 - Scratch Implementation of Neural Network/007 Implementation of activation function [tanh and ReLu].mp4
65.0 MB
03 - Python Essentials/017 Checking type of Data Structures.mp4
64.7 MB
03 - Python Essentials/007 Formatting strings.mp4
63.9 MB
17 - Tensorflow and Keras/001 What is Tensorflow.mp4
63.6 MB
15 - Neural Network Refresher/011 Introduction to the gradient descent [review].mp4
63.4 MB
05 - Introduction to MinMax Algorithm/007 Introduction to MinMax algorithm.mp4
63.2 MB
14 - Creating BlackJack Game/005 (State, Action, Reward) of Episodes.mp4
63.1 MB
03 - Python Essentials/009 Create Variables in Python.mp4
62.8 MB
06 - Creating TicTacToe using MinMax algorithm/003 Creating Indecisive Player (Random).mp4
62.4 MB
03 - Python Essentials/026 Learn about return statements.mp4
61.1 MB
18 - TicTacToe Tensorflow/005 Training the model.mp4
61.0 MB
10 - Implementation of Q-Learning to Find Optimal Path/006 Q-Agent.mp4
60.2 MB
09 - Bellman Equation and Dynamic Programming/005 Example.mp4
60.1 MB
09 - Bellman Equation and Dynamic Programming/006 Plan.mp4
60.0 MB
05 - Introduction to MinMax Algorithm/001 Introduction to Board Games.mp4
59.8 MB
15 - Neural Network Refresher/007 Introduction to partial differentiation.mp4
58.8 MB
17 - Tensorflow and Keras/002 Rank of Tensors.mp4
58.4 MB
07 - Introduction to Artificial Intelligence/009 Value of the State.mp4
58.2 MB
05 - Introduction to MinMax Algorithm/004 Solution of Lookahead problem.mp4
55.9 MB
09 - Bellman Equation and Dynamic Programming/004 Bellman Equation.mp4
55.6 MB
06 - Creating TicTacToe using MinMax algorithm/007 Setting up Autoplayer (Artificial Intelligent Player).mp4
55.6 MB
10 - Implementation of Q-Learning to Find Optimal Path/003 Creating Environment.mp4
55.4 MB
20 - Convolution Neural Network/006 BackPropagation.mp4
55.1 MB
04 - Pygame Refresher/001 Introduction to the pygame.mp4
53.8 MB
04 - Pygame Refresher/008 Movement of the shapes.mp4
52.7 MB
04 - Pygame Refresher/007 Render a rectangle in the Screen.mp4
52.1 MB
15 - Neural Network Refresher/005 Example of neural network.mp4
51.7 MB
09 - Bellman Equation and Dynamic Programming/007 Non Deterministic Environment.mp4
51.7 MB
16 - Scratch Implementation of Neural Network/003 Using dot product to code neuron layer.mp4
51.5 MB
07 - Introduction to Artificial Intelligence/002 Reinforcement Learning.mp4
51.4 MB
11 - Introduction to gym module/005 State space and Action space.mp4
51.0 MB
03 - Python Essentials/011 Learn to create conditions.mp4
50.6 MB
06 - Creating TicTacToe using MinMax algorithm/004 Implementing MinMax.mp4
50.0 MB
21 - Deep Convolution Q-Learning Practical Pacman game/003 Main Network and Target Network.mp4
49.9 MB
13 - Implementing Monte Carlo Predictions/002 Creating BlackJack Environment.mp4
49.4 MB
11 - Introduction to gym module/002 Example of Gym Environment.mp4
49.4 MB
17 - Tensorflow and Keras/007 Implementing Neural Network using Keras.mp4
49.1 MB
21 - Deep Convolution Q-Learning Practical Pacman game/015 Testing the game.mp4
48.6 MB
05 - Introduction to MinMax Algorithm/002 Tree representation of Game.mp4
48.4 MB
09 - Bellman Equation and Dynamic Programming/009 Introduction to Q-Learning.mp4
47.7 MB
18 - TicTacToe Tensorflow/004 Define Independent (input) and Dependent (output) Variable.mp4
47.6 MB
11 - Introduction to gym module/004 Getting started with Gym.mp4
47.4 MB
14 - Creating BlackJack Game/001 Action Selection Policy (Epsilon-Greedy).mp4
47.1 MB
15 - Neural Network Refresher/009 Why do we need bias in the program.mp4
46.9 MB
06 - Creating TicTacToe using MinMax algorithm/001 introduction to Game.mp4
46.6 MB
17 - Tensorflow and Keras/003 Program Elements of Tensorflow.mp4
46.1 MB
14 - Creating BlackJack Game/004 Implementing Epsilon Greedy Policy.mp4
45.1 MB
18 - TicTacToe Tensorflow/001 Introduction to Project Files.mp4
44.8 MB
03 - Python Essentials/027 Introduction to the section.mp4
43.5 MB
17 - Tensorflow and Keras/005 Introduction to Keras.mp4
43.4 MB
02 - Setup Anaconda and Install Dependencies for Project/004 Download Visual Studio Code.mp4
43.2 MB
05 - Introduction to MinMax Algorithm/009 MinMax Example for TicTacToe.mp4
42.5 MB
14 - Creating BlackJack Game/006 Introduction to Discount Parameter.mp4
42.0 MB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/004 Deep Convolution Q-Learning.mp4
42.0 MB
12 - Monte Carlo Simulation/004 First Visit vs Every Visit MC.mp4
41.8 MB
02 - Setup Anaconda and Install Dependencies for Project/002 Create Virtual Environment.mp4
41.5 MB
08 - Key Terms of Artificial Intelligence (Important)/001 Markov Property and Markov Chain.mp4
41.1 MB
21 - Deep Convolution Q-Learning Practical Pacman game/011 Fit the model.mp4
40.8 MB
04 - Pygame Refresher/009 Smoothen the movement using FPS.mp4
40.2 MB
03 - Python Essentials/028 What is Object Oriented Programming.mp4
39.8 MB
10 - Implementation of Q-Learning to Find Optimal Path/007 Possible Actions.mp4
39.6 MB
05 - Introduction to MinMax Algorithm/005 Heuristic Evaluation of Board.mp4
38.7 MB
03 - Python Essentials/021 Finite Game Loop.mp4
38.1 MB
21 - Deep Convolution Q-Learning Practical Pacman game/007 Store Transition in Replay buffer.mp4
37.9 MB
03 - Python Essentials/016 Introduction to Data Structures.mp4
36.4 MB
01 - Introduction/001 Introduction.mp4
35.4 MB
10 - Implementation of Q-Learning to Find Optimal Path/008 Iterations.mp4
33.7 MB
09 - Bellman Equation and Dynamic Programming/003 Value Function.mp4
33.1 MB
20 - Convolution Neural Network/001 Introduction to convolution neural network.mp4
32.5 MB
18 - TicTacToe Tensorflow/007 TicTacToe Model.mp4
31.7 MB
05 - Introduction to MinMax Algorithm/003 Lookahead Problem.mp4
31.7 MB
14 - Creating BlackJack Game/003 Q-Table.mp4
31.6 MB
20 - Convolution Neural Network/002 How ConvNet works.mp4
30.8 MB
08 - Key Terms of Artificial Intelligence (Important)/002 Markov Reward Process.mp4
30.1 MB
12 - Monte Carlo Simulation/002 Monte Carlo Simulation.mp4
28.1 MB
03 - Python Essentials/005 Introduction to Strings in Python.mp4
27.8 MB
03 - Python Essentials/002 Introduction to the data types.mp4
26.3 MB
11 - Introduction to gym module/001 The gym module.mp4
24.7 MB
03 - Python Essentials/001 What is Python.mp4
23.7 MB
12 - Monte Carlo Simulation/005 BlackJack Example.mp4
23.0 MB
07 - Introduction to Artificial Intelligence/001 Motivation for Artificial Intelligence.mp4
22.6 MB
03 - Python Essentials/010 Introduction to Booleans in Python.mp4
20.7 MB
20 - Convolution Neural Network/004 RELU Layer.mp4
20.4 MB
07 - Introduction to Artificial Intelligence/007 Policy.mp4
19.9 MB
07 - Introduction to Artificial Intelligence/010 Model.mp4
19.1 MB
07 - Introduction to Artificial Intelligence/006 Typical RL scenario.mp4
18.4 MB
03 - Python Essentials/014 Introduction to conditional statements.mp4
18.3 MB
09 - Bellman Equation and Dynamic Programming/001 Introduction.mp4
18.2 MB
20 - Convolution Neural Network/005 Pooling Layer.mp4
17.3 MB
15 - Neural Network Refresher/013 Introduction to mini-batch SGD.mp4
17.0 MB
09 - Bellman Equation and Dynamic Programming/002 Tribute to Bellman.mp4
15.3 MB
03 - Python Essentials/008 Introduction to the variables.mp4
14.9 MB
03 - Python Essentials/012 is operator in Python.mp4
14.4 MB
07 - Introduction to Artificial Intelligence/004 Rewards.mp4
13.9 MB
03 - Python Essentials/024 What is Function and Why we need it.mp4
12.8 MB
03 - Python Essentials/019 Introduction to the loops in Python.mp4
12.1 MB
09 - Bellman Equation and Dynamic Programming/011 Q value for Non-Deterministic Environment.mp4
12.1 MB
18 - TicTacToe Tensorflow/006 Predict from the model.mp4
12.0 MB
07 - Introduction to Artificial Intelligence/003 Environment.mp4
12.0 MB
05 - Introduction to MinMax Algorithm/010 MinMax Algorithm.mp4
9.1 MB
07 - Introduction to Artificial Intelligence/005 Path.mp4
5.7 MB
07 - Introduction to Artificial Intelligence/008 Rewards.mp4
5.6 MB
09 - Bellman Equation and Dynamic Programming/012 Temporal Difference_en.vtt
35.9 kB
11 - Introduction to gym module/006 Transitional Probability_en.vtt
33.4 kB
18 - TicTacToe Tensorflow/003 Preprocess the state_en.vtt
32.9 kB
21 - Deep Convolution Q-Learning Practical Pacman game/006 Build Convolution Neural Network_en.vtt
32.8 kB
11 - Introduction to gym module/008 Tennis Game with Random Policy_en.vtt
30.5 kB
15 - Neural Network Refresher/002 Introduction to Neural Networks_en.vtt
30.1 kB
15 - Neural Network Refresher/008 Introduction to the Activation Function_en.vtt
29.5 kB
21 - Deep Convolution Q-Learning Practical Pacman game/002 Mean Squared Error_en.vtt
27.4 kB
18 - TicTacToe Tensorflow/002 Creating model for the Game_en.vtt
27.1 kB
03 - Python Essentials/003 Basic Arithmetic in Python_en.vtt
24.9 kB
16 - Scratch Implementation of Neural Network/004 Coding dense layer [must know Object Oriented Programming]_en.vtt
24.7 kB
03 - Python Essentials/013 Logical statements_en.vtt
23.2 kB
15 - Neural Network Refresher/006 Updating the weights [partial differentiation]_en.vtt
22.7 kB
13 - Implementing Monte Carlo Predictions/005 Implementing MC simulation_en.vtt
22.0 kB
21 - Deep Convolution Q-Learning Practical Pacman game/001 Introduction to Replay Buffer_en.vtt
21.7 kB
15 - Neural Network Refresher/012 Introduction to Stochastic Gradient Descent and Adam Optimizer_en.vtt
21.7 kB
16 - Scratch Implementation of Neural Network/002 Coding neuron layer_en.vtt
21.6 kB
18 - TicTacToe Tensorflow/009 Creating Neural Network Player_en.vtt
21.5 kB
18 - TicTacToe Tensorflow/008 TicTacToe Neural Network_en.vtt
21.2 kB
04 - Pygame Refresher/002 Pygame coordinate System_en.vtt
20.7 kB
14 - Creating BlackJack Game/002 Introduction to Project Files_en.vtt
20.2 kB
06 - Creating TicTacToe using MinMax algorithm/006 Implementing MinMax algorithm_en.vtt
19.8 kB
09 - Bellman Equation and Dynamic Programming/008 Markov Decision Process + Bellman_en.vtt
19.7 kB
11 - Introduction to gym module/007 CartPole Example_en.vtt
19.6 kB
15 - Neural Network Refresher/007 Introduction to partial differentiation_en.vtt
19.6 kB
15 - Neural Network Refresher/011 Introduction to the gradient descent [review]_en.vtt
19.6 kB
16 - Scratch Implementation of Neural Network/001 Setting up environment and coding single neuron_en.vtt
19.5 kB
03 - Python Essentials/023 Important List Comprehension for Game Development_en.vtt
19.3 kB
16 - Scratch Implementation of Neural Network/005 Introduction to Activation Function_en.vtt
19.1 kB
03 - Python Essentials/033 Multiple Inheritance_en.vtt
18.9 kB
13 - Implementing Monte Carlo Predictions/001 BlackJack Game and Rules of the Game_en.vtt
18.8 kB
15 - Neural Network Refresher/004 History and Application of Neural Network_en.vtt
17.8 kB
05 - Introduction to MinMax Algorithm/007 Introduction to MinMax algorithm_en.vtt
17.7 kB
21 - Deep Convolution Q-Learning Practical Pacman game/013 Training model for multiple iterations_en.vtt
17.6 kB
03 - Python Essentials/022 For loop_en.vtt
17.4 kB
15 - Neural Network Refresher/003 Inspiration and representation for Neural Network_en.vtt
17.1 kB
21 - Deep Convolution Q-Learning Practical Pacman game/010 Training the neural network_en.vtt
17.1 kB
20 - Convolution Neural Network/003 Convolution Layer_en.vtt
17.0 kB
09 - Bellman Equation and Dynamic Programming/010 Equation of Q-Learning_en.vtt
16.9 kB
16 - Scratch Implementation of Neural Network/007 Implementation of activation function [tanh and ReLu]_en.vtt
16.7 kB
15 - Neural Network Refresher/005 Example of neural network_en.vtt
16.4 kB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/001 Introduction to Deep Q-Learning_en.vtt
16.1 kB
10 - Implementation of Q-Learning to Find Optimal Path/002 Introduction to Project Files_en.vtt
15.9 kB
14 - Creating BlackJack Game/007 Implementing Temporal Difference (update Q-values)_en.vtt
15.8 kB
14 - Creating BlackJack Game/010 Training the Q-Learning model and Running Game_en.vtt
15.6 kB
13 - Implementing Monte Carlo Predictions/006 Calculate Value of State using MC simulation_en.vtt
15.5 kB
09 - Bellman Equation and Dynamic Programming/004 Bellman Equation_en.vtt
15.5 kB
21 - Deep Convolution Q-Learning Practical Pacman game/009 Epsilon Greedy (Action-Selection Policy)_en.vtt
15.5 kB
16 - Scratch Implementation of Neural Network/006 Implementation of activation function [step and sigmoid]_en.vtt
15.3 kB
05 - Introduction to MinMax Algorithm/006 Example of Heuristic_en.vtt
15.0 kB
03 - Python Essentials/020 Infinite while loop (Game Loop)_en.vtt
14.8 kB
05 - Introduction to MinMax Algorithm/008 Example of MinMax_en.vtt
14.7 kB
21 - Deep Convolution Q-Learning Practical Pacman game/014 Simulating the game and storing transitions_en.vtt
14.6 kB
03 - Python Essentials/004 Operations on Numbers_en.vtt
14.6 kB
03 - Python Essentials/032 What is Inheritance_en.vtt
14.5 kB
05 - Introduction to MinMax Algorithm/001 Introduction to Board Games_en.vtt
14.5 kB
09 - Bellman Equation and Dynamic Programming/005 Example_en.vtt
14.3 kB
10 - Implementation of Q-Learning to Find Optimal Path/011 Executing Gameq-Learning Algorithm_en.vtt
14.0 kB
03 - Python Essentials/031 Constructor in Python_en.vtt
14.0 kB
04 - Pygame Refresher/010 Make movement within Boundary_en.vtt
13.9 kB
03 - Python Essentials/030 Class and Objects Continued_en.vtt
13.8 kB
10 - Implementation of Q-Learning to Find Optimal Path/005 Example of Q-Table_en.vtt
13.7 kB
21 - Deep Convolution Q-Learning Practical Pacman game/008 Build Main Network and Target Network_en.vtt
13.6 kB
03 - Python Essentials/007 Formatting strings_en.vtt
13.6 kB
13 - Implementing Monte Carlo Predictions/003 Defining Policy_en.vtt
13.5 kB
21 - Deep Convolution Q-Learning Practical Pacman game/005 Solving ROM error_en.vtt
13.5 kB
10 - Implementation of Q-Learning to Find Optimal Path/009 Action Selection Policy (Returning max Q value)_en.vtt
13.3 kB
17 - Tensorflow and Keras/006 Keras models (Important)_en.vtt
13.1 kB
12 - Monte Carlo Simulation/003 Monte Carlo Method (MC - method)_en.vtt
12.7 kB
04 - Pygame Refresher/006 Fundamentals of Pygame -- skeleton code_en.vtt
12.7 kB
06 - Creating TicTacToe using MinMax algorithm/008 Playing against AI player and Tuning algorithm_en.vtt
12.7 kB
16 - Scratch Implementation of Neural Network/003 Using dot product to code neuron layer_en.vtt
12.7 kB
11 - Introduction to gym module/003 Creating Gym Environment_en.vtt
12.6 kB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/002 Action Selection Policy_en.vtt
12.6 kB
06 - Creating TicTacToe using MinMax algorithm/003 Creating Indecisive Player (Random)_en.vtt
12.5 kB
03 - Python Essentials/025 Learn to create Functions_en.vtt
12.4 kB
17 - Tensorflow and Keras/004 Examples_en.vtt
12.1 kB
15 - Neural Network Refresher/001 Introduction to Artificial Intelligence_en.vtt
12.1 kB
03 - Python Essentials/006 Access elements of String_en.vtt
12.1 kB
13 - Implementing Monte Carlo Predictions/004 Generating Episodes_en.vtt
12.0 kB
10 - Implementation of Q-Learning to Find Optimal Path/006 Q-Agent_en.vtt
12.0 kB
12 - Monte Carlo Simulation/001 Why Monte Carlo Simulation is important_en.vtt
11.9 kB
09 - Bellman Equation and Dynamic Programming/007 Non Deterministic Environment_en.vtt
11.9 kB
05 - Introduction to MinMax Algorithm/004 Solution of Lookahead problem_en.vtt
11.8 kB
15 - Neural Network Refresher/009 Why do we need bias in the program_en.vtt
11.7 kB
21 - Deep Convolution Q-Learning Practical Pacman game/003 Main Network and Target Network_en.vtt
11.7 kB
10 - Implementation of Q-Learning to Find Optimal Path/001 Introduction to Project_en.vtt
11.5 kB
06 - Creating TicTacToe using MinMax algorithm/005 Calculating ValueHeuristic for Min Max player_en.vtt
11.5 kB
11 - Introduction to gym module/009 CartPole with Random Policy_en.vtt
11.4 kB
03 - Python Essentials/018 How to access the items from the list_en.vtt
11.2 kB
03 - Python Essentials/009 Create Variables in Python_en.vtt
11.1 kB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/003 Exploration vs Exploitation_en.vtt
11.0 kB
03 - Python Essentials/015 if else statements_en.vtt
11.0 kB
17 - Tensorflow and Keras/002 Rank of Tensors_en.vtt
10.8 kB
06 - Creating TicTacToe using MinMax algorithm/002 Introduction to Project Files_en.vtt
10.8 kB
09 - Bellman Equation and Dynamic Programming/009 Introduction to Q-Learning_en.vtt
10.8 kB
08 - Key Terms of Artificial Intelligence (Important)/003 Markov Decision Process_en.vtt
10.7 kB
21 - Deep Convolution Q-Learning Practical Pacman game/004 Creating Environment_en.vtt
10.7 kB
04 - Pygame Refresher/004 Draw shapes using Pygame_en.vtt
10.6 kB
05 - Introduction to MinMax Algorithm/002 Tree representation of Game_en.vtt
10.5 kB
14 - Creating BlackJack Game/008 AI Player steps_en.vtt
10.4 kB
10 - Implementation of Q-Learning to Find Optimal Path/010 Implementing Temporal Difference_en.vtt
10.3 kB
03 - Python Essentials/017 Checking type of Data Structures_en.vtt
10.3 kB
14 - Creating BlackJack Game/005 (State, Action, Reward) of Episodes_en.vtt
10.2 kB
14 - Creating BlackJack Game/009 Making AI to play game_en.vtt
10.2 kB
21 - Deep Convolution Q-Learning Practical Pacman game/012 Preprocess the state_en.vtt
9.9 kB
17 - Tensorflow and Keras/001 What is Tensorflow_en.vtt
9.9 kB
14 - Creating BlackJack Game/004 Implementing Epsilon Greedy Policy_en.vtt
9.8 kB
18 - TicTacToe Tensorflow/005 Training the model_en.vtt
9.8 kB
05 - Introduction to MinMax Algorithm/009 MinMax Example for TicTacToe_en.vtt
9.7 kB
09 - Bellman Equation and Dynamic Programming/006 Plan_en.vtt
9.7 kB
03 - Python Essentials/029 Class and Objects_en.vtt
9.5 kB
19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/004 Deep Convolution Q-Learning_en.vtt
9.4 kB
10 - Implementation of Q-Learning to Find Optimal Path/003 Creating Environment_en.vtt
9.3 kB
03 - Python Essentials/026 Learn about return statements_en.vtt
9.1 kB
05 - Introduction to MinMax Algorithm/005 Heuristic Evaluation of Board_en.vtt
9.0 kB
17 - Tensorflow and Keras/003 Program Elements of Tensorflow_en.vtt
9.0 kB
02 - Setup Anaconda and Install Dependencies for Project/004 Download Visual Studio Code_en.vtt
8.9 kB
11 - Introduction to gym module/005 State space and Action space_en.vtt
8.7 kB
06 - Creating TicTacToe using MinMax algorithm/004 Implementing MinMax_en.vtt
8.7 kB
02 - Setup Anaconda and Install Dependencies for Project/003 Install DependenciesLibraries for the Course_en.vtt
8.5 kB
08 - Key Terms of Artificial Intelligence (Important)/001 Markov Property and Markov Chain_en.vtt
8.4 kB
14 - Creating BlackJack Game/001 Action Selection Policy (Epsilon-Greedy)_en.vtt
8.4 kB
11 - Introduction to gym module/004 Getting started with Gym_en.vtt
8.4 kB
07 - Introduction to Artificial Intelligence/009 Value of the State_en.vtt
8.4 kB
05 - Introduction to MinMax Algorithm/003 Lookahead Problem_en.vtt
8.4 kB
11 - Introduction to gym module/002 Example of Gym Environment_en.vtt
8.3 kB
13 - Implementing Monte Carlo Predictions/002 Creating BlackJack Environment_en.vtt
8.3 kB
04 - Pygame Refresher/008 Movement of the shapes_en.vtt
8.3 kB
20 - Convolution Neural Network/006 BackPropagation_en.vtt
8.3 kB
10 - Implementation of Q-Learning to Find Optimal Path/004 Briefing about Q-Table_en.vtt
8.2 kB
06 - Creating TicTacToe using MinMax algorithm/001 introduction to Game_en.vtt
8.0 kB
10 - Implementation of Q-Learning to Find Optimal Path/007 Possible Actions_en.vtt
7.8 kB
09 - Bellman Equation and Dynamic Programming/003 Value Function_en.vtt
7.8 kB
04 - Pygame Refresher/007 Render a rectangle in the Screen_en.vtt
7.6 kB
12 - Monte Carlo Simulation/004 First Visit vs Every Visit MC_en.vtt
7.5 kB
06 - Creating TicTacToe using MinMax algorithm/007 Setting up Autoplayer (Artificial Intelligent Player)_en.vtt
7.5 kB
04 - Pygame Refresher/003 Introduction to Pygame shape_en.vtt
7.4 kB
04 - Pygame Refresher/005 Color Picker_en.vtt
7.1 kB
14 - Creating BlackJack Game/006 Introduction to Discount Parameter_en.vtt
7.0 kB
03 - Python Essentials/011 Learn to create conditions_en.vtt
7.0 kB
02 - Setup Anaconda and Install Dependencies for Project/001 Install Anaconda_en.vtt
6.9 kB
18 - TicTacToe Tensorflow/001 Introduction to Project Files_en.vtt
6.8 kB
04 - Pygame Refresher/009 Smoothen the movement using FPS_en.vtt
6.5 kB
03 - Python Essentials/021 Finite Game Loop_en.vtt
6.5 kB
04 - Pygame Refresher/001 Introduction to the pygame_en.vtt
6.5 kB
18 - TicTacToe Tensorflow/004 Define Independent (input) and Dependent (output) Variable_en.vtt
6.4 kB
21 - Deep Convolution Q-Learning Practical Pacman game/011 Fit the model_en.vtt
6.3 kB
12 - Monte Carlo Simulation/002 Monte Carlo Simulation_en.vtt
6.1 kB
02 - Setup Anaconda and Install Dependencies for Project/002 Create Virtual Environment_en.vtt
5.7 kB
17 - Tensorflow and Keras/007 Implementing Neural Network using Keras_en.vtt
5.6 kB
18 - TicTacToe Tensorflow/007 TicTacToe Model_en.vtt
5.5 kB
10 - Implementation of Q-Learning to Find Optimal Path/008 Iterations_en.vtt
5.4 kB
21 - Deep Convolution Q-Learning Practical Pacman game/007 Store Transition in Replay buffer_en.vtt
5.4 kB
17 - Tensorflow and Keras/005 Introduction to Keras_en.vtt
5.4 kB
20 - Convolution Neural Network/001 Introduction to convolution neural network_en.vtt
5.3 kB
20 - Convolution Neural Network/002 How ConvNet works_en.vtt
5.1 kB
07 - Introduction to Artificial Intelligence/010 Model_en.vtt
5.0 kB
03 - Python Essentials/005 Introduction to Strings in Python_en.vtt
5.0 kB
21 - Deep Convolution Q-Learning Practical Pacman game/015 Testing the game_en.vtt
4.9 kB
03 - Python Essentials/028 What is Object Oriented Programming_en.vtt
4.9 kB
09 - Bellman Equation and Dynamic Programming/001 Introduction_en.vtt
4.8 kB
09 - Bellman Equation and Dynamic Programming/002 Tribute to Bellman_en.vtt
4.1 kB
07 - Introduction to Artificial Intelligence/006 Typical RL scenario_en.vtt
4.0 kB
12 - Monte Carlo Simulation/005 BlackJack Example_en.vtt
4.0 kB
14 - Creating BlackJack Game/003 Q-Table_en.vtt
3.8 kB
15 - Neural Network Refresher/010 Why we use regularization in the Neural Network_en.vtt
3.7 kB
08 - Key Terms of Artificial Intelligence (Important)/002 Markov Reward Process_en.vtt
3.7 kB
20 - Convolution Neural Network/004 RELU Layer_en.vtt
3.6 kB
07 - Introduction to Artificial Intelligence/007 Policy_en.vtt
3.5 kB
15 - Neural Network Refresher/013 Introduction to mini-batch SGD_en.vtt
3.5 kB
20 - Convolution Neural Network/005 Pooling Layer_en.vtt
3.4 kB
11 - Introduction to gym module/001 The gym module_en.vtt
3.2 kB
03 - Python Essentials/027 Introduction to the section_en.vtt
3.2 kB
07 - Introduction to Artificial Intelligence/001 Motivation for Artificial Intelligence_en.vtt
3.0 kB
09 - Bellman Equation and Dynamic Programming/011 Q value for Non-Deterministic Environment_en.vtt
3.0 kB
03 - Python Essentials/012 is operator in Python_en.vtt
2.9 kB
03 - Python Essentials/016 Introduction to Data Structures_en.vtt
2.8 kB
07 - Introduction to Artificial Intelligence/004 Rewards_en.vtt
2.8 kB
07 - Introduction to Artificial Intelligence/002 Reinforcement Learning_en.vtt
2.8 kB
07 - Introduction to Artificial Intelligence/003 Environment_en.vtt
2.7 kB
05 - Introduction to MinMax Algorithm/010 MinMax Algorithm_en.vtt
2.1 kB
03 - Python Essentials/001 What is Python_en.vtt
2.0 kB
01 - Introduction/001 Introduction_en.vtt
1.7 kB
18 - TicTacToe Tensorflow/006 Predict from the model_en.vtt
1.6 kB
03 - Python Essentials/002 Introduction to the data types_en.vtt
1.4 kB
03 - Python Essentials/010 Introduction to Booleans in Python_en.vtt
1.4 kB
07 - Introduction to Artificial Intelligence/005 Path_en.vtt
1.2 kB
03 - Python Essentials/008 Introduction to the variables_en.vtt
992 Bytes
03 - Python Essentials/014 Introduction to conditional statements_en.vtt
935 Bytes
07 - Introduction to Artificial Intelligence/008 Rewards_en.vtt
912 Bytes
03 - Python Essentials/024 What is Function and Why we need it_en.vtt
870 Bytes
03 - Python Essentials/019 Introduction to the loops in Python_en.vtt
679 Bytes
22 - Any games you want to suggest/001 Farewell.html
339 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!