搜索
Udacity - Data Scientist Nanodegree nd025 v1.0.0
磁力链接/BT种子名称
Udacity - Data Scientist Nanodegree nd025 v1.0.0
磁力链接/BT种子简介
种子哈希:
058891d5acc9d8d4680c1a9dddb0bbfa2f0b8750
文件大小:
7.8G
已经下载:
4510
次
下载速度:
极快
收录时间:
2021-03-07
最近下载:
2025-01-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:058891D5ACC9D8D4680C1A9DDDB0BBFA2F0B8750
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
偷摸大奶
抠逼喷水
不射你打我
康先先生
完美露脸美少女
旗袍丁
decisamente loredana
黑超模
百度雲
same 070
boocheemish
火爆全网空姐
想吗
海叔
女版陈冠希
枣
美女打牌
04-23
少妇边打电话边被操
prbr-035
周晓琳++尿道
滕木美
骑乘 淫荡
中年夫妻真实交换
约+教
lily+lou+gangbang
怪物藤原龙也
约妹达人++11+11
妇用
sweeney
文件列表
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.mp4
42.7 MB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.mp4
42.1 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/24. Data Engineering-z6r2e_V0Td0.mp4
37.0 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.mp4
36.3 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.mp4
34.2 MB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.mp4
34.1 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.mp4
33.2 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.mp4
29.7 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4
28.4 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4
28.4 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.mp4
28.4 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.mp4
28.1 MB
Part 01-Module 04-Lesson 01_What Is Ahead/03. Rachel from Kaggle-uVsYYzxbyIg.mp4
27.7 MB
Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library-KsrqjguHWUI.mp4
27.6 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.mp4
27.6 MB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/03. Dan Frank Interview-Me-KRvZW1QQ.mp4
27.4 MB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.mp4
27.1 MB
Part 05-Module 01-Lesson 01_Congratulations!/04. Arvato Final Project-qBR6A0IQXEE.mp4
26.6 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Arvato Final Project-qBR6A0IQXEE.mp4
26.6 MB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. Arvato Final Project-qBR6A0IQXEE.mp4
26.6 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4
26.5 MB
Part 05-Module 01-Lesson 01_Congratulations!/04. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4
26.5 MB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Blogging for Data Science-WrvGpRN5XQI.mp4
26.5 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.mp4
26.3 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.mp4
26.1 MB
Part 14-Module 01-Lesson 01_The Data Science Process/13. How to Break Into the Field Solution-Db_2Lmwo4EY.mp4
25.7 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4
24.9 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.mp4
24.5 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.mp4
24.3 MB
Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.mp4
23.9 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.mp4
23.6 MB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4
23.1 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4
23.0 MB
Part 14-Module 01-Lesson 01_The Data Science Process/40. Categorical Variables-p3gDUkBD9uM.mp4
22.9 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.mp4
22.8 MB
Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4
22.7 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4
22.7 MB
Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4
22.1 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4
22.0 MB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.mp4
21.8 MB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.mp4
21.6 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/33. Data Engineering Importance-VO-OrJ0JqxM.mp4
21.6 MB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.mp4
21.5 MB
Part 04-Module 01-Lesson 04_PCA/12. 11 PCA 1 Solution V1-u0rJRmubQ44.mp4
21.2 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 03362 V1-MwRSg5RASoc.mp4
21.1 MB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.mp4
21.1 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.mp4
20.9 MB
Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4
20.9 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.mp4
20.7 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.mp4
20.5 MB
Part 15-Module 01-Lesson 06_Web Development/30. Deployment-YPfNzpnm_Rk.mp4
20.3 MB
Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4
19.9 MB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.mp4
19.8 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 1051320 V1-_4N6h82szWo.mp4
19.8 MB
Part 01-Module 04-Lesson 01_What Is Ahead/02. Adam from IBM-NjjtY5UHyac.mp4
19.8 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.mp4
19.7 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.mp4
19.5 MB
Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4
19.3 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.mp4
19.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/35. Imputation Methods-OwEWSBitF-Q.mp4
19.3 MB
Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4
19.2 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4
19.0 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.mp4
19.0 MB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4
18.9 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.mp4
18.8 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.mp4
18.6 MB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. Advanced API Code Walk-through-AkqO534YooE.mp4
18.6 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.mp4
18.6 MB
Part 14-Module 01-Lesson 01_The Data Science Process/32. Removing Data Part II-lPl6-Z098Rs.mp4
18.5 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.mp4
18.4 MB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.mp4
18.2 MB
Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4
18.2 MB
Part 14-Module 01-Lesson 01_The Data Science Process/21. Predicting Salary-HTp4LA1MJh8.mp4
18.2 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet The Instructors-XAU2Nf51vfU.mp4
18.2 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.mp4
18.1 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.mp4
18.1 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.mp4
18.1 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4
18.1 MB
Part 01-Module 04-Lesson 01_What Is Ahead/04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.mp4
17.9 MB
Part 15-Module 01-Lesson 06_Web Development/27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.mp4
17.9 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.mp4
17.9 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.mp4
17.8 MB
Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4
17.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4
17.7 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4
17.6 MB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.mp4
17.4 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4
17.2 MB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4
17.2 MB
Part 14-Module 01-Lesson 01_The Data Science Process/07. A Look at the Data-vPHVUYvCNGE.mp4
17.2 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. 20 Putting Code On PyPi V1-4uosDOKn5LI.mp4
17.1 MB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/01. Starbucks Lab-QPKRboscAf4.mp4
17.0 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.mp4
17.0 MB
Part 14-Module 01-Lesson 01_The Data Science Process/43. Putting It All Together-3SX4dMZPNEI.mp4
16.8 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4
16.7 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Py Part 6 V1-HiTih59dCWQ.mp4
16.7 MB
Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4
16.7 MB
Part 15-Module 01-Lesson 06_Web Development/10. CSS-s_sdzHR9cs0.mp4
16.7 MB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4
16.6 MB
Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4
16.5 MB
Part 14-Module 01-Lesson 01_The Data Science Process/17. Job Satisfaction-OjCNMhWlYh8.mp4
16.2 MB
Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4
16.2 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.mp4
16.2 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4
16.2 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4
16.1 MB
Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4
15.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4
15.7 MB
Part 01-Module 04-Lesson 01_What Is Ahead/01. What Do Data Scientists Do-sN2DbIJUZmw.mp4
15.7 MB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What Do Data Scientists Do-sN2DbIJUZmw.mp4
15.7 MB
Part 15-Module 01-Lesson 06_Web Development/16. 18 Screencast Plotly V2-QsmOW1jNeio.mp4
15.5 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.mp4
15.3 MB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4
15.3 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.mp4
15.1 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet The Instructors-ndyjFUF2e9Q.mp4
15.1 MB
Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4
15.1 MB
Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.mp4
14.9 MB
Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.mp4
14.9 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.mp4
14.5 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.mp4
14.5 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Figure 8 Project-QbLVh5GTuJQ.mp4
14.3 MB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Figure 8 Project-QbLVh5GTuJQ.mp4
14.3 MB
Part 05-Module 01-Lesson 01_Congratulations!/04. Figure 8 Project-QbLVh5GTuJQ.mp4
14.3 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4
14.2 MB
Part 05-Module 01-Lesson 01_Congratulations!/04. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4
14.2 MB
Part 17-Module 04-Lesson 01_Recommendation Engines/01. IBM Project Overview-XP_f64c07Gc.mp4
14.2 MB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.mp4
14.1 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.mp4
14.0 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4
14.0 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4
14.0 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4
13.9 MB
Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!-P3MfbMs-D98.mp4
13.9 MB
Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4
13.9 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4
13.8 MB
Part 14-Module 01-Lesson 01_The Data Science Process/37. Imputing Values-nTM4HiDneeE.mp4
13.8 MB
Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.mp4
13.8 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 11442204 V1-8kdRNQnqSGA.mp4
13.7 MB
Part 05-Module 01-Lesson 01_Congratulations!/03. Next Steps-kXMCKZ4HqsM.mp4
13.6 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.mp4
13.6 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4
13.6 MB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4
13.5 MB
Part 04-Module 01-Lesson 04_PCA/10. 09 PCA V1-0RLDZWeq5JE.mp4
13.4 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.mp4
13.4 MB
Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4
13.4 MB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Figure 8 Project V2-adtlHL42AuQ.mp4
13.2 MB
Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.mp4
13.2 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.mp4
13.2 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.mp4
13.2 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4
13.2 MB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4
13.1 MB
Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4
12.9 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.mp4
12.9 MB
Part 14-Module 01-Lesson 01_The Data Science Process/23. What Happened-gLn6_Z3nwcc.mp4
12.7 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4
12.6 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.mp4
12.5 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4
12.5 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.mp4
12.4 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.mp4
12.3 MB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. BMG Inspiration-ulMqa4YWbvc.mp4
12.1 MB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4
12.1 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4
12.0 MB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4
12.0 MB
Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4
12.0 MB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4
11.9 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.mp4
11.9 MB
Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.mp4
11.8 MB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4
11.8 MB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4
11.8 MB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4
11.8 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4
11.7 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4
11.6 MB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4
11.6 MB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Introduction To Software Engineering-7kphieW4yl4.mp4
11.5 MB
Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.mp4
11.5 MB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4
11.5 MB
Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4
11.4 MB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4
11.3 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4
11.3 MB
Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.mp4
11.3 MB
Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.mp4
11.3 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.mp4
11.3 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4
11.3 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4
11.2 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4
11.2 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/14. 14 Funk SVD-H8gdwXy_npI.mp4
11.2 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.mp4
11.1 MB
Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4
11.1 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/24. Recommendations 2 25 V1-zgz5WYlI5fE.mp4
11.0 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.mp4
10.9 MB
Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.mp4
10.8 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.mp4
10.8 MB
Part 15-Module 01-Lesson 06_Web Development/05. 6 Screencast HTML Code V2-G7fBus1JSc0.mp4
10.8 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4
10.8 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.mp4
10.8 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4
10.7 MB
Part 14-Module 01-Lesson 01_The Data Science Process/14. Bootcamps-l2tYmee3kxo.mp4
10.7 MB
Part 02-Module 01-Lesson 10_Finding Donors Project/06. Kaggle Project Final For Classroom-Ssttix340C8.mp4
10.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Kaggle Project Final For Classroom-Ssttix340C8.mp4
10.6 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4
10.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team-cuKecPpZ7PM.mp4
10.6 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team-cuKecPpZ7PM.mp4
10.6 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.mp4
10.6 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.mp4
10.6 MB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.mp4
10.5 MB
Part 04-Module 01-Lesson 05_Random Projection and ICA/10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.mp4
10.4 MB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4
10.4 MB
Part 04-Module 01-Lesson 01_Clustering/11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.mp4
10.3 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.mp4
10.3 MB
Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.mp4
10.3 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/09. SVD-t2XTuHq6-xc.mp4
10.3 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.mp4
10.3 MB
Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.mp4
10.2 MB
Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.mp4
10.2 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.mp4
10.2 MB
Part 15-Module 01-Lesson 06_Web Development/12. 14 Screencast JavaScript V2-vgXUKgsT_48.mp4
10.1 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.mp4
10.1 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikitlearn Source Code-4_qkqMsbthg.mp4
10.1 MB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. L5 Outro-rW1YP1aSb08.mp4
10.1 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.mp4
10.1 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.mp4
9.9 MB
Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4
9.8 MB
Part 14-Module 01-Lesson 01_The Data Science Process/05. Using Workspaces-45N9NK6kQ0Y.mp4
9.8 MB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Richard Sharp Data Science-r0BCM6vhl0Q.mp4
9.7 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.mp4
9.7 MB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4
9.7 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets-lNPzOLzZVbw.mp4
9.7 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4
9.7 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.mp4
9.7 MB
Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.mp4
9.7 MB
Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4
9.7 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.mp4
9.7 MB
Part 04-Module 01-Lesson 05_Random Projection and ICA/01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.mp4
9.6 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4
9.6 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.mp4
9.6 MB
Part 04-Module 01-Lesson 04_PCA/15. 14 Interpretation Solution V1-wU2duZa0ds0.mp4
9.6 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.mp4
9.6 MB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles Of A Data Engineer-f57UbUlSDgo.mp4
9.6 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.mp4
9.5 MB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4
9.5 MB
Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4
9.5 MB
Part 04-Module 01-Lesson 01_Clustering/09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.mp4
9.4 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 36044330 V1-b5gFe8Ij-g0.mp4
9.4 MB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4
9.4 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.mp4
9.4 MB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4
9.3 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.mp4
9.3 MB
Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4
9.3 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.mp4
9.2 MB
Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization-PyFNIcsNma0.mp4
9.2 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4
9.1 MB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. C4 Intro-gXlqR86h0yI.mp4
9.1 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.mp4
9.1 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 10491855 V2-pjoxB00grHw.mp4
9.0 MB
Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4
9.0 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.mp4
9.0 MB
Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.mp4
8.9 MB
Part 14-Module 01-Lesson 01_The Data Science Process/11. How To Break Into The Field-0-Y39LZ80VE.mp4
8.9 MB
Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4
8.9 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.mp4
8.9 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.mp4
8.9 MB
Part 14-Module 01-Lesson 01_The Data Science Process/33. Imputing Missing Values-CEWIPjz_gCE.mp4
8.8 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.mp4
8.8 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.mp4
8.8 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.mp4
8.8 MB
Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4
8.8 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 4422330 V1-DJfwhP_vvh4.mp4
8.8 MB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. 01 Welcome V1 V2-Ykd7CN5dDx0.mp4
8.8 MB
Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.mp4
8.7 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.mp4
8.7 MB
Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.mp4
8.7 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.mp4
8.7 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4
8.7 MB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.mp4
8.6 MB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4
8.6 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. 01 Writing Clean Code V1-wNaiahWCwkQ.mp4
8.6 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.mp4
8.6 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 10491855 V1-BafXxtTuZgQ.mp4
8.5 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. 03 Optimizing Common Books V1-WF9n_19V08g.mp4
8.5 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers How To Find Them-ksqzOCSAp5U.mp4
8.5 MB
Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.mp4
8.5 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4
8.5 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How The Gaussian Class Works-N-5I0d1zJHI.mp4
8.5 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4
8.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers Intro 1 V1-Y1weHponR2Q.mp4
8.4 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome-SaSzn718doY.mp4
8.4 MB
Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.mp4
8.4 MB
Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4
8.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings-398xRMnhjGk.mp4
8.4 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4
8.4 MB
Part 04-Module 01-Lesson 05_Random Projection and ICA/05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.mp4
8.3 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17b 15022032 V1-N9ytffw5AMg.mp4
8.3 MB
Part 15-Module 01-Lesson 06_Web Development/25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.mp4
8.3 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4
8.3 MB
Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.mp4
8.3 MB
Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.mp4
8.2 MB
Part 04-Module 01-Lesson 01_Clustering/20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.mp4
8.2 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt3-_HTolKktaC4.mp4
8.2 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 23313044 V1-pcaaBWbe34Y.mp4
8.2 MB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4
8.1 MB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-resolve-merge-conflict.gif
8.1 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.mp4
8.1 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4
8.0 MB
Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4
8.0 MB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.mp4
8.0 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. 02 Writing Modular Code V2-qN6EOyNlSnk.mp4
8.0 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4
8.0 MB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.mp4
8.0 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.mp4
7.9 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4
7.9 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types Of Experiments-7ihDj4M7EiU.mp4
7.9 MB
Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.mp4
7.9 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. 15 Making a Package v2-Hj2OBr1CGZM.mp4
7.9 MB
Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.mp4
7.9 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4
7.9 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.mp4
7.9 MB
Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.mp4
7.9 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4
7.8 MB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4
7.8 MB
Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.mp4
7.8 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.mp4
7.8 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4
7.8 MB
Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4
7.8 MB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.mp4
7.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4
7.7 MB
Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4
7.7 MB
Part 14-Module 01-Lesson 01_The Data Science Process/30. Removing Data-97UTBiybYTs.mp4
7.7 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.mp4
7.7 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4
7.6 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.mp4
7.6 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17b 5451216 V1-lf2Q0AE5esk.mp4
7.6 MB
Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4
7.6 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4
7.6 MB
Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4
7.5 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.mp4
7.5 MB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 15-Module 01-Lesson 06_Web Development/20. 22 Screencast Flask V2-i_U3O-7cymk.mp4
7.5 MB
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4
7.4 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.mp4
7.4 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.mp4
7.4 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.mp4
7.4 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.mp4
7.4 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 4271048 V1-2On65U7Panw.mp4
7.4 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.mp4
7.3 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4
7.3 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.mp4
7.3 MB
Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.mp4
7.3 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4
7.3 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/10. More Personalized Recommendations-9l8mi7i6iW4.mp4
7.2 MB
Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.mp4
7.1 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. DataVis L5C02 V3-bgDNMfG9Gfs.mp4
7.1 MB
Part 14-Module 01-Lesson 01_The Data Science Process/09. Business And Data Understanding - Part 2-iInjuIgBWIo.mp4
7.1 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4
7.1 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment Pt 2-PYzN1usi7QY.mp4
7.1 MB
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4
7.0 MB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.mp4
7.0 MB
Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4
7.0 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4
7.0 MB
Part 15-Module 01-Lesson 06_Web Development/24. Flask Pandas Plotly Part 1-xg7P8MnItdI.mp4
7.0 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.mp4
7.0 MB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/09. Capstone-bq-H7M5BU3U.mp4
7.0 MB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4
6.9 MB
Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.mp4
6.9 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4
6.9 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4
6.9 MB
Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.mp4
6.9 MB
Part 14-Module 01-Lesson 01_The Data Science Process/18. It Is Not Always About ML-ECqflypBU7M.mp4
6.9 MB
Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4
6.9 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4
6.9 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.mp4
6.8 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.mp4
6.8 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 31423505 V1-A0uOjClDnW8.mp4
6.8 MB
Part 02-Module 01-Lesson 10_Finding Donors Project/07. Project 1-PNsxDWtpQTk.mp4
6.7 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
6.7 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.mp4
6.7 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.mp4
6.7 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning And Neural Networks-4rKw3ekE5Wk.mp4
6.7 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Introduction-RVcFzwBXI2M.mp4
6.7 MB
Part 19-Module 01-Lesson 01_Congratulations!/01. Congrats-OTp4YOTDd0Q.mp4
6.7 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.mp4
6.7 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4
6.6 MB
Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.mp4
6.6 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4
6.6 MB
Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.mp4
6.6 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4
6.6 MB
Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.mp4
6.6 MB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4
6.6 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. Notes On OOP-NcgDIWm6iBA.mp4
6.6 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4
6.6 MB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Introduction-Yg0gBpTzkMo.mp4
6.5 MB
Part 15-Module 01-Lesson 06_Web Development/22. Flask and Pandas-L_M_8UVY42k.mp4
6.5 MB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/01. Capstone-jewlarqqbTo.mp4
6.5 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4
6.5 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Data Vis L6 C06 V1-qIot9qrvcF8.mp4
6.5 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4
6.5 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
6.5 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
6.5 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. L3 21 Outro v1 V2-DStO1hBKtHQ.mp4
6.5 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.mp4
6.4 MB
Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4
6.4 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4
6.4 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/05. Experiment Size-sImRm8e01jA.mp4
6.4 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4
6.4 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.mp4
6.3 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.mp4
6.3 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. 08 F1 Score SC V1-TRzBeL07fSg.mp4
6.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/26. Removing Data - When Is It OK-oQhIPq5AccU.mp4
6.3 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. Gaussian Class-TVzNdFYyJIU.mp4
6.3 MB
Part 04-Module 01-Lesson 05_Random Projection and ICA/04. L6 3 ICA V1 V1-ae94x-1JDzg.mp4
6.3 MB
Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves SC V1-ZNhnNVKl8NM.mp4
6.3 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.mp4
6.3 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/07. Using Dummy Tests-rURTLjh3Hlc.mp4
6.3 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.mp4
6.3 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/16. Identifying Recommendations-P60qvS_OTMg.mp4
6.2 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together-PHaSifd-Mas.mp4
6.2 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4
6.2 MB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4
6.2 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.mp4
6.2 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.mp4
6.2 MB
Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4
6.2 MB
Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.mp4
6.2 MB
Part 15-Module 01-Lesson 06_Web Development/01. L4 Intro V2--PGMIIXFCgg.mp4
6.2 MB
Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.mp4
6.2 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.mp4
6.2 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.mp4
6.1 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias-ppjNNY4DhPw.mp4
6.1 MB
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4
6.1 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4
6.1 MB
Part 14-Module 01-Lesson 01_The Data Science Process/03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.mp4
6.1 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/26. Types Of Ratings-fMjqe4sxBlQ.mp4
6.0 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.mp4
6.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4
6.0 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.mp4
6.0 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 26423140 V1-uNQHtPrfi4o.mp4
6.0 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipelines-mxFrS8qpZ6Y.mp4
6.0 MB
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4
6.0 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/20. The Cold Start Problem-DNz7aywJVzA.mp4
6.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4
5.9 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4
5.9 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. L2 01 Intro V1 V1-z7v7oa--W48.mp4
5.9 MB
Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4
5.9 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.mp4
5.9 MB
Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.mp4
5.9 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/01. 01 Intro V1 2 V4-iW4uqhfRk10.mp4
5.9 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/06. Why SVD-WdW1-rRQrLk.mp4
5.9 MB
Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4
5.9 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.mp4
5.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4
5.8 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. DataVis L5C08 V2-fq-hakwfpZw.mp4
5.8 MB
Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro-xj70jX9Moxs.mp4
5.8 MB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro-xj70jX9Moxs.mp4
5.8 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4
5.8 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/01. Intro-EBGMcpWe8-U.mp4
5.8 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics-__7tzDUY870.mp4
5.8 MB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/06. L1 061 Visualization In Python V1-MFS-1veFC_c.mp4
5.8 MB
Part 14-Module 01-Lesson 01_The Data Science Process/04. Business And Data Understanding - Example-bXQTGS61BU8.mp4
5.8 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - Statisticians Perspective-zNNouqLGF9E.mp4
5.8 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.mp4
5.8 MB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4
5.8 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4
5.7 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.mp4
5.7 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4
5.7 MB
Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.mp4
5.7 MB
Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4
5.7 MB
Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.mp4
5.7 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.mp4
5.7 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.mp4
5.6 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4
5.6 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.mp4
5.6 MB
Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.mp4
5.6 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/23. Putting It All Together-r5jfD2uKnbQ.mp4
5.6 MB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4
5.6 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.mp4
5.6 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction-5DfFaAl1Wmc.mp4
5.6 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract Walk Through-Bbj8rQRRVoM.mp4
5.6 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Disaster Relief Project Preview-DuwYAjqGM3E.mp4
5.6 MB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4
5.6 MB
Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.mp4
5.6 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4
5.6 MB
Part 15-Module 01-Lesson 06_Web Development/18. L4 The Back End V2-Esl0NL63S2c.mp4
5.5 MB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.mp4
5.5 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4
5.5 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.mp4
5.5 MB
Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.mp4
5.5 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.mp4
5.5 MB
Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4
5.5 MB
Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4
5.5 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.mp4
5.5 MB
Part 04-Module 01-Lesson 04_PCA/08. PCA Properties-1oaaq-0wdB0.mp4
5.5 MB
Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4
5.5 MB
Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4
5.5 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4
5.5 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4
5.5 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 2-yLdXcRXcfPw.mp4
5.4 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/13. Early Stopping-taIJZMNwRsI.mp4
5.4 MB
Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.mp4
5.4 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.mp4
5.4 MB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4
5.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data-49ZwWRviAFg.mp4
5.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.mp4
5.4 MB
Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4
5.4 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/12. Conclusions-yMRRXDKb428.mp4
5.4 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4
5.4 MB
Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.mp4
5.3 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4
5.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/25. Removing Data - Why Not-w3-5Z5mEzTM.mp4
5.3 MB
Part 04-Module 01-Lesson 04_PCA/13. 12 Interpret PCA Results V1-ZX6EACfsZbc.mp4
5.3 MB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.mp4
5.3 MB
Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.mp4
5.3 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.mp4
5.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.mp4
5.3 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
5.3 MB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4
5.3 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4
5.3 MB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4
5.2 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.mp4
5.2 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 0435 V1-oRhrOShUM6w.mp4
5.2 MB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.mp4
5.2 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. L3 10 Magic M V1 V3-9dEsv1aNUEE.mp4
5.2 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.mp4
5.2 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.mp4
5.2 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.mp4
5.2 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4
5.1 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.1 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.1 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4
5.1 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.mp4
5.1 MB
Part 15-Module 01-Lesson 06_Web Development/04. The Front End-CspuxLGFM4U.mp4
5.1 MB
Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.mp4
5.1 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.mp4
5.1 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.mp4
5.1 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/13. Measuring SImilarity-G_Y6IPmp7Xs.mp4
5.1 MB
Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4
5.1 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4
5.1 MB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.mp4
5.0 MB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4
5.0 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4
5.0 MB
Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4
5.0 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/23. Types Of Recommendations-uoXF81AO21E.mp4
5.0 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.mp4
5.0 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.mp4
5.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 04-Module 01-Lesson 04_PCA/01. Introduction-tpFPcxoGxaE.mp4
4.9 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/20. Content Based Recommendations-pnGHpB77Mys.mp4
4.9 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study-xnDsUsrF884.mp4
4.9 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.mp4
4.9 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables-pLTneSg2MRY.mp4
4.9 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.mp4
4.9 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4
4.9 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4
4.9 MB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4
4.9 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4
4.9 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4
4.9 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.mp4
4.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Parting Words Of Encouragement-sFF_WOnpsXM.mp4
4.9 MB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Parting Words Of Encouragement-sFF_WOnpsXM.mp4
4.9 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity-H3H1SZXqDmQ.mp4
4.9 MB
Part 14-Module 01-Lesson 01_The Data Science Process/27. Removing Data - Other Considerations-xrXk_Tvi0oQ.mp4
4.9 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.mp4
4.9 MB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4
4.8 MB
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4
4.8 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.mp4
4.8 MB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.mp4
4.8 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.mp4
4.8 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/26. Conclusion-R5-OYqKk9Ys.mp4
4.8 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.mp4
4.8 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Unions-QmE6CMGar1U.mp4
4.8 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/11. SMART Mnemonic-B0Bnxyu2aKM.mp4
4.8 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.mp4
4.8 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data From Different Sources-IfMydJvU37M.mp4
4.8 MB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4
4.7 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Other Important Information-LF-CWF-1mX4.mp4
4.7 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4
4.7 MB
Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.mp4
4.7 MB
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4
4.7 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. L5 031 Color Palettes V1-nirOTWkuiSM.mp4
4.7 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing Code Into Modules-AARS10U5bbo.mp4
4.7 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. 06 Unit Tests V1-wb9jggHEvgI.mp4
4.7 MB
Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4
4.7 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.mp4
4.7 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/business-money-pink-coins.jpg
4.7 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4
4.7 MB
Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes-jnfDqdxDbO4.mp4
4.6 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in ML-fNcTTXR8T08.mp4
4.6 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.mp4
4.6 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.mp4
4.6 MB
Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.mp4
4.6 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.mp4
4.6 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4
4.6 MB
Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4
4.6 MB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4
4.6 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.mp4
4.6 MB
Part 04-Module 01-Lesson 01_Clustering/13. 14 How Does KMeans Work V1-y7yZyyHgyYU.mp4
4.6 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. L2 10 Documentation V1 V3-M45B2VbPgjo.mp4
4.6 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.mp4
4.6 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4
4.6 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4
4.6 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods in Code-oDuXThOqans.mp4
4.6 MB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.mp4
4.6 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. L5 121 Lesson Summary V1-SOBCduyymkQ.mp4
4.6 MB
Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.mp4
4.6 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.mp4
4.5 MB
Part 04-Module 01-Lesson 01_Clustering/08. Elbow Method For Finding K-e7fqXpo63n8.mp4
4.5 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.mp4
4.5 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-xTamXY6Z9Kg.mp4
4.5 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.mp4
4.5 MB
Part 04-Module 01-Lesson 01_Clustering/15. Is That The Optimal Solution-g5aPtCpBNmw.mp4
4.5 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.mp4
4.5 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead-2Hxy2Jlu8nk.mp4
4.5 MB
Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.mp4
4.5 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.mp4
4.5 MB
Part 04-Module 01-Lesson 01_Clustering/01. Introduction-k7YOVTkFRJM.mp4
4.5 MB
Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.mp4
4.5 MB
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4
4.5 MB
Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent-4s4x9h6AN5Y.mp4
4.5 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Introduction-TRw4bvZuEG8.mp4
4.5 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.mp4
4.5 MB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4
4.4 MB
Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4
4.4 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4
4.4 MB
Part 04-Module 01-Lesson 01_Clustering/16. Feature Scaling-rpTVp7C8AXo.mp4
4.4 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4
4.4 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. DataVis L5C03 V2-iokI7HrxeNc.mp4
4.4 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.mp4
4.4 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.mp4
4.4 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4
4.4 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.mp4
4.4 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.mp4
4.4 MB
Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4
4.4 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4
4.4 MB
Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.mp4
4.4 MB
Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4
4.4 MB
Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.mp4
4.4 MB
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.mp4
4.4 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. L5 011 Intro V3-ckylQMBXB10.mp4
4.4 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4
4.4 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4
4.4 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.mp4
4.4 MB
Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4
4.4 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4
4.4 MB
Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/41. How To Fix This-IPQZ4pfRMRA.mp4
4.3 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. DataVis L5C06 V2-BzzTlWHMyV0.mp4
4.3 MB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.mp4
4.3 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Know Your Audience-OjmrU5HlFD8.mp4
4.3 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/43. Outro V1 V4-XE3aoYOXeBw.mp4
4.3 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4
4.3 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load Walk Through-AZvC7kYp_74.mp4
4.3 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4
4.3 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. L2 2 02 Testing V1 V1-IkLUUHt_jis.mp4
4.3 MB
Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4
4.2 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.mp4
4.2 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/12. SVD Practice Takeaways-2er0HUDum7k.mp4
4.2 MB
Part 14-Module 01-Lesson 01_The Data Science Process/24. Working With Missing Values-mbAgYicmzqE.mp4
4.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.mp4
4.2 MB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4
4.2 MB
Part 14-Module 01-Lesson 01_The Data Science Process/02. CRISP-DM-PaVwnGcqlSE.mp4
4.2 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.mp4
4.2 MB
Part 02-Module 01-Lesson 10_Finding Donors Project/01. ML Charity Project-aVodYHcOB8U.mp4
4.2 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.mp4
4.2 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/15. Conclusions-3IFF1GzUq0Y.mp4
4.2 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4
4.2 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. First Things First-ehjC7JK-zMI.mp4
4.2 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview -q1beUVlLoIQ.mp4
4.2 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4
4.2 MB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.mp4
4.1 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.1 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.1 MB
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4
4.1 MB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4
4.1 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.mp4
4.1 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.mp4
4.1 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4
4.1 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/01. L6 011 Intro V1-gLy8qpursJI.mp4
4.1 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/12. Types Of Collaborative Filtering-fZhkWHHP6SM.mp4
4.1 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4
4.1 MB
Part 02-Module 01-Lesson 02_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4
4.1 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4
4.1 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4
4.1 MB
Part 04-Module 01-Lesson 04_PCA/18. 17 PCA Recap V1-Egz3-noHCmg.mp4
4.1 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.mp4
4.0 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.mp4
4.0 MB
Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions-RbT2TXN_6tY.mp4
4.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4
4.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.mp4
4.0 MB
Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4
4.0 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data-OgjTk3XCUUE.mp4
4.0 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.mp4
4.0 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.mp4
4.0 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.mp4
4.0 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4
4.0 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.mp4
4.0 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4
4.0 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.mp4
4.0 MB
Part 04-Module 01-Lesson 04_PCA/02. Lesson Topics-LBzA08F_r4w.mp4
4.0 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.mp4
4.0 MB
Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.mp4
4.0 MB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.mp4
4.0 MB
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4
4.0 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4
4.0 MB
Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4
4.0 MB
Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.mp4
4.0 MB
Part 14-Module 01-Lesson 01_The Data Science Process/19. The Data Science Process Modeling-bzR6HQBn5CA.mp4
3.9 MB
Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.mp4
3.9 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.mp4
3.9 MB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4
3.9 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.mp4
3.9 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.mp4
3.9 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4
3.9 MB
Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.mp4
3.9 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.mp4
3.9 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4
3.9 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.mp4
3.9 MB
Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.mp4
3.9 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.mp4
3.9 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4
3.8 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4
3.8 MB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4
3.8 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.mp4
3.8 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/06. L6 061 Polishing Plots V3-4TixzVx79uk.mp4
3.8 MB
Part 15-Module 01-Lesson 06_Web Development/02. L4 Lesson Overview V2-9WQF-CCNdJ8.mp4
3.8 MB
Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.mp4
3.8 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.mp4
3.8 MB
Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4
3.8 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.mp4
3.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4
3.8 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.mp4
3.8 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.mp4
3.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4
3.8 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.mp4
3.8 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers-TBxUCQdXRjY.mp4
3.7 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4
3.7 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.mp4
3.7 MB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.mp4
3.7 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.mp4
3.7 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. 04 Inline Comments V1--G6yg3Xhl8I.mp4
3.7 MB
Part 04-Module 01-Lesson 01_Clustering/12. How Does K-Means Work-pL-pMCDgJuw.mp4
3.7 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4
3.7 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance-1gsrxUwPI40.mp4
3.7 MB
Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.mp4
3.7 MB
Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.mp4
3.7 MB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.mp4
3.7 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables-bgxBUvPpKQQ.mp4
3.7 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4
3.7 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 0424 V1-x-End5px36M.mp4
3.7 MB
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4
3.7 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png
3.7 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/29. Conclusion-zX5jZH2y8d8.mp4
3.7 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/02. Identifying Recommendation Engines-KwegrgvV-V4.mp4
3.6 MB
Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.mp4
3.6 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Gaussian Class-XS4LQn1VA3U.mp4
3.6 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.mp4
3.6 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.mp4
3.6 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/10. L6 131 Lesson Summary V1-t6ss31RZF34.mp4
3.6 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/24. Neural Network Regression-aUJCBqBfEnI.mp4
3.6 MB
Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.mp4
3.6 MB
Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search SC V1-zDw-ZGiHW5I.mp4
3.6 MB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4
3.6 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-O-4qRh74rkI.mp4
3.6 MB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4
3.6 MB
Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4
3.6 MB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.mp4
3.6 MB
Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.mp4
3.6 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.mp4
3.6 MB
Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4
3.5 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.mp4
3.5 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4
3.5 MB
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4
3.5 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4
3.5 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.mp4
3.5 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.mp4
3.5 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.mp4
3.5 MB
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4
3.5 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types Of Sampling-GF_eQqNoarI.mp4
3.5 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.mp4
3.5 MB
Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.mp4
3.5 MB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.mp4
3.5 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4
3.5 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 15-Module 01-Lesson 06_Web Development/03. L4 Components Of A Web App V4-2aJf5sO2ox4.mp4
3.5 MB
Part 20-Module 01-Lesson 01_Neural Networks/29. Neural Networks Outro V2-pwA5shUkRVc.mp4
3.5 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.mp4
3.5 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.mp4
3.5 MB
Part 04-Module 01-Lesson 01_Clustering/04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.mp4
3.4 MB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.mp4
3.4 MB
Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick-AGZEq-yQgRM.mp4
3.4 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.mp4
3.4 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.mp4
3.4 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4
3.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.mp4
3.4 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/01. Intro-svCesgAQ46Q.mp4
3.4 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4
3.4 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.mp4
3.4 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.mp4
3.4 MB
Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.mp4
3.4 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.mp4
3.4 MB
Part 04-Module 01-Lesson 04_PCA/17. When to Use PCA-arSP83-CM6w.mp4
3.4 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/04. Practical Significance-eJ3idt3AJ7E.mp4
3.4 MB
Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.mp4
3.4 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. 24 Conclusion V1 V2-Jq6pj_uKDmY.mp4
3.4 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. L5 081 Plot Matrices V3-2wY-euTIE5g.mp4
3.3 MB
Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.mp4
3.3 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4
3.3 MB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.mp4
3.3 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.mp4
3.3 MB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4
3.3 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.mp4
3.3 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.mp4
3.3 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.mp4
3.3 MB
Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.mp4
3.3 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.mp4
3.3 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4
3.3 MB
Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.mp4
3.2 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.mp4
3.2 MB
Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.mp4
3.2 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. DataVis L5C09 V1-xlZ9AMV6VUE.mp4
3.2 MB
Part 15-Module 01-Lesson 06_Web Development/32. L4 Outro V2-8MyuJx5yu38.mp4
3.2 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png
3.2 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.mp4
3.2 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.mp4
3.2 MB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.mp4
3.2 MB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/09. L6 10 V1 V6-LoYT4NMSPGk.mp4
3.2 MB
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.mp4
3.2 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. 47 Load V1 V1-Us1hWDaabxo.mp4
3.2 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.mp4
3.2 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search-iTL43Jk9_bQ.mp4
3.2 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.mp4
3.2 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.mp4
3.2 MB
Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.mp4
3.2 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4
3.2 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/01. Lesson Introduction-rw3YaQ2CTNQ.mp4
3.2 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.mp4
3.2 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. L2 2 11 Logging V2-9qKQdRoIMbU.mp4
3.2 MB
Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.mp4
3.2 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.mp4
3.2 MB
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4
3.2 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.mp4
3.2 MB
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4
3.1 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.mp4
3.1 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments-f7rzxUiHOJ0.mp4
3.1 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/27. Goals Of Recommendation Systems-WzelOlFeDmU.mp4
3.1 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.mp4
3.1 MB
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4
3.1 MB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.mp4
3.1 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/07. Latent Factors-jZz7tFEF2Dc.mp4
3.1 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.mp4
3.1 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4
3.1 MB
Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.mp4
3.1 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.mp4
3.1 MB
Part 04-Module 01-Lesson 04_PCA/07. Dimensionality Reduction-mANti9veGtc.mp4
3.1 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4
3.1 MB
Part 15-Module 01-Lesson 06_Web Development/26. Flask Pandas Plotly Part3-e8owK5zk-g8.mp4
3.1 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.mp4
3.1 MB
Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.mp4
3.1 MB
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4
3.1 MB
Part 15-Module 01-Lesson 06_Web Development/07. Div and Span-cbKA_dvthcY.mp4
3.1 MB
Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4
3.1 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.mp4
3.1 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment-fH_xF5_SDCE.mp4
3.0 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Conclusion-_ATzG6khLdk.mp4
3.0 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png
3.0 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4
3.0 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.mp4
3.0 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4
3.0 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.mp4
3.0 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. 01 Intro V1 V3-Zl_es7xtSqk.mp4
3.0 MB
Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.mp4
3.0 MB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.mp4
3.0 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.mp4
3.0 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4
3.0 MB
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4
3.0 MB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4
3.0 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. L2 21 Conclusion V1 V1-anPnokWZOZQ.mp4
3.0 MB
Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution-G3fRVgLa5gI.mp4
3.0 MB
Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4
3.0 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Up and Running On Medium-0QzbxjAcMq0.mp4
3.0 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.mp4
3.0 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. L2 2 01 Intro V1 V2-QO2GYq8q92E.mp4
3.0 MB
Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.mp4
3.0 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4
3.0 MB
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4
2.9 MB
Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.mp4
2.9 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.mp4
2.9 MB
Part 08-Module 01-Lesson 07_Visualization Case Study/07. L7 0F1 Congrats V3-LF-obnL7CI0.mp4
2.9 MB
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.mp4
2.9 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4
2.9 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.mp4
2.9 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.mp4
2.9 MB
Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4
2.9 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4
2.9 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4
2.9 MB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.mp4
2.9 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.mp4
2.9 MB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4
2.9 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.mp4
2.8 MB
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4
2.8 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.mp4
2.8 MB
Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.mp4
2.8 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.mp4
2.8 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.mp4
2.8 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4
2.8 MB
Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.mp4
2.8 MB
Part 14-Module 01-Lesson 01_The Data Science Process/10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.mp4
2.8 MB
Part 14-Module 01-Lesson 01_The Data Science Process/38. Working With Categorical Variables-IoQOiuxsIZg.mp4
2.8 MB
Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions--UvpQV1qmiE.mp4
2.8 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.mp4
2.8 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/07. Knowledge Based Recommendations-C_vU1tjQHZI.mp4
2.8 MB
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4
2.8 MB
Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4
2.7 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.mp4
2.7 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4
2.7 MB
Part 17-Module 02-Lesson 03_AB Testing Case Study/01. Intro-28mN6RvGXDM.mp4
2.7 MB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4
2.7 MB
Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.mp4
2.7 MB
Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.mp4
2.7 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.mp4
2.7 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.mp4
2.7 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.mp4
2.7 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4
2.7 MB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.mp4
2.7 MB
Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error-vLKiY0Ehors.mp4
2.7 MB
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4
2.7 MB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.mp4
2.7 MB
Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4
2.7 MB
Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.mp4
2.7 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4
2.7 MB
Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4
2.7 MB
Part 04-Module 01-Lesson 04_PCA/21. Outro-CuIqzL8HjI8.mp4
2.7 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/20. 02 TF-IDF-LYYWIrWbBq4.mp4
2.7 MB
Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.mp4
2.6 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4
2.6 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4
2.6 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4
2.6 MB
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.mp4
2.6 MB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4
2.6 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.mp4
2.6 MB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4
2.6 MB
Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.mp4
2.6 MB
Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.mp4
2.6 MB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4
2.6 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.mp4
2.6 MB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.mp4
2.6 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.mp4
2.6 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4
2.5 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.mp4
2.5 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.mp4
2.5 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.mp4
2.5 MB
Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.mp4
2.5 MB
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4
2.5 MB
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4
2.5 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.mp4
2.5 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.mp4
2.5 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn-kxvmG8ZsOVg.mp4
2.5 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.mp4
2.5 MB
Part 04-Module 01-Lesson 04_PCA/06. How to Reduce Features-ydhrelgjriI.mp4
2.4 MB
Part 17-Module 02-Lesson 03_AB Testing Case Study/14. Conclusion-2G6x3oQnjy4.mp4
2.4 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4
2.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.mp4
2.4 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4
2.4 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.mp4
2.4 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.mp4
2.4 MB
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4
2.4 MB
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.mp4
2.4 MB
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4
2.4 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.mp4
2.4 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.mp4
2.4 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4
2.4 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. 06 Precision SC V1-q2wVorBfefU.mp4
2.4 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.mp4
2.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/01. Introduction-VpxATYHhKM8.mp4
2.3 MB
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4
2.3 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Answer False Negatives And Positives-KOytJL1lvgg.mp4
2.3 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4
2.3 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4
2.3 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4
2.3 MB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.mp4
2.3 MB
Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4
2.3 MB
Part 14-Module 01-Lesson 01_The Data Science Process/20. Predicting Salary-g1ZAn02ETK4.mp4
2.3 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.mp4
2.3 MB
Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.mp4
2.3 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4
2.3 MB
Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.mp4
2.3 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/04. Intro To MovieTweetings-cuXvLIkq_W8.mp4
2.3 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.mp4
2.3 MB
Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.mp4
2.3 MB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4
2.3 MB
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.mp4
2.3 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. L5 091 Feature Engineering V2-jpMOSFMMga4.mp4
2.3 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4
2.3 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.mp4
2.3 MB
Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4
2.3 MB
Part 04-Module 01-Lesson 01_Clustering/03. Two Types of Unsupervised Learning-aHK_rpaS_ts.mp4
2.3 MB
Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.mp4
2.3 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.mp4
2.3 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When Accuracy Wont Work-r0-O-gIDXZ0.mp4
2.3 MB
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4
2.3 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. 07 Recall SC V1-0n5wUZiefkQ.mp4
2.3 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4
2.2 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4
2.2 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.mp4
2.2 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 08-Module 01-Lesson 02_Design of Visualizations/01. L2 011 Intro HD V2-TlpGWQBLG6E.mp4
2.2 MB
Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4
2.2 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.mp4
2.2 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.mp4
2.2 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.mp4
2.2 MB
Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.mp4
2.2 MB
Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4
2.2 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.mp4
2.2 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.mp4
2.2 MB
Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.mp4
2.2 MB
Part 04-Module 01-Lesson 01_Clustering/07. 07 Changing K 1 V3-Bd3M-xUlqEI.mp4
2.2 MB
Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.mp4
2.2 MB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4
2.2 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4
2.2 MB
Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.mp4
2.2 MB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4
2.2 MB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4
2.2 MB
Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4
2.2 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.mp4
2.2 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4
2.2 MB
Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4
2.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4
2.2 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.mp4
2.2 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4
2.2 MB
Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.mp4
2.2 MB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.mp4
2.2 MB
Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4
2.2 MB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.mp4
2.2 MB
Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.mp4
2.1 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.mp4
2.1 MB
Part 15-Module 01-Lesson 06_Web Development/19. The World Wide Web-Rxn-zCyg_iA.mp4
2.1 MB
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4
2.1 MB
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4
2.1 MB
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4
2.1 MB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.mp4
2.1 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction-LcX-s-ujp7U.mp4
2.1 MB
Part 09-Module 01-Lesson 01_Shell Workshop/13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.mp4
2.1 MB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add-to-staging-recap.gif
2.1 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4
2.1 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4
2.1 MB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. 13 Inheritance Example V1-uWT-HIHBjv0.mp4
2.1 MB
Part 04-Module 01-Lesson 01_Clustering/17. Feature Scaling Example--Axyt0bPCT0.mp4
2.1 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4
2.1 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.mp4
2.1 MB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.mp4
2.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.mp4
2.0 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4
2.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.mp4
2.0 MB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4
2.0 MB
Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.mp4
2.0 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.mp4
2.0 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4
2.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4
2.0 MB
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4
2.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4
1.9 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4
1.9 MB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.mp4
1.9 MB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.mp4
1.9 MB
Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error-MRyxmZDngI4.mp4
1.9 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4
1.9 MB
Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.mp4
1.9 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.mp4
1.9 MB
Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4
1.9 MB
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4
1.9 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4
1.9 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4
1.9 MB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.mp4
1.9 MB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/17. Funk SVD Review-nc3GMIrISHE.mp4
1.9 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.mp4
1.9 MB
Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.mp4
1.8 MB
Part 02-Module 01-Lesson 09_Training and Tuning/04. KFold Cross Validation V3 V1-9W6o6eWGi-0.mp4
1.8 MB
Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.mp4
1.8 MB
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4
1.8 MB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/img/screen-shot-2018-05-29-at-4.06.53-pm.png
1.8 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4
1.8 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.mp4
1.8 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4
1.8 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.mp4
1.8 MB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.mp4
1.8 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4
1.8 MB
Part 04-Module 01-Lesson 01_Clustering/05. KMeans-B9jdQFpPEk0.mp4
1.8 MB
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4
1.8 MB
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4
1.8 MB
Part 04-Module 01-Lesson 04_PCA/04. Latent Features-kYLcVgpEwGs.mp4
1.8 MB
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4
1.8 MB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-09-21-at-11.36.43-am.png
1.8 MB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. 05 Docstrings V1-_gapemxsRJY.mp4
1.7 MB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.mp4
1.7 MB
Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4
1.7 MB
Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.mp4
1.7 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4
1.7 MB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.mp4
1.7 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.mp4
1.7 MB
Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.mp4
1.7 MB
Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4
1.7 MB
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4
1.7 MB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. DataVis L5C05 V1-v19gCP4TvwE.mp4
1.7 MB
Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4
1.7 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4
1.7 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4
1.7 MB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 1-HPmMEkbT2uE.mp4
1.7 MB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4
1.7 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4
1.7 MB
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4
1.7 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4
1.6 MB
Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.48.22-pm.png
1.6 MB
Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.48.22-pm.png
1.6 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.mp4
1.6 MB
Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.mp4
1.6 MB
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4
1.6 MB
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4
1.6 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4
1.6 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4
1.6 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4
1.6 MB
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4
1.6 MB
Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4
1.6 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4
1.5 MB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.mp4
1.5 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform Walk Through-i9_0kHCCCCE.mp4
1.5 MB
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4
1.5 MB
Part 04-Module 01-Lesson 01_Clustering/21. Outro-AeDSl4KSVIE.mp4
1.5 MB
Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4
1.5 MB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.mp4
1.5 MB
Part 08-Module 01-Lesson 07_Visualization Case Study/01. L7 011 Intro V1-Virihwp36do.mp4
1.5 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.mp4
1.5 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Outro SC V1-YD1grQje9fw.mp4
1.5 MB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.mp4
1.4 MB
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4
1.4 MB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/11. Intro To Collab Filtering-wGq7dUgJpsc.mp4
1.4 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 16-Module 01-Lesson 02_ETL Pipelines/41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.mp4
1.4 MB
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.mp4
1.4 MB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.mp4
1.4 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4
1.4 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.mp4
1.4 MB
Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.mp4
1.4 MB
Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.mp4
1.4 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.mp4
1.4 MB
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.mp4
1.4 MB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/img/screen-shot-2018-05-29-at-4.19.03-pm.png
1.4 MB
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4
1.4 MB
Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.mp4
1.4 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.mp4
1.4 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4
1.3 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4
1.3 MB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4
1.3 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4
1.3 MB
Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.mp4
1.3 MB
Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.mp4
1.3 MB
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4
1.3 MB
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4
1.3 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.mp4
1.3 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4
1.3 MB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Outro-dVrYQ7o8a-k.mp4
1.3 MB
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4
1.3 MB
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4
1.3 MB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow-0nA6oTIlwaA.mp4
1.3 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.mp4
1.2 MB
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4
1.2 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.mp4
1.2 MB
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4
1.2 MB
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4
1.2 MB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.mp4
1.2 MB
Part 04-Module 01-Lesson 05_Random Projection and ICA/03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.mp4
1.2 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting A Line-gkdoknEEcaI.mp4
1.2 MB
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4
1.2 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4
1.2 MB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4
1.2 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.mp4
1.1 MB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. 02 Intro SC V1-mIgABrjJVBY.mp4
1.1 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4
1.1 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.mp4
1.1 MB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4
1.1 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4
1.1 MB
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.mp4
1.1 MB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.mp4
1.1 MB
Part 04-Module 01-Lesson 05_Random Projection and ICA/07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.mp4
1.1 MB
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4
1.1 MB
Part 02-Module 01-Lesson 07_Ensemble Methods/07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.mp4
1.1 MB
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4
1.1 MB
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.mp4
1.1 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4
1.1 MB
Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.1 MB
Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.1 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4
1.1 MB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif
1.0 MB
Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4
1.0 MB
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4
1.0 MB
Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression-DBhWG-PagEQ.mp4
1.0 MB
Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.mp4
1.0 MB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.mp4
1.0 MB
Part 02-Module 01-Lesson 02_Linear Regression/05. Moving A Line-8EIHFyL2Log.mp4
1.0 MB
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4
1.0 MB
Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.mp4
1.0 MB
Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.mp4
998.8 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-course-git-blog-project-in-browser.png
991.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/new-pymk-925x1024.png
978.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4
977.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.mp4
969.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.mp4
969.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.mp4
969.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.16.00-pm.png
967.4 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/collage2.png
959.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4
949.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.mp4
949.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.48.20-pm.png
947.6 kB
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4
942.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.mp4
940.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.mp4
940.4 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4
930.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.mp4
920.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4
914.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4
907.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png
903.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4
894.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects-1-E_ZYovKeI.mp4
888.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4
884.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.mp4
884.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png
852.0 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4
851.7 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.mp4
846.5 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.mp4
845.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4
844.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4
839.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.mp4
839.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.mp4
825.8 kB
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4
824.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4
823.0 kB
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4
817.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4
811.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.mp4
806.8 kB
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.mp4
806.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-06-02-at-5.52.44-pm.png
804.6 kB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.mp4
793.6 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4
790.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.mp4
789.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.mp4
784.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/get-hired-with-the-udacity-career-portal.gif
774.9 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/get-hired-with-the-udacity-career-portal.gif
774.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4
772.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-02-23-at-5.00.25-pm.png
772.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4
771.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4
769.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/student-quiz.png
767.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/student-quiz.png
767.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4
765.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4
765.1 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/img/decision-tree-sketch.png
762.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.mp4
737.8 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4
736.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6509638772.gif
728.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.mp4
710.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4
709.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4
688.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4
688.1 kB
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4
679.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4
677.0 kB
Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Vs Squared Error-csvdjaqt1GM.mp4
676.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.mp4
671.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4
666.1 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/img/screen-shot-2018-01-03-at-2.20.30-pm.png
662.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4
655.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-github-homepage-new-repo-button.png
647.8 kB
Part 02-Module 01-Lesson 09_Training and Tuning/img/models.png
643.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-9.43.05-am.png
632.9 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-1.33.46-pm.png
632.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.56.39-pm.png
625.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/and-to-or.png
620.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/and-to-or.png
620.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4
617.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-github-homepage.png
611.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/profile-pics.jpg
609.9 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-merge-fast-forward.gif
609.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/conda_default_install.mp4
609.6 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-issue-comments.png
595.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.mp4
587.6 kB
Part 11-Module 01-Lesson 01_Introduction/img/grant.png
583.6 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4
583.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4
582.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.mp4
571.9 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.59.16-pm.png
541.9 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.59.16-pm.png
541.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4
541.6 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4
535.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-11-19-at-11.32.05-am.png
533.6 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-04-pull-request-comment.png
532.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4
531.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4
526.0 kB
Part 06-Module 01-Lesson 06_NumPy/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 06-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 06-Module 01-Lesson 07_Pandas/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4
518.2 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-lighthouse-issues.png
517.8 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-oneline.png
516.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.mp4
514.1 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.mp4
511.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/house.png
503.3 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-project-in-editor.png
501.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2018-04-29-at-10.10.52-am.png
498.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4
496.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4
491.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4
484.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4
478.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-06-02-at-6.07.54-pm.png
476.9 kB
assets/img/udacimak.png
472.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3030118734.gif
471.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6485174133.gif
469.1 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-new-issue-button.png
467.2 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-watched-repos.png
461.7 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4
458.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6499079068.gif
456.6 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6551597473.gif
455.0 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-three.png
448.1 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image4.png
446.9 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/image4.png
446.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-starred-repos.png
444.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-search.png
441.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4
433.9 kB
index.html
432.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.mp4
429.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3039578581.gif
426.6 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-github-no-commits.png
423.2 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-04-commit-count-remote.png
418.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3043028606.gif
418.0 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-stat.png
414.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-four.png
407.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.mp4
404.5 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4
404.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-06-02-at-5.34.36-pm.png
404.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/or-quiz.png
403.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/or-quiz.png
403.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4
400.3 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-one.png
399.7 kB
Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-google-docs-saving-progress.gif
399.4 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/mat-leonard-circle.png
394.1 kB
Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-git-course-outline.png
387.5 kB
Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.50-pm.png
384.6 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.50-pm.png
384.6 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3021738574.gif
384.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-two.png
380.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.008.jpeg
378.3 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-10.23.07-pm.png
374.8 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-10.23.07-pm.png
374.8 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3006898966.gif
374.7 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-details-section.png
373.2 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.14.23-pm.png
367.2 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/bad-viz-2.png
365.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3016528680.gif
363.9 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add.gif
361.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3022688695.gif
359.5 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-lighthouse-contributing-file.png
348.6 kB
Part 06-Module 01-Lesson 06_NumPy/img/screen-shot-2018-03-19-at-3.21.24-pm.png
348.1 kB
Part 06-Module 01-Lesson 07_Pandas/img/screen-shot-2018-03-19-at-3.21.24-pm.png
348.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4
347.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/fbeta.png
345.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-indicators.png
344.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3041298589.gif
343.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3022138739.gif
342.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-github-create-repo-page.png
339.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/Markdown+cells.mp4
338.3 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.55.02-pm.png
336.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-push-commits.png
336.1 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-submit-new-issue.png
335.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3031238602.gif
334.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.55.22-pm.png
334.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-04-git-pull.png
333.3 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.05.49-pm.png
331.7 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4
330.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.53.22-pm.png
329.8 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep2.png
328.8 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-initial-commit.png
326.3 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-git-shortlog.png
325.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png
322.0 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-editor.png
320.6 kB
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4
320.1 kB
Part 06-Module 01-Lesson 05_Scripting/img/generate-messages-output.png
318.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif
316.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/all-ranks.png
315.9 kB
Part 03-Module 01-Lesson 04_Keras/img/all-ranks.png
315.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3007308918.gif
315.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3017398561.gif
314.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep.png
311.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3004608562.gif
309.1 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/trees.png
307.2 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-09-at-6.28.07-pm.png
307.2 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-09-at-6.28.07-pm.png
307.2 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-clone-lighthouse-project.png
307.2 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-commit-with-description.png
303.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png
303.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif
298.2 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-output.png
293.3 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-01-06-at-10.44.48-pm.png
292.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4
291.7 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-sign-contributor-license.png
291.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.005.jpeg
288.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.13.15-pm.png
287.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-editor-with-tag-message.png
287.6 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.05.48-pm.png
286.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.004.jpeg
279.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif
273.8 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p-lines-removed-annotated.png
272.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/and-quiz.png
272.2 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/and-quiz.png
272.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-decorate.png
271.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3007188710.gif
268.6 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png
265.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3023678781.gif
264.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3016088789.gif
263.8 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-git-log-author.png
261.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png
261.3 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.003.jpeg
259.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png
257.3 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/precision-quiz.png
256.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-add-terminal.png
255.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-graph-all.png
254.4 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-git-shortlog-flags.png
254.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3009678880.gif
254.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-14-at-10.16.10-am.png
253.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png
247.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png
247.4 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-13-at-6.32.03-pm.png
246.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/img/3050008540.gif
245.8 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.34-pm.png
244.7 kB
Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.34-pm.png
244.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.24.13-pm.png
244.0 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-14-at-10.11.13-am.png
242.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png
238.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png
238.1 kB
assets/js/katex.min.js
236.8 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/redacted-linkedinresults.png
236.3 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/img/screen-shot-2017-11-16-at-3.54.06-pm.png
235.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-11-16-at-3.54.06-pm.png
235.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png
234.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/recall-quiz.png
233.7 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image8.png
233.5 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/image8.png
233.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png
233.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.45.19-pm.png
232.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.001.jpeg
231.0 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-with-untracked.png
228.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-08-13-at-6.39.12-pm.png
228.2 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-after-git-add.png
227.6 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.55.40-pm.png
227.5 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.55.40-pm.png
227.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif
227.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-07-at-4.35.30-pm.png
225.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png
225.6 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4
225.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png
224.5 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.24.21-pm.png
224.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4
223.5 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-11-at-12.52.21-pm.png
222.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/notebook+interface.mp4
220.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.002.jpeg
220.6 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/xor.png
220.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/xor.png
220.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.18.30-pm.png
216.4 kB
Part 03-Module 01-Lesson 04_Keras/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 05_Naive Bayes/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/meme.png
214.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/meme.png
214.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/meme.png
214.1 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-modified-files.png
213.5 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/img/mike-josh-bios-portraits.png
213.3 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-stat.gif
211.7 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-.git-directory.png
210.7 kB
Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-3.13.49-pm.png
209.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/conda_install.mp4
206.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/img/screen-shot-2018-07-19-at-4.05.25-pm.png
206.1 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-02-23-at-5.11.40-pm.png
205.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/batch-stochastic.png
201.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict.png
198.4 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-ignore-word-doc.png
197.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/table.png
196.7 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-all-files.png
196.5 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/pasted-image-0.png
196.4 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-gitignore.png
196.0 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/confusion.png
193.4 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/img/screen-shot-2018-01-03-at-2.23.38-pm.png
192.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/medical.png
191.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-from-clone.png
190.7 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-on-github.png
190.0 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-finished.png
189.1 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-b-footer-master.png
188.3 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-on-github-focus.png
188.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag-delete.png
184.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png
184.3 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-diff.png
183.8 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-sidebar.png
181.2 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-status-output.png
178.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/quiz.jpg
178.4 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-07-at-6.02.41-pm.png
177.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/img/eeg-ica.png
175.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png
174.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-08-13-at-6.26.18-pm.png
173.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/command+palette.mp4
173.2 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status.png
171.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-changes-add-color.png
168.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-timeit.png
161.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-05-25-at-11.27.36-am.png
160.4 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/server-shutdown.png
159.2 kB
Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-prep.png
158.8 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-02-git-fork-error.png
158.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/challenger2.gif
158.3 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-sidebar.png
157.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-rename-repos.png
156.9 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-11-at-12.52.03-pm.png
156.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png
154.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-sidebar.png
153.0 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/email.png
152.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-04-commit-count-local.png
151.1 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-clone.gif
150.9 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-shortname.png
150.6 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-submit.png
149.7 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-gpu.png
149.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-my-travel-plans-project.png
148.8 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch.png
147.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-branches.png
147.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-git-log-of-upstream-changes.png
147.2 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-notebook.png
146.3 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/img/screen-shot-2018-09-17-at-3.40.30-pm.png
145.0 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/img/screen-shot-2018-02-21-at-8.05.18-pm.png
144.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/recommending-apps.png
143.9 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-no-remote.png
143.7 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag.png
143.0 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-add-upstream-remote.png
141.2 kB
assets/css/bootstrap.min.css
140.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/minibatch.png
140.0 kB
Part 02-Module 01-Lesson 05_Naive Bayes/img/spamham.png
138.3 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-asterisk.png
138.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-commits.png
135.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/img/screen-shot-2018-07-19-at-4.06.55-pm.png
133.1 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.58.00-pm.png
129.1 kB
Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-mixed.png
128.9 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-pre-tag.png
127.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/natgeo-scatter.jpg
126.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png
123.2 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png
121.2 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-6.07.26-pm.png
120.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.23.48-pm.png
117.9 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.57.42-pm.png
117.0 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory-git-repo.png
116.3 kB
Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-2.27.07-pm.png
115.9 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-terminal-hangs.png
113.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.41.01-pm.png
113.4 kB
Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.38.47-pm.png
113.2 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.38.47-pm.png
113.2 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-new-git-project.png
113.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p.png
112.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-tab.png
112.6 kB
Part 02-Module 01-Lesson 09_Training and Tuning/img/learning-curves.png
111.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png
110.8 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-new-git-project.png
109.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/nn.png
108.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/accuracy-quiz.png
108.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/apple.jpg
107.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.10.54-pm.png
107.8 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.04.44-pm.png
106.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-server.png
105.8 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-3.59.39-pm.png
105.4 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/new-notebook.png
104.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-11-at-12.54.48-pm.png
101.0 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-04-02-at-4.25.41-pm.png
99.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/external-indices-quiz.png
98.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48271967.gif
98.4 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2018-08-27-at-3.51.23-pm.png
98.3 kB
Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-soft.png
98.1 kB
Part 02-Module 01-Lesson 09_Training and Tuning/img/complexity.png
97.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png
97.8 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-json.png
97.6 kB
Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-hard.png
97.4 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/media/unnamed-project-desc-0.gif
96.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/xor-quiz.png
96.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/xor-quiz.png
96.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-menu.png
96.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/summary.png
96.0 kB
Part 03-Module 01-Lesson 04_Keras/img/summary.png
96.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/perceptronquiz.png
95.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/perceptronquiz.png
95.9 kB
Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-windows.png
95.5 kB
Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-11.30.13-am.png
95.0 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif
94.4 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png
94.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/student-data.png
94.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif
93.8 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif
93.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48734324.gif
93.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-matplotlib.png
92.9 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.28.03-pm.png
92.9 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif
92.7 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-git-remotes-origin.png
91.4 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif
91.3 kB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/media/New-Starbucks-Logo-1200x969.jpg
91.2 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-3.41.58-pm.png
90.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48240997.gif
90.7 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-fetch-upstream-changes.png
90.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png
90.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/regularization-quiz.png
90.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48310768.gif
89.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/resid2.jpg
89.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48743074.gif
89.2 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/img/disaster-response-project2.png
89.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48271966.gif
88.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48480561.gif
88.0 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-new.png
87.3 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48716290.gif
86.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/inner-join.png
86.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48726280.gif
86.7 kB
Part 12-Module 01-Lesson 04_Probability/img/48667978.gif
86.5 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.51.35-am.png
86.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png
86.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48739228.gif
86.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48646780.gif
85.9 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-jupyter.png
85.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48445276.gif
85.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48641639.gif
85.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48311832.gif
84.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48198839.gif
84.8 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory.png
84.6 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif
84.4 kB
Part 12-Module 01-Lesson 04_Probability/img/48752009.gif
84.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif
84.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif
84.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48198838.gif
84.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48011955.gif
83.9 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-install.png
83.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-1.12.55-pm.png
83.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48704300.gif
82.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-10.48.24-pm.png
82.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/gmm-quiz.png
82.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48240998.gif
82.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-10-19-at-5.33.45-pm.png
82.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/erd.png
82.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48311831.gif
82.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif
82.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48632848.gif
81.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/polynomial-kernel-2-quiz.png
81.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-download.png
81.5 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/likertscale.png
81.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-11.14.25-am.png
81.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-14-at-2.25.01-pm.png
81.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48230510.gif
81.1 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png
80.9 kB
Part 12-Module 01-Lesson 04_Probability/img/48750031.gif
80.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/gmm-2d-quiz.png
80.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png
80.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif
79.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png
79.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48737119.gif
79.0 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-init.gif
77.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48686674.gif
77.6 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/img/disaster-response-project1.png
76.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48241000.gif
76.5 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif
76.0 kB
Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-post.png
75.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48709280.gif
75.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif
75.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif
75.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/nbconvert-example.png
75.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48652467.gif
74.5 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif
74.4 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/screen-shot-2018-03-09-at-4.07.07-pm.png
73.8 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png
73.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif
73.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48296523.gif
73.5 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif
73.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif
73.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48629196.gif
72.6 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-create-env.png
72.5 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-blog-project.gif
72.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48609553.gif
72.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif
72.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif
72.3 kB
Part 12-Module 01-Lesson 04_Probability/img/48667979.gif
72.1 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48480558.gif
71.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif
70.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-pdb.png
70.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/just-a-2d-reg.png
70.1 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48734186.gif
70.0 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif
70.0 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.10.13-pm.png
69.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-nav-bar-new-repo-link.png
69.8 kB
Part 02-Module 01-Lesson 05_Naive Bayes/img/spam.png
69.4 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/right-join.png
68.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.30.27-pm.png
68.0 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/left-join.png
67.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.49.47-am.png
67.0 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-02-clone-linked-to-fork.png
66.9 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-new-project.gif
66.9 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif
65.4 kB
Part 11-Module 01-Lesson 01_Introduction/img/cp1a9390.jpg
65.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/convolution-schematic.gif
65.2 kB
Part 12-Module 01-Lesson 04_Probability/img/48695597.gif
64.8 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/points.png
64.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/points.png
64.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif
64.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-shutdown.png
63.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/full-outer-join-if-null.png
63.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/slides-cell-toolbar-menu.png
62.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/full-outer-join.png
62.6 kB
Part 12-Module 01-Lesson 04_Probability/img/48698583.gif
62.6 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif
62.5 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/l6-c08-slidedeck1.png
62.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48632846.gif
62.1 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/screen-shot-2017-09-03-at-3.13.54-pm.png
61.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48230509.gif
61.8 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif
61.0 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png
60.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48716288.gif
60.8 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/img/anscombes-quartet-3.svg
60.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/img/48292975.gif
60.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif
60.0 kB
Part 12-Module 01-Lesson 04_Probability/img/48693692.gif
59.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-3.21.34-pm.png
59.9 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif
59.7 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif
59.5 kB
Part 12-Module 01-Lesson 04_Probability/img/48688828.gif
59.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif
59.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-05-25-at-11.27.26-am.png
58.8 kB
Part 12-Module 01-Lesson 04_Probability/img/48687795.gif
58.7 kB
Part 12-Module 01-Lesson 04_Probability/img/48684742.gif
58.5 kB
Part 12-Module 01-Lesson 04_Probability/img/48742066.gif
57.7 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-09-21-at-12.02.03-pm.png
57.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-timeit2.png
57.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif
57.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/img/48720246.gif
56.6 kB
Part 12-Module 01-Lesson 04_Probability/img/48699581.gif
56.5 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png
56.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.04.15-pm.png
56.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-branch-current.png
55.8 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif
55.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/slides-choose-slide-type.png
54.6 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/screen-shot-2018-03-10-at-12.47.35-am.png
54.5 kB
Part 12-Module 01-Lesson 04_Probability/img/48698595.gif
54.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.17.54-pm.png
54.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-08-04-at-6.41.07-pm.png
53.9 kB
Part 12-Module 01-Lesson 04_Probability/img/48667981.gif
53.8 kB
Part 12-Module 01-Lesson 04_Probability/img/48741099.gif
53.6 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png
53.2 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png
53.1 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-10.47.52-am.png
52.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-8.13.20-pm.png
52.0 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-01-06-at-8.13.20-pm.png
52.0 kB
Part 02-Module 01-Lesson 09_Training and Tuning/img/circle-data.png
51.1 kB
assets/js/bootstrap.min.js
51.0 kB
Part 03-Module 01-Lesson 04_Keras/img/data.png
50.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/data.png
50.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png
49.7 kB
Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-03-21-at-2.40.42-pm.png
49.7 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/screen-shot-2018-06-13-at-6.32.38-pm.png
49.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/screen-shot-2017-09-03-at-2.28.22-pm.png
48.8 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif
48.8 kB
Part 12-Module 01-Lesson 04_Probability/img/48738115.gif
48.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png
48.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c08-plotmatrices2.png
48.6 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-terminal.png
48.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c20-ridgeline1.png
48.0 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-11.54.30-am.png
47.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/layer-1-grid.png
46.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c18-swarmplot1.png
46.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-14-at-10.08.56-am.png
46.2 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2018-08-27-at-3.50.29-pm.png
45.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-10.16.48-pm.png
45.6 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.16.45-pm.png
45.5 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.21.42-pm.png
45.3 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step6-testrun.png
44.5 kB
Part 06-Module 01-Lesson 05_Scripting/img/step6-testrun.png
44.5 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.48.02-pm.png
44.4 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-02-multiple-remote-repos.png
43.8 kB
Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-10.49.16-am.png
43.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-4.40.07-pm.png
43.0 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-mac.png
42.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot1.png
41.5 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-environments.png
41.1 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-02-local-and-remote-repos.png
39.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c20-ridgeline3.png
39.8 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/img/anscombe-table.png
39.4 kB
Part 12-Module 01-Lesson 14_Regression/img/1200px-linear-regression.svg.png
39.2 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png
39.0 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/udacitylogo-copy.png
38.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/udacitylogo-copy.png
38.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/maxpool.jpeg
38.0 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c08-plotmatrices1.png
37.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-4.59.04-pm.png
37.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c15-kde1.png
36.8 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-06-07-at-12.02.10-pm.png
36.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-4.45.34-pm.png
36.4 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png
36.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/grid-layer-1.png
36.1 kB
Part 06-Module 01-Lesson 07_Pandas/12. Loading Data into a Pandas DataFrame.html
36.0 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-14-at-10.05.37-am.png
34.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 06-Module 01-Lesson 07_Pandas/10. Dealing with NaN.html
33.7 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations3.png
33.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot5.png
32.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.15.59-pm.png
32.9 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.11.09-pm.png
32.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/03. Add A Remote Repository.html
32.8 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/screen-shot-2017-09-03-at-6.34.02-pm.png
32.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-07-27-at-1.24.38-pm.png
31.6 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2018-07-27-at-1.24.38-pm.png
31.6 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.44.34-pm.png
31.5 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/screen-shot-2017-09-03-at-6.12.14-pm.png
31.4 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-components.png
31.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 06-Module 01-Lesson 07_Pandas/09. Accessing Elements in Pandas DataFrames.html
30.1 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/pooling-dims.png
29.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color7.png
29.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/lin-reg-no-outliers.png
29.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/conv-dims.png
29.2 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color2.png
29.2 kB
Part 06-Module 01-Lesson 06_NumPy/05. Using Built-in Functions to Create ndarrays.html
28.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/l6-c06-polishing1.png
28.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c02-encodings2.png
28.8 kB
Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-2.22.27-pm.png
28.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c17-rugplot2.png
28.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Branching Effectively.html
28.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/lin-reg-w-outliers.png
28.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c20-ridgeline2.png
28.1 kB
Part 11-Module 01-Lesson 01_Introduction/img/img-4646.jpg
27.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplotsa.png
27.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c04-heatmap1.png
27.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/gmm-1d-quiz.png
27.4 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html
27.3 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/just-a-simple-lin-reg.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations5.png
25.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/28. Feature Scaling.html
25.1 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c06-violinplot3.png
24.6 kB
assets/css/plyr.css
24.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/quadraticlinearregression.png
24.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/quadraticlinearregression.png
24.1 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
Part 10-Module 01-Lesson 06_Undoing Changes/04. Resetting Commits.html
23.7 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.en.vtt
23.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot4.png
23.4 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c07-boxplot1.png
23.1 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lead-diff.png
22.7 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.pt-BR.vtt
22.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part II(b).html
22.2 kB
assets/css/katex.min.css
22.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c19-stackedbars1.png
22.1 kB
Part 06-Module 01-Lesson 07_Pandas/08. Creating Pandas DataFrames.html
22.0 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Video Comparing a Row to Previous Row.html
22.0 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/03. Git Commit.html
21.9 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html
21.9 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/challenger-good.png
21.8 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/04. Determining What To Work On.html
21.8 kB
Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.47.06-pm.png
21.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html
21.5 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/30. Notebook + Quiz Other Things to Consider.html
21.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step3-path.png
21.3 kB
Part 06-Module 01-Lesson 05_Scripting/img/step3-path.png
21.3 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/02. Git Add.html
21.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/student-acceptance.png
21.0 kB
Part 03-Module 01-Lesson 04_Keras/img/student-acceptance.png
21.0 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/03. Reviewing Existing Work.html
20.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
20.6 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/06. Merge Conflicts.html
20.5 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/44. Text + Quiz Results.html
20.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. Stay in sync with source project.html
20.2 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/06. Deciding on Metrics - Part II.html
20.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html
19.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c03-overplotting3.png
19.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. Perceptrons as Logical Operators.html
19.7 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/media/unnamed-project-desc-1.gif
19.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/18. Notebook + Quiz Simulating from the Null.html
19.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Branching.html
19.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c07-piecharts2.png
19.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/27. Quiz Regularization.html
19.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. Color Palettes.html
19.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What is an Experiment.html
19.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c07-boxplot3.png
19.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning.html
19.3 kB
Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-02-21-at-6.41.35-pm.png
19.2 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c06-violinplot1.png
19.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/04. Notebook + Quiz Fitting A MLR Model.html
19.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/02. Displaying A Repository's Commits.html
19.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.zh-CN.vtt
19.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/10. Figures, Axes, and Subplots.html
19.0 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot3.png
18.9 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/12. Notebook + Quiz Dummy Variables.html
18.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c06-violinplot2.png
18.8 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Tagging.html
18.7 kB
Part 02-Module 01-Lesson 09_Training and Tuning/06. Detecting Overfitting and Underfitting with Learning Curves.html
18.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract.html
18.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c02-scatterplot3.png
18.7 kB
Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.04.03-pm.png
18.6 kB
Part 14-Module 01-Lesson 01_The Data Science Process/15. Quiz Bootcamp Takeaways.html
18.6 kB
Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library-KsrqjguHWUI.en.vtt
18.5 kB
Part 06-Module 01-Lesson 06_NumPy/04. Creating and Saving NumPy ndarrays.html
18.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html
18.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/16. Extra Q-Q Plots.html
18.3 kB
Part 06-Module 01-Lesson 05_Scripting/img/step4-alias.png
18.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step4-alias.png
18.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/31. Notebook + Quiz Other Things to Consider.html
18.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/16. LEFT and RIGHT JOIN.html
18.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/07. Keras.html
18.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.en.vtt
18.1 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html
18.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.pt-BR.vtt
18.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/25. Notebook + Quiz Interpreting Model Coefficients.html
17.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.en.vtt
17.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html
17.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/18. Linear Regression in scikit-learn.html
17.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c05-faceting2.png
17.7 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Solution Subquery Mania.html
17.7 kB
Part 06-Module 01-Lesson 06_NumPy/11. Arithmetic operations and Broadcasting.html
17.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. Perceptrons as Logical Operators.html
17.7 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/07. Quiz Interpreting Coefficients in MLR.html
17.6 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/speaking.png
17.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html
17.4 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Merging.html
17.4 kB
Part 15-Module 01-Lesson 06_Web Development/30. Deployment.html
17.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Line Plots.html
17.4 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c08-multimetrics-01.png
17.4 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lag-diff.png
17.4 kB
Part 06-Module 01-Lesson 06_NumPy/07. Accessing, Deleting, and Inserting Elements Into ndarrays.html
17.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c02-scatterplot2.png
17.3 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/17. Extra Waffle Plots.html
17.3 kB
Part 06-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html
17.3 kB
Part 06-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html
17.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.pt-BR.vtt
17.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/06. Quiz Setting Up Hypothesis Tests.html
17.1 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/11. Quiz Aggregates in Window Functions.html
17.0 kB
Part 06-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html
17.0 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/05. Viewing File Changes.html
17.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html
16.9 kB
Part 06-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html
16.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/33. Quiz + Text Recap.html
16.8 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 06-Module 01-Lesson 05_Scripting/img/step2-pwd.png
16.8 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step2-pwd.png
16.8 kB
Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library-KsrqjguHWUI.pt-BR.vtt
16.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
16.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/14. Quiz Dimensionality.html
16.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/28. Quiz Removing Data.html
16.7 kB
Part 06-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html
16.7 kB
Part 06-Module 01-Lesson 06_NumPy/08. Slicing ndarrays.html
16.6 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html
16.6 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/03. Clone An Existing Repo.html
16.6 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/02. Introduction to GPU Workspaces.html
16.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/19. Extra Stacked Plots.html
16.6 kB
Part 15-Module 01-Lesson 06_Web Development/10. CSS.html
16.5 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html
16.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html
16.4 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. Histograms.html
16.4 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/04. Determine A Repo's Status.html
16.4 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.ar.vtt
16.3 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking A Repository.html
16.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
16.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots3.png
16.2 kB
Part 02-Module 01-Lesson 04_Decision Trees/18. Decision Trees in sklearn.html
16.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png
16.2 kB
Part 12-Module 01-Lesson 14_Regression/07. Quizzes On Scatter Plots.html
16.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html
16.2 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/Project Rubric - Improve Your LinkedIn Profile.html
16.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html
16.0 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png
16.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/15. Quiz More Hypothesis Testing Practice.html
16.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html
16.0 kB
Part 03-Module 01-Lesson 04_Keras/02. Keras.html
15.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-05-25-at-11.22.02-am.png
15.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html
15.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent.html
15.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html
15.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html
15.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/12. Your First Queries in SQL Workspace.html
15.8 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. Squash Commits.html
15.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/08. Notebook + Quiz Interpret Results.html
15.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/19. Text Recap.html
15.7 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. Scales and Transformations.html
15.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/13. How to Break Into the Field Solution-Db_2Lmwo4EY.en.vtt
15.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/40. Categorical Variables-p3gDUkBD9uM.en.vtt
15.7 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lead-3.png
15.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step5-source.png
15.6 kB
Part 06-Module 01-Lesson 05_Scripting/img/step5-source.png
15.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/25. Quiz Connecting Errors and P-Values.html
15.6 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html
15.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html
15.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/21. Predicting Salary-HTp4LA1MJh8.en.vtt
15.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html
15.5 kB
Part 15-Module 01-Lesson 06_Web Development/12. JavaScript.html
15.5 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. Non-Positional Encodings for Third Variables.html
15.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap Next Steps.html
15.4 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/13. Quiz Types of Errors - Part III.html
15.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions Python.html
15.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics in Experimentation.html
15.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. A Gaussian Class.html
15.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/17. SVMs in sklearn.html
15.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Algorithm.html
15.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/21. Predicting Salary-HTp4LA1MJh8.pt-BR.vtt
15.3 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c09b-subplotsa.png
15.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/22. (Optional) Closed form Solution Math.html
15.3 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lag.png
15.2 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/02. Create A Repo From Scratch.html
15.1 kB
Part 06-Module 01-Lesson 04_Functions/02. Defining Functions.html
15.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html
15.1 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html
15.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step1-cd.png
15.0 kB
Part 06-Module 01-Lesson 05_Scripting/img/step1-cd.png
15.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/39. Summary.html
15.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Video + Quiz Write Your First Subquery.html
15.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/20. Extra Ridgeline Plots.html
15.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. A Couple of Notes about OOP.html
15.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/40. Categorical Variables-p3gDUkBD9uM.pt-BR.vtt
15.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html
14.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/26. Notebook + Quiz Drawing Conclusions.html
14.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html
14.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.zh-CN.vtt
14.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/05. Notebook + Quiz Fitting Logistic Regression in Python.html
14.9 kB
Part 12-Module 01-Lesson 14_Regression/11. Quiz What Defines A Line - Notation Quiz.html
14.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/06. Polishing Plots.html
14.8 kB
Part 06-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html
14.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot2.png
14.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html
14.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/13. How to Break Into the Field Solution-Db_2Lmwo4EY.pt-BR.vtt
14.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/16. Quiz Mini-Batch Gradient Descent.html
14.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. Bar Charts.html
14.8 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. Pulling Changes From A Remote.html
14.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html
14.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html
14.7 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/16. [Optional] Text Linear Model Assumptions.html
14.7 kB
Part 10-Module 01-Lesson 07_Working With Remotes/04. Push Changes To A Remote.html
14.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart6.png
14.6 kB
Part 06-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html
14.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html
14.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Video Why SQL.html
14.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c19-stackedbars2.png
14.6 kB
Part 06-Module 01-Lesson 03_Control Flow/10. For Loops.html
14.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html
14.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms4.png
14.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Adaptation of Univariate Plots.html
14.5 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/21. Quiz What is a p-value Anyway.html
14.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets.html
14.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-14-at-10.03.16-am.png
14.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/30. Notebook + Quiz Model Diagnostics.html
14.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html
14.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/04. Quiz Data Types (Quantitative vs. Categorical).html
14.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html
14.3 kB
Part 05-Module 01-Lesson 01_Congratulations!/img/screen-shot-2018-07-05-at-7.30.12-pm.png
14.3 kB
Part 06-Module 01-Lesson 05_Scripting/28. Online Resources.html
14.3 kB
Part 06-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html
14.2 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.zh-CN.vtt
14.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/20. Multiple Linear Regression.html
14.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments.html
14.2 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Git and Version Control Terminology.html
14.2 kB
Part 15-Module 01-Lesson 06_Web Development/30. Deployment-YPfNzpnm_Rk.en.vtt
14.1 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/05. Quizzes on Data Story Telling.html
14.1 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html
14.1 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/Project Rubric - Capstone Project.html
14.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html
14.0 kB
Part 06-Module 01-Lesson 07_Pandas/05. Accessing and Deleting Elements in Pandas Series.html
14.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/19. Notebook + Quiz Multicollinearity VIFs.html
14.0 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c08-multimetrics-02.png
14.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Clustered Bar Charts.html
14.0 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html
14.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Heat Maps.html
14.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/08. Pre-Lab Student Admissions in Keras.html
14.0 kB
Part 15-Module 01-Lesson 06_Web Development/30. Deployment-YPfNzpnm_Rk.pt-BR.vtt
14.0 kB
Part 06-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 06-Module 01-Lesson 07_Pandas/06. Arithmetic Operations on Pandas Series.html
13.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.pt-BR.vtt
13.8 kB
Part 07-Module 01-Lesson 02_SQL Joins/08. Quiz Primary - Foreign Key Relationship.html
13.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 03362 V1-MwRSg5RASoc.en.vtt
13.8 kB
Part 07-Module 01-Lesson 02_SQL Joins/17. Solutions LEFT and RIGHT JOIN .html
13.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart5.png
13.8 kB
Part 11-Module 01-Lesson 03_Linear Combination/06. Solving a Simplified Set of Equations.html
13.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/14. Formatting Best Practices.html
13.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color6.png
13.7 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.pt-BR.vtt
13.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/10. Quiz Types of Errors - Part II(a).html
13.7 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/01. Introduction.html
13.7 kB
Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.pt-BR.vtt
13.7 kB
Part 15-Module 01-Lesson 06_Web Development/20. Flask.html
13.6 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/04. Viewing Modified Files.html
13.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/05. Text + Quiz Data Types (Ordinal vs. Nominal).html
13.6 kB
Part 07-Module 01-Lesson 02_SQL Joins/20. Solutions Last Check.html
13.6 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/03. [For Windows] Configuring Git Bash to Run Python.html
13.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color1.png
13.6 kB
Part 06-Module 01-Lesson 06_NumPy/09. Boolean Indexing, Set Operations, and Sorting.html
13.5 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. Other Adaptations of Bivariate Plots.html
13.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/25. Quiz Polynomial Regression.html
13.5 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/06. Having Git Ignore Files.html
13.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. What are Jupyter notebooks.html
13.5 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Changing How Git Log Displays Information.html
13.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html
13.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/14. [Optional] Notebook + Quiz Other Encodings.html
13.4 kB
Part 15-Module 01-Lesson 06_Web Development/05. HTML.html
13.4 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/32. Solutions CASE.html
13.4 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png
13.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
13.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Algorithm.html
13.3 kB
Part 06-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html
13.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html
13.3 kB
Part 06-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html
13.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs.html
13.2 kB
Part 06-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html
13.2 kB
Part 07-Module 01-Lesson 02_SQL Joins/11. Quiz JOIN Questions Part I.html
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html
13.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.en.vtt
13.1 kB
Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/01. Introduction.html
13.1 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. Procedural vs. Object-Oriented Programming.html
13.1 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/05. Quiz Regression Metrics.html
13.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html
13.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/10. Dummy Variables.html
13.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/18. Video It Is Not Always About ML.html
13.0 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/02. Motivation for Data Visualization.html
13.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/46. Text Recap.html
13.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html
13.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html
13.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.en.vtt
12.9 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html
12.9 kB
Part 02-Module 01-Lesson 04_Decision Trees/17. Hyperparameters.html
12.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/08. Text + Quiz Types of Databases.html
12.9 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/13. Bad Visual Quizzes (Part II).html
12.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html
12.9 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/07. Quiz More On Subqueries.html
12.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html
12.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/12. Quizzes UNION.html
12.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations2.png
12.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html
12.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/49. Text Recap Looking Ahead.html
12.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot3.png
12.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. Class, Object, Method and Attribute.html
12.7 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/09. Video Singular Value Decomposition.html
12.7 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html
12.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/16. Quiz LIMIT.html
12.7 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. Pie Charts.html
12.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/19. Quiz Last Check.html
12.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/04. Quiz ERD Fundamentals.html
12.6 kB
Part 12-Module 01-Lesson 14_Regression/09. Correlation Coefficient Quizzes.html
12.6 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/Project Rubric - Create Your Own Image Classifier.html
12.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/12. Bad Visual Quizzes (Part I).html
12.6 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes.html
12.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/24. Text More Recommendation Technniques.html
12.6 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html
12.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color8.png
12.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Box Plots.html
12.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html
12.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Union.html
12.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html
12.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/03. Video + Text The Parch Posey Database.html
12.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c11-faceting3.png
12.5 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/12. Linear Transformation Quiz Answers.html
12.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/03. Program Structure Schedule.html
12.5 kB
Part 12-Module 01-Lesson 14_Regression/20. Notebook + Quiz Your Turn - Part II.html
12.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt
12.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Neural Network Architecture.html
12.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html
12.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview.html
12.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/05. Text Map of SQL Content.html
12.5 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.en.vtt
12.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html
12.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings.html
12.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html
12.4 kB
Part 07-Module 01-Lesson 02_SQL Joins/04. Text + Quiz Your First JOIN.html
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 06-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html
12.4 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/25. Quiz Recommendation Methods.html
12.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/19. Video The Data Science Process - Modeling.html
12.4 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/14. Video FunkSVD.html
12.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Faceting.html
12.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html
12.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/08. What Should You Check.html
12.3 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html
12.3 kB
Part 04-Module 01-Lesson 04_PCA/05. Latent Features.html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/03. Project Details.html
12.3 kB
Part 06-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html
12.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html
12.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/13. Convolutional Layers in Keras.html
12.2 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/13. Text SVD Closed Form Solution.html
12.2 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipeline.html
12.2 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics.html
12.2 kB
Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-11-10-at-2.43.00-pm.png
12.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/24. Solutions HAVING.html
12.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/15. Solutions WITH.html
12.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/35. Imputation Methods-OwEWSBitF-Q.en.vtt
12.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.en.vtt
12.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/33. Video Imputing Missing Values.html
12.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. Softmax.html
12.1 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics.html
12.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar5.png
12.1 kB
Part 06-Module 01-Lesson 03_Control Flow/25. Break, Continue.html
12.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. Absolute vs. Relative Frequency.html
12.1 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html
12.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/22. Quiz Calculating a p-value.html
12.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html
12.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/04. What is Anaconda.html
12.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. Remote Repositories.html
12.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/01. Introduction.html
12.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/27. Pre-Lab IMDB Data in Keras.html
12.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot2.png
12.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html
12.0 kB
Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.en.vtt
12.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html
12.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/10. Video Gathering Wrangling.html
12.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/07. A Look at the Data-vPHVUYvCNGE.en.vtt
11.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar3.png
11.9 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. Advanced API Code Walk-through-AkqO534YooE.pt-BR.vtt
11.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html
11.9 kB
Part 15-Module 01-Lesson 06_Web Development/16. 18 Screencast Plotly V2-QsmOW1jNeio.en.vtt
11.9 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation.html
11.9 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/07. Identifying Data Types.html
11.9 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/12. Launching the notebook server.html
11.9 kB
Part 14-Module 01-Lesson 01_The Data Science Process/03. Video The Data Science Process - Business Data.html
11.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/24. Text Interpreting Interactions.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/13. Screencast How to Break Into the Field Solution.html
11.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/12. Video + Quiz Collaborative Filtering Content Based Recs.html
11.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/22. Quiz ORDER BY Part II.html
11.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/23. HAVING.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/26. Video Removing Data - When Is It OK.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/43. Screencast + Notebook Putting It All Together Solution.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/09. Video Business Data Understanding .html
11.8 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html
11.8 kB
Part 15-Module 01-Lesson 06_Web Development/03. Components of a Web App.html
11.8 kB
Part 03-Module 01-Lesson 04_Keras/03. Pre-Lab Student Admissions in Keras.html
11.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/29. Video CASE Statements.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/25. Video Removing Data - Why Not.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/35. Screencast Imputation Methods Resources Solution.html
11.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/31. Quiz Arithmetic Operators.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/40. Screencast Categorical Variables Solution.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/32. Screencast Removing Data Part II Solution.html
11.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/24. Video Working With Missing Values.html
11.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c08-plotmatrices3.png
11.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html
11.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces.html
11.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/07. Screencast A Look at the Data.html
11.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/37. Screencast Imputing Values Solution.html
11.7 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/28. Solutions DATE Functions.html
11.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/23. Screencast What Happened Solution.html
11.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/30. ScreenCast Removing Data Solution.html
11.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/17. Screencast Job Satisfaction.html
11.7 kB
Part 06-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html
11.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. Scenario #1.html
11.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing your models.html
11.7 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/07. Text Medium Getting Started Post and Links.html
11.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html
11.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. Plot Matrices.html
11.7 kB
Part 06-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html
11.7 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. Advanced API Code Walk-through-AkqO534YooE.en.vtt
11.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/10. Statements.html
11.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/20. Video Predicting Salary.html
11.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/03. Levels of Measurement Types of Data.html
11.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt
11.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html
11.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html
11.6 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2017-10-27-at-1.49.58-pm.png
11.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2017-10-27-at-1.49.58-pm.png
11.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/31. Quiz CASE.html
11.6 kB
Part 14-Module 01-Lesson 01_The Data Science Process/45. Video The Data Science Process - Evaluate Deploy.html
11.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Trick.html
11.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. Video OR.html
11.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/19. Quiz ORDER BY.html
11.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html
11.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c07-piecharts3.png
11.6 kB
Part 14-Module 01-Lesson 01_The Data Science Process/32. Removing Data Part II-lPl6-Z098Rs.en.vtt
11.6 kB
Part 06-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html
11.6 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/Project Rubric - Disaster Response Pipelines.html
11.6 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/Project Rubric - Finding Donors for CharityML.html
11.6 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers.html
11.5 kB
Part 12-Module 01-Lesson 14_Regression/18. Notebook + Quiz How to Interpret the Results.html
11.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/08. (Optional) Margin Error Calculation.html
11.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Error vs Squared Error.html
11.5 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors.html
11.5 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/04. Commit Messages.html
11.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/02. Video CRISP-DM.html
11.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html
11.5 kB
Part 06-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html
11.5 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Creating a Slide Deck with Jupyter.html
11.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/14. Quiz Aliases for Multiple Window Functions.html
11.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/15. Solutions GROUP BY.html
11.5 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/05. Quiz Clean Code.html
11.5 kB
Part 06-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html
11.4 kB
Part 12-Module 01-Lesson 14_Regression/19. Notebook + Quiz Regression - Your Turn - Part I.html
11.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c07-boxplot2.png
11.4 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What is a p-value Anyway.html
11.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/27. Video Removing Data - Other Considerations.html
11.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. Putting Code on PyPi.html
11.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/38. Video Working With Categorical Variables Refresher.html
11.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c04-heatmap3.png
11.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/07. Video How Databases Store Data.html
11.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html
11.4 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/06. Viewing A Specific Commit.html
11.4 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. Scenario #3.html
11.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/43. Video AND and BETWEEN.html
11.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/05. Screencast Using Workspaces.html
11.3 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/28. Quiz Types of Ratings Goals of Recommendation Systems.html
11.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html
11.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/04. Quiz Setting Up Hypotheses.html
11.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix.html
11.3 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/34. Notebook + Quiz Imputation Methods Resources.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/12. Notebook + Quiz How To Break Into the Field.html
11.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/08. Quiz Types of Errors - Part I.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/42. Notebook + Quiz Putting It All Together .html
11.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c17-rugplot1.png
11.3 kB
Part 10-Module 01-Lesson 01_What is Version Control/04. MacLinux Setup.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/39. Notebook + Quiz Categorical Variables.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/31. Notebook + Quiz Removing Data Part II.html
11.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html
11.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Overplotting, Transparency, and Jitter.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/06. Quiz + Notebook A Look at the Data.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/16. Notebook + Quiz Job Satisfaction.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/36. Notebook + Quiz Imputing Values.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/29. Notebook + Quiz Removing Values.html
11.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/22. Notebook + Quiz What Happened.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html
11.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/34. Video LIKE.html
11.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/02. Text + Images FULL OUTER JOIN.html
11.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Scatterplots and Correlation.html
11.3 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. F-beta Score.html
11.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt
11.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall.html
11.3 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability Bayes Rule Quiz.html
11.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/41. Quiz NOT.html
11.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Violin Plots.html
11.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html
11.2 kB
Part 07-Module 01-Lesson 02_SQL Joins/09. Text + Quiz JOIN Revisited.html
11.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
11.2 kB
Part 06-Module 01-Lesson 05_Scripting/02. Python Installation.html
11.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/27. Other Things to Consider - What if Our Sample is Large.html
11.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/45. Solutions AND and BETWEEN.html
11.2 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html
11.2 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 1051320 V1-_4N6h82szWo.en.vtt
11.2 kB
Part 06-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html
11.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/08. Mini project Training an MLP on MNIST.html
11.2 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/Project Rubric - Write A Data Science Blog Post.html
11.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/03. Text README Showcase.html
11.2 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html
11.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/11. Choosing a Plot for Discrete Data.html
11.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/41. Video How to Fix This.html
11.2 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/Project Rubric - Recommendations with IBM.html
11.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html
11.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/30. Video Arithmetic Operators.html
11.2 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search with Pipelines.html
11.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/29. Screencast Model Diagnostics in Python - Part I.html
11.2 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/03. Project Details.html
11.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses.html
11.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/32. Solutions Arithmetic Operators.html
11.2 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html
11.2 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/04. Practical Significance.html
11.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization-PyFNIcsNma0.en.vtt
11.1 kB
Part 15-Module 01-Lesson 06_Web Development/24. Flask+Plotly+Pandas Part 1.html
11.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html
11.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests.html
11.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt
11.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld.html
11.1 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/13. Text + Quiz WITH vs. Subquery.html
11.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/12. Solutions MIN, MAX, AVG.html
11.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/04. Video Business Data Understanding - Example.html
11.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html
11.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html
11.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/21. Text Higher Order Terms.html
11.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/44. Quiz AND and BETWEEN.html
11.1 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt
11.1 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction.html
11.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/42. Solutions NOT.html
11.1 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/Project Rubric - Identify Customer Segments with Arvato.html
11.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision.html
11.1 kB
Part 15-Module 01-Lesson 06_Web Development/16. 18 Screencast Plotly V2-QsmOW1jNeio.pt-BR.vtt
11.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/03. Quiz Logistic Regression Quick Check.html
11.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/47. Quiz OR.html
11.1 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt
11.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms.html
11.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/17. Magic keywords.html
11.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/11. Video SELECT FROM.html
11.0 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/22. Solution Grid Search Pipeline.html
11.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/14. Quiz GROUP BY.html
11.0 kB
Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.zh-CN.vtt
11.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1.html
11.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2.html
11.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
11.0 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html
11.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html
11.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypothesis Tests - Part II.html
11.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.zh-CN.vtt
11.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall.html
11.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/23. Solutions ORDER BY Part II.html
11.0 kB
Part 04-Module 01-Lesson 01_Clustering/14. How Does K-Means Work.html
11.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html
11.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/37. Video IN.html
11.0 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/30. Text Recap.html
11.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html
10.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html
10.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html
10.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/48. Solutions OR.html
10.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.zh-CN.vtt
10.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/16. Extra Kernel Density Estimation.html
10.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.en.vtt
10.9 kB
Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html
10.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/26. Solutions WHERE.html
10.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html
10.9 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html
10.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall.html
10.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices.html
10.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html
10.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. Clean and Modular Code.html
10.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/18. Solutions GROUP BY Part II.html
10.9 kB
Part 04-Module 01-Lesson 04_PCA/12. 11 PCA 1 Solution V1-u0rJRmubQ44.en.vtt
10.9 kB
Part 06-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html
10.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html
10.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/38. Quiz IN.html
10.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/20. Solutions ORDER BY.html
10.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs for Image Classification.html
10.9 kB
Part 06-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html
10.9 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types of Sampling.html
10.8 kB
Part 06-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html
10.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms1.png
10.8 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html
10.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/18. Video ORDER BY.html
10.8 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/04. How to Tackle the Exercises.html
10.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/29. Sets.html
10.8 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/01. Prove Your Skills With GitHub.html
10.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/11. Screencast How To Break Into the Field.html
10.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html
10.8 kB
Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html
10.8 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. Making a Package.html
10.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/28. Quiz WHERE with Non-Numeric.html
10.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/25. Quiz WHERE.html
10.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html
10.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html
10.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html
10.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/35. Imputation Methods-OwEWSBitF-Q.pt-BR.vtt
10.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/24. Video WHERE.html
10.8 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/09. Who Is The Audience.html
10.8 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/07. Profile Essentials.html
10.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Video + Quiz Performance Tuning 1.html
10.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/36. Solutions LIKE.html
10.7 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Screencast Solution Collaborative Filtering.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/35. Quiz LIKE.html
10.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/21. Screencast Predicting Salary.html
10.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/32. Removing Data Part II-lPl6-Z098Rs.pt-BR.vtt
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/15. Video LIMIT.html
10.7 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.en.vtt
10.7 kB
Part 06-Module 01-Lesson 03_Control Flow/20. While Loops.html
10.7 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Get Opportunities with LinkedIn.html
10.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/33. Text Introduction to Logical Operators.html
10.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/39. Solutions IN.html
10.7 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html
10.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html
10.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html
10.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html
10.7 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/27. Video WHERE with Non-Numeric Data.html
10.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/14. Screencast Bootcamps.html
10.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types of Errors - Part III.html
10.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html
10.7 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. Advantages of Using Pipeline.html
10.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/01. Video Intro.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/09. Video Types of Statements.html
10.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing.html
10.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform.html
10.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html
10.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html
10.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/14. Markdown cells.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/29. Solutions WHERE with Non-Numeric.html
10.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/13. Solution Your First Queries.html
10.6 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/27. Text Review.html
10.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html
10.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization-PyFNIcsNma0.pt-BR.vtt
10.6 kB
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2.html
10.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/07. Quiz Gaussian Mixtures.html
10.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html
10.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types of Errors - Part II.html
10.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/17. Solutions LIMIT.html
10.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html
10.6 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/13. Notebook interface.html
10.5 kB
Part 06-Module 01-Lesson 07_Pandas/11. Manipulate a DataFrame.html
10.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.en.vtt
10.5 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html
10.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html
10.5 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/08. Quiz Latent Factors.html
10.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html
10.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html
10.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html
10.5 kB
Part 06-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html
10.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html
10.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Video Multicollinearity VIFs.html
10.5 kB
Part 15-Module 01-Lesson 06_Web Development/16. Plotly.html
10.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.en.vtt
10.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/08. Commenting Object-Oriented Code.html
10.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html
10.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html
10.5 kB
Part 15-Module 01-Lesson 06_Web Development/27. Flask+Plotly+Pandas Part 4.html
10.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1.html
10.5 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/05. Multiplication of a Square Matrices.html
10.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions.html
10.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.5 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html
10.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces.html
10.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations2.png
10.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces.html
10.5 kB
Part 15-Module 01-Lesson 06_Web Development/18. The Backend.html
10.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html
10.4 kB
Part 10-Module 01-Lesson 01_What is Version Control/02. Version Control In Daily Use.html
10.4 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/13. Tips for Conducting a Code Review.html
10.4 kB
Part 04-Module 01-Lesson 04_PCA/12. 11 PCA 1 Solution V1-u0rJRmubQ44.pt-BR.vtt
10.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html
10.4 kB
Part 06-Module 01-Lesson 07_Pandas/04. Creating Pandas Series.html
10.4 kB
Part 15-Module 01-Lesson 06_Web Development/10. CSS-s_sdzHR9cs0.pt-BR.vtt
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load.html
10.4 kB
Part 15-Module 01-Lesson 06_Web Development/27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.pt-BR.vtt
10.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/20. Missing Data - Overview.html
10.4 kB
Part 06-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html
10.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations1.png
10.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html
10.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/43. Putting It All Together-3SX4dMZPNEI.en.vtt
10.4 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/12. Quiz CAST.html
10.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html
10.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/21. Video ORDER BY Part II.html
10.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot1.png
10.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/40. Video NOT.html
10.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html
10.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar1.png
10.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/21. Cross-Entropy 2.html
10.4 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Screencast Solution Content Based.html
10.3 kB
Part 10-Module 01-Lesson 01_What is Version Control/05. Windows Setup.html
10.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping The Central Limit Theorem.html
10.3 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Screencast Solutions for Collaborative Filtering.html
10.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces.html
10.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance.html
10.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html
10.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html
10.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html
10.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html
10.3 kB
Part 15-Module 01-Lesson 06_Web Development/27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.en.vtt
10.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Other Things to Consider - What if Test More Than Once.html
10.3 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/07. Matrix Multiplication - General.html
10.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.3 kB
Part 04-Module 01-Lesson 04_PCA/09. Quiz How Does PCA Work.html
10.3 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/18. Recap Additional Resources.html
10.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. Create a Pull Request.html
10.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
10.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/02. Recommending Apps 1.html
10.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/17. Quiz GROUP BY Part II.html
10.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. OOP Syntax.html
10.3 kB
Part 06-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html
10.2 kB
Part 06-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html
10.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/05. Quiz Github Check.html
10.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/02. Video + Text Example Recommendation Engines.html
10.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c03-overplotting2.png
10.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c05-missingdata1.png
10.2 kB
Part 06-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html
10.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.en.vtt
10.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders.html
10.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. 20 Putting Code On PyPi V1-4uosDOKn5LI.pt-BR.vtt
10.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html
10.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/32. Text Recap.html
10.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar2.png
10.2 kB
Part 06-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html
10.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html
10.2 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/18. Solution Create Custom Transformer.html
10.2 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/11. Analyze Data.html
10.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Video Simulating from the Null.html
10.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile.html
10.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html
10.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Screencast Solution Measuring Similarity.html
10.2 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/05. Project Survey.html
10.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/08. Solution SUM.html
10.2 kB
Part 11-Module 01-Lesson 01_Introduction/05. Working with Equations.html
10.2 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.en.vtt
10.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. Video UNION.html
10.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/07. A Look at the Data-vPHVUYvCNGE.pt-BR.vtt
10.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html
10.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood.html
10.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.ar.vtt
10.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html
10.1 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. Writing Clean Code.html
10.1 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/21. Quiz Percentiles.html
10.1 kB
Part 06-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html
10.1 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/09. Build and Strengthen Your Network.html
10.1 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers - How to Find Them.html
10.1 kB
Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes.html
10.1 kB
Part 15-Module 01-Lesson 06_Web Development/10. CSS-s_sdzHR9cs0.en.vtt
10.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/16. Video Identifying Recommendations.html
10.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values.html
10.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/21. Solutions DISTINCT.html
10.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/20. Video Ways to Recommend Content Based.html
10.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/02. Video The Parch Posey Database.html
10.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/29. Other Things to Consider - How Do CIs and HTs Compare.html
10.1 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html
10.0 kB
Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html
10.0 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/07. Rubric.html
10.0 kB
Part 06-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html
10.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous.html
10.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables.html
10.0 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/03. Text What's Ahead.html
10.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html
10.0 kB
Part 15-Module 01-Lesson 06_Web Development/22. Flask + Pandas.html
10.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Video Introduction.html
10.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/18. Extra Rug and Strip Plots.html
10.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/17. Job Satisfaction-OjCNMhWlYh8.en.vtt
10.0 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/26. Video Types of Ratings.html
10.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together.html
10.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/26. Video DATE Functions II.html
10.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/02. Tidy Data.html
10.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/01. Video SQL Introduction.html
10.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation.html
10.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/43. Putting It All Together-3SX4dMZPNEI.pt-BR.vtt
10.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html
10.0 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/04. Possible Projects.html
10.0 kB
Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.ar.vtt
10.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html
10.0 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/05. Quiz Exploratory vs. Explanatory.html
10.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html
10.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt
10.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html
10.0 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/06. Quiz JOINs with Comparison Operators.html
10.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html
9.9 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/06. Managing packages.html
9.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html
9.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions in Hypothesis Testing.html
9.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. Descriptive Statistics, Outliers and Axis Limits.html
9.9 kB
Part 04-Module 01-Lesson 01_Clustering/20. Screencast Solution.html
9.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html
9.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html
9.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. Writing Modular Code.html
9.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/06. Text ERD Reminder.html
9.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html
9.9 kB
Part 12-Module 01-Lesson 14_Regression/12. Quiz What Defines A Line - Line Basics Quiz.html
9.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/11. Quiz MIN, MAX, AVG.html
9.9 kB
Part 12-Module 01-Lesson 04_Probability/14. One Head 2.html
9.9 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing into Modules.html
9.9 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/07. Video Ways to Recommend Knowledge Based.html
9.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/13. Video GROUP BY.html
9.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html
9.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/27. Quiz DATE Functions.html
9.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.pt-BR.vtt
9.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html
9.8 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. 20 Putting Code On PyPi V1-4uosDOKn5LI.en.vtt
9.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/04. Video + Text First Aggregation - COUNT.html
9.8 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html
9.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html
9.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
9.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
9.8 kB
Part 06-Module 01-Lesson 04_Functions/05. Variable Scope.html
9.8 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/17. Good Visual.html
9.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions.html
9.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
9.8 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Video Why Would We Want to Split Data Into Separate Tables.html
9.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html
9.8 kB
Part 03-Module 01-Lesson 04_Keras/07. Pre-Lab IMDB Data in Keras.html
9.8 kB
Part 07-Module 01-Lesson 02_SQL Joins/21. Text Recap Looking Ahead.html
9.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html
9.8 kB
Part 11-Module 01-Lesson 03_Linear Combination/03. Linear Combination and Span.html
9.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot4.png
9.8 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/04. Text Validating Your Recommendations.html
9.8 kB
Part 15-Module 01-Lesson 06_Web Development/25. Flask+Plotly+Pandas Part 2.html
9.8 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data.html
9.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/27. Video Goals of Recommendation Systems.html
9.8 kB
Part 06-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html
9.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
9.8 kB
Part 06-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html
9.8 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html
9.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/Project Description - Optimize Your GitHub Profile.html
9.7 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/15. Quiz COALESCE.html
9.7 kB
Part 06-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html
9.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/17. Job Satisfaction-OjCNMhWlYh8.pt-BR.vtt
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/42. Exercise Putting It All Together.html
9.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/08. Bayesian Learning 1.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/37. Exercise Feature Engineering.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/19. Exercise Matching Encodings.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/32. Exercise Outliers - Part 2.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/30. Exercise Outliers Part 1.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/28. Exercise Dummy Variables.html
9.7 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/10. Text Recap.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/13. Exercise Combining Data.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/26. Exercise Duplicate Data.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/17. Exercise Parsing Dates.html
9.7 kB
Part 06-Module 01-Lesson 05_Scripting/05. Running a Python Script.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/15. Exercise Cleaning Data.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/08. Exercise SQL Databases.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/35. Exercise Scaling Data.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/07. Exercise JSON and XML.html
9.7 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/05. APIs [advanced version].html
9.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/23. Exercise Imputation.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/16. Exercise Data Types.html
9.7 kB
Part 06-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html
9.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/19. Documentation.html
9.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/23. Linear Regression Warnings.html
9.7 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/07. Quiz SUM.html
9.7 kB
Part 06-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html
9.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3.html
9.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/10. Exercise APIs.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/40. Exercise Load.html
9.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/06. Exercise CSV.html
9.7 kB
Part 04-Module 01-Lesson 04_PCA/10. 09 PCA V1-0RLDZWeq5JE.en.vtt
9.7 kB
Part 11-Module 01-Lesson 02_Vectors/04. Vectors- Mathematical definition .html
9.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/12. Solutions JOIN Questions Part I.html
9.7 kB
Part 09-Module 01-Lesson 01_Shell Workshop/07. Parameters and options (ls -l).html
9.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations4.png
9.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras.html
9.6 kB
Part 15-Module 01-Lesson 06_Web Development/02. Lesson Overview.html
9.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Screencast Solution Knowledge Based.html
9.6 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/15. Solution Add Feature Union.html
9.6 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/24. SQL, optimization, and ETL - Robert Chang Airbnb.html
9.6 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/03. Quiz FULL OUTER JOIN.html
9.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html
9.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, Other Tools.html
9.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c04-relfreqchart2.png
9.6 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/33. AI and Data Engineering - Robert Chang Airbnb.html
9.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar4.png
9.6 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.pt-BR.vtt
9.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Video Calculating the p-value.html
9.6 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types of Experiment.html
9.6 kB
Part 06-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html
9.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/16. Video GROUP BY Part II.html
9.6 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Trick.html
9.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html
9.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/19. Maximizing Probabilities.html
9.6 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/11. Commit messages best practices.html
9.6 kB
Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall.html
9.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/13. Video + Text Measuring Similarity.html
9.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Screencast Solution MovieTweeting Data .html
9.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Video Window Functions 1.html
9.6 kB
Part 12-Module 01-Lesson 14_Regression/05. Quiz Linear Regression Language.html
9.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html
9.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/04. Solution Clean and Tokenize.html
9.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html
9.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/08. Quiz Absolute and Square Trick.html
9.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c09b-subplots4.png
9.5 kB
Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients.html
9.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html
9.5 kB
Part 04-Module 01-Lesson 01_Clustering/02. Text Course Outline.html
9.5 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html
9.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html
9.5 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html
9.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. Screencast + Text How Does MLR Work.html
9.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt
9.5 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/02. Ensembles.html
9.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/17. Quiz Comparing a Row to Previous Row.html
9.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html
9.5 kB
Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.52.09-pm.png
9.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/09. Video Model Diagnostics + Performance Metrics.html
9.5 kB
Part 06-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html
9.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/26. Pre-Lab Gradient Descent.html
9.5 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.pt-BR.vtt
9.5 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/16. End With A Call To Action.html
9.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/09. Text Dummy Variables.html
9.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/09. Extracting Text Data.html
9.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html
9.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/07. Solution Machine Learning Workflow.html
9.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html
9.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. Logistic Regression.html
9.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Video Dummy Variables.html
9.4 kB
Part 12-Module 01-Lesson 14_Regression/03. Quiz Machine Learning Big Picture.html
9.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html
9.4 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/08. Matrix Multiplication Quiz.html
9.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/14. Log-loss Error Function.html
9.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/15. Mini-batch Gradient Descent.html
9.4 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/14. Quiz WITH.html
9.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/31. Outliers - What to do .html
9.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Video Multiple Linear Regression.html
9.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html
9.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers.html
9.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html
9.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins.html
9.4 kB
Part 04-Module 01-Lesson 04_PCA/10. 09 PCA V1-0RLDZWeq5JE.pt-BR.vtt
9.4 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/01. Video Intro.html
9.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/22. Missing Data - Impute.html
9.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/21. Missing Data - Delete.html
9.3 kB
Part 06-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html
9.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/08. Organizing your files (mkdir, mv).html
9.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/03. Video NULLs and Aggregation.html
9.3 kB
Part 06-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html
9.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html
9.3 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. Docstrings.html
9.3 kB
Part 12-Module 01-Lesson 14_Regression/14. Text The Regression Closed Form Solution.html
9.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/36. Feature Engineering.html
9.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy.html
9.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. Video LEFT and RIGHT JOINs.html
9.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras.html
9.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html
9.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html
9.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Video Multiple Linear Regression Model Results.html
9.3 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/11. Solution Build Pipeline.html
9.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html
9.3 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/04. Video Introduction to MovieTweetings.html
9.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html
9.3 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/04. Scalar Multiplication of Matrix and Quiz.html
9.3 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix.html
9.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings.html
9.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/14. Cleaning Data.html
9.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html
9.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.pt-BR.vtt
9.3 kB
Part 15-Module 01-Lesson 06_Web Development/26. Flask+Plotly+Pandas Part 3.html
9.3 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/03. Building a Funnel.html
9.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/25. Video DATE Functions.html
9.3 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/10. Video More Personalized Recommendations.html
9.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html
9.3 kB
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html
9.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data.html
9.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html
9.3 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.zh-CN.vtt
9.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html
9.3 kB
Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library.html
9.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/43. Lesson Summary.html
9.2 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/02. Project Details.html
9.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data.html
9.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images.html
9.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Video Percentiles.html
9.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/18. Advanced OOP Topics.html
9.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikit-learn Source Code.html
9.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/05. Text Subquery Formatting.html
9.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/17. Extra Swarm Plots.html
9.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/09. Video MIN MAX.html
9.2 kB
Part 11-Module 01-Lesson 02_Vectors/12. Vectors Quiz 3.html
9.2 kB
Part 06-Module 01-Lesson 03_Control Flow/01. Introduction.html
9.2 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/05. Use Your Elevator Pitch on LinkedIn.html
9.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/19. Video DISTINCT.html
9.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/17. Notebook Collaborative Filtering.html
9.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/14. Notebook Measuring Similarity.html
9.2 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.en.vtt
9.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/05. Notebook MovieTweeting Data.html
9.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/Project Rubric - Optimize Your GitHub Profile.html
9.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/08. Notebook Knowledge Based.html
9.2 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/16. Solutions COALESCE.html
9.2 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/08. Work Experiences Accomplishments.html
9.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/21. Notebook Content Based.html
9.2 kB
Part 02-Module 01-Lesson 04_Decision Trees/13. Quiz Information Gain.html
9.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt
9.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html
9.2 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Project Overview.html
9.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. Scenario #2.html
9.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/20. Quiz DISTINCT.html
9.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/02. Windows Installing Git Bash.html
9.1 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/04. Program Structure Syllabus.html
9.1 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Screencast SVD Practice Solution.html
9.1 kB
Part 15-Module 01-Lesson 06_Web Development/01. Introduction.html
9.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/31. Video Final Thoughts On Shifting to Machine Learning.html
9.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Screencast Multicollinearity VIFs.html
9.1 kB
Part 11-Module 01-Lesson 02_Vectors/06. Magnitude and Direction .html
9.1 kB
Part 06-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html
9.1 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html
9.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion.html
9.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/10. Video AVG.html
9.1 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/03. Video How Do We Know Our Recommendations Are Good.html
9.1 kB
Part 02-Module 01-Lesson 09_Training and Tuning/07. Solution Detecting Overfitting and Underfitting.html
9.1 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/08. Weighting the Models 2.html
9.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/02. Quiz Housing Prices.html
9.1 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/06. Square Matrix Multiplication Quiz.html
9.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/14. Mean vs Total Error.html
9.1 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1.html
9.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types of Errors - Part I.html
9.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/05. Installing Anaconda.html
9.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/30. Video CASE Aggregations.html
9.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/04. Video Fitting Logistic Regression in Python.html
9.1 kB
Part 06-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html
9.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
9.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html
9.0 kB
Part 06-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html
9.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
9.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. Feedforward.html
9.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/07. Video (ScreenCast) Interpret Results - Part II.html
9.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html
9.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html
9.0 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html
9.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/17. Even Roll.html
9.0 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity.html
9.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/06. Video SUM.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5.html
9.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/01. Video Introduction.html
9.0 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Screencast How Are We Doing.html
9.0 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt
9.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.pt-BR.vtt
9.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/02. Video Fitting Logistic Regression.html
9.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/13. One Head 1.html
9.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/19. Creating a slideshow.html
9.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.en.vtt
9.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/10. Quiz Subquery Mania.html
9.0 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/15. Solutions Aliases for Multiple Window Functions.html
9.0 kB
Part 07-Module 01-Lesson 02_SQL Joins/10. Video Alias.html
9.0 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c02-encodings1.png
9.0 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. Video CAST.html
9.0 kB
Part 06-Module 01-Lesson 04_Functions/08. Documentation.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2.html
9.0 kB
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin.html
9.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/06. Video Interpreting Results - Part I.html
8.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/06. Higher Dimensions.html
8.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/03. Classification Problems 1.html
8.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html
8.9 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/22. Solutions Percentiles.html
8.9 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/09. Starbucks Project Overview.html
8.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/22. Multi-Class Cross Entropy.html
8.9 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/09. Experiment Sizing - Discussion.html
8.9 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/02. Matrix Addition.html
8.9 kB
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html
8.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html
8.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. False Negatives and Positives.html
8.9 kB
Part 06-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html
8.9 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/06. Create Your Profile With SEO In Mind.html
8.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt
8.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html
8.9 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Video JOINing Subqueries.html
8.9 kB
Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.ar.vtt
8.9 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.zh-CN.vtt
8.9 kB
Part 04-Module 01-Lesson 04_PCA/22. Text Recap.html
8.9 kB
Part 02-Module 01-Lesson 04_Decision Trees/12. Multiclass Entropy.html
8.9 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/24. Recommendations 2 25 V1-zgz5WYlI5fE.en.vtt
8.9 kB
Part 06-Module 01-Lesson 06_NumPy/02. Introduction to NumPy.html
8.9 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles.html
8.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html
8.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects.html
8.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html
8.9 kB
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4.html
8.9 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. What is Version Control.html
8.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/07. Perceptrons.html
8.9 kB
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2.html
8.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.en.vtt
8.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/33. Video Congratulations.html
8.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/l2-gradient-descent-data.png
8.8 kB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/02. Overview.html
8.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/09. Quiz Self JOINs.html
8.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
8.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html
8.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html
8.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. Faceting in Two Directions.html
8.8 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/13. Early Stopping.html
8.8 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/10. Reaching Out on LinkedIn.html
8.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/23. What Happened-gLn6_Z3nwcc.pt-BR.vtt
8.8 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/05. Quiz Window Functions 2.html
8.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/23. What Happened-gLn6_Z3nwcc.en.vtt
8.8 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/02. Project Motivation and Details.html
8.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/12. Regularization.html
8.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html
8.8 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/06. Solutions Window Functions 2.html
8.8 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.pt-BR.vtt
8.8 kB
Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots.html
8.8 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup.html
8.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.zh-CN.vtt
8.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/21. Mini project Image Augmentation in Keras.html
8.8 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/05. Experiment Size.html
8.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html
8.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt
8.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Video Dummy Variables Recap.html
8.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula 1.html
8.8 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning.html
8.8 kB
Part 06-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html
8.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/27. Text Recap.html
8.8 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class.html
8.8 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/07. Video Latent Factors.html
8.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. Video JOINs with Comparison Operators.html
8.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/07. Text Primary and Foreign Keys.html
8.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html
8.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html
8.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html
8.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html
8.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. 02 Writing Modular Code V2-qN6EOyNlSnk.pt-BR.vtt
8.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Term 2 Projects.html
8.7 kB
Part 06-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html
8.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods.html
8.7 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/07. Deciding on Metrics - Discussion.html
8.7 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull vs Fetch.html
8.7 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c04-relfreqchart1.png
8.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html
8.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt
8.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. Lesson Summary.html
8.7 kB
Part 12-Module 01-Lesson 14_Regression/10. Video What Defines A Line.html
8.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/19. Mini project CNNs in Keras.html
8.7 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html
8.7 kB
Part 15-Module 01-Lesson 06_Web Development/07. Div and Span.html
8.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html
8.7 kB
Part 06-Module 01-Lesson 07_Pandas/02. Introduction to Pandas.html
8.7 kB
Part 06-Module 01-Lesson 03_Control Flow/34. Conclusion.html
8.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
8.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories.html
8.7 kB
Part 06-Module 01-Lesson 05_Scripting/01. Introduction.html
8.6 kB
Part 12-Module 01-Lesson 14_Regression/02. Video Introduction to Machine Learning.html
8.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. GMM Examples Applications.html
8.6 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. Pipelines and Grid Search.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
8.6 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/05. Deciding on Metrics - Part I.html
8.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/01. Video Introduction to Aggregation.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
8.6 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula.html
8.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/03. Quiz Window Functions 1.html
8.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
8.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/05. Video COUNT NULLs.html
8.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html
8.6 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Screencast Implementing FunkSVD.html
8.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html
8.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html
8.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html
8.6 kB
Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.pt-BR.vtt
8.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/18. Solutions Comparing a Row to Previous Row.html
8.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/22. Video HAVING.html
8.6 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/04. Solutions LEFT RIGHT.html
8.6 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/07. Arvato Terms and Conditions.html
8.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/08. Quiz ROW_NUMBER RANK.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
8.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
8.6 kB
Part 12-Module 01-Lesson 14_Regression/16. Video How to Interpret the Results.html
8.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html
8.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/11. Video Ways to Recommend Collaborative Filtering.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
8.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
8.6 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/02. Project Overview.html
8.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/23. Video Three Types of Recommendation Systems.html
8.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/23. Exercise Making a Package and Pip Installing.html
8.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html
8.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/17. Demo Inheritance Probability Distributions.html
8.6 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/06. Video Why SVD.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html
8.6 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/01. What is a Matrix.html
8.6 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html
8.6 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/04. Manage an active PR.html
8.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html
8.6 kB
Part 04-Module 01-Lesson 01_Clustering/22. Text Recap.html
8.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/05. Exercise OOP Syntax Practice - Part 1.html
8.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/07. Exercise OOP Syntax Practice - Part 2.html
8.6 kB
Part 10-Module 01-Lesson 06_Undoing Changes/03. Reverting A Commit.html
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html
8.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/02. How NLP Pipelines Work.html
8.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html
8.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/15. Exercise Inheritance with Clothing.html
8.6 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/11. Exercise Code the Gaussian Class.html
8.5 kB
Part 12-Module 01-Lesson 14_Regression/17. Video Does the Line Fit the Data Well.html
8.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/13. Exercise Code Magic Methods.html
8.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html
8.5 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html
8.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/28. Exercise Upload to PyPi.html
8.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/25. Exercise Binomial Class.html
8.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/20. Demo Modularized Code.html
8.5 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/screen-shot-2018-03-10-at-3.31.18-pm.png
8.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html
8.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/22. Optimizers in Keras.html
8.5 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/03. Quiz LEFT RIGHT.html
8.5 kB
Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library.html
8.5 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/18. Project Documentation.html
8.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html
8.5 kB
Part 04-Module 01-Lesson 04_PCA/16. Text What Are EigenValues EigenVectors.html
8.5 kB
Part 06-Module 01-Lesson 04_Functions/11. Lambda Expressions.html
8.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/index.html
8.5 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/03. Software Data Requirements.html
8.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/02. Video Introduction to NULLs.html
8.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras.html
8.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs for Image Classification.html
8.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.en.vtt
8.5 kB
Part 07-Module 01-Lesson 02_SQL Joins/15. Text Other JOIN Notes.html
8.5 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Screencast The Cold Start Problem.html
8.5 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/13. Recap Additional Resources.html
8.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/12. Solutions Aggregates in Window Functions.html
8.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html
8.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries.html
8.5 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/29. Video Outro.html
8.5 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/09. Quiz CONCAT.html
8.5 kB
Part 06-Module 01-Lesson 06_NumPy/03. Why Use NumPy.html
8.5 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/08. Experiment Sizing.html
8.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html
8.5 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. BertelsmannArvato Project Overview.html
8.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/33. Text Recap.html
8.5 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html
8.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html
8.4 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html
8.4 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/07. On Python versions at Udacity.html
8.4 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/05. Counting Missing Data.html
8.4 kB
Part 07-Module 01-Lesson 02_SQL Joins/05. Solution Your First JOIN.html
8.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html
8.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/12. Searching and pipes (grep, wc).html
8.4 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html
8.4 kB
Part 04-Module 01-Lesson 04_PCA/03. Text Lesson Topics.html
8.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html
8.4 kB
Part 06-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html
8.4 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/09. Solutions ROW_NUMBER RANK.html
8.4 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running a Python Script.html
8.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html
8.4 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/04. Solutions Window Functions 1.html
8.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Downloading (curl).html
8.4 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt
8.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.pt-BR.vtt
8.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/05. Quiz Student Admissions.html
8.4 kB
Part 06-Module 01-Lesson 07_Pandas/07. Manipulate a Series.html
8.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations1.png
8.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html
8.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/06. Data Types (Continuous vs. Discrete).html
8.4 kB
Part 11-Module 01-Lesson 03_Linear Combination/04. Linear Combination -Quiz 1.html
8.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling.html
8.4 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/10. [Quiz] Hierarchical clustering.html
8.4 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/02. Text What's Ahead.html
8.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/11. Removing things (rm, rmdir).html
8.4 kB
Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.pt-BR.vtt
8.4 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/10. Validity, Bias, and Ethics - Discussion.html
8.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html
8.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. Feature Engineering.html
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Screencast Fitting A Multiple Linear Regression Model.html
8.4 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/02. Project Overview.html
8.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. Recall.html
8.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/21. Notebook The Cold Start Problem.html
8.3 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c05-faceting1.png
8.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/15. Notebook Implementing FunkSVD.html
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/25. Workspace Recommender Module.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/05. 6 Screencast HTML Code V2-G7fBus1JSc0.pt-BR.vtt
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/18. Notebook How Are We Doing.html
8.3 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/04. Solutions Write Your First Subquery.html
8.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html
8.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization.html
8.3 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/09. Exercise HTML Div, Span, IDs, Classes.html
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/10. Notebook SVD Practice.html
8.3 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt
8.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/09. Entropy Formula 2.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/29. Exercise Flask + Plotly + Pandas.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/28. Example Flask + Plotly + Pandas.html
8.3 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/05. Image Classifier - Part 2 - Command Line App.html
8.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html
8.3 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/10. Solutions CONCAT.html
8.3 kB
Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves SC V1-ZNhnNVKl8NM.pt-BR.vtt
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/23. Example Flask + Pandas.html
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/20. Video The Cold Start Problem.html
8.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Screencast How to Add Higher Order Terms.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/13. Exercise JavaScript.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/15. Exercise Bootstrap.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/31. Exercise Deployment.html
8.3 kB
Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.pt-BR.vtt
8.3 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Video WITH.html
8.3 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/16. [Quiz] DBSCAN.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/17. Exercise Plotly.html
8.3 kB
Part 11-Module 01-Lesson 01_Introduction/07. Try our workspace again!.html
8.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/12. Video SVD Practice Takeaways.html
8.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/01. NLP and Pipelines.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/21. Exercise Flask.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/06. Exercise HTML.html
8.3 kB
Part 15-Module 01-Lesson 06_Web Development/11. Exercise CSS.html
8.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/04. Solutions FULL OUTER JOIN.html
8.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/13. Video Motivation for Other JOINs.html
8.3 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/02. Practice Statistical Significance.html
8.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/29. Outro.html
8.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.en.vtt
8.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt
8.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Video Higher Order Terms.html
8.3 kB
Part 04-Module 01-Lesson 04_PCA/08. Video PCA Properties.html
8.3 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. In-line Comments.html
8.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/03. Recommending Apps 2.html
8.3 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. Pipelines and Feature Unions.html
8.3 kB
Part 06-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html
8.3 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html
8.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Screencast Dummy Variables.html
8.2 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html
8.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Video Aliases for Multiple Window Functions.html
8.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Video Interpreting Interactions.html
8.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/25. Neural Networks Playground.html
8.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c02-scatterplot1.png
8.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Probability Distribution.html
8.2 kB
Part 12-Module 01-Lesson 14_Regression/04. Video Introduction to Linear Regression.html
8.2 kB
Part 04-Module 01-Lesson 01_Clustering/12. Video How Does K-Means Work.html
8.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How the Gaussian Class Works.html
8.2 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html
8.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html
8.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html
8.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/04. Your first command (echo).html
8.2 kB
Part 11-Module 01-Lesson 03_Linear Combination/08. Linear Combination - Quiz 3.html
8.2 kB
Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.en.vtt
8.2 kB
Part 02-Module 01-Lesson 04_Decision Trees/16. Calculating Information Gain on a Dataset.html
8.2 kB
Part 06-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html
8.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging.html
8.2 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. Precision.html
8.2 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. Refactoring Code.html
8.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Video Potential Problems.html
8.2 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html
8.2 kB
Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves SC V1-ZNhnNVKl8NM.en.vtt
8.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/09. Lab Student Admissions in Keras.html
8.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/07. Solutions JOINs with Comparison Operators.html
8.2 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity.html
8.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/27. Notebook Gradient Descent.html
8.2 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/05. Git Diff.html
8.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/28. Lab IMDB Data in Keras.html
8.1 kB
Part 15-Module 01-Lesson 06_Web Development/32. Lesson Summary.html
8.1 kB
Part 06-Module 01-Lesson 05_Scripting/29. Conclusion.html
8.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/13. Shell and environment variables.html
8.1 kB
Part 04-Module 01-Lesson 01_Clustering/16. Video Feature Scaling.html
8.1 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Py Part 6 V1-HiTih59dCWQ.pt-BR.vtt
8.1 kB
Part 12-Module 01-Lesson 14_Regression/15. Screencast Fitting A Regression Line in Python.html
8.1 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/03. Matrix Addition Quiz.html
8.1 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/07. Using Dummy Tests.html
8.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html
8.1 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well .html
8.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. 08 F1 Score SC V1-TRzBeL07fSg.en.vtt
8.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/18. Converting notebooks.html
8.1 kB
Part 04-Module 01-Lesson 01_Clustering/11. Screencast Solution.html
8.1 kB
Part 12-Module 01-Lesson 14_Regression/22. Text Recap + Next Steps.html
8.1 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.en.vtt
8.1 kB
Part 15-Module 01-Lesson 06_Web Development/12. 14 Screencast JavaScript V2-vgXUKgsT_48.en.vtt
8.1 kB
Part 12-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html
8.1 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.pt-BR.vtt
8.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html
8.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html
8.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/28. Perceptron vs Gradient Descent.html
8.1 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Use Your Story to Stand Out.html
8.1 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. Test Driven Development and Data Science.html
8.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html
8.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html
8.1 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Video POSITION, STRPOS, SUBSTR.html
8.1 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Term 2 Projects.html
8.1 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.en.vtt
8.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions.html
8.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html
8.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/18. Quiz Adjusted Rand Index.html
8.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/10. Solutions Self JOINs.html
8.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Video Recap.html
8.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.pt-BR.vtt
8.1 kB
Part 12-Module 01-Lesson 14_Regression/13. Video Fitting A Regression Line.html
8.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html
8.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html
8.1 kB
Part 06-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html
8.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2.html
8.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/12. Quiz Mean Absolute Squared Errors.html
8.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html
8.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html
8.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/16. Notebook Stemming and Lemmatization.html
8.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/05. Navigating directories (ls, cd, ..).html
8.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/21. Notebook Bag of Words and TF-IDF.html
8.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/11. Boost Your Visibility.html
8.0 kB
Part 04-Module 01-Lesson 04_PCA/15. Screencast Interpretation Solution.html
8.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers.html
8.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Video More On Subqueries.html
8.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/12. Your Udacity Professional Profile.html
8.0 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/13. Solutions UNION.html
8.0 kB
Part 04-Module 01-Lesson 04_PCA/13. Screencast Interpret PCA Results.html
8.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html
8.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html
8.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/07. Notebook Normalization.html
8.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/09. Notebook Tokenization.html
8.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/14. Notebook POS and NER.html
8.0 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables.html
8.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html
8.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/11. Notebook Stop Words.html
8.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html
8.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html
8.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction.html
8.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html
8.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/05. Notebook Cleaning.html
8.0 kB
Part 11-Module 01-Lesson 02_Vectors/10. Vectors- Quiz 2.html
8.0 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. Documentation.html
8.0 kB
Part 04-Module 01-Lesson 01_Clustering/08. Video Elbow Method.html
8.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. Internal Validation Indices.html
8.0 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study.html
8.0 kB
Part 04-Module 01-Lesson 01_Clustering/17. Video Feature Scaling Example.html
8.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.en.vtt
8.0 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/24. Model Versioning.html
8.0 kB
Part 04-Module 01-Lesson 04_PCA/12. Screencast PCA Solution.html
8.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html
8.0 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html
8.0 kB
Part 07-Module 01-Lesson 02_SQL Joins/18. Video JOINs and Filtering.html
8.0 kB
Part 04-Module 01-Lesson 04_PCA/04. Video Latent Features.html
8.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis.html
8.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html
8.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html
8.0 kB
Part 15-Module 01-Lesson 06_Web Development/05. 6 Screencast HTML Code V2-G7fBus1JSc0.en.vtt
8.0 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/18. Text Recap.html
8.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/08. Solutions More On Subqueries.html
8.0 kB
Part 04-Module 01-Lesson 04_PCA/07. Video Dimensionality Reduction.html
8.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. 15 Making a Package v2-Hj2OBr1CGZM.pt-BR.vtt
8.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/20. Cross-Entropy 1.html
8.0 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Py Part 6 V1-HiTih59dCWQ.en.vtt
8.0 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Video + Text Recap.html
7.9 kB
Part 04-Module 01-Lesson 04_PCA/17. Video When to Use PCA.html
7.9 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html
7.9 kB
Part 04-Module 01-Lesson 04_PCA/10. Screencast PCA.html
7.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution.html
7.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. Efficient Code.html
7.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. External Validation Indices.html
7.9 kB
Part 06-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html
7.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. Introduction.html
7.9 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/04. Building a Funnel - Discussion.html
7.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/17. Case Study Create Custom Transformer.html
7.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/06. Case Study Machine Learning Workflow.html
7.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/06. Current working directory (pwd).html
7.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/21. Case Study Grid Search Pipeline.html
7.9 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.en.vtt
7.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/03. Case Study Clean and Tokenize.html
7.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/14. Case Study Add Feature Union.html
7.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/07. Linear Combination - Quiz 2.html
7.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization.html
7.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/10. Case Study Build Pipeline.html
7.9 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/13. Solutions CAST.html
7.9 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Video Introduction to Window Functions.html
7.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/03. Video Introduction to JOINs.html
7.9 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html
7.9 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html
7.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. Overview of The Expectation Maximization (EM) Algorithm.html
7.9 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings.html
7.9 kB
Part 12-Module 01-Lesson 14_Regression/01. Video Introduction.html
7.9 kB
Part 15-Module 01-Lesson 06_Web Development/19. The Web.html
7.9 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Video Aggregates in Window Functions.html
7.9 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/04. Arvato Terms and Conditions.html
7.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/22. GMM Cluster Validation Lab Solution.html
7.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent.html
7.8 kB
Part 15-Module 01-Lesson 06_Web Development/04. The Front-End.html
7.8 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/06. Quiz POSITION, STRPOS, SUBSTR - AME DATA AS QUIZ 1.html
7.8 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages.html
7.8 kB
Part 02-Module 01-Lesson 05_Naive Bayes/11. Naive Bayes Algorithm 1.html
7.8 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Video Introduction to Percentiles.html
7.8 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/21. GMM Cluster Validation Lab.html
7.8 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/14. More Advice.html
7.8 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.pt-BR.vtt
7.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World.html
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/08. Solution Refactoring - Wine Quality.html
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/14. Solution Optimizing - Holiday Gifts.html
7.8 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings.html
7.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.en-US.vtt
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/12. Solution Optimizing - Common Books.html
7.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/01. Announcement.html
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. 02 Writing Modular Code V2-qN6EOyNlSnk.en.vtt
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/13. Quiz Optimizing - Holiday Gifts.html
7.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/10. How Much is Too Much.html
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/07. Quiz Refactoring - Wine Quality.html
7.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/11. Quiz Optimizing - Common Books.html
7.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html
7.8 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Video ROW_NUMBER RANK.html
7.8 kB
Part 11-Module 01-Lesson 02_Vectors/05. Transpose.html
7.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt
7.8 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Video Recap.html
7.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/25. Logistic Regression Algorithm.html
7.8 kB
Part 04-Module 01-Lesson 01_Clustering/13. Screencast + Text How Does K-Means Work.html
7.8 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/Project Description - Finding Donors for CharityML.html
7.8 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/12. Polynomial Kernel 2.html
7.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices.html
7.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c10-dierolls1.png
7.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding.html
7.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity.html
7.8 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. Solution Video More On Subqueries.html
7.8 kB
Part 04-Module 01-Lesson 01_Clustering/07. Video Changing K.html
7.8 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/12. Questions to Ask Yourself When Conducting a Code Review.html
7.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression.html
7.8 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Video LEFT RIGHT.html
7.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Problems 2.html
7.8 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/09. Your Udacity Professional Profile.html
7.8 kB
Part 06-Module 01-Lesson 04_Functions/09. Quiz Documentation.html
7.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/01. Intro.html
7.8 kB
Part 04-Module 01-Lesson 01_Clustering/15. Video Is that the Optimal Solution.html
7.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons.html
7.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt
7.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness.html
7.7 kB
Part 02-Module 01-Lesson 09_Training and Tuning/09. Grid Search in sklearn.html
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. Gaussian Mixture Model (GMM) Clustering.html
7.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting a Line Through Data.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Early Stopping.html
7.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. Version Control in Data Science.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent.html
7.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy.html
7.7 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. World Bank Data Dashboard [advanced version].html
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. Expectation Maximization Part 1.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient.html
7.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions.html
7.7 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.en.vtt
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models.html
7.7 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization.html
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. Expectation Maximization Part 2.html
7.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual.html
7.7 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Video Introduction.html
7.7 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Create Your Elevator Pitch.html
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. Visual Example of EM Progress.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/05. Moving a Line.html
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. Gaussian Distribution in One Dimension.html
7.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding.html
7.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick.html
7.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. 15 Making a Package v2-Hj2OBr1CGZM.en.vtt
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-linear Data.html
7.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate Decay.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization 2.html
7.7 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. World Bank API [advanced version].html
7.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.ar.vtt
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. Gaussian Distribution in 2D.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart.html
7.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/27. [OPTIONAL] Embeddings for Deep Learning.html
7.7 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/23. Video Putting It All Together.html
7.7 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/24. Screencast Code Walkthrough.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima.html
7.7 kB
Part 11-Module 01-Lesson 02_Vectors/07. Vectors- Quiz 1.html
7.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/14. Solution Information Gain.html
7.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Mini Project Intro.html
7.7 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. Introduction.html
7.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c11-faceting1.png
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. Cluster Analysis Process.html
7.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt
7.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. GMM Clustering in One Dimension.html
7.7 kB
Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.pt-BR.vtt
7.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. 01 Writing Clean Code V1-wNaiahWCwkQ.pt-BR.vtt
7.7 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html
7.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming and Lemmatization.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Outro.html
7.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/17. Next Steps.html
7.7 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/12. Picture First, Title Second.html
7.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum.html
7.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/img/6-point-likert-scale-even-survey.png
7.7 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/12. Draw Conclusions.html
7.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.pt-BR.vtt
7.6 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout.html
7.6 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/17. Video FunkSVD Review.html
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.zh-CN.vtt
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition.html
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/05. Video K-Means.html
7.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/12. Quiz Expectation Maximization.html
7.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. GMM Implementation.html
7.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.en.vtt
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/03. Video Two Types of Unsupervised Learning.html
7.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. Cluster Validation.html
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/18. Notebook Feature Scaling Example.html
7.6 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. Testing and Data Science.html
7.6 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/26. Video Conclusion.html
7.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/Project Description - Improve Your LinkedIn Profile.html
7.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. Intro.html
7.6 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html
7.6 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Video Subquery Conclusion.html
7.6 kB
Part 02-Module 01-Lesson 05_Naive Bayes/06. Quiz False Positives.html
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/06. Quiz Identifying Clusters.html
7.6 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. Optimizing - Common Books.html
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/19. Notebook Feature Scaling.html
7.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/02. Which line is better.html
7.6 kB
Part 04-Module 01-Lesson 04_PCA/02. Video Lesson Topics.html
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/10. Notebook Your Turn.html
7.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/10. Viewing files (cat, less).html
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal.html
7.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. GMM in 2D.html
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding.html
7.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/12. Up Next.html
7.6 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. F1 Score.html
7.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/20. Quiz Silhouette Coefficient .html
7.6 kB
Part 04-Module 01-Lesson 01_Clustering/04. Video K-Means Use Cases.html
7.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c03-overplotting1.png
7.6 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects.html
7.6 kB
Part 15-Module 01-Lesson 06_Web Development/12. 14 Screencast JavaScript V2-vgXUKgsT_48.pt-BR.vtt
7.6 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. 08 F1 Score SC V1-TRzBeL07fSg.pt-BR.vtt
7.6 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/07. Solutions POSITION, STRPOS, SUBSTR.html
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag of Words.html
7.6 kB
Part 06-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/17. Text Processing Summary.html
7.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/25. [OPTIONAL] Word2Vec.html
7.6 kB
Part 06-Module 01-Lesson 06_NumPy/06. Create an ndarray.html
7.6 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/02. Course Syllabus.html
7.5 kB
Part 04-Module 01-Lesson 04_PCA/11. Notebook PCA - Your Turn.html
7.5 kB
Part 04-Module 01-Lesson 04_PCA/14. Notebook Interpretation.html
7.5 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html
7.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/26. [OPTIONAL] GloVe.html
7.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/28. [OPTIONAL] t-SNE.html
7.5 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/02. Introducing PyTorch.html
7.5 kB
Part 04-Module 01-Lesson 04_PCA/19. Notebook Mini-Project.html
7.5 kB
Part 04-Module 01-Lesson 04_PCA/20. Mini-Project Solution.html
7.5 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/Project Description - Identify Customer Segments with Arvato.html
7.5 kB
Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.pt-BR.vtt
7.5 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/01. Video Intro.html
7.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow.html
7.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/24. Neural Network Regression.html
7.5 kB
Part 06-Module 01-Lesson 04_Functions/10. Solution Documentation.html
7.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.pt-BR.vtt
7.5 kB
Part 06-Module 01-Lesson 04_Functions/18. Conclusion.html
7.5 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. Unit Tests.html
7.5 kB
Part 12-Module 01-Lesson 14_Regression/21. Video Recap.html
7.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items.html
7.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c11-outliers1.png
7.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction.html
7.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/17. Keep learning!.html
7.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter.html
7.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/15. Controlling the shell prompt ($PS1).html
7.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt
7.5 kB
Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.pt-BR.vtt
7.5 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. HC examples and applications.html
7.5 kB
Part 11-Module 01-Lesson 03_Linear Combination/05. Linear Dependency .html
7.5 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals Hypothesis Tests.html
7.5 kB
Part 06-Module 01-Lesson 07_Pandas/03. Why Use Pandas.html
7.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/index.html
7.5 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. Video Posting to Github.html
7.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/14. Building a Spam Classifier.html
7.4 kB
Part 04-Module 01-Lesson 04_PCA/06. Video How to Reduce Features.html
7.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/19. Titanic Survival Model with Decision Trees.html
7.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt
7.4 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. Conclusion.html
7.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula 3.html
7.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations3.png
7.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/03. Opening a terminal.html
7.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/20. [Solution] Titanic Survival Model.html
7.4 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Video Self JOINs.html
7.4 kB
Part 06-Module 01-Lesson 06_NumPy/10. Manipulating ndarrays.html
7.4 kB
Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.pt-BR.vtt
7.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c19-stackedbars3.png
7.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/20. TF-IDF.html
7.4 kB
Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.zh-CN.vtt
7.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.en.vtt
7.4 kB
Part 06-Module 01-Lesson 04_Functions/01. Introduction.html
7.4 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/07. Weighting the Models 1.html
7.4 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt
7.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt
7.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html
7.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/07. Course Structure.html
7.4 kB
Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.en.vtt
7.4 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. Conclusion.html
7.4 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/02. Revisiting the Data Analysis Process.html
7.4 kB
Part 06-Module 01-Lesson 04_Functions/06. Variable Scope.html
7.4 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html
7.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.ar.vtt
7.4 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. Unit Testing Tools.html
7.4 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/02. Scenario Description.html
7.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html
7.4 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. DBSCAN examples applications.html
7.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk.html
7.4 kB
Part 04-Module 01-Lesson 04_PCA/01. Video Introduction.html
7.4 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.zh-CN.vtt
7.3 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/10. Logging.html
7.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/29. Outro.html
7.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 06-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html
7.3 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color.html
7.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/14. Bootcamps-l2tYmee3kxo.en.vtt
7.3 kB
Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph.html
7.3 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2.html
7.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/01. Video Motivation.html
7.3 kB
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html
7.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/02. Random Projection.html
7.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team.html
7.3 kB
Part 06-Module 01-Lesson 06_NumPy/12. Creating ndarrays with Broadcasting.html
7.3 kB
Part 11-Module 01-Lesson 02_Vectors/13. Vectors Quiz Answers.html
7.3 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analyses.html
7.3 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Project Introduction.html
7.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/resid-plots.gif
7.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.pt-BR.vtt
7.3 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/11. AdaBoost in sklearn.html
7.3 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/06. Visualization in Python.html
7.3 kB
Part 15-Module 01-Lesson 06_Web Development/20. 22 Screencast Flask V2-i_U3O-7cymk.pt-BR.vtt
7.3 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.en.vtt
7.3 kB
Part 04-Module 01-Lesson 01_Clustering/09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.en.vtt
7.3 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Project Overview.html
7.3 kB
Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.pt-BR.vtt
7.3 kB
Part 15-Module 01-Lesson 06_Web Development/25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.pt-BR.vtt
7.2 kB
Part 11-Module 01-Lesson 02_Vectors/08. Operations in the Field.html
7.2 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio.html
7.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c11-faceting2.png
7.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/08. Violin and Box Plot Practice.html
7.2 kB
Part 02-Module 01-Lesson 04_Decision Trees/06. Solution Student Admissions.html
7.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html
7.2 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/Project Description - Recommendations with IBM.html
7.2 kB
Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.en.vtt
7.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/10. Categorical Plot Practice.html
7.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/14. Additional Plot Practice.html
7.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3.html
7.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1.html
7.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2.html
7.2 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. Video COALESCE.html
7.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/05. Scatterplot Practice.html
7.2 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/02. Software Requirements.html
7.2 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Video Introduction to SQL Data Cleaning.html
7.2 kB
Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.pt-BR.vtt
7.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Video Performance Tuning Motivation.html
7.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/11. Access Your Career Portal.html
7.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/05. Using Workspaces-45N9NK6kQ0Y.en.vtt
7.2 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/06. ICA.html
7.2 kB
Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.en.vtt
7.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Video Introduction to Advanced SQL.html
7.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt
7.2 kB
Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.pt-BR.vtt
7.2 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/09. Log Messages.html
7.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Video Introduction to Subqueries.html
7.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository.html
7.2 kB
Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.pt-BR.vtt
7.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. Lesson Summary.html
7.2 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. DataVis L5C02 V3-bgDNMfG9Gfs.pt-BR.vtt
7.2 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/13. Draw Conclusions - Discussion.html
7.2 kB
Part 06-Module 01-Lesson 06_NumPy/01. Instructors.html
7.2 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. DBSCAN.html
7.2 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/02. Info on the Diamond Dataset.html
7.2 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.en.vtt
7.2 kB
Part 04-Module 01-Lesson 01_Clustering/09. Screencast K-Means in Scikit Learn.html
7.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Video Performance Tuning 2.html
7.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Video Performance Tuning 3.html
7.1 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/05. Perceptron Algorithm.html
7.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.zh-CN.vtt
7.1 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt
7.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/15. Code cells.html
7.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Video SQL Completion Congratulations.html
7.1 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. Video CONCAT.html
7.1 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html
7.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/06. Extracurriculars.html
7.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/index.html
7.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html
7.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.pt-BR.vtt
7.1 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.en.vtt
7.1 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/11. A SMART Mnemonic for Experiment Design.html
7.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes #1.html
7.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt
7.1 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/08. [Lab Solution] Hierarchical Clustering.html
7.1 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Video Conclusion.html
7.1 kB
Part 15-Module 01-Lesson 06_Web Development/25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.en.vtt
7.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/16. Sklearn Practice (Classification).html
7.1 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/07. [Lab] Hierarchical clustering .html
7.1 kB
Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.en.vtt
7.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.pt-BR.vtt
7.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/18. Sklearn Practice (Regression).html
7.1 kB
Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.en.vtt
7.1 kB
Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.en-US.vtt
7.1 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/11. Dog Breed Classifier Overview.html
7.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/14. [Lab Solution] DBSCAN.html
7.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain.html
7.0 kB
Part 11-Module 01-Lesson 01_Introduction/04. Structure of this lesson.html
7.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/14. Startup files (.bash_profile).html
7.0 kB
Part 04-Module 01-Lesson 01_Clustering/01. Video Introduction.html
7.0 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.ar.vtt
7.0 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/04. Submitting the project.html
7.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/14. Bootcamps-l2tYmee3kxo.pt-BR.vtt
7.0 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data, Different Stories.html
7.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/13. [Lab] DBSCAN.html
7.0 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.en.vtt
7.0 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Video Up And Running On Medium.html
7.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/14. Scales and Transformations Practice.html
7.0 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team.html
7.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html
7.0 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/01. Random Projection.html
7.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. Hierarchical clustering implementation.html
7.0 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/01. Introduction to Data Visualization.html
7.0 kB
Part 04-Module 01-Lesson 01_Clustering/21. Video Outro.html
7.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/index.html
7.0 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/Project Description - Capstone Project.html
7.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations4.png
7.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/06. Bar Chart Practice.html
7.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/09. Histogram Practice.html
7.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/index.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps 3.html
7.0 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.pt-BR.vtt
7.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/01. Intro.html
7.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/16. Keyboard shortcuts.html
7.0 kB
Part 06-Module 01-Lesson 06_NumPy/14. Mini-Project Mean Normalization and Data Separation.html
7.0 kB
Part 04-Module 01-Lesson 04_PCA/18. Video Recap.html
7.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. Examining single-link clustering.html
7.0 kB
Part 10-Module 01-Lesson 06_Undoing Changes/02. Modifying The Last Commit.html
7.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. Lesson Summary.html
7.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. Complete-link, average-link, Ward.html
7.0 kB
Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.en.vtt
6.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt
6.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up.html
6.9 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. Higher Dimensions.html
6.9 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classification Problems 1.html
6.9 kB
Part 06-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html
6.9 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Video End With A Call To Action.html
6.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/09. Getting and Using Feedback.html
6.9 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/11. Non-Parametric Tests Part II - Solution.html
6.9 kB
Part 04-Module 01-Lesson 04_PCA/21. Video Outro.html
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/09. Non-Parametric Tests Part I - Solution.html
6.9 kB
Part 11-Module 01-Lesson 01_Introduction/02. Instructors.html
6.9 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/08. Access Your Career Portal.html
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/03. Statistical Significance - Solution.html
6.9 kB
Part 11-Module 01-Lesson 02_Vectors/09. Vector Addition.html
6.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.zh-CN.vtt
6.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.en.vtt
6.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Precision and Recall.html
6.9 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html
6.9 kB
Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy.html
6.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.zh-CN.vtt
6.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. DataVis L5C02 V3-bgDNMfG9Gfs.en.vtt
6.9 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Video First Catch Their Eye.html
6.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart1.png
6.9 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Video Three Steps to Captivate Your Audience.html
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/10. Non-Parametric Tests Part II.html
6.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/16. Aliases.html
6.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. Loading Data Sets with Torchvision.html
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/08. Non-Parametric Tests Part I.html
6.9 kB
Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.en.vtt
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/06. Experiment Size - Solution.html
6.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart4.png
6.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/14. Early Stopping - Solution.html
6.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart2.png
6.9 kB
Part 02-Module 01-Lesson 04_Decision Trees/21. Outro.html
6.9 kB
Part 11-Module 01-Lesson 01_Introduction/06. Try our workspace out!.html
6.9 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. DBSCAN implementation.html
6.9 kB
Part 06-Module 01-Lesson 04_Functions/19. Further Learning.html
6.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart3.png
6.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c04-heatmap2.png
6.9 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/10. ICA Applications.html
6.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/index.html
6.9 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. Course Overview.html
6.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. 01 Writing Clean Code V1-wNaiahWCwkQ.en.vtt
6.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. Fashion-MNIST Exercise.html
6.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html
6.9 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/07. [Optional] Kaggle Competition.html
6.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/05. Pre-assessment.html
6.9 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/03. Knowledge.html
6.9 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. Perceptrons.html
6.9 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/03. Knowledge.html
6.9 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Inference Validation.html
6.9 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. Video More Advice.html
6.9 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html
6.9 kB
Part 06-Module 01-Lesson 07_Pandas/13. Getting Set Up for the Mini-Project.html
6.9 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/11. Installing Jupyter Notebook.html
6.9 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Intro.html
6.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/37. Imputing Values-nTM4HiDneeE.en.vtt
6.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Transfer Learning.html
6.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Training Networks.html
6.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Defining Networks.html
6.8 kB
Part 06-Module 01-Lesson 07_Pandas/14. Mini-Project Statistics From Stock Data.html
6.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html
6.8 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Video Other Important Information.html
6.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms3.png
6.8 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html
6.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. PyTorch Tensors.html
6.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/index.html
6.8 kB
Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.ar.vtt
6.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/11. Quiz Do You Know Your Entropy.html
6.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2.html
6.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion Matrix 2.html
6.8 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/09. SVD-t2XTuHq6-xc.en.vtt
6.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/11. How To Break Into The Field-0-Y39LZ80VE.en.vtt
6.8 kB
Part 11-Module 01-Lesson 02_Vectors/11. Scalar by Vector Multiplication.html
6.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt
6.8 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. Video First Things First.html
6.8 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Video Know Your Audience.html
6.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/diagonal-line-2.png
6.8 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/08. BertelsmannArvato Project Workspace.html
6.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. Introduction.html
6.8 kB
Part 06-Module 01-Lesson 06_NumPy/13. Getting Set Up for the Mini-Project.html
6.8 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. Overview of other clustering methods.html
6.8 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. Hierarchical clustering single-link.html
6.8 kB
Part 02-Module 01-Lesson 05_Naive Bayes/15. Spam Classifier - Workspace.html
6.8 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Saving and Loading Trained Networks.html
6.8 kB
Part 01-Module 04-Lesson 01_What Is Ahead/03. Rachel from Kaggle-uVsYYzxbyIg.en.vtt
6.8 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/10. Starbucks Project Workspace.html
6.8 kB
Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability.html
6.7 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Video Introduction.html
6.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt
6.7 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/14. 14 Funk SVD-H8gdwXy_npI.en.vtt
6.7 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. K-means considerations.html
6.7 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/12. Dog Breed Workspace.html
6.7 kB
Part 15-Module 01-Lesson 06_Web Development/20. 22 Screencast Flask V2-i_U3O-7cymk.en.vtt
6.7 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.en.vtt
6.7 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. Code Review.html
6.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/10. Bayesian Learning 3.html
6.7 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/03. Starting the Project.html
6.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary.html
6.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.en.vtt
6.7 kB
Part 09-Module 01-Lesson 01_Shell Workshop/01. Welcome!.html
6.7 kB
Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion.html
6.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/04. Guess the Person Now.html
6.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt
6.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt
6.7 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Why Use an Elevator Pitch.html
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html
6.7 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformation and Matrices . Part 1.html
6.7 kB
Part 06-Module 01-Lesson 07_Pandas/01. Instructors.html
6.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt
6.7 kB
Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.pt-BR.vtt
6.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.en.vtt
6.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/03. Image Classifier - Part 1 - Development.html
6.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression Metrics.html
6.6 kB
Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt
6.6 kB
Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.en.vtt
6.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.ar.vtt
6.6 kB
Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt
6.6 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/06. Classification Error.html
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/03. Minimizing Distances.html
6.6 kB
Part 04-Module 01-Lesson 04_PCA/15. 14 Interpretation Solution V1-wU2duZa0ds0.en.vtt
6.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/04. Learning Plan - First Two Weeks.html
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/11. Polynomial Kernel 1.html
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/13. Polynomial Kernel 3.html
6.6 kB
Part 02-Module 01-Lesson 09_Training and Tuning/11. [Solution] Grid Search Lab.html
6.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.pt-BR.vtt
6.6 kB
Part 02-Module 01-Lesson 09_Training and Tuning/12. Putting It All Together.html
6.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/18. Lesson Summary.html
6.6 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/20. Outro.html
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/04. Error Function Intuition.html
6.6 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/06. Quiz Unit Tests.html
6.6 kB
Part 06-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html
6.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt
6.6 kB
Part 06-Module 01-Lesson 03_Control Flow/index.html
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/10. The C Parameter.html
6.6 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve.html
6.6 kB
Part 02-Module 01-Lesson 09_Training and Tuning/10. Grid Search Lab.html
6.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.en.vtt
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.zh-CN.vtt
6.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/09. Error Function.html
6.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html
6.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. Intro.html
6.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. Introduction.html
6.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/01. Intro.html
6.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/16. RBF Kernel 3.html
6.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/15. RBF Kernel 2.html
6.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/14. RBF Kernel 1.html
6.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/07. Margin Error.html
6.5 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/01. Overview.html
6.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When accuracy won't work.html
6.5 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/01. Introduction.html
6.5 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformation and Matrices. Part 2.html
6.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c10-dierolls2.png
6.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro.html
6.5 kB
Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.zh-CN.vtt
6.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/24. Data Engineering-z6r2e_V0Td0.pt-BR.vtt
6.5 kB
Part 04-Module 01-Lesson 04_PCA/15. 14 Interpretation Solution V1-wU2duZa0ds0.pt-BR.vtt
6.5 kB
Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.en.vtt
6.5 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. Logging.html
6.5 kB
Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.zh-CN.vtt
6.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/index.html
6.5 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/04. Independent Component Analysis (ICA).html
6.5 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.en.vtt
6.5 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt
6.5 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.ar.vtt
6.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. Outline.html
6.5 kB
Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.zh-CN.vtt
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/04. Student Hub.html
6.5 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/04. Student Hub.html
6.5 kB
Part 02-Module 01-Lesson 05_Naive Bayes/12. Naive Bayes Algorithm 2.html
6.5 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. Introduction.html
6.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Summary.html
6.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries.html
6.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/11. Additional Plot Practice.html
6.4 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.ar.vtt
6.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html
6.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html
6.4 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. Testing.html
6.4 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.en.vtt
6.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/07. Adapted Plot Practice.html
6.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/04. Encodings Practice.html
6.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/09. Bayesian Learning 2.html
6.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html
6.4 kB
Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search.html
6.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/07. Solution False Positives.html
6.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/03. Known and Inferred.html
6.4 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/12. More Spam Classifying.html
6.4 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.en.vtt
6.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.zh-CN.vtt
6.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/02. Guess the Person.html
6.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html
6.4 kB
Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.pt-BR.vtt
6.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html
6.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt
6.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.pt-BR.vtt
6.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/05. Bayes Theorem.html
6.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html
6.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.pt-BR.vtt
6.4 kB
Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.zh-CN.vtt
6.3 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/06. Image Classifier - Part 2 - Workspace.html
6.3 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/04. Image Classifier - Part 1 - Workspace.html
6.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt
6.3 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html
6.3 kB
Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.zh-CN.vtt
6.3 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformation and Matrices. Part 3.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html
6.3 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/11. Transfer Learning Solution.html
6.3 kB
Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/02. Troubleshooting Possible Errors.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html
6.3 kB
Part 03-Module 01-Lesson 04_Keras/05. Optimizers in Keras.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html
6.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html
6.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.ar.vtt
6.3 kB
Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt
6.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/01. Intro.html
6.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html
6.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/16. Outro.html
6.3 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/05. Learning Plan - First Two Weeks.html
6.3 kB
Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves.html
6.3 kB
Part 11-Module 01-Lesson 02_Vectors/02. Vectors, what even are they Part 2.html
6.3 kB
Part 11-Module 01-Lesson 02_Vectors/03. Vectors, what even are they Part 3.html
6.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/index.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html
6.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/index.html
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html
6.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html
6.3 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.en.vtt
6.3 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html
6.3 kB
Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.zh-CN.vtt
6.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/09. [Solution] Independent Component Analysis.html
6.3 kB
Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.zh-CN.vtt
6.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt
6.3 kB
Part 11-Module 01-Lesson 02_Vectors/01. What's a Vector.html
6.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/08. [Lab] Independent Component Analysis.html
6.3 kB
Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.en-US.vtt
6.3 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.en.vtt
6.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/37. Imputing Values-nTM4HiDneeE.pt-BR.vtt
6.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt
6.3 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.zh-CN.vtt
6.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html
6.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. Notes On OOP-NcgDIWm6iBA.en.vtt
6.2 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/07. Polishing Plots Practice.html
6.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt
6.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html
6.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing.html
6.2 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/06. Project Workspace IDE.html
6.2 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.25.34-pm.png
6.2 kB
Part 02-Module 01-Lesson 09_Training and Tuning/03. Cross Validation.html
6.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. Notes On OOP-NcgDIWm6iBA.pt-BR.vtt
6.2 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/03. Troubleshooting Possible Errors.html
6.2 kB
Part 01-Module 04-Lesson 01_What Is Ahead/03. Rachel from Kaggle-uVsYYzxbyIg.pt-BR.vtt
6.2 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html
6.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt
6.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html
6.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/30. Removing Data-97UTBiybYTs.en.vtt
6.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/index.html
6.2 kB
Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt
6.2 kB
Part 03-Module 01-Lesson 04_Keras/01. Intro.html
6.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/24. Data Engineering-z6r2e_V0Td0.en.vtt
6.2 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/15. Lesson Conclusion.html
6.2 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/Project Description - Disaster Response Pipelines.html
6.2 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story.html
6.2 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/01. Lesson Introduction.html
6.2 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet The Instructors-XAU2Nf51vfU.pt-BR.vtt
6.2 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. Conclusion.html
6.2 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/05. Project Workspace.html
6.2 kB
Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.zh-CN.vtt
6.2 kB
Part 02-Module 01-Lesson 09_Training and Tuning/01. Types of Errors.html
6.2 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Project Preview.html
6.2 kB
Part 06-Module 01-Lesson 05_Scripting/index.html
6.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt
6.1 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/07. Python and APIs [advanced version].html
6.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.ar.vtt
6.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.zh-CN.vtt
6.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/09. Careers Team Content.html
6.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html
6.1 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/02. Workspace Portfolio Exercise.html
6.1 kB
Part 02-Module 01-Lesson 05_Naive Bayes/13. Quiz Bayes Rule .html
6.1 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.pt-BR.vtt
6.1 kB
Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.en.vtt
6.1 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/05. Project Workspace - ML Pipeline.html
6.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.ar.vtt
6.1 kB
Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.pt-BR.vtt
6.1 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt
6.1 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.en.vtt
6.1 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/04. Project Workspace - ETL.html
6.1 kB
Part 02-Module 01-Lesson 09_Training and Tuning/13. Outro.html
6.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/index.html
6.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/11. How To Break Into The Field-0-Y39LZ80VE.pt-BR.vtt
6.1 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html
6.1 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/03. Random Forests.html
6.1 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. Congratulations.html
6.0 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/index.html
6.0 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement.html
6.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Words of Encouragement.html
6.0 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. History - A Computer Scientist's Perspective.html
6.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/30. Removing Data-97UTBiybYTs.pt-BR.vtt
6.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/01. Introduction.html
6.0 kB
Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.ar.vtt
6.0 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/14. Lesson Conclusion.html
6.0 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/01. Lesson Introduction.html
6.0 kB
Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.zh-CN.vtt
6.0 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/01. Instructor.html
6.0 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/05. FastICA Algorithm.html
6.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet Your Instructors.html
6.0 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/05. Project Workspace.html
6.0 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt
6.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt
6.0 kB
Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.en.vtt
6.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/09. Weighting the Models 3.html
6.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.pt-BR.vtt
6.0 kB
Part 03-Module 01-Lesson 04_Keras/04. Lab Student Admissions in Keras.html
6.0 kB
Part 06-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html
6.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/10. Combining the Models.html
6.0 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/Project Description - Create Your Own Image Classifier.html
6.0 kB
Part 03-Module 01-Lesson 04_Keras/08. Lab IMDB Data in Keras.html
6.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/06. Weighting the Data.html
6.0 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet The Instructors-XAU2Nf51vfU.en.vtt
6.0 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/12. Lesson Conclusion.html
6.0 kB
Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.pt-BR.vtt
6.0 kB
Part 02-Module 01-Lesson 09_Training and Tuning/04. K-Fold Cross Validation.html
6.0 kB
Part 04-Module 01-Lesson 01_Clustering/09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.pt-BR.vtt
5.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt
5.9 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.pt-BR.vtt
5.9 kB
Part 04-Module 01-Lesson 01_Clustering/11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.en.vtt
5.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/index.html
5.9 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.pt-BR.vtt
5.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/index.html
5.9 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types of Machine Learning - Supervised.html
5.9 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/img/jupyter-logo.png
5.9 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - A Statistician's Perspective.html
5.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/10. Lesson Summary.html
5.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome.html
5.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. Lesson Summary.html
5.9 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.en.vtt
5.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.zh-CN.vtt
5.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/diagonal-line-1.png
5.9 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/01. Project Intro.html
5.9 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html
5.9 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/05. AdaBoost.html
5.9 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/04. Bagging.html
5.9 kB
Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro.html
5.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/08. How to Succeed.html
5.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combination. Part 2.html
5.9 kB
Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combination. Part 1.html
5.9 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/01. Intro.html
5.9 kB
Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.pt-BR.vtt
5.9 kB
Part 14-Module 01-Lesson 01_The Data Science Process/05. Using Workspaces-45N9NK6kQ0Y.pt-BR.vtt
5.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. Introduction.html
5.9 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/index.html
5.9 kB
Part 04-Module 01-Lesson 01_Clustering/11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.pt-BR.vtt
5.9 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/05. Multivariate Exploration.html
5.9 kB
Part 15-Module 01-Lesson 06_Web Development/index.html
5.9 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt
5.9 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt
5.9 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt
5.9 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/03. Univariate Exploration.html
5.9 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/06. Explanatory Polishing.html
5.9 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/04. Bivariate Exploration.html
5.9 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.zh-CN.vtt
5.9 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning.html
5.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt
5.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.en.vtt
5.8 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.pt-BR.vtt
5.8 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Lesson Introduction.html
5.8 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.pt-BR.vtt
5.8 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.en.vtt
5.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.zh-CN.vtt
5.8 kB
Part 12-Module 01-Lesson 14_Regression/index.html
5.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt
5.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/index.html
5.8 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in Machine Learning.html
5.8 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/03. Random Projection in sklearn.html
5.8 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikitlearn Source Code-4_qkqMsbthg.pt-BR.vtt
5.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/index.html
5.8 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead.html
5.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.en.vtt
5.8 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/Project Description - Write A Data Science Blog Post.html
5.8 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn.html
5.8 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction.html
5.8 kB
Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.zh-CN.vtt
5.8 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html
5.8 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.zh-CN.vtt
5.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.th.vtt
5.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Words of Encouragement.html
5.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent-4s4x9h6AN5Y.en.vtt
5.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png
5.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.pt-BR.vtt
5.7 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html
5.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles of a Data Engineer.html
5.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Problems 2.html
5.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.pt-BR.vtt
5.7 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/07. ICA in sklearn.html
5.7 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/06. [Optional] Kaggle Competition.html
5.7 kB
Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.en.vtt
5.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. 03 Optimizing Common Books V1-WF9n_19V08g.pt-BR.vtt
5.7 kB
Part 06-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html
5.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet the Instructors.html
5.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome.html
5.7 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/03. Project Workspace.html
5.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Intro.html
5.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikitlearn Source Code-4_qkqMsbthg.en.vtt
5.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/index.html
5.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt
5.7 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt
5.7 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.en.vtt
5.7 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/index.html
5.7 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.en.vtt
5.7 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms3.png
5.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/index.html
5.7 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/07. Outro.html
5.7 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/01. Intro.html
5.7 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/index.html
5.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt
5.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt
5.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/10. Outro.html
5.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt
5.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt
5.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.ar.vtt
5.6 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/01. What It Takes.html
5.6 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/01. What It Takes.html
5.6 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.pt-BR.vtt
5.6 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.pt-BR.vtt
5.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.pt-BR.vtt
5.6 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/06. How to Succeed.html
5.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.zh-CN.vtt
5.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms4.png
5.6 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.ar.vtt
5.6 kB
Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.zh-CN.vtt
5.6 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Welcome.html
5.6 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/01. Introduction.html
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.pt-BR.vtt
5.6 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/index.html
5.6 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.pt-BR.vtt
5.5 kB
Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt
5.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.th.vtt
5.5 kB
Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.en.vtt
5.5 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Project Introduction.html
5.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt
5.5 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/01. FAQ.html
5.5 kB
Part 13-Module 01-Lesson 03_Get Help with Your Account/01. FAQ.html
5.5 kB
Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.en.vtt
5.5 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/03. Dan Frank Interview-Me-KRvZW1QQ.pt-BR.vtt
5.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt
5.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.ar.vtt
5.5 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Intro.html
5.5 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.en.vtt
5.5 kB
Part 11-Module 01-Lesson 01_Introduction/01. Our Goal .html
5.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt
5.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.pt-BR.vtt
5.5 kB
Part 11-Module 01-Lesson 01_Introduction/03. Essence of Linear Algebra.html
5.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.en.vtt
5.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Arvato Final Project-qBR6A0IQXEE.en.vtt
5.5 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. Arvato Final Project-qBR6A0IQXEE.en.vtt
5.5 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Arvato Final Project-qBR6A0IQXEE.en.vtt
5.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up.html
5.5 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.en.vtt
5.5 kB
Part 03-Module 01-Lesson 04_Keras/06. Mini Project Intro.html
5.5 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/02. Reviews.html
5.5 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/02. Reviews.html
5.5 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.zh-CN.vtt
5.5 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Intro.html
5.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.zh-CN.vtt
5.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt
5.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.en.vtt
5.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt
5.4 kB
Part 07-Module 01-Lesson 02_SQL Joins/index.html
5.4 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.pt-BR.vtt
5.4 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/08. Lesson Summary.html
5.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types Of Experiments-7ihDj4M7EiU.pt-BR.vtt
5.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.en.vtt
5.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 04-Module 01-Lesson 01_Clustering/index.html
5.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/03. Workspace.html
5.4 kB
Part 04-Module 01-Lesson 01_Clustering/20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.en.vtt
5.4 kB
Part 10-Module 01-Lesson 06_Undoing Changes/01. Intro.html
5.4 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/01. Intro.html
5.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How The Gaussian Class Works-N-5I0d1zJHI.en.vtt
5.4 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/index.html
5.4 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. Interview Robert Chang [AirBnB].html
5.4 kB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/03. Workspace.html
5.4 kB
Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.zh-CN.vtt
5.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt
5.4 kB
Part 10-Module 01-Lesson 01_What is Version Control/06. Onward.html
5.4 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt
5.3 kB
Part 10-Module 01-Lesson 06_Undoing Changes/05. Lesson Outro.html
5.3 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/07. Project 1-PNsxDWtpQTk.en.vtt
5.3 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.pt-BR.vtt
5.3 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Interview Richard [Starbucks].html
5.3 kB
Part 04-Module 01-Lesson 04_PCA/index.html
5.3 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.pt-BR.vtt
5.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/index.html
5.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro.html
5.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.en.vtt
5.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets-lNPzOLzZVbw.pt-BR.vtt
5.3 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.pt-BR.vtt
5.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro.html
5.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Interview Richard [Starbucks].html
5.3 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro.html
5.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What do Data Scientists Do.html
5.3 kB
Part 05-Module 01-Lesson 01_Congratulations!/02. Intro to Term 2.html
5.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. Interview Dan [Coinbase].html
5.3 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/05. Outro.html
5.3 kB
Part 06-Module 01-Lesson 01_Why Python Programming/01. Instructor.html
5.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.en.vtt
5.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets-lNPzOLzZVbw.en.vtt
5.3 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.ar.vtt
5.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.ar.vtt
5.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. Interview Caroline [BMG].html
5.3 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt
5.3 kB
Part 05-Module 01-Lesson 01_Congratulations!/05. Next Steps On How to Register.html
5.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.th.vtt
5.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/index.html
5.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt
5.2 kB
Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt
5.2 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.en.vtt
5.2 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.en.vtt
5.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt
5.2 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. Intro to Experiment Design and Recommendation Engines.html
5.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/index.html
5.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.pt-BR.vtt
5.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/07. Conclusion.html
5.2 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro.html
5.2 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/01. Introduction.html
5.2 kB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/01. Introduction.html
5.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 01-Module 04-Lesson 01_What Is Ahead/04. Interview Robert [Figure8].html
5.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lag-1-innerquery.png
5.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt
5.2 kB
Part 01-Module 04-Lesson 01_What Is Ahead/01. What do Data Scientists Do.html
5.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.pt-BR.vtt
5.1 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro.html
5.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt
5.1 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/index.html
5.1 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Lesson Outro.html
5.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/index.html
5.1 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/02. Support.html
5.1 kB
Part 13-Module 01-Lesson 03_Get Help with Your Account/02. Support.html
5.1 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.en.vtt
5.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.ar.vtt
5.1 kB
Part 15-Module 01-Lesson 06_Web Development/24. Flask Pandas Plotly Part 1-xg7P8MnItdI.pt-BR.vtt
5.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 01-Module 04-Lesson 01_What Is Ahead/03. Interview Rachel [Kaggle].html
5.1 kB
Part 06-Module 01-Lesson 04_Functions/index.html
5.1 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. Introduction to the Lesson.html
5.1 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/03. Interview Dan [Coinbase].html
5.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/index.html
5.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.ar.vtt
5.1 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 01-Module 04-Lesson 01_What Is Ahead/02. Interview Adam [IBM].html
5.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 10491855 V2-pjoxB00grHw.en.vtt
5.1 kB
Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.zh-CN.vtt
5.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.pt-BR.vtt
5.1 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. Meet Andrew.html
5.1 kB
Part 04-Module 01-Lesson 01_Clustering/20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.pt-BR.vtt
5.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots4.png
5.1 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. Meet Juno.html
5.1 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.ar.vtt
5.1 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types Of Experiments-7ihDj4M7EiU.en.vtt
5.1 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/01. Project Introduction.html
5.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.zh-CN.vtt
5.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/index.html
5.0 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.en.vtt
5.0 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt
5.0 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.en.vtt
5.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt
5.0 kB
Part 05-Module 01-Lesson 01_Congratulations!/03. What's Next.html
5.0 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.ar.vtt
5.0 kB
Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro.html
5.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/index.html
5.0 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt
5.0 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. 03 Optimizing Common Books V1-WF9n_19V08g.en.vtt
5.0 kB
Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.zh-CN.vtt
5.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt
5.0 kB
Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt
5.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.en.vtt
5.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.en.vtt
5.0 kB
Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!.html
5.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt
5.0 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.zh-CN.vtt
5.0 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.pt-BR.vtt
5.0 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/07. Project 1-PNsxDWtpQTk.pt-BR.vtt
5.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.en.vtt
5.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing Code Into Modules-AARS10U5bbo.pt-BR.vtt
5.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/index.html
5.0 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt
5.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/index.html
5.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/index.html
5.0 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.zh-CN.vtt
5.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How The Gaussian Class Works-N-5I0d1zJHI.pt-BR.vtt
4.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt
4.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt
4.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.ar.vtt
4.9 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/index.html
4.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt
4.9 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together-PHaSifd-Mas.pt-BR.vtt
4.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.ar.vtt
4.9 kB
Part 15-Module 01-Lesson 06_Web Development/22. Flask and Pandas-L_M_8UVY42k.pt-BR.vtt
4.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/index.html
4.9 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias-ppjNNY4DhPw.pt-BR.vtt
4.9 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/index.html
4.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 06-Module 01-Lesson 06_NumPy/index.html
4.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/index.html
4.9 kB
Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.en.vtt
4.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt
4.9 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt
4.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.zh-CN.vtt
4.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt
4.9 kB
Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.zh-CN.vtt
4.9 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/index.html
4.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipelines-mxFrS8qpZ6Y.pt-BR.vtt
4.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.zh-CN.vtt
4.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt
4.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt
4.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt
4.9 kB
Part 12-Module 01-Lesson 04_Probability/index.html
4.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt
4.8 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.en.vtt
4.8 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt
4.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.pt-BR.vtt
4.8 kB
Part 04-Module 01-Lesson 04_PCA/13. 12 Interpret PCA Results V1-ZX6EACfsZbc.en.vtt
4.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.en.vtt
4.8 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt
4.8 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing Code Into Modules-AARS10U5bbo.en.vtt
4.8 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt
4.8 kB
Part 06-Module 01-Lesson 07_Pandas/index.html
4.8 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt
4.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt
4.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c05-missingdata2.png
4.8 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.zh-CN.vtt
4.8 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.pt-BR.vtt
4.8 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics-__7tzDUY870.pt-BR.vtt
4.8 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt
4.8 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.en.vtt
4.8 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.zh-CN.vtt
4.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt
4.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/index.html
4.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.pt-BR.vtt
4.8 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt
4.8 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/index.html
4.8 kB
Part 15-Module 01-Lesson 06_Web Development/24. Flask Pandas Plotly Part 1-xg7P8MnItdI.en.vtt
4.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms2.png
4.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt
4.8 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt
4.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt
4.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.ar.vtt
4.8 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.en.vtt
4.8 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.ar.vtt
4.8 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt
4.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt
4.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt
4.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt
4.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt
4.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt
4.7 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/index.html
4.7 kB
Part 04-Module 01-Lesson 04_PCA/13. 12 Interpret PCA Results V1-ZX6EACfsZbc.pt-BR.vtt
4.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/index.html
4.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/index.html
4.7 kB
Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.en.vtt
4.7 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.ar.vtt
4.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.th.vtt
4.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt
4.7 kB
Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt
4.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.ar.vtt
4.7 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.pt-BR.vtt
4.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt
4.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/index.html
4.7 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.pt-BR.vtt
4.7 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt
4.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.pt-BR.vtt
4.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt
4.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.zh-CN.vtt
4.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.pt-BR.vtt
4.6 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.pt-BR.vtt
4.6 kB
Part 01-Module 04-Lesson 01_What Is Ahead/02. Adam from IBM-NjjtY5UHyac.en.vtt
4.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.es-MX.vtt
4.6 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.zh-CN.vtt
4.6 kB
Part 02-Module 01-Lesson 09_Training and Tuning/index.html
4.6 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.en.vtt
4.6 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/index.html
4.6 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/index.html
4.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions-RbT2TXN_6tY.en.vtt
4.6 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.en.vtt
4.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/index.html
4.6 kB
Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.ar.vtt
4.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.ar.vtt
4.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ar.vtt
4.6 kB
Part 11-Module 01-Lesson 02_Vectors/index.html
4.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.pt-BR.vtt
4.6 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.en.vtt
4.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.pt-BR.vtt
4.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.ar.vtt
4.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt
4.6 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias-ppjNNY4DhPw.en.vtt
4.6 kB
Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt
4.5 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/index.html
4.5 kB
Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt
4.5 kB
Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.pt-BR.vtt
4.5 kB
Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.pt-BR.vtt
4.5 kB
Part 01-Module 04-Lesson 01_What Is Ahead/04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.en.vtt
4.5 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt
4.5 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt
4.5 kB
Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt
4.5 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt
4.5 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/index.html
4.5 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.zh-CN.vtt
4.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt
4.5 kB
Part 19-Module 01-Lesson 01_Congratulations!/01. Congratulations!.html
4.5 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/index.html
4.5 kB
Part 15-Module 01-Lesson 06_Web Development/22. Flask and Pandas-L_M_8UVY42k.en.vtt
4.5 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/index.html
4.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.zh-CN.vtt
4.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.pt-BR.vtt
4.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.zh-CN.vtt
4.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/index.html
4.5 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/index.html
4.5 kB
Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt
4.5 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.pt-BR.vtt
4.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.ar.vtt
4.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipelines-mxFrS8qpZ6Y.en.vtt
4.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together-PHaSifd-Mas.en.vtt
4.5 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/index.html
4.5 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt
4.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt
4.4 kB
Part 01-Module 04-Lesson 01_What Is Ahead/02. Adam from IBM-NjjtY5UHyac.pt-BR.vtt
4.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.zh-CN.vtt
4.4 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/index.html
4.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment Pt 2-PYzN1usi7QY.pt-BR.vtt
4.4 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.pt-BR.vtt
4.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.en.vtt
4.4 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt
4.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt
4.4 kB
Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.zh-CN.vtt
4.4 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/index.html
4.4 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Figure 8 Project-QbLVh5GTuJQ.en.vtt
4.4 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Figure 8 Project-QbLVh5GTuJQ.en.vtt
4.4 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Figure 8 Project-QbLVh5GTuJQ.en.vtt
4.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.55-pm.png
4.4 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.en.vtt
4.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/index.html
4.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.pt-BR.vtt
4.4 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.en.vtt
4.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt
4.4 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/index.html
4.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt
4.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt
4.4 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt
4.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt
4.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.pt-BR.vtt
4.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt
4.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.en-US.vtt
4.3 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/index.html
4.3 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.zh-CN.vtt
4.3 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms2.png
4.3 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.en.vtt
4.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.pt-BR.vtt
4.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.pt-BR.vtt
4.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.en.vtt
4.3 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/index.html
4.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt
4.3 kB
Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.en.vtt
4.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.22-pm.png
4.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.en.vtt
4.3 kB
Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.pt-BR.vtt
4.3 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.en.vtt
4.3 kB
Part 01-Module 04-Lesson 01_What Is Ahead/04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.pt-BR.vtt
4.3 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.en.vtt
4.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.en.vtt
4.3 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/index.html
4.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt
4.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt
4.3 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.pt-BR.vtt
4.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/index.html
4.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.ar.vtt
4.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.en.vtt
4.3 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/index.html
4.3 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.en.vtt
4.3 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment Pt 2-PYzN1usi7QY.en.vtt
4.3 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c02-encodings3.png
4.3 kB
Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search SC V1-zDw-ZGiHW5I.pt-BR.vtt
4.3 kB
Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/index.html
4.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 11-Module 01-Lesson 03_Linear Combination/index.html
4.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms1.png
4.2 kB
Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.en.vtt
4.2 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.ar.vtt
4.2 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.en.vtt
4.2 kB
Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.en.vtt
4.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.ar.vtt
4.2 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.pt-BR.vtt
4.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt
4.2 kB
Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.ar.vtt
4.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.zh-CN.vtt
4.2 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.ar.vtt
4.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 4271048 V1-2On65U7Panw.en.vtt
4.2 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/index.html
4.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.ar.vtt
4.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt
4.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt
4.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt
4.2 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.ar.vtt
4.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods in Code-oDuXThOqans.en.vtt
4.2 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/index.html
4.2 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.pt-BR.vtt
4.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt
4.2 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics-__7tzDUY870.en.vtt
4.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.zh-CN.vtt
4.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt
4.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.en.vtt
4.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt
4.2 kB
Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search SC V1-zDw-ZGiHW5I.en.vtt
4.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.en.vtt
4.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.ar.vtt
4.1 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. 06 Unit Tests V1-wb9jggHEvgI.pt-BR.vtt
4.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt
4.1 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.pt-BR.vtt
4.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.en.vtt
4.1 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Figure 8 Project V2-adtlHL42AuQ.pt-BR.vtt
4.1 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/05. Experiment Size-sImRm8e01jA.en.vtt
4.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.en.vtt
4.1 kB
Part 03-Module 01-Lesson 04_Keras/index.html
4.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.en.vtt
4.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.pt-BR.vtt
4.1 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt
4.1 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt
4.1 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt
4.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/index.html
4.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.ar.vtt
4.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots2.png
4.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt
4.1 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/._04. Possible Projects.html
4.1 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/._index.html
4.1 kB
Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.en.vtt
4.1 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.ar.vtt
4.1 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.pt-BR.vtt
4.1 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt
4.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.zh-CN.vtt
4.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.ar.vtt
4.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.en.vtt
4.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.ar.vtt
4.1 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.zh-CN.vtt
4.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots1.png
4.1 kB
Part 08-Module 01-Lesson 07_Visualization Case Study/index.html
4.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.ar.vtt
4.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.ar.vtt
4.0 kB
Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.en.vtt
4.0 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/index.html
4.0 kB
Part 11-Module 01-Lesson 01_Introduction/index.html
4.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt
4.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/index.html
4.0 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/index.html
4.0 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt
4.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt
4.0 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/04. L6 3 ICA V1 V1-ae94x-1JDzg.en.vtt
4.0 kB
Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt
4.0 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.ar.vtt
4.0 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt
4.0 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.pt-BR.vtt
4.0 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt
4.0 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt
4.0 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Blogging for Data Science-WrvGpRN5XQI.en.vtt
4.0 kB
Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.zh-CN.vtt
4.0 kB
Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick-AGZEq-yQgRM.en.vtt
4.0 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt
4.0 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. 06 Unit Tests V1-wb9jggHEvgI.en.vtt
4.0 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Data Vis L6 C06 V1-qIot9qrvcF8.pt-BR.vtt
4.0 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Figure 8 Project V2-adtlHL42AuQ.en.vtt
4.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt
4.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt
4.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.pt-BR.vtt
4.0 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/index.html
4.0 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.en.vtt
4.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.pt-BR.vtt
4.0 kB
Part 10-Module 01-Lesson 01_What is Version Control/index.html
4.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt
4.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.ar.vtt
4.0 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.ar.vtt
4.0 kB
Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt
4.0 kB
Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/index.html
4.0 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/index.html
4.0 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.en.vtt
4.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.en.vtt
4.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ar.vtt
4.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.ar.vtt
3.9 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/index.html
3.9 kB
Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes-jnfDqdxDbO4.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt
3.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.pt-BR.vtt
3.9 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/index.html
3.9 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt
3.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.zh-CN.vtt
3.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt
3.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.pt-BR.vtt
3.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search-iTL43Jk9_bQ.pt-BR.vtt
3.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt
3.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/m.gif
3.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.zh-CN.vtt
3.9 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt
3.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Data Vis L6 C06 V1-qIot9qrvcF8.en.vtt
3.9 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt
3.9 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers How To Find Them-ksqzOCSAp5U.pt-BR.vtt
3.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.en.vtt
3.9 kB
Part 10-Module 01-Lesson 06_Undoing Changes/index.html
3.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt
3.9 kB
Part 01-Module 04-Lesson 01_What Is Ahead/index.html
3.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. DataVis L5C08 V2-fq-hakwfpZw.pt-BR.vtt
3.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Unions-QmE6CMGar1U.pt-BR.vtt
3.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt
3.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.pt-BR.vtt
3.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. DataVis L5C03 V2-iokI7HrxeNc.pt-BR.vtt
3.9 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.en.vtt
3.9 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/04. L6 3 ICA V1 V1-ae94x-1JDzg.pt-BR.vtt
3.9 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.zh-CN.vtt
3.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt
3.9 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/index.html
3.9 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.zh-CN.vtt
3.9 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods in Code-oDuXThOqans.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.pt-BR.vtt
3.9 kB
Part 05-Module 01-Lesson 01_Congratulations!/index.html
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.pt-BR.vtt
3.9 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.zh-CN.vtt
3.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt
3.9 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/index.html
3.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.zh-CN.vtt
3.9 kB
assets/css/styles.css
3.9 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.zh-CN.vtt
3.8 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.pt-BR.vtt
3.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.en.vtt
3.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/24. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt
3.8 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt
3.8 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 0435 V1-oRhrOShUM6w.en.vtt
3.8 kB
Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt
3.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.pt-BR.vtt
3.8 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.en.vtt
3.8 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.zh-CN.vtt
3.8 kB
Part 06-Module 01-Lesson 01_Why Python Programming/index.html
3.8 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.zh-CN.vtt
3.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt
3.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt
3.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.en.vtt
3.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.ar.vtt
3.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.en.vtt
3.8 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/index.html
3.8 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/index.html
3.8 kB
Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.zh-CN.vtt
3.8 kB
Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/index.html
3.8 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt
3.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. DataVis L5C03 V2-iokI7HrxeNc.en.vtt
3.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/index.html
3.8 kB
Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/index.html
3.8 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt
3.8 kB
Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.ar.vtt
3.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt
3.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.pt-BR.vtt
3.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.pt-BR.vtt
3.7 kB
Part 04-Module 01-Lesson 01_Clustering/13. 14 How Does KMeans Work V1-y7yZyyHgyYU.pt-BR.vtt
3.7 kB
Part 17-Module 04-Lesson 01_Recommendation Engines/01. IBM Project Overview-XP_f64c07Gc.en.vtt
3.7 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt
3.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt
3.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt
3.7 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.en.vtt
3.7 kB
Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt
3.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team-cuKecPpZ7PM.en.vtt
3.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team-cuKecPpZ7PM.en.vtt
3.7 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.ar.vtt
3.7 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.en.vtt
3.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.pt-BR.vtt
3.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.zh-CN.vtt
3.7 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt
3.7 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.pt-BR.vtt
3.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.zh-CN.vtt
3.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.en.vtt
3.7 kB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/index.html
3.7 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt
3.7 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt
3.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.en.vtt
3.7 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.ar.vtt
3.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt
3.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.en.vtt
3.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. DataVis L5C06 V2-BzzTlWHMyV0.en.vtt
3.7 kB
Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.ar.vtt
3.7 kB
Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.ar.vtt
3.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.pt-BR.vtt
3.7 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.en.vtt
3.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt
3.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.pt-BR.vtt
3.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.en.vtt
3.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt
3.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. L5 031 Color Palettes V1-nirOTWkuiSM.en.vtt
3.6 kB
Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.en.vtt
3.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. DataVis L5C06 V2-BzzTlWHMyV0.pt-BR.vtt
3.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt
3.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.en.vtt
3.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. L5 031 Color Palettes V1-nirOTWkuiSM.pt-BR.vtt
3.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution-G3fRVgLa5gI.en.vtt
3.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.en.vtt
3.6 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.en.vtt
3.6 kB
Part 04-Module 01-Lesson 01_Clustering/13. 14 How Does KMeans Work V1-y7yZyyHgyYU.en.vtt
3.6 kB
Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt
3.6 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt
3.6 kB
Part 01-Module 02-Lesson 02_Get Help with Your Account/index.html
3.6 kB
Part 13-Module 01-Lesson 03_Get Help with Your Account/index.html
3.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.th.vtt
3.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.zh-CN.vtt
3.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error-vLKiY0Ehors.en.vtt
3.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.ar.vtt
3.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.pt-BR.vtt
3.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.ar.vtt
3.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.ar.vtt
3.6 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt
3.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.ar.vtt
3.6 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Introduction To Software Engineering-7kphieW4yl4.pt-BR.vtt
3.6 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt
3.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt
3.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt
3.6 kB
Part 05-Module 01-Lesson 01_Congratulations!/03. Next Steps-kXMCKZ4HqsM.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.en.vtt
3.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.ar.vtt
3.6 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract Walk Through-Bbj8rQRRVoM.en.vtt
3.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt
3.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.en.vtt
3.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.ar.vtt
3.6 kB
Part 19-Module 01-Lesson 01_Congratulations!/index.html
3.6 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt
3.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt
3.6 kB
Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt
3.6 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.pt-BR.vtt
3.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.it.vtt
3.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ar.vtt
3.5 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.zh-CN.vtt
3.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.zh-CN.vtt
3.5 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.it.vtt
3.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.zh-CN.vtt
3.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.es-ES.vtt
3.5 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Congratulations!/04. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt
3.5 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt
3.5 kB
Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt
3.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt
3.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.en.vtt
3.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.en.vtt
3.5 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt
3.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.en.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.ar.vtt
3.5 kB
Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.pt-BR.vtt
3.5 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt
3.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt
3.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Unions-QmE6CMGar1U.en.vtt
3.5 kB
Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes-jnfDqdxDbO4.en.vtt
3.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract Walk Through-Bbj8rQRRVoM.pt-BR.vtt
3.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.en.vtt
3.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.pt-BR.vtt
3.5 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Introduction-RVcFzwBXI2M.pt-BR.vtt
3.5 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt
3.5 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.en.vtt
3.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.ar.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.en.vtt
3.5 kB
Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt
3.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt
3.5 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/06. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt
3.5 kB
Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.en.vtt
3.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt
3.5 kB
Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt
3.5 kB
Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt
3.5 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.en.vtt
3.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt
3.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt
3.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.th.vtt
3.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.pt-BR.vtt
3.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.en.vtt
3.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt
3.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt
3.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 2-yLdXcRXcfPw.pt-BR.vtt
3.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt
3.4 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.pt-BR.vtt
3.4 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt
3.4 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.th.vtt
3.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-xTamXY6Z9Kg.en.vtt
3.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.en.vtt
3.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.zh-CN.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.en.vtt
3.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 01_Congratulations!/03. Next Steps-kXMCKZ4HqsM.en.vtt
3.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments-f7rzxUiHOJ0.pt-BR.vtt
3.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.en.vtt
3.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.en.vtt
3.4 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.en-US.vtt
3.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt
3.4 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.en.vtt
3.4 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt
3.4 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.en.vtt
3.4 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt
3.4 kB
Part 01-Module 04-Lesson 01_What Is Ahead/01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt
3.4 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt
3.4 kB
Part 01-Module 04-Lesson 01_What Is Ahead/01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt
3.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-xTamXY6Z9Kg.pt-BR.vtt
3.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.en.vtt
3.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt
3.4 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search-iTL43Jk9_bQ.en.vtt
3.4 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/33. Data Engineering Importance-VO-OrJ0JqxM.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt
3.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt
3.4 kB
Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt
3.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.pt-BR.vtt
3.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.en.vtt
3.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt
3.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt
3.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.en.vtt
3.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity-H3H1SZXqDmQ.pt-BR.vtt
3.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ja.vtt
3.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types Of Sampling-GF_eQqNoarI.pt-BR.vtt
3.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt
3.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt
3.3 kB
Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/01. Starbucks Lab-QPKRboscAf4.en.vtt
3.3 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.pt-BR.vtt
3.3 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.en.vtt
3.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.en.vtt
3.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.en.vtt
3.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt
3.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt
3.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments-f7rzxUiHOJ0.en.vtt
3.3 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.th.vtt
3.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt
3.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.en.vtt
3.3 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/07. Using Dummy Tests-rURTLjh3Hlc.en.vtt
3.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.pt-BR.vtt
3.3 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt
3.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.pt-BR.vtt
3.3 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.zh-CN.vtt
3.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt
3.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt
3.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.zh-CN.vtt
3.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.en.vtt
3.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.ar.vtt
3.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt
3.3 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png
3.3 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.es-MX.vtt
3.3 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt
3.3 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.pt-BR.vtt
3.3 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.en.vtt
3.3 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Introduction-RVcFzwBXI2M.en.vtt
3.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.en.vtt
3.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.ar.vtt
3.3 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt
3.3 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.en.vtt
3.3 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt
3.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.pt-BR.vtt
3.3 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/01. Capstone-jewlarqqbTo.en.vtt
3.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt
3.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings-398xRMnhjGk.pt-BR.vtt
3.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.en.vtt
3.2 kB
Part 04-Module 01-Lesson 04_PCA/08. PCA Properties-1oaaq-0wdB0.pt-BR.vtt
3.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt
3.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.en.vtt
3.2 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.en.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.en.vtt
3.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt
3.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.en.vtt
3.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers How To Find Them-ksqzOCSAp5U.en.vtt
3.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/33. Imputing Missing Values-CEWIPjz_gCE.en.vtt
3.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.pt-BR.vtt
3.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt
3.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt
3.2 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Introduction To Software Engineering-7kphieW4yl4.en.vtt
3.2 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.zh-CN.vtt
3.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.en.vtt
3.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt
3.2 kB
Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!-P3MfbMs-D98.pt-BR.vtt
3.2 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.en.vtt
3.2 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt
3.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.ar.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.pt-BR.vtt
3.2 kB
Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.pt-BR.vtt
3.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt
3.2 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.zh-CN.vtt
3.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt
3.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.pt-BR.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.pt-BR.vtt
3.2 kB
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt
3.2 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.ar.vtt
3.2 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.pt-BR.vtt
3.2 kB
Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt
3.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.en.vtt
3.2 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.en.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.zh-CN.vtt
3.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt
3.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.zh-CN.vtt
3.2 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.en.vtt
3.2 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.ar.vtt
3.2 kB
Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.pt-BR.vtt
3.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.ar.vtt
3.1 kB
Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.en.vtt
3.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.en.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.en.vtt
3.1 kB
Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.ar.vtt
3.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt
3.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.en.vtt
3.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.ar.vtt
3.1 kB
Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.zh-CN.vtt
3.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/20. 02 TF-IDF-LYYWIrWbBq4.pt-BR.vtt
3.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.zh-CN.vtt
3.1 kB
Part 04-Module 01-Lesson 04_PCA/08. PCA Properties-1oaaq-0wdB0.en.vtt
3.1 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt
3.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt
3.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.en.vtt
3.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. 07 Recall SC V1-0n5wUZiefkQ.en.vtt
3.1 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study-xnDsUsrF884.pt-BR.vtt
3.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.en.vtt
3.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.ar.vtt
3.1 kB
Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt
3.1 kB
Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.en.vtt
3.1 kB
Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.zh-CN.vtt
3.1 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/33. Data Engineering Importance-VO-OrJ0JqxM.en.vtt
3.1 kB
Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt
3.1 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.en.vtt
3.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.zh-CN.vtt
3.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt
3.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.it.vtt
3.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/13. Measuring SImilarity-G_Y6IPmp7Xs.en.vtt
3.1 kB
Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt
3.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.zh-CN.vtt
3.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.en.vtt
3.1 kB
Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt
3.1 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.en.vtt
3.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt
3.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.ar.vtt
3.1 kB
Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt
3.1 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types Of Sampling-GF_eQqNoarI.en.vtt
3.1 kB
Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.ar.vtt
3.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.ar.vtt
3.1 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt
3.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt
3.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt
3.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.en.vtt
3.1 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity-H3H1SZXqDmQ.en.vtt
3.1 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.zh-CN.vtt
3.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.en.vtt
3.1 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.ar.vtt
3.1 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.ar.vtt
3.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.th.vtt
3.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.en.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt
3.0 kB
Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt
3.0 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.ar.vtt
3.0 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.zh-CN.vtt
3.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt
3.0 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt
3.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.pt-BR.vtt
3.0 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt
3.0 kB
Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.pt-BR.vtt
3.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.pt-BR.vtt
3.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt
3.0 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.pt-BR.vtt
3.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/41. How To Fix This-IPQZ4pfRMRA.pt-BR.vtt
3.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.pt-BR.vtt
3.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.en.vtt
3.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.en.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt
3.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.pt-BR.vtt
3.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.en.vtt
3.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.en.vtt
3.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt
3.0 kB
Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.pt-BR.vtt
3.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt
3.0 kB
Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions--UvpQV1qmiE.en.vtt
3.0 kB
Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!-P3MfbMs-D98.en.vtt
3.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt
3.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.en.vtt
3.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt
3.0 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif
3.0 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.en.vtt
3.0 kB
Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.en.vtt
3.0 kB
Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.en.vtt
3.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt
3.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.ar.vtt
3.0 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.en.vtt
3.0 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.ar.vtt
3.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt
3.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.th.vtt
3.0 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.zh-CN.vtt
3.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Gaussian Class-XS4LQn1VA3U.en.vtt
3.0 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.pt-BR.vtt
3.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt
3.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/41. How To Fix This-IPQZ4pfRMRA.en.vtt
3.0 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles Of A Data Engineer-f57UbUlSDgo.pt-BR.vtt
3.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.en.vtt
3.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings-398xRMnhjGk.en.vtt
3.0 kB
Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.en.vtt
3.0 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/06. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt
3.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt
3.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.en.vtt
3.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.en.vtt
3.0 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt
3.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.ar.vtt
3.0 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt
3.0 kB
Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt
3.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.zh-CN.vtt
3.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.zh-CN.vtt
3.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.pt-BR.vtt
3.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt
2.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.zh-CN.vtt
2.9 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.ar.vtt
2.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. 04 Inline Comments V1--G6yg3Xhl8I.pt-BR.vtt
2.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.it.vtt
2.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt
2.9 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.zh-CN.vtt
2.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.ar.vtt
2.9 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.en.vtt
2.9 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.en.vtt
2.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt
2.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt
2.9 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 2-yLdXcRXcfPw.en.vtt
2.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.zh-CN.vtt
2.9 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.ar.vtt
2.9 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Gaussian Class-XS4LQn1VA3U.pt-BR.vtt
2.9 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.th.vtt
2.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers-TBxUCQdXRjY.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt
2.9 kB
Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.es-ES.vtt
2.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.en.vtt
2.9 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.en.vtt
2.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.zh-CN.vtt
2.9 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif
2.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt
2.9 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.pt-BR.vtt
2.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt
2.9 kB
Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.pt-BR.vtt
2.9 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt
2.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.ar.vtt
2.9 kB
Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.en.vtt
2.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.ar.vtt
2.9 kB
Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.en.vtt
2.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt
2.9 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.pt-BR.vtt
2.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt
2.9 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.en.vtt
2.9 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.zh-CN.vtt
2.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt
2.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.en.vtt
2.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.ar.vtt
2.9 kB
Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.en.vtt
2.9 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif
2.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/20. 02 TF-IDF-LYYWIrWbBq4.en.vtt
2.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.zh-CN.vtt
2.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.pt-BR.vtt
2.9 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.zh-CN.vtt
2.9 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt
2.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt
2.9 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.en.vtt
2.8 kB
Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.en.vtt
2.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.zh-CN.vtt
2.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.zh-CN.vtt
2.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.zh-CN.vtt
2.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. DataVis L5C09 V1-xlZ9AMV6VUE.pt-BR.vtt
2.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt
2.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.zh-CN.vtt
2.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.ar.vtt
2.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt
2.8 kB
Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.pt-BR.vtt
2.8 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt
2.8 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.pt-BR.vtt
2.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.pt-BR.vtt
2.8 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt
2.8 kB
Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt
2.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt
2.8 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.en.vtt
2.8 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.pt-BR.vtt
2.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.pt-BR.vtt
2.8 kB
Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt
2.8 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.en.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.en.vtt
2.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ja.vtt
2.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.zh-CN.vtt
2.8 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.th.vtt
2.8 kB
Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt
2.8 kB
Part 15-Module 01-Lesson 06_Web Development/18. L4 The Back End V2-Esl0NL63S2c.pt-BR.vtt
2.8 kB
Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.ar.vtt
2.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.ar.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Clustering/08. Elbow Method For Finding K-e7fqXpo63n8.en.vtt
2.8 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ar.vtt
2.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.zh-CN.vtt
2.8 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.en.vtt
2.8 kB
Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.en.vtt
2.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt
2.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt
2.8 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.en.vtt
2.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.pt-BR.vtt
2.8 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.en.vtt
2.8 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt
2.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt
2.8 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt
2.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt
2.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt
2.8 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt
2.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.pt-BR.vtt
2.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.pt-BR.vtt
2.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.pt-BR.vtt
2.8 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. C4 Intro-gXlqR86h0yI.pt-BR.vtt
2.8 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. 01 Welcome V1 V2-Ykd7CN5dDx0.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.ar.vtt
2.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. 06 Precision SC V1-q2wVorBfefU.en.vtt
2.8 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.zh-CN.vtt
2.7 kB
Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt
2.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt
2.7 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt
2.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.en.vtt
2.7 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.zh-CN.vtt
2.7 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.pt-BR.vtt
2.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.ar.vtt
2.7 kB
Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.en.vtt
2.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.ar.vtt
2.7 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.zh-CN.vtt
2.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.en.vtt
2.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt
2.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt
2.7 kB
Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.en.vtt
2.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt
2.7 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.en.vtt
2.7 kB
Part 15-Module 01-Lesson 06_Web Development/03. L4 Components Of A Web App V4-2aJf5sO2ox4.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.pt-BR.vtt
2.7 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.en.vtt
2.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.zh-CN.vtt
2.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data-49ZwWRviAFg.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.en.vtt
2.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt
2.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance-1gsrxUwPI40.en.vtt
2.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt
2.7 kB
Part 04-Module 01-Lesson 01_Clustering/08. Elbow Method For Finding K-e7fqXpo63n8.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/06. L1 061 Visualization In Python V1-MFS-1veFC_c.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.ar.vtt
2.7 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.en.vtt
2.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.en.vtt
2.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.en.vtt
2.7 kB
Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.en.vtt
2.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.ar.vtt
2.7 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment-fH_xF5_SDCE.pt-BR.vtt
2.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.zh-CN.vtt
2.7 kB
Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.zh-CN.vtt
2.7 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.pt-BR.vtt
2.7 kB
Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.pt-BR.vtt
2.7 kB
Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.en.vtt
2.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.ar.vtt
2.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.pt-BR.vtt
2.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.ar.vtt
2.7 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.ar.vtt
2.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ar.vtt
2.7 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.zh-CN.vtt
2.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ar.vtt
2.7 kB
Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt
2.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.en.vtt
2.7 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt
2.7 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt
2.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/25. Removing Data - Why Not-w3-5Z5mEzTM.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.zh-CN.vtt
2.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.zh-CN.vtt
2.7 kB
Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.pt-BR.vtt
2.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt
2.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt
2.6 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt
2.6 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.zh-CN.vtt
2.6 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables-pLTneSg2MRY.pt-BR.vtt
2.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. L5 081 Plot Matrices V3-2wY-euTIE5g.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.zh-CN.vtt
2.6 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.ar.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.ar.vtt
2.6 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt
2.6 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.en.vtt
2.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt
2.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt
2.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.ar.vtt
2.6 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.zh-CN.vtt
2.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt
2.6 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt
2.6 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt
2.6 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.ar.vtt
2.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.zh-CN.vtt
2.6 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.th.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.ar.vtt
2.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt
2.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.en.vtt
2.6 kB
Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.en.vtt
2.6 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.en.vtt
2.6 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt
2.6 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt
2.6 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt
2.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.pt-BR.vtt
2.6 kB
Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.en.vtt
2.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt
2.6 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.pt-BR.vtt
2.6 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.zh-CN.vtt
2.6 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study-xnDsUsrF884.en.vtt
2.6 kB
Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.en.vtt
2.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt
2.6 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.en.vtt
2.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt
2.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.zh-CN.vtt
2.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt
2.6 kB
Part 14-Module 01-Lesson 01_The Data Science Process/09. Business And Data Understanding - Part 2-iInjuIgBWIo.pt-BR.vtt
2.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.en.vtt
2.6 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.en.vtt
2.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.zh-CN.vtt
2.6 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/23. Types Of Recommendations-uoXF81AO21E.en.vtt
2.6 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.pt-BR.vtt
2.6 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt
2.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.en.vtt
2.6 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.zh-CN.vtt
2.6 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt
2.6 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt
2.6 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.en.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.ar.vtt
2.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.ar.vtt
2.6 kB
Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt
2.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.zh-CN.vtt
2.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error-MRyxmZDngI4.en.vtt
2.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.zh-CN.vtt
2.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt
2.5 kB
Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.zh-CN.vtt
2.5 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. L5 Outro-rW1YP1aSb08.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.ar.vtt
2.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.pt-BR.vtt
2.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ar.vtt
2.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.en.vtt
2.5 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt
2.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt
2.5 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning And Neural Networks-4rKw3ekE5Wk.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.en.vtt
2.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt
2.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ar.vtt
2.5 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/13. Early Stopping-taIJZMNwRsI.en.vtt
2.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.pt-BR.vtt
2.5 kB
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. C4 Intro-gXlqR86h0yI.en.vtt
2.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt
2.5 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. BMG Inspiration-ulMqa4YWbvc.en.vtt
2.5 kB
Part 04-Module 01-Lesson 01_Clustering/15. Is That The Optimal Solution-g5aPtCpBNmw.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data-49ZwWRviAFg.en.vtt
2.5 kB
Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt
2.5 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt
2.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers-TBxUCQdXRjY.en.vtt
2.5 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles Of A Data Engineer-f57UbUlSDgo.en.vtt
2.5 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt
2.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.pt-BR.vtt
2.5 kB
Part 15-Module 01-Lesson 06_Web Development/03. L4 Components Of A Web App V4-2aJf5sO2ox4.en.vtt
2.5 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment-fH_xF5_SDCE.en.vtt
2.5 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.en.vtt
2.5 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt
2.5 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.zh-CN.vtt
2.5 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.en.vtt
2.5 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.pt-BR.vtt
2.5 kB
Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.pt-BR.vtt
2.5 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/27. Goals Of Recommendation Systems-WzelOlFeDmU.en.vtt
2.5 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance-1gsrxUwPI40.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.zh-CN.vtt
2.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/09. Business And Data Understanding - Part 2-iInjuIgBWIo.en.vtt
2.5 kB
Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.ar.vtt
2.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ar.vtt
2.5 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt
2.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.zh-CN.vtt
2.5 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.ar.vtt
2.5 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt3-_HTolKktaC4.en.vtt
2.5 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt
2.5 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt
2.5 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt
2.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt
2.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt
2.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt
2.5 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.ar.vtt
2.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.pt-BR.vtt
2.5 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt
2.5 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.pt-BR.vtt
2.5 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt
2.5 kB
Part 15-Module 01-Lesson 06_Web Development/07. Div and Span-cbKA_dvthcY.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 04_PCA/07. Dimensionality Reduction-mANti9veGtc.pt-BR.vtt
2.5 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. L5 081 Plot Matrices V3-2wY-euTIE5g.en.vtt
2.5 kB
Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.zh-CN.vtt
2.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt
2.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. 01 Welcome V1 V2-Ykd7CN5dDx0.en.vtt
2.5 kB
Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.en.vtt
2.5 kB
Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. L5 Outro-rW1YP1aSb08.en.vtt
2.4 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/12. SVD Practice Takeaways-2er0HUDum7k.en.vtt
2.4 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/16. Identifying Recommendations-P60qvS_OTMg.en.vtt
2.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt
2.4 kB
Part 15-Module 01-Lesson 06_Web Development/18. L4 The Back End V2-Esl0NL63S2c.en.vtt
2.4 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.ar.vtt
2.4 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.ar.vtt
2.4 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. 04 Inline Comments V1--G6yg3Xhl8I.en.vtt
2.4 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt
2.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt
2.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.zh-CN.vtt
2.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt
2.4 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.en.vtt
2.4 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.pt-BR.vtt
2.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables-bgxBUvPpKQQ.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt
2.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ja.vtt
2.4 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt
2.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.en.vtt
2.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt
2.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data From Different Sources-IfMydJvU37M.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt
2.4 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt
2.4 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.ar.vtt
2.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.en.vtt
2.4 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables-pLTneSg2MRY.en.vtt
2.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.en.vtt
2.4 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. BMG Inspiration-ulMqa4YWbvc.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.en.vtt
2.4 kB
Part 15-Module 01-Lesson 06_Web Development/07. Div and Span-cbKA_dvthcY.en.vtt
2.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.en.vtt
2.4 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt
2.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 01_Clustering/12. How Does K-Means Work-pL-pMCDgJuw.pt-BR.vtt
2.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt
2.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.ar.vtt
2.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. L3 10 Magic M V1 V3-9dEsv1aNUEE.en.vtt
2.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.zh-CN.vtt
2.4 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt
2.4 kB
Part 04-Module 01-Lesson 04_PCA/07. Dimensionality Reduction-mANti9veGtc.en.vtt
2.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt
2.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. L3 21 Outro v1 V2-DStO1hBKtHQ.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.en.vtt
2.4 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.pt-BR.vtt
2.4 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 0424 V1-x-End5px36M.en.vtt
2.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt
2.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.en.vtt
2.4 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt
2.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.pt-BR.vtt
2.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.en.vtt
2.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt
2.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.ar.vtt
2.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt
2.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.zh-CN.vtt
2.4 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt
2.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.en.vtt
2.4 kB
Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.zh-CN.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - Statisticians Perspective-zNNouqLGF9E.pt-BR.vtt
2.3 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c03-practicalsignificance-03.png
2.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.zh-CN.vtt
2.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.en.vtt
2.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.en.vtt
2.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.en.vtt
2.3 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.en.vtt
2.3 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.en.vtt
2.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.pt-BR.vtt
2.3 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.pt-BR.vtt
2.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt
2.3 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.ar.vtt
2.3 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt
2.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.en.vtt
2.3 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ar.vtt
2.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.pt-BR.vtt
2.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.ar.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning And Neural Networks-4rKw3ekE5Wk.en.vtt
2.3 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png
2.3 kB
Part 04-Module 01-Lesson 01_Clustering/12. How Does K-Means Work-pL-pMCDgJuw.en.vtt
2.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt
2.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Richard Sharp Data Science-r0BCM6vhl0Q.en.vtt
2.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt
2.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt
2.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt
2.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt
2.3 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt
2.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.en.vtt
2.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt
2.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.en.vtt
2.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt
2.3 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.pt-BR.vtt
2.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt
2.3 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/26. Types Of Ratings-fMjqe4sxBlQ.en.vtt
2.3 kB
Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.ar.vtt
2.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.ar.vtt
2.3 kB
Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.en.vtt
2.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.pt-BR.vtt
2.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt
2.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. L3 10 Magic M V1 V3-9dEsv1aNUEE.pt-BR.vtt
2.3 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.en.vtt
2.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.pt-BR.vtt
2.3 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.en.vtt
2.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.en.vtt
2.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.en.vtt
2.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.en.vtt
2.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.en.vtt
2.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt
2.3 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.en.vtt
2.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt
2.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.en.vtt
2.3 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.pt-BR.vtt
2.3 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt
2.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt
2.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt
2.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.zh-CN.vtt
2.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt
2.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt
2.3 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.ar.vtt
2.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ar.vtt
2.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt
2.3 kB
Part 04-Module 01-Lesson 01_Clustering/15. Is That The Optimal Solution-g5aPtCpBNmw.en.vtt
2.3 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.th.vtt
2.3 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif
2.3 kB
Part 15-Module 01-Lesson 06_Web Development/01. L4 Intro V2--PGMIIXFCgg.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt
2.2 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ar.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt
2.2 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.ar.vtt
2.2 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt
2.2 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt
2.2 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt
2.2 kB
Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt
2.2 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt
2.2 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.en.vtt
2.2 kB
Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data From Different Sources-IfMydJvU37M.en.vtt
2.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.en.vtt
2.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt
2.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.en.vtt
2.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/01. 01 Intro V1 2 V4-iW4uqhfRk10.pt-BR.vtt
2.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.ar.vtt
2.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt
2.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt
2.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt
2.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt
2.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.en.vtt
2.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.zh-CN.vtt
2.2 kB
Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt
2.2 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.ar.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt
2.2 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Richard Sharp Data Science-r0BCM6vhl0Q.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.ar.vtt
2.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/25. Removing Data - Why Not-w3-5Z5mEzTM.en.vtt
2.2 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.en.vtt
2.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt
2.2 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt
2.2 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Disaster Relief Project Preview-DuwYAjqGM3E.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.en.vtt
2.2 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt
2.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Know Your Audience-OjmrU5HlFD8.en.vtt
2.2 kB
Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.zh-CN.vtt
2.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt
2.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Know Your Audience-OjmrU5HlFD8.pt-BR.vtt
2.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. L3 21 Outro v1 V2-DStO1hBKtHQ.en.vtt
2.2 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.zh-CN.vtt
2.2 kB
Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.zh-CN.vtt
2.2 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/07. Knowledge Based Recommendations-C_vU1tjQHZI.en.vtt
2.2 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.en.vtt
2.2 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.en.vtt
2.2 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt
2.2 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.en.vtt
2.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.zh-CN.vtt
2.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.zh-CN.vtt
2.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.es-ES.vtt
2.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.en.vtt
2.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt
2.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/06. Why SVD-WdW1-rRQrLk.en.vtt
2.2 kB
Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.pt-BR.vtt
2.2 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/07. Latent Factors-jZz7tFEF2Dc.en.vtt
2.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.pt-BR.vtt
2.2 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ar.vtt
2.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/19. The Data Science Process Modeling-bzR6HQBn5CA.pt-BR.vtt
2.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. Gaussian Class-TVzNdFYyJIU.en.vtt
2.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.en.vtt
2.2 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.en.vtt
2.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.zh-CN.vtt
2.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.it.vtt
2.2 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. Gaussian Class-TVzNdFYyJIU.pt-BR.vtt
2.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers Intro 1 V1-Y1weHponR2Q.pt-BR.vtt
2.2 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt
2.2 kB
Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.pt-BR.vtt
2.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.en.vtt
2.2 kB
Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.zh-CN.vtt
2.1 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.en.vtt
2.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.en.vtt
2.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt
2.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.en.vtt
2.1 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt
2.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt
2.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/10. More Personalized Recommendations-9l8mi7i6iW4.en.vtt
2.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.en-US.vtt
2.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.zh-CN.vtt
2.1 kB
Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.en.vtt
2.1 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.ar.vtt
2.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt
2.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.en.vtt
2.1 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Other Important Information-LF-CWF-1mX4.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables-bgxBUvPpKQQ.en.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - Statisticians Perspective-zNNouqLGF9E.en.vtt
2.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/codecogseqn-61.gif
2.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 09_Training and Tuning/04. KFold Cross Validation V3 V1-9W6o6eWGi-0.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.pt-BR.vtt
2.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.ar.vtt
2.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt
2.1 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.en.vtt
2.1 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.en.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.en.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.pt-BR.vtt
2.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/20. Content Based Recommendations-pnGHpB77Mys.en.vtt
2.1 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.en.vtt
2.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.en.vtt
2.1 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.en.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.th.vtt
2.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.en.vtt
2.1 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.ar.vtt
2.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt
2.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.zh-CN.vtt
2.1 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c03-practicalsignificance-02.png
2.1 kB
Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.ar.vtt
2.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.pt-BR.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.zh-CN.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.ar.vtt
2.1 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt
2.1 kB
Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.en.vtt
2.1 kB
Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.en.vtt
2.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.en.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.pt-BR.vtt
2.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.en.vtt
2.1 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ja.vtt
2.1 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.pt-BR.vtt
2.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ar.vtt
2.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/f1.gif
2.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.es-ES.vtt
2.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt
2.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.pt-BR.vtt
2.1 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/20. The Cold Start Problem-DNz7aywJVzA.en.vtt
2.0 kB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.th.vtt
2.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.ar.vtt
2.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.zh-CN.vtt
2.0 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.ar.vtt
2.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.zh-CN.vtt
2.0 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt
2.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.en.vtt
2.0 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. 05 Docstrings V1-_gapemxsRJY.pt-BR.vtt
2.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.it.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.pt-BR.vtt
2.0 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt
2.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt
2.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt
2.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.pt-BR.vtt
2.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.pt-BR.vtt
2.0 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.en.vtt
2.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.en.vtt
2.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.zh-CN.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet The Instructors-ndyjFUF2e9Q.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt
2.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.es-ES.vtt
2.0 kB
Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt
2.0 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ar.vtt
2.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt
2.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.zh-CN.vtt
2.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.ar.vtt
2.0 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt
2.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt
2.0 kB
Part 15-Module 01-Lesson 06_Web Development/04. The Front End-CspuxLGFM4U.pt-BR.vtt
2.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.en.vtt
2.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data-OgjTk3XCUUE.pt-BR.vtt
2.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/18. It Is Not Always About ML-ECqflypBU7M.pt-BR.vtt
2.0 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt
2.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.en.vtt
2.0 kB
Part 15-Module 01-Lesson 06_Web Development/01. L4 Intro V2--PGMIIXFCgg.en.vtt
2.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.ar.vtt
2.0 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.ar.vtt
2.0 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.en.vtt
2.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.pt-BR.vtt
2.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.en.vtt
2.0 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.pt-BR.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in ML-fNcTTXR8T08.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.th.vtt
2.0 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt
2.0 kB
Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt
2.0 kB
Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 01_Clustering/07. 07 Changing K 1 V3-Bd3M-xUlqEI.pt-BR.vtt
2.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt
2.0 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.en.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt
2.0 kB
Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt
2.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. 13 Inheritance Example V1-uWT-HIHBjv0.en.vtt
2.0 kB
Part 15-Module 01-Lesson 06_Web Development/26. Flask Pandas Plotly Part3-e8owK5zk-g8.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt
2.0 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.zh-CN.vtt
2.0 kB
Part 14-Module 01-Lesson 01_The Data Science Process/19. The Data Science Process Modeling-bzR6HQBn5CA.en.vtt
2.0 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Other Important Information-LF-CWF-1mX4.en.vtt
2.0 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt
2.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt
2.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.ar.vtt
2.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.zh-CN.vtt
2.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.en.vtt
2.0 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/01. 01 Intro V1 2 V4-iW4uqhfRk10.en.vtt
2.0 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.en.vtt
2.0 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/26. Conclusion-R5-OYqKk9Ys.en.vtt
2.0 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt
2.0 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. 13 Inheritance Example V1-uWT-HIHBjv0.pt-BR.vtt
2.0 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.ar.vtt
2.0 kB
Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt
2.0 kB
Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.ar.vtt
2.0 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. L5 011 Intro V3-ckylQMBXB10.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.en.vtt
1.9 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt
1.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.en.vtt
1.9 kB
Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.en.vtt
1.9 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. L5 121 Lesson Summary V1-SOBCduyymkQ.pt-BR.vtt
1.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.en.vtt
1.9 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.en.vtt
1.9 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.en.vtt
1.9 kB
Part 04-Module 01-Lesson 04_PCA/01. Introduction-tpFPcxoGxaE.en.vtt
1.9 kB
Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt
1.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ar.vtt
1.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.en.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.en.vtt
1.9 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/f2.gif
1.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.pt-BR.vtt
1.9 kB
Part 15-Module 01-Lesson 06_Web Development/04. The Front End-CspuxLGFM4U.en.vtt
1.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt
1.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt
1.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.ar.vtt
1.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.en.vtt
1.9 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.pt-BR.vtt
1.9 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.pt-BR.vtt
1.9 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt
1.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt
1.9 kB
Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load Walk Through-AZvC7kYp_74.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.it.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.zh-CN.vtt
1.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.en.vtt
1.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt
1.9 kB
Part 14-Module 01-Lesson 01_The Data Science Process/27. Removing Data - Other Considerations-xrXk_Tvi0oQ.pt-BR.vtt
1.9 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.en.vtt
1.9 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.en.vtt
1.9 kB
Part 04-Module 01-Lesson 01_Clustering/05. KMeans-B9jdQFpPEk0.pt-BR.vtt
1.9 kB
Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.zh-CN.vtt
1.9 kB
Part 04-Module 01-Lesson 04_PCA/06. How to Reduce Features-ydhrelgjriI.en.vtt
1.9 kB
Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.en.vtt
1.9 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ja.vtt
1.9 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.en.vtt
1.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ja.vtt
1.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.zh-CN.vtt
1.9 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.es-ES.vtt
1.9 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 04_PCA/06. How to Reduce Features-ydhrelgjriI.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ar.vtt
1.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.th.vtt
1.9 kB
Part 04-Module 01-Lesson 01_Clustering/07. 07 Changing K 1 V3-Bd3M-xUlqEI.en.vtt
1.9 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.zh-CN.vtt
1.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.en.vtt
1.9 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/01. Intro-EBGMcpWe8-U.en.vtt
1.9 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load Walk Through-AZvC7kYp_74.en.vtt
1.9 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.en.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.pt-BR.vtt
1.9 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.en.vtt
1.9 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.ar.vtt
1.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt
1.9 kB
Part 15-Module 01-Lesson 06_Web Development/26. Flask Pandas Plotly Part3-e8owK5zk-g8.en.vtt
1.9 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt
1.9 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.zh-CN.vtt
1.9 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.en.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.en.vtt
1.9 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt
1.9 kB
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/23. Putting It All Together-r5jfD2uKnbQ.en.vtt
1.9 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.en.vtt
1.9 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.ar.vtt
1.9 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt
1.9 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.ar.vtt
1.9 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.en.vtt
1.9 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt
1.9 kB
Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt
1.9 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt
1.9 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.en.vtt
1.9 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt
1.9 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Introduction-Yg0gBpTzkMo.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.pt-BR.vtt
1.9 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt
1.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt
1.8 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.pt-BR.vtt
1.8 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/12. Conclusions-yMRRXDKb428.en.vtt
1.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.ar.vtt
1.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. L5 011 Intro V3-ckylQMBXB10.en.vtt
1.8 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.en.vtt
1.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.en.vtt
1.8 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers Intro 1 V1-Y1weHponR2Q.en.vtt
1.8 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.es-ES.vtt
1.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.en.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.en.vtt
1.8 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt
1.8 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt
1.8 kB
Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.zh-CN.vtt
1.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.en.vtt
1.8 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ja.vtt
1.8 kB
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.th.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Clustering/17. Feature Scaling Example--Axyt0bPCT0.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.en.vtt
1.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.zh-CN.vtt
1.8 kB
Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.en.vtt
1.8 kB
Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt
1.8 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. L5 121 Lesson Summary V1-SOBCduyymkQ.en.vtt
1.8 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.pt-BR.vtt
1.8 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Clustering/03. Two Types of Unsupervised Learning-aHK_rpaS_ts.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.zh-CN.vtt
1.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/27. Removing Data - Other Considerations-xrXk_Tvi0oQ.en.vtt
1.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/26. Removing Data - When Is It OK-oQhIPq5AccU.pt-BR.vtt
1.8 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt
1.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ja.vtt
1.8 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction-5DfFaAl1Wmc.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.zh-CN.vtt
1.8 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.en.vtt
1.8 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.en.vtt
1.8 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt
1.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt
1.8 kB
Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt
1.8 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.en.vtt
1.8 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.en.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.it.vtt
1.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.ar.vtt
1.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.en.vtt
1.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt
1.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt
1.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. L2 10 Documentation V1 V3-M45B2VbPgjo.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.en.vtt
1.8 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c03-practicalsignificance-01.png
1.8 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt
1.8 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif
1.8 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.en.vtt
1.8 kB
Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt
1.8 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt
1.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Clustering/03. Two Types of Unsupervised Learning-aHK_rpaS_ts.en.vtt
1.8 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt
1.8 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt
1.8 kB
Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt
1.8 kB
Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.ar.vtt
1.8 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.zh-CN.vtt
1.8 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt
1.8 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 04_PCA/01. Introduction-tpFPcxoGxaE.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt
1.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ar.vtt
1.8 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt
1.8 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.en.vtt
1.8 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.en.vtt
1.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.en.vtt
1.8 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.en.vtt
1.8 kB
Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.zh-CN.vtt
1.8 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/12. Types Of Collaborative Filtering-fZhkWHHP6SM.en.vtt
1.8 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.en.vtt
1.8 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.zh-CN.vtt
1.8 kB
Part 14-Module 01-Lesson 01_The Data Science Process/18. It Is Not Always About ML-ECqflypBU7M.en.vtt
1.8 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.pt-BR.vtt
1.8 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. 05 Docstrings V1-_gapemxsRJY.en.vtt
1.8 kB
Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Outro SC V1-YD1grQje9fw.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.pt-BR.vtt
1.8 kB
Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt
1.8 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt
1.8 kB
Part 19-Module 01-Lesson 01_Congratulations!/01. Congrats-OTp4YOTDd0Q.en.vtt
1.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt
1.7 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction-5DfFaAl1Wmc.en.vtt
1.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt
1.7 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.en.vtt
1.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt
1.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.en.vtt
1.7 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ja.vtt
1.7 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt
1.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Introduction-Yg0gBpTzkMo.en.vtt
1.7 kB
Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Disaster Relief Project Preview-DuwYAjqGM3E.en.vtt
1.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt
1.7 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/04. Practical Significance-eJ3idt3AJ7E.en.vtt
1.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.zh-CN.vtt
1.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ar.vtt
1.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt
1.7 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. L2 2 02 Testing V1 V1-IkLUUHt_jis.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.th.vtt
1.7 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.ar.vtt
1.7 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt
1.7 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.es-ES.vtt
1.7 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt
1.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ja.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.en.vtt
1.7 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.hr.vtt
1.7 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt
1.7 kB
Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt
1.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data-OgjTk3XCUUE.en.vtt
1.7 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.ar.vtt
1.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif
1.7 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt
1.7 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.ar.vtt
1.7 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.pt-BR.vtt
1.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/04. Business And Data Understanding - Example-bXQTGS61BU8.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.en.vtt
1.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.zh-CN.vtt
1.7 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt
1.7 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.en.vtt
1.7 kB
Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.en.vtt
1.7 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.en.vtt
1.7 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.en.vtt
1.7 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.en.vtt
1.7 kB
Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.en.vtt
1.7 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.zh-CN.vtt
1.7 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.en.vtt
1.7 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt
1.7 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt
1.7 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.ar.vtt
1.7 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.en.vtt
1.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.th.vtt
1.7 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.zh-CN.vtt
1.7 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.it.vtt
1.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Outro SC V1-YD1grQje9fw.en.vtt
1.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome-SaSzn718doY.pt-BR.vtt
1.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.en.vtt
1.7 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.zh-CN.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.pt-BR.vtt
1.7 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/06. L6 061 Polishing Plots V3-4TixzVx79uk.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.zh-CN.vtt
1.7 kB
Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.zh-CN.vtt
1.7 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt
1.7 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.pt-BR.vtt
1.7 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.pt-BR.vtt
1.7 kB
Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt
1.7 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.zh-CN.vtt
1.7 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.zh-CN.vtt
1.7 kB
Part 14-Module 01-Lesson 01_The Data Science Process/26. Removing Data - When Is It OK-oQhIPq5AccU.en.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Clustering/05. KMeans-B9jdQFpPEk0.en.vtt
1.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ar.vtt
1.7 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ja.vtt
1.7 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.pt-BR.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.zh-CN.vtt
1.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt
1.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt
1.7 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.en.vtt
1.7 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt
1.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.en.vtt
1.6 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.en.vtt
1.6 kB
Part 04-Module 01-Lesson 01_Clustering/04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.en.vtt
1.6 kB
Part 04-Module 01-Lesson 01_Clustering/17. Feature Scaling Example--Axyt0bPCT0.en.vtt
1.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. DataVis L5C05 V1-v19gCP4TvwE.en.vtt
1.6 kB
Part 14-Module 01-Lesson 01_The Data Science Process/04. Business And Data Understanding - Example-bXQTGS61BU8.en.vtt
1.6 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt
1.6 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/11. SMART Mnemonic-B0Bnxyu2aKM.en.vtt
1.6 kB
Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.zh-CN.vtt
1.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview -q1beUVlLoIQ.pt-BR.vtt
1.6 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt
1.6 kB
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.th.vtt
1.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt
1.6 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/f6.gif
1.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.en.vtt
1.6 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.pt-BR.vtt
1.6 kB
Part 15-Module 01-Lesson 06_Web Development/02. L4 Lesson Overview V2-9WQF-CCNdJ8.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ja.vtt
1.6 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/43. Outro V1 V4-XE3aoYOXeBw.pt-BR.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.en.vtt
1.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt
1.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.en.vtt
1.6 kB
Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt
1.6 kB
Part 18-Module 01-Lesson 01_Data Scientist Capstone/09. Capstone-bq-H7M5BU3U.en.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt
1.6 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.en.vtt
1.6 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.en.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt
1.6 kB
Part 14-Module 01-Lesson 01_The Data Science Process/45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.pt-BR.vtt
1.6 kB
Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt
1.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.en.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt
1.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.pt-BR.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.pt-BR.vtt
1.6 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.en.vtt
1.6 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.pt-BR.vtt
1.6 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.en.vtt
1.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt
1.6 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.pt-BR.vtt
1.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt
1.6 kB
Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt
1.6 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt
1.6 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt
1.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. DataVis L5C05 V1-v19gCP4TvwE.pt-BR.vtt
1.6 kB
Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt
1.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt
1.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt
1.6 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.es-ES.vtt
1.6 kB
Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.en.vtt
1.6 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.ar.vtt
1.6 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.en.vtt
1.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.th.vtt
1.6 kB
Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt
1.6 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/01. L6 011 Intro V1-gLy8qpursJI.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.pt-BR.vtt
1.6 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/09. L6 10 V1 V6-LoYT4NMSPGk.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt
1.6 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt
1.6 kB
Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.ar.vtt
1.6 kB
Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt
1.6 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt
1.6 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.pt-BR.vtt
1.6 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.en.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt
1.6 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.ar.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ja.vtt
1.6 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.zh-CN.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.ar.vtt
1.6 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt
1.6 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.en.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in ML-fNcTTXR8T08.en.vtt
1.6 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.ar.vtt
1.6 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt
1.6 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. L2 10 Documentation V1 V3-M45B2VbPgjo.en.vtt
1.6 kB
Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.pt-BR.vtt
1.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.en.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.zh-CN.vtt
1.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. 47 Load V1 V1-Us1hWDaabxo.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.en.vtt
1.5 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.zh-CN.vtt
1.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.hr.vtt
1.5 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 04_PCA/18. 17 PCA Recap V1-Egz3-noHCmg.pt-BR.vtt
1.5 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.en.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.en.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.en.vtt
1.5 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.pt-BR.vtt
1.5 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.en.vtt
1.5 kB
Part 04-Module 01-Lesson 04_PCA/17. When to Use PCA-arSP83-CM6w.pt-BR.vtt
1.5 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.en.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt
1.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt
1.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.pt-BR.vtt
1.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/38. Working With Categorical Variables-IoQOiuxsIZg.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.en.vtt
1.5 kB
Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt
1.5 kB
Part 15-Module 01-Lesson 06_Web Development/02. L4 Lesson Overview V2-9WQF-CCNdJ8.en.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Clustering/16. Feature Scaling-rpTVp7C8AXo.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.en.vtt
1.5 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.en.vtt
1.5 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.ar.vtt
1.5 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. L5 091 Feature Engineering V2-jpMOSFMMga4.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.zh-CN.vtt
1.5 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.en.vtt
1.5 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ja.vtt
1.5 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt
1.5 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/15. Conclusions-3IFF1GzUq0Y.en.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.en.vtt
1.5 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt
1.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Clustering/04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.en.vtt
1.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.en.vtt
1.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome-SaSzn718doY.en.vtt
1.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.ar.vtt
1.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt
1.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt
1.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/20. Predicting Salary-g1ZAn02ETK4.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. 02 Intro SC V1-mIgABrjJVBY.en.vtt
1.5 kB
Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.pt-BR.vtt
1.5 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.es-ES.vtt
1.5 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt
1.5 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.en.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt
1.5 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.pt-BR.vtt
1.5 kB
Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.ar.vtt
1.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.zh-CN.vtt
1.5 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt
1.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.en.vtt
1.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt
1.5 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.en.vtt
1.5 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.zh-CN.vtt
1.5 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.en.vtt
1.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/02. CRISP-DM-PaVwnGcqlSE.pt-BR.vtt
1.5 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.it.vtt
1.5 kB
Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.en.vtt
1.5 kB
Part 14-Module 01-Lesson 01_The Data Science Process/45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.en.vtt
1.5 kB
Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.en.vtt
1.5 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.en.vtt
1.5 kB
Part 08-Module 01-Lesson 06_Explanatory Visualizations/10. L6 131 Lesson Summary V1-t6ss31RZF34.pt-BR.vtt
1.5 kB
Part 15-Module 01-Lesson 06_Web Development/19. The World Wide Web-Rxn-zCyg_iA.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.ar.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt
1.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt
1.4 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.en.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/y.gif
1.4 kB
Part 15-Module 01-Lesson 06_Web Development/32. L4 Outro V2-8MyuJx5yu38.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.es-ES.vtt
1.4 kB
Part 15-Module 01-Lesson 06_Web Development/19. The World Wide Web-Rxn-zCyg_iA.en.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.en.vtt
1.4 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.en.vtt
1.4 kB
Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.en.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt
1.4 kB
Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.en.vtt
1.4 kB
Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. 02 Intro SC V1-mIgABrjJVBY.pt-BR.vtt
1.4 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ar.vtt
1.4 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.en.vtt
1.4 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ja.vtt
1.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt
1.4 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. L2 01 Intro V1 V1-z7v7oa--W48.pt-BR.vtt
1.4 kB
Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.en.vtt
1.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt
1.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.en.vtt
1.4 kB
Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.en.vtt
1.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.pt-BR.vtt
1.4 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.en.vtt
1.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt
1.4 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. L2 2 02 Testing V1 V1-IkLUUHt_jis.en.vtt
1.4 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-O-4qRh74rkI.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.it.vtt
1.4 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. L5 091 Feature Engineering V2-jpMOSFMMga4.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.en.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview -q1beUVlLoIQ.en.vtt
1.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ja.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.ar.vtt
1.4 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/01. ML Charity Project-aVodYHcOB8U.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.en.vtt
1.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.th.vtt
1.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.ar.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt
1.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.hr.vtt
1.4 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 04_PCA/04. Latent Features-kYLcVgpEwGs.pt-BR.vtt
1.4 kB
Part 15-Module 01-Lesson 06_Web Development/32. L4 Outro V2-8MyuJx5yu38.en.vtt
1.4 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 04_PCA/02. Lesson Topics-LBzA08F_r4w.pt-BR.vtt
1.4 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.en.vtt
1.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.en.vtt
1.4 kB
Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.es-ES.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.pt-BR.vtt
1.4 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt
1.4 kB
Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.en.vtt
1.4 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.en.vtt
1.4 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt
1.4 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt
1.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.en.vtt
1.4 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 04_PCA/18. 17 PCA Recap V1-Egz3-noHCmg.en.vtt
1.4 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt
1.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.en.vtt
1.4 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.ar.vtt
1.4 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.pt-BR.vtt
1.4 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. First Things First-ehjC7JK-zMI.pt-BR.vtt
1.4 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.en.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt
1.4 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.pt-BR.vtt
1.4 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt
1.4 kB
Part 02-Module 01-Lesson 10_Finding Donors Project/01. ML Charity Project-aVodYHcOB8U.en.vtt
1.4 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ja.vtt
1.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ar.vtt
1.4 kB
Part 14-Module 01-Lesson 01_The Data Science Process/02. CRISP-DM-PaVwnGcqlSE.en.vtt
1.4 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.es-ES.vtt
1.4 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.ar.vtt
1.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/38. Working With Categorical Variables-IoQOiuxsIZg.en.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.zh-CN.vtt
1.3 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.en.vtt
1.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.ar.vtt
1.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/codecogseqn-62.gif
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.pt-BR.vtt
1.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.en.vtt
1.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.en.vtt
1.3 kB
Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt
1.3 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt
1.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt
1.3 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.en.vtt
1.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.zh-CN.vtt
1.3 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.en.vtt
1.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression-DBhWG-PagEQ.en.vtt
1.3 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.es-ES.vtt
1.3 kB
Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro-xj70jX9Moxs.en.vtt
1.3 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.zh-CN.vtt
1.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro-xj70jX9Moxs.en.vtt
1.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt
1.3 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt
1.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.en.vtt
1.3 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.en.vtt
1.3 kB
Part 04-Module 01-Lesson 01_Clustering/16. Feature Scaling-rpTVp7C8AXo.en.vtt
1.3 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt
1.3 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.es-ES.vtt
1.3 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ja.vtt
1.3 kB
Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.en.vtt
1.3 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.en.vtt
1.3 kB
Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-O-4qRh74rkI.en.vtt
1.3 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt
1.3 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en-GB.vtt
1.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform Walk Through-i9_0kHCCCCE.pt-BR.vtt
1.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt
1.3 kB
Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro-xj70jX9Moxs.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.en.vtt
1.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt
1.3 kB
Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro-xj70jX9Moxs.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt
1.3 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. First Things First-ehjC7JK-zMI.en.vtt
1.3 kB
Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt
1.3 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.pt-BR.vtt
1.3 kB
Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.en.vtt
1.3 kB
Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.zh-CN.vtt
1.3 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. L2 2 11 Logging V2-9qKQdRoIMbU.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead-2Hxy2Jlu8nk.pt-BR.vtt
1.3 kB
Part 14-Module 01-Lesson 01_The Data Science Process/20. Predicting Salary-g1ZAn02ETK4.en.vtt
1.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/43. Outro V1 V4-XE3aoYOXeBw.en.vtt
1.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.pt-BR.vtt
1.3 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Up and Running On Medium-0QzbxjAcMq0.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 04_PCA/02. Lesson Topics-LBzA08F_r4w.en.vtt
1.3 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.en.vtt
1.3 kB
Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt
1.3 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.en.vtt
1.3 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt
1.3 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt
1.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 04_PCA/17. When to Use PCA-arSP83-CM6w.en.vtt
1.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt
1.3 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.en.vtt
1.3 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/39. 47 Load V1 V1-Us1hWDaabxo.en.vtt
1.3 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt
1.3 kB
Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.en.vtt
1.3 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ar.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ja.vtt
1.2 kB
Part 14-Module 01-Lesson 01_The Data Science Process/24. Working With Missing Values-mbAgYicmzqE.pt-BR.vtt
1.2 kB
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. L2 01 Intro V1 V1-z7v7oa--W48.en.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.th.vtt
1.2 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.en.vtt
1.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.ar.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.zh-CN.vtt
1.2 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt
1.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 05_Random Projection and ICA/03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.en.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.en.vtt
1.2 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt
1.2 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.zh-CN.vtt
1.2 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead-2Hxy2Jlu8nk.en.vtt
1.2 kB
Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform Walk Through-i9_0kHCCCCE.en.vtt
1.2 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.en.vtt
1.2 kB
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.en.vtt
1.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.th.vtt
1.2 kB
Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.en.vtt
1.2 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.ar.vtt
1.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Introduction-TRw4bvZuEG8.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.pt-BR.vtt
1.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.zh-CN.vtt
1.2 kB
Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.zh-CN.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/e.gif
1.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.en.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.en.vtt
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.en.vtt
1.2 kB
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ja.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt
1.2 kB
Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.pt-BR.vtt
1.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ar.vtt
1.2 kB
Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ar.vtt
1.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Up and Running On Medium-0QzbxjAcMq0.en.vtt
1.2 kB
Part 04-Module 01-Lesson 01_Clustering/01. Introduction-k7YOVTkFRJM.en.vtt
1.2 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.es-ES.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.zh-CN.vtt
1.2 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.th.vtt
1.2 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.en.vtt
1.2 kB
Part 04-Module 01-Lesson 01_Clustering/01. Introduction-k7YOVTkFRJM.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.en.vtt
1.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt
1.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.en.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.it.vtt
1.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.es-ES.vtt
1.2 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/05. Moving A Line-8EIHFyL2Log.en.vtt
1.2 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Introduction-TRw4bvZuEG8.en.vtt
1.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt
1.2 kB
Part 02-Module 01-Lesson 07_Ensemble Methods/07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.th.vtt
1.2 kB
Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.en.vtt
1.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt
1.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt
1.2 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt
1.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt
1.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.pt-BR.vtt
1.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt
1.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.zh-CN.vtt
1.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.en.vtt
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.th.vtt
1.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn-kxvmG8ZsOVg.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.ar.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.en.vtt
1.2 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.zh-CN.vtt
1.2 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt
1.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt
1.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.ar.vtt
1.2 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt
1.2 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.en.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt
1.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.tr.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt
1.2 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt
1.2 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ja.vtt
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/f4.gif
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.zh-CN.vtt
1.2 kB
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.hr.vtt
1.2 kB
Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.zh-CN.vtt
1.2 kB
Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.pt-BR.vtt
1.2 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.en.vtt
1.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt
1.1 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.en.vtt
1.1 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt
1.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.it.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.en.vtt
1.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.it.vtt
1.1 kB
Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.es-ES.vtt
1.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/24. Working With Missing Values-mbAgYicmzqE.en.vtt
1.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt
1.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.en.vtt
1.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt
1.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.en.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.en.vtt
1.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt
1.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.en.vtt
1.1 kB
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ja.vtt
1.1 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 1-HPmMEkbT2uE.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ja.vtt
1.1 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt
1.1 kB
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ar.vtt
1.1 kB
Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.th.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.en.vtt
1.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/29. Conclusion-zX5jZH2y8d8.en.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ja.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.it.vtt
1.1 kB
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.th.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.en.vtt
1.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.en.vtt
1.1 kB
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.en.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt
1.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.en.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt
1.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.ar.vtt
1.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.en.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.es-ES.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. 01 Intro V1 V3-Zl_es7xtSqk.pt-BR.vtt
1.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt
1.1 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt
1.1 kB
Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.en.vtt
1.1 kB
Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt
1.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.en.vtt
1.1 kB
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.zh-CN.vtt
1.1 kB
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.en.vtt
1.1 kB
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt
1.1 kB
Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.ar.vtt
1.1 kB
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.hr.vtt
1.1 kB
Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt
1.1 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ar.vtt
1.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ar.vtt
1.1 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.en.vtt
1.1 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. L2 2 11 Logging V2-9qKQdRoIMbU.en.vtt
1.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt
1.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.en.vtt
1.1 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/01. Intro-svCesgAQ46Q.en.vtt
1.1 kB
Part 14-Module 01-Lesson 01_The Data Science Process/10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ar.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt
1.1 kB
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.th.vtt
1.1 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. 24 Conclusion V1 V2-Jq6pj_uKDmY.pt-BR.vtt
1.1 kB
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt
1.1 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.en.vtt
1.1 kB
Part 02-Module 01-Lesson 02_Linear Regression/img/gif-1.gif
1.1 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.en.vtt
1.1 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt
1.1 kB
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt
1.1 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.zh-CN.vtt
1.0 kB
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.en.vtt
1.0 kB
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/11. Intro To Collab Filtering-wGq7dUgJpsc.en.vtt
1.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow-0nA6oTIlwaA.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.ar.vtt
1.0 kB
Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt
1.0 kB
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.en.vtt
1.0 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt
1.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt
1.0 kB
Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.zh-CN.vtt
1.0 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.en.vtt
1.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.en.vtt
1.0 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt
1.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn-kxvmG8ZsOVg.en.vtt
1.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ar.vtt
1.0 kB
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.en.vtt
1.0 kB
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.en.vtt
1.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.en.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.en.vtt
1.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.en.vtt
1.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ar.vtt
1.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.en.vtt
1.0 kB
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt
1.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt
1.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt
1.0 kB
Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt
1.0 kB
Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt
1.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.th.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt
1.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.pt-BR.vtt
1.0 kB
Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt
1.0 kB
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.th.vtt
1.0 kB
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt
1.0 kB
Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt
1.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.zh-CN.vtt
1.0 kB
Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt
1.0 kB
Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt
1.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ja.vtt
1.0 kB
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt
1.0 kB
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.zh-CN.vtt
1.0 kB
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.th.vtt
1.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt
1.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.pt-BR.vtt
1.0 kB
Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 1-HPmMEkbT2uE.en.vtt
1.0 kB
Part 17-Module 02-Lesson 03_AB Testing Case Study/01. Intro-28mN6RvGXDM.en.vtt
1.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt
1.0 kB
Part 08-Module 01-Lesson 02_Design of Visualizations/01. L2 011 Intro HD V2-TlpGWQBLG6E.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.ar.vtt
1.0 kB
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.en.vtt
1.0 kB
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.ar.vtt
1.0 kB
Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.zh-CN.vtt
1.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.zh-CN.vtt
1.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt
1.0 kB
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ar.vtt
1.0 kB
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt
1.0 kB
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ar.vtt
1.0 kB
Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.en.vtt
998 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.en.vtt
997 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt
996 Bytes
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.pt-BR.vtt
995 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.en.vtt
994 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt
994 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.it.vtt
994 Bytes
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Conclusion-_ATzG6khLdk.pt-BR.vtt
988 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt
988 Bytes
Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.zh-CN.vtt
988 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt
988 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt
987 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.zh-CN.vtt
987 Bytes
Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.pt-BR.vtt
986 Bytes
Part 16-Module 01-Lesson 02_ETL Pipelines/05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.pt-BR.vtt
985 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ja.vtt
984 Bytes
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. L2 21 Conclusion V1 V1-anPnokWZOZQ.pt-BR.vtt
984 Bytes
Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.zh-CN.vtt
984 Bytes
Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt
983 Bytes
Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.pt-BR.vtt
983 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ar.vtt
982 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt
982 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.pt-BR.vtt
982 Bytes
Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt
979 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt
979 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.zh-CN.vtt
978 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.en.vtt
976 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt
975 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ar.vtt
974 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.pt-BR.vtt
974 Bytes
Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.zh-CN.vtt
973 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.pt-BR.vtt
972 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt
971 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.th.vtt
970 Bytes
Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt
970 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.it.vtt
969 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.es-ES.vtt
967 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.it.vtt
967 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.zh-CN.vtt
966 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt
965 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.zh-CN.vtt
964 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt
964 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.en.vtt
964 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ar.vtt
963 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.en.vtt
963 Bytes
Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt
962 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt
962 Bytes
Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.en.vtt
959 Bytes
Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt
959 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt
959 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.en.vtt
958 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt
957 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.hr.vtt
957 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.es-ES.vtt
957 Bytes
Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt
956 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.hr.vtt
956 Bytes
Part 04-Module 01-Lesson 05_Random Projection and ICA/07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.pt-BR.vtt
955 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt
953 Bytes
Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.ar.vtt
953 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt
953 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.en.vtt
952 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ja.vtt
952 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ja.vtt
949 Bytes
Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt
949 Bytes
Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt
948 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.es-ES.vtt
948 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.es-ES.vtt
948 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.zh-CN.vtt
946 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.ar.vtt
946 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.pt-BR.vtt
945 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.it.vtt
945 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt
944 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.zh-CN.vtt
944 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt
944 Bytes
Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.en.vtt
944 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.hr.vtt
942 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.ar.vtt
942 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.ar.vtt
941 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.en.vtt
940 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.en.vtt
940 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.en.vtt
940 Bytes
Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt
939 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.pt-BR.vtt
938 Bytes
Part 04-Module 01-Lesson 05_Random Projection and ICA/07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.en.vtt
938 Bytes
Part 04-Module 01-Lesson 04_PCA/04. Latent Features-kYLcVgpEwGs.en.vtt
937 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.pt-BR.vtt
937 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.pt-BR.vtt
937 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.pt-BR.vtt
935 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt
935 Bytes
Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.pt-BR.vtt
935 Bytes
Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.zh-CN.vtt
933 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt
933 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.en.vtt
931 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt
930 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.pt-BR.vtt
930 Bytes
Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.zh-CN.vtt
928 Bytes
Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.pt-BR.vtt
928 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt
927 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.ar.vtt
927 Bytes
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Conclusion-_ATzG6khLdk.en.vtt
927 Bytes
Part 04-Module 01-Lesson 04_PCA/21. Outro-CuIqzL8HjI8.pt-BR.vtt
925 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.hr.vtt
925 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt
923 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.zh-CN.vtt
922 Bytes
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow-0nA6oTIlwaA.en.vtt
921 Bytes
Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.pt-BR.vtt
920 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt
919 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.pt-BR.vtt
917 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt
916 Bytes
Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.zh-CN.vtt
916 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.it.vtt
915 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt
914 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.pt-BR.vtt
914 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.en.vtt
913 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt
913 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt
913 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt
912 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ja.vtt
911 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.th.vtt
910 Bytes
Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt
908 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt
908 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.en.vtt
906 Bytes
Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt
906 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt
905 Bytes
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. 24 Conclusion V1 V2-Jq6pj_uKDmY.en.vtt
905 Bytes
Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.ar.vtt
904 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ar.vtt
903 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.ar.vtt
902 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ja.vtt
902 Bytes
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.pt-BR.vtt
902 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ar.vtt
900 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt
900 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt
900 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt
899 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ar.vtt
899 Bytes
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.en.vtt
898 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.en.vtt
898 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ar.vtt
896 Bytes
Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.pt-BR.vtt
896 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt
896 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.ar.vtt
894 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.zh-CN.vtt
893 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.zh-CN.vtt
893 Bytes
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.zh-CN.vtt
892 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt
892 Bytes
Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt
890 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt
889 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt
889 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.zh-CN.vtt
888 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ja.vtt
887 Bytes
Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt
887 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.zh-CN.vtt
886 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ar.vtt
886 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.es-ES.vtt
886 Bytes
Part 16-Module 01-Lesson 02_ETL Pipelines/05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.en.vtt
885 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.es-ES.vtt
885 Bytes
Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.ar.vtt
885 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.pt-BR.vtt
884 Bytes
Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.en.vtt
884 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt
883 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.en.vtt
883 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt
880 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.pt-BR.vtt
879 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.en.vtt
879 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.en.vtt
879 Bytes
Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt
874 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.en.vtt
874 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.pt-BR.vtt
874 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ja.vtt
872 Bytes
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. L2 2 01 Intro V1 V2-QO2GYq8q92E.pt-BR.vtt
871 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.es-ES.vtt
870 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.zh-CN.vtt
869 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt
868 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt
867 Bytes
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.en.vtt
867 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt
866 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.it.vtt
866 Bytes
Part 17-Module 02-Lesson 03_AB Testing Case Study/14. Conclusion-2G6x3oQnjy4.en.vtt
865 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.pt-BR.vtt
864 Bytes
Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.zh-CN.vtt
862 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt
861 Bytes
Part 08-Module 01-Lesson 07_Visualization Case Study/07. L7 0F1 Congrats V3-LF-obnL7CI0.pt-BR.vtt
859 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.en.vtt
856 Bytes
Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.en.vtt
855 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.hr.vtt
854 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.zh-CN.vtt
852 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.ar.vtt
851 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.ar.vtt
850 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.es-ES.vtt
850 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.pt-BR.vtt
848 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt
848 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ar.vtt
847 Bytes
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/02. Identifying Recommendation Engines-KwegrgvV-V4.en.vtt
847 Bytes
Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.pt-BR.vtt
847 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt
846 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.es-ES.vtt
845 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ar.vtt
845 Bytes
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction-LcX-s-ujp7U.pt-BR.vtt
844 Bytes
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color4.png
844 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ar.vtt
844 Bytes
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.en.vtt
842 Bytes
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.pt-BR.vtt
841 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ja.vtt
841 Bytes
Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt
840 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.zh-CN.vtt
840 Bytes
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color3.png
839 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.en.vtt
839 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ar.vtt
838 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.es-ES.vtt
837 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.it.vtt
837 Bytes
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.ar.vtt
837 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.en.vtt
836 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.en.vtt
836 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ja.vtt
835 Bytes
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.pt-BR.vtt
834 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.it.vtt
832 Bytes
Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt
831 Bytes
Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.pt-BR.vtt
830 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ar.vtt
829 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.pt-BR.vtt
829 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.zh-CN.vtt
828 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ja.vtt
828 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.en.vtt
828 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.en.vtt
826 Bytes
Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color5.png
826 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.en.vtt
826 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.pt-BR.vtt
825 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.en.vtt
824 Bytes
Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt
824 Bytes
Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.en.vtt
824 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.es-ES.vtt
823 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.ar.vtt
822 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt
821 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.pt-BR.vtt
820 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ar.vtt
819 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ja.vtt
819 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt
818 Bytes
Part 04-Module 01-Lesson 04_PCA/21. Outro-CuIqzL8HjI8.en.vtt
817 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.es-ES.vtt
817 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt
817 Bytes
Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. L2 21 Conclusion V1 V1-anPnokWZOZQ.en.vtt
816 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.ar.vtt
816 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ja.vtt
813 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.th.vtt
813 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt
812 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt
812 Bytes
Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.pt-BR.vtt
810 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.ar.vtt
807 Bytes
Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. 01 Intro V1 V3-Zl_es7xtSqk.en.vtt
806 Bytes
Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt
806 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ja.vtt
805 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt
804 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ar.vtt
802 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt
802 Bytes
Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt
800 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.en.vtt
799 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ar.vtt
799 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.en.vtt
798 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.pt-BR.vtt
797 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.it.vtt
797 Bytes
Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt
793 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.pt-BR.vtt
792 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.hr.vtt
792 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.en.vtt
790 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.en.vtt
790 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.en.vtt
789 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.zh-CN.vtt
787 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt
787 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt
787 Bytes
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.pt-BR.vtt
786 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt
785 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt
783 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.en.vtt
782 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.en.vtt
781 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt
780 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.zh-CN.vtt
780 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.th.vtt
779 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.th.vtt
777 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.es-ES.vtt
777 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt
775 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt
775 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.pt-BR.vtt
774 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.th.vtt
772 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en.vtt
772 Bytes
Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt
771 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt
769 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt
769 Bytes
Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.zh-CN.vtt
769 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.th.vtt
768 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.ar.vtt
768 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.it.vtt
767 Bytes
Part 14-Module 01-Lesson 01_The Data Science Process/01. Introduction-VpxATYHhKM8.pt-BR.vtt
767 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt
765 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ar.vtt
765 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.it.vtt
764 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt
763 Bytes
Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.en.vtt
763 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ja.vtt
762 Bytes
Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.zh-CN.vtt
761 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt
761 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ja.vtt
760 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.zh-CN.vtt
759 Bytes
Part 08-Module 01-Lesson 07_Visualization Case Study/01. L7 011 Intro V1-Virihwp36do.pt-BR.vtt
759 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.es-ES.vtt
757 Bytes
Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.en.vtt
756 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.en.vtt
754 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.pt-BR.vtt
753 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.pt-BR.vtt
753 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.en.vtt
752 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt
752 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ar.vtt
752 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.zh-CN.vtt
751 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt
750 Bytes
Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.zh-CN.vtt
750 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.hr.vtt
748 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ja.vtt
748 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt
748 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt
747 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt
747 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.es-ES.vtt
746 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.es-ES.vtt
746 Bytes
Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.pt-BR.vtt
746 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.zh-CN.vtt
745 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.pt-BR.vtt
745 Bytes
Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt
745 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.it.vtt
742 Bytes
Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt
742 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.zh-CN.vtt
741 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.es-ES.vtt
741 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt
741 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.en.vtt
738 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ar.vtt
738 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.pt-BR.vtt
737 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.pt-BR.vtt
737 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.en.vtt
737 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.zh-CN.vtt
736 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.en.vtt
736 Bytes
Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.zh-CN.vtt
736 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.pt-BR.vtt
736 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt
735 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt
735 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.en.vtt
734 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt
731 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.ar.vtt
731 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ja.vtt
730 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.th.vtt
729 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt
729 Bytes
Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/17. Funk SVD Review-nc3GMIrISHE.en.vtt
729 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt
728 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt
728 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.ar.vtt
727 Bytes
Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt
727 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt
726 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.en.vtt
725 Bytes
Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/04. Intro To MovieTweetings-cuXvLIkq_W8.en.vtt
725 Bytes
Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.zh-CN.vtt
724 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.th.vtt
723 Bytes
Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt
723 Bytes
Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.en.vtt
720 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ar.vtt
717 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ja.vtt
717 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.th.vtt
717 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ja.vtt
716 Bytes
Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt
716 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.en-US.vtt
716 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.en.vtt
715 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.en.vtt
715 Bytes
Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.zh-CN.vtt
715 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pl.vtt
715 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.en.vtt
714 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt
713 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.it.vtt
712 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ja.vtt
710 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ja.vtt
708 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.zh-CN.vtt
708 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt
707 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ar.vtt
706 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt
705 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.pt-BR.vtt
705 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.en.vtt
704 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt
704 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt
702 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.it.vtt
702 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.zh-CN.vtt
701 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.en.vtt
701 Bytes
Part 14-Module 01-Lesson 01_The Data Science Process/01. Introduction-VpxATYHhKM8.en.vtt
700 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.th.vtt
700 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.pt-BR.vtt
699 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt
698 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.it.vtt
697 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.pt-BR.vtt
696 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt
695 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.it.vtt
695 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.zh-CN.vtt
695 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt
695 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt
694 Bytes
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.en.vtt
694 Bytes
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.pt-BR.vtt
694 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.pt-BR.vtt
692 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt
692 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt
691 Bytes
Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt
690 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.en.vtt
690 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.hr.vtt
690 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.en.vtt
688 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt
688 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt
687 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt
686 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.pt-BR.vtt
686 Bytes
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. L2 2 01 Intro V1 V2-QO2GYq8q92E.en.vtt
685 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt
684 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ar.vtt
684 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ar.vtt
684 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt
684 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt
683 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.es-ES.vtt
682 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.en.vtt
682 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.en.vtt
682 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.en.vtt
682 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt
681 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.pt-BR.vtt
680 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt
679 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt
679 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.es-ES.vtt
679 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt
678 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.th.vtt
677 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.zh-CN.vtt
676 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.zh-CN.vtt
675 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.en.vtt
675 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt
675 Bytes
Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.ar.vtt
673 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt
673 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.zh-CN.vtt
673 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.es-ES.vtt
671 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.it.vtt
671 Bytes
Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.en.vtt
671 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt
671 Bytes
Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt
670 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ar.vtt
670 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ja.vtt
669 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.th.vtt
667 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.pt-BR.vtt
666 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.en.vtt
665 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt
665 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt
665 Bytes
Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt
664 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ar.vtt
663 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt
663 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt
662 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt
662 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.hr.vtt
662 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ja.vtt
661 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.en.vtt
658 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt
658 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt
657 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.th.vtt
657 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ar.vtt
656 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.it.vtt
656 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.pt.vtt
656 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.es-ES.vtt
656 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.zh-CN.vtt
655 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.en.vtt
655 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt
655 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ar.vtt
654 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.th.vtt
654 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.th.vtt
653 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.pt-BR.vtt
653 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.en.vtt
653 Bytes
Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.ar.vtt
652 Bytes
Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.en.vtt
651 Bytes
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.en.vtt
651 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ar.vtt
650 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ar.vtt
650 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt
650 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.en.vtt
650 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.en.vtt
646 Bytes
Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.pt-BR.vtt
646 Bytes
Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.en.vtt
645 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.zh-CN.vtt
644 Bytes
Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.zh-CN.vtt
643 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.zh-CN.vtt
643 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.pt-BR.vtt
642 Bytes
Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction-LcX-s-ujp7U.en.vtt
641 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.hr.vtt
640 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ar.vtt
640 Bytes
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.zh-CN.vtt
639 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.en.vtt
639 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.pt-BR.vtt
638 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt
638 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.hr.vtt
637 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.en.vtt
635 Bytes
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.en.vtt
635 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.th.vtt
634 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt
634 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt
633 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.en.vtt
633 Bytes
Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt
631 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.en.vtt
630 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt
629 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.es-ES.vtt
629 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt
629 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.en.vtt
628 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ja.vtt
627 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ar.vtt
626 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.it.vtt
625 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ja.vtt
625 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ar.vtt
623 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ja.vtt
623 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.en.vtt
622 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt
622 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ja.vtt
621 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt
620 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.pt-BR.vtt
620 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.it.vtt
618 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt
618 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ja.vtt
618 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt
618 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ru.vtt
617 Bytes
Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt
617 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ja.vtt
617 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt
617 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en-US.vtt
617 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.en.vtt
617 Bytes
Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.pt-BR.vtt
617 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt
616 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.zh-CN.vtt
616 Bytes
Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.zh-CN.vtt
616 Bytes
Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.zh-CN.vtt
616 Bytes
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt
615 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt
615 Bytes
Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt
613 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.es-ES.vtt
611 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en.vtt
610 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt
609 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.ar.vtt
608 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ja.vtt
608 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.es-ES.vtt
608 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ar.vtt
607 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.th.vtt
604 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.th.vtt
603 Bytes
Part 01-Module 03-Lesson 01_Setting Up Your Computer/20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.en.vtt
603 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.pt-BR.vtt
602 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.en.vtt
599 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt
599 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.pt-BR.vtt
599 Bytes
Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt
599 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.hr.vtt
599 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.en.vtt
598 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.pt-BR.vtt
598 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.it.vtt
598 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ja.vtt
597 Bytes
Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.zh-CN.vtt
597 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt
597 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ja.vtt
596 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.es-ES.vtt
595 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ja.vtt
594 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.pt-BR.vtt
593 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.en.vtt
591 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt
591 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ja.vtt
589 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt
589 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.zh-CN.vtt
588 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ja.vtt
587 Bytes
Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.en.vtt
586 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.en.vtt
586 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.en.vtt
586 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ja.vtt
584 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ar.vtt
584 Bytes
Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.pt-BR.vtt
583 Bytes
Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt
582 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt
582 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt
582 Bytes
Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt
582 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt
579 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.th.vtt
579 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt
579 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.zh-CN.vtt
579 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt
578 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.zh-CN.vtt
577 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.pt-BR.vtt
576 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.es-ES.vtt
575 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.hr.vtt
575 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt
575 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.pt-BR.vtt
574 Bytes
Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt
574 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ja.vtt
572 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt
572 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.zh-CN.vtt
572 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.it.vtt
571 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.en.vtt
571 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt
570 Bytes
Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.zh-CN.vtt
569 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.en.vtt
569 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt
567 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt
567 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt
566 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt
566 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.hr.vtt
565 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.es-ES.vtt
565 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.en.vtt
564 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt
563 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ar.vtt
562 Bytes
Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.zh-CN.vtt
561 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt
560 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ar.vtt
558 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt
558 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.en.vtt
558 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ja.vtt
557 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt
556 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt
556 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.en.vtt
555 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt
554 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.th.vtt
554 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt
553 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.en.vtt
553 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.it.vtt
552 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt
552 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.zh-CN.vtt
552 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt
551 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.zh-CN.vtt
549 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ar.vtt
549 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.en.vtt
549 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.th.vtt
548 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.pt-BR.vtt
547 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.zh-CN.vtt
547 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ar.vtt
547 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt
547 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ar.vtt
544 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.pt-BR.vtt
543 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt
542 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt
541 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.th.vtt
541 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ja.vtt
541 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.zh-CN.vtt
540 Bytes
Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt
540 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.en.vtt
540 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.hr.vtt
539 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt
538 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt
538 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt
538 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.en.vtt
537 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.zh-CN.vtt
536 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt
536 Bytes
Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt
536 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt
535 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt
535 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt
534 Bytes
Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.ar.vtt
534 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt
533 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.es-ES.vtt
533 Bytes
Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.pt-BR.vtt
533 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ar.vtt
533 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ar.vtt
532 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ja.vtt
532 Bytes
Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt
532 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt
532 Bytes
Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.zh-CN.vtt
531 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ja.vtt
531 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt
531 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt
530 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt
530 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.hr.vtt
530 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt
529 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.es-ES.vtt
529 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.en.vtt
528 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ja.vtt
527 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.en.vtt
527 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects-1-E_ZYovKeI.en.vtt
527 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt
526 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ja.vtt
525 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ar.vtt
524 Bytes
Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt
524 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en.vtt
524 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt
523 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt
523 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt
523 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt
522 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.zh-CN.vtt
522 Bytes
Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.pt-BR.vtt
522 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt
521 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ar.vtt
518 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ar.vtt
518 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.en.vtt
517 Bytes
Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.hr.vtt
517 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ar.vtt
516 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt
516 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt
516 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects-1-E_ZYovKeI.pt-BR.vtt
516 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt
516 Bytes
Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.en.vtt
514 Bytes
Part 16-Module 01-Lesson 02_ETL Pipelines/41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.pt-BR.vtt
514 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.en.vtt
514 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt
513 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ar.vtt
509 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.en.vtt
508 Bytes
Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.pt-BR.vtt
508 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt
505 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.it.vtt
504 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.zh-CN.vtt
504 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt
503 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt
503 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.es-ES.vtt
502 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt
501 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt
501 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.pt-BR.vtt
500 Bytes
Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt
499 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt
498 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt
497 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.en.vtt
497 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ar.vtt
497 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt
496 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.en.vtt
496 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt
495 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.zh-CN.vtt
495 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.en.vtt
495 Bytes
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Outro-dVrYQ7o8a-k.en.vtt
493 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ar.vtt
493 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.es-ES.vtt
493 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ja.vtt
492 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt
492 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ja.vtt
491 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt
491 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ar.vtt
491 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt
490 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt
490 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt
488 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.en.vtt
486 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.en.vtt
484 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ja.vtt
483 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt
482 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt
482 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt
481 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ar.vtt
481 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.th.vtt
480 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.es-ES.vtt
480 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.en.vtt
479 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt
478 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt
478 Bytes
Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt
478 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.pt-BR.vtt
478 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.it.vtt
476 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.en.vtt
476 Bytes
Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.en.vtt
473 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.zh-CN.vtt
473 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.pt-BR.vtt
473 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ja.vtt
473 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt
473 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ar.vtt
473 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ar.vtt
473 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt
473 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt
473 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ar.vtt
472 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt
472 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt
471 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt
471 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt
471 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.en.vtt
470 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt
469 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.hr.vtt
469 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt
468 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.en.vtt
468 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt
467 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.zh-CN.vtt
467 Bytes
Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.en.vtt
467 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.es-ES.vtt
466 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.en.vtt
466 Bytes
Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt
466 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.pt-BR.vtt
465 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt
465 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ar.vtt
463 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt
462 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.en.vtt
461 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt
460 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt
460 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.zh-CN.vtt
460 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt
459 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ar.vtt
459 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ja.vtt
458 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt
458 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt
457 Bytes
Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.zh-CN.vtt
456 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt
456 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.it.vtt
456 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt
456 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en.vtt
455 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt
455 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt
455 Bytes
README.txt
454 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.en.vtt
453 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt
453 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.hr.vtt
453 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.it.vtt
452 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt
451 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt
451 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt
449 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ja.vtt
449 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.th.vtt
447 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt
447 Bytes
Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.zh-CN.vtt
446 Bytes
Part 04-Module 01-Lesson 01_Clustering/21. Outro-AeDSl4KSVIE.pt-BR.vtt
445 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ar.vtt
445 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt
444 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt
444 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ja.vtt
444 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt
442 Bytes
Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt
442 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.th.vtt
441 Bytes
Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt
441 Bytes
Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.zh-CN.vtt
440 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt
440 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt
438 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ar.vtt
437 Bytes
Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.zh-CN.vtt
437 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ar.vtt
436 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.en.vtt
435 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.it.vtt
435 Bytes
Part 16-Module 01-Lesson 02_ETL Pipelines/41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.en.vtt
434 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.it.vtt
433 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.en.vtt
433 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt
433 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.en.vtt
432 Bytes
Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.zh-CN.vtt
432 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt
431 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.en.vtt
428 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ja.vtt
428 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt
427 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.en.vtt
427 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt
426 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.es-ES.vtt
426 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.es-ES.vtt
425 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt
425 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.hr.vtt
425 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt
425 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.en.vtt
424 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.es-ES.vtt
424 Bytes
Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.en.vtt
423 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.th.vtt
423 Bytes
Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Outro-dVrYQ7o8a-k.pt-BR.vtt
422 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.pt-BR.vtt
422 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.it.vtt
422 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.ar.vtt
422 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.zh-CN.vtt
422 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt
420 Bytes
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt
420 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ar.vtt
420 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.en.vtt
419 Bytes
Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.zh-CN.vtt
419 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ja.vtt
419 Bytes
Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt
419 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt
418 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ja.vtt
417 Bytes
Part 04-Module 01-Lesson 01_Clustering/21. Outro-AeDSl4KSVIE.en.vtt
417 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt
417 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.en.vtt
416 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.th.vtt
415 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt
415 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.it.vtt
414 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.en.vtt
414 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.es-ES.vtt
412 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt
411 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ar.vtt
411 Bytes
Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.pt-BR.vtt
411 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt
410 Bytes
Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.zh-CN.vtt
410 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt
410 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt
410 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.it.vtt
409 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.zh-CN.vtt
408 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt
408 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.ar.vtt
408 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.es-ES.vtt
406 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt
406 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ar.vtt
405 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt
405 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ar.vtt
404 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ja.vtt
403 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt
403 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.zh-CN.vtt
403 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt
402 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt
401 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ar.vtt
399 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt
399 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.en.vtt
399 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ar.vtt
399 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.th.vtt
398 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ja.vtt
397 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt
397 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.pt-BR.vtt
396 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ar.vtt
396 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ar.vtt
395 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ja.vtt
395 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt
394 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt
393 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.th.vtt
393 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.es-ES.vtt
393 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt
392 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.pt-BR.vtt
391 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ja.vtt
390 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt
390 Bytes
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt
389 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ja.vtt
389 Bytes
Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.zh-CN.vtt
389 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.es-ES.vtt
389 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt
389 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.es-ES.vtt
388 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.en.vtt
387 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt
387 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt
384 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.hr.vtt
383 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt
383 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt
382 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.it.vtt
382 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt
380 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt
380 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt
379 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt
378 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt
377 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.pt-BR.vtt
377 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.zh-CN.vtt
376 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt
376 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.it.vtt
375 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.pt-BR.vtt
375 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ja.vtt
374 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.pt-BR.vtt
373 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ja.vtt
373 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.en.vtt
373 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.it.vtt
372 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ja.vtt
371 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt
371 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.en.vtt
370 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ja.vtt
370 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt
369 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt
369 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.es-ES.vtt
367 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.es-ES.vtt
366 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt
366 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt
364 Bytes
Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.en.vtt
364 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.pt-BR.vtt
362 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt
362 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.es-ES.vtt
360 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt
360 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.it.vtt
359 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.th.vtt
359 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt
358 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.en.vtt
358 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ja.vtt
357 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.es-ES.vtt
357 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.en.vtt
357 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.es-ES.vtt
357 Bytes
Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt
357 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.es-ES.vtt
356 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt
356 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt
355 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.es-ES.vtt
355 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt
355 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.en.vtt
354 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.pt-BR.vtt
354 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.th.vtt
354 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt
354 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.en.vtt
353 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ja.vtt
353 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt
352 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.ar.vtt
352 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.en.vtt
351 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt
351 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt
350 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ja.vtt
350 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.es-ES.vtt
350 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.en.vtt
349 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.en.vtt
349 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt
349 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt
348 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt
348 Bytes
Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt
348 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.en.vtt
346 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ja.vtt
345 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt
344 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.en.vtt
343 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.th.vtt
342 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.en.vtt
342 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.en.vtt
342 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt
342 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt
341 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.en.vtt
341 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.it.vtt
341 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ar.vtt
341 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.en.vtt
340 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ar.vtt
339 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.th.vtt
339 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.en.vtt
339 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.pt-BR.vtt
339 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.it.vtt
338 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.es-ES.vtt
337 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt
337 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt
337 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt
336 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.en.vtt
336 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt
335 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt
335 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ar.vtt
334 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.es-ES.vtt
333 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt
333 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ja.vtt
332 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt
332 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.pt-BR.vtt
332 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt
331 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ja.vtt
331 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt
329 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt
329 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ja.vtt
327 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt
327 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ja.vtt
326 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt
326 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt
326 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ar.vtt
325 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.en.vtt
325 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.zh-CN.vtt
325 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.it.vtt
324 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.zh-CN.vtt
323 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ja.vtt
323 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.en.vtt
322 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt
320 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt
319 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt
319 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt
319 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.hr.vtt
319 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt
318 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt
317 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.en.vtt
317 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.zh-CN.vtt
316 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.it.vtt
315 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ja.vtt
315 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt
315 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.zh-CN.vtt
314 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.it.vtt
314 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.en.vtt
313 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt
312 Bytes
Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.hr.vtt
312 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.it.vtt
311 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.en.vtt
310 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ja.vtt
310 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt
309 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.zh-CN.vtt
309 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.it.vtt
308 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.it.vtt
307 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt
307 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.en.vtt
307 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt
307 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.en.vtt
306 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt
305 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.zh-CN.vtt
305 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ja.vtt
305 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.hr.vtt
305 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.th.vtt
305 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ja.vtt
305 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ja.vtt
304 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt
304 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt
304 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.zh-CN.vtt
303 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt
303 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ar.vtt
303 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ar.vtt
303 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.zh-CN.vtt
302 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ja.vtt
302 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt
302 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.en.vtt
302 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ar.vtt
302 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ja.vtt
301 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt
301 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ja.vtt
301 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ja.vtt
300 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ja.vtt
300 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.th.vtt
299 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt
298 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ja.vtt
298 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.zh-CN.vtt
297 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.zh-CN.vtt
296 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ja.vtt
296 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt
294 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ja.vtt
293 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt
293 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt
293 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt
292 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt
291 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt
291 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.it.vtt
291 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.hr.vtt
291 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt
289 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.it.vtt
289 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt
288 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ar.vtt
286 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt
285 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt
284 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ar.vtt
283 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt
283 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt
282 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt
281 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt
281 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.en.vtt
281 Bytes
Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt
280 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt
279 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.en.vtt
279 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ar.vtt
278 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt
277 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.en.vtt
277 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt
276 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt
275 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.es-ES.vtt
272 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt
269 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.en.vtt
268 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt
268 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.th.vtt
267 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ar.vtt
265 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ar.vtt
265 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt
265 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.ar.vtt
265 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ja.vtt
264 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt
264 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt
262 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt
262 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt
261 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.en.vtt
260 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt
260 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ja.vtt
260 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt
260 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt
258 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt
257 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt
257 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt
256 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt
256 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt
256 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt
254 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ar.vtt
254 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.pt-BR.vtt
254 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt
253 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.es-ES.vtt
252 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt
252 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt
252 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt
252 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.th.vtt
252 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt
251 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt
251 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ar.vtt
250 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt
250 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.pt-BR.vtt
249 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt
249 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt
249 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt
249 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.en.vtt
248 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.ar.vtt
248 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt
248 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ja.vtt
248 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.it.vtt
248 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.en.vtt
247 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt
247 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt
247 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet The Instructors-ndyjFUF2e9Q.en.vtt
246 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.en.vtt
246 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt
246 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.en.vtt
245 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt
244 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.th.vtt
244 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.en.vtt
244 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt
243 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ja.vtt
243 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt
242 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt
241 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ja.vtt
241 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.en.vtt
241 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt
241 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.th.vtt
240 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.it.vtt
240 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.en.vtt
240 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.pt-BR.vtt
240 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.th.vtt
240 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.it.vtt
239 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.es-ES.vtt
239 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ar.vtt
238 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt
238 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt
238 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt
238 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ja.vtt
237 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt
236 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.es-ES.vtt
236 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.it.vtt
234 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt
234 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt
234 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt
234 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt
233 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt
232 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.en.vtt
231 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.es-ES.vtt
231 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.it.vtt
231 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt
228 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.th.vtt
228 Bytes
Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt
228 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.es-ES.vtt
227 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt
226 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt
225 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt
223 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt
223 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt
222 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ar.vtt
222 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.en.vtt
222 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ar.vtt
222 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt
221 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.es-ES.vtt
219 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ja.vtt
219 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.pt-BR.vtt
219 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.en.vtt
219 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.en.vtt
219 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt
218 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt
218 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt
218 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt
218 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.en.vtt
217 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ja.vtt
217 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt
217 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt
216 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ja.vtt
216 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.hr.vtt
216 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt
216 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.en.vtt
216 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt
215 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt
215 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.en.vtt
214 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt
214 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.en.vtt
214 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.en.vtt
214 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.hr.vtt
213 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.en.vtt
213 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.it.vtt
213 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt
212 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.zh-CN.vtt
212 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ja.vtt
212 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.it.vtt
212 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt
212 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ar.vtt
211 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.en.vtt
210 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.it.vtt
210 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.zh-CN.vtt
210 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt
210 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.hr.vtt
209 Bytes
Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt
209 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ar.vtt
208 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ar.vtt
207 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt
207 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.th.vtt
205 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.it.vtt
205 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.hr.vtt
204 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ar.vtt
204 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.th.vtt
204 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt
204 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt
203 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ar.vtt
202 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ja.vtt
202 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt
202 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ja.vtt
201 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt
201 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt
200 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ja.vtt
199 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt
198 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt
198 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.en.vtt
198 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ja.vtt
197 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.zh-CN.vtt
197 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.hr.vtt
197 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.en.vtt
196 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt
196 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt
196 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ja.vtt
194 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ja.vtt
194 Bytes
Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt
192 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.es-ES.vtt
192 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ar.vtt
191 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt
190 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ja.vtt
190 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.en.vtt
190 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt
189 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt
188 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.it.vtt
187 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt
187 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ja.vtt
187 Bytes
Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt
186 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.zh-CN.vtt
186 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt
186 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt
185 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt
184 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ar.vtt
184 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ja.vtt
184 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt
183 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt
182 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt
182 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt
180 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt
180 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.en.vtt
180 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt
180 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.en.vtt
178 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.th.vtt
178 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.it.vtt
178 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt
177 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.th.vtt
177 Bytes
Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.zh-CN.vtt
177 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ar.vtt
176 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt
176 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ja.vtt
175 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt
175 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt
174 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt
174 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt
174 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt
174 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.pt-BR.vtt
173 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt
173 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.it.vtt
173 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt
173 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.it.vtt
171 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.it.vtt
171 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt
171 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt
170 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt
170 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt
169 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt
169 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.en.vtt
169 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt
168 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt
167 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt
167 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.en.vtt
167 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt
166 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ar.vtt
166 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.en.vtt
165 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt
165 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.it.vtt
164 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt
164 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt
164 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.pt-BR.vtt
164 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.th.vtt
164 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt
163 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ar.vtt
163 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.hr.vtt
163 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.pt-BR.vtt
162 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt
161 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ar.vtt
161 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt
160 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.th.vtt
160 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt
160 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt
160 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ja.vtt
159 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt
158 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ar.vtt
158 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.pt-BR.vtt
158 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt
158 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt
157 Bytes
Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.hr.vtt
157 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt
157 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt
157 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt
157 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ja.vtt
156 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.hr.vtt
155 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.en.vtt
155 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.es-ES.vtt
155 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.pt-BR.vtt
155 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.en.vtt
155 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt
155 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt
155 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ja.vtt
154 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt
153 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ar.vtt
153 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.th.vtt
152 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt
152 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt
152 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ar.vtt
152 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.it.vtt
151 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt
150 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.zh-CN.vtt
150 Bytes
Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ja.vtt
149 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.pt-BR.vtt
149 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.pt-BR.vtt
149 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.hr.vtt
149 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.zh-CN.vtt
149 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt
149 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.en.vtt
148 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.en.vtt
147 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt
146 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt
146 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ar.vtt
144 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.hr.vtt
144 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.es-ES.vtt
143 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt
142 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.en.vtt
142 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.en.vtt
142 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt
142 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ja.vtt
142 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ja.vtt
141 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ja.vtt
141 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ar.vtt
141 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.es-ES.vtt
141 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.es-ES.vtt
141 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.en.vtt
140 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.es-ES.vtt
140 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ja.vtt
139 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.es-ES.vtt
138 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.it.vtt
138 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ja.vtt
138 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.en.vtt
138 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt
137 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ja.vtt
137 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt
137 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt
136 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.en.vtt
136 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.th.vtt
135 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ja.vtt
134 Bytes
Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt
133 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ja.vtt
132 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ar.vtt
132 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt
130 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.en.vtt
130 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.th.vtt
130 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.en.vtt
129 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ar.vtt
129 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt
129 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.it.vtt
129 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.es-ES.vtt
129 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.en.vtt
128 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.zh-CN.vtt
127 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.it.vtt
127 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ar.vtt
126 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ja.vtt
126 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt
126 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt
125 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt
125 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.es-ES.vtt
125 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ja.vtt
123 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.zh-CN.vtt
123 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt
123 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt
123 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt
123 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ja.vtt
122 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.pt-BR.vtt
122 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ar.vtt
122 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt
122 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.es-ES.vtt
120 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.en.vtt
120 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.en.vtt
119 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt
119 Bytes
Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt
118 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt
118 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.en.vtt
118 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.es-ES.vtt
118 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ja.vtt
118 Bytes
Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.zh-CN.vtt
117 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ja.vtt
116 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt
116 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-CN.vtt
115 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt
113 Bytes
Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt
113 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ja.vtt
113 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.zh-CN.vtt
111 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.en.vtt
110 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt
110 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ja.vtt
110 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ar.vtt
110 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.es-ES.vtt
109 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.en.vtt
109 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.es-ES.vtt
109 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt
108 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt
108 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt
108 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt
108 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.th.vtt
108 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ar.vtt
108 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.es-ES.vtt
107 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt
106 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.en.vtt
104 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt
104 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.en.vtt
103 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-BR.vtt
101 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt
101 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt
101 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt
100 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ja.vtt
100 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt
99 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ar.vtt
99 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt
99 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt
99 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt
98 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-Hans.vtt
98 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ar.vtt
98 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt
97 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ja.vtt
97 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.it.vtt
96 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ar.vtt
96 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.en.vtt
95 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.es-ES.vtt
95 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ar.vtt
95 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.hr.vtt
95 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.es-ES.vtt
95 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.en.vtt
95 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ja.vtt
94 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt
94 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ar.vtt
94 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.it.vtt
94 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-CN.vtt
94 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ar.vtt
92 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt
92 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.pt-BR.vtt
91 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ja.vtt
91 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt
90 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.en.vtt
90 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt
90 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.en.vtt
90 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.it.vtt
90 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ar.vtt
90 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.pt-BR.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.it.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt
89 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.en.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-PT.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.it.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.it.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ja.vtt
89 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ja.vtt
88 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.en.vtt
88 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.it.vtt
88 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ja.vtt
88 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.hr.vtt
87 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.it.vtt
87 Bytes
Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt
87 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.en.vtt
86 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.en.vtt
86 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.hr.vtt
86 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-Hans.vtt
85 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.hr.vtt
85 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.hr.vtt
85 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.zh-CN.vtt
84 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt
84 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.hr.vtt
83 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-CN.vtt
83 Bytes
Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.tr.vtt
81 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>