搜索
[FreeCourseSite.com] Udemy - Time Series Analysis, Forecasting, and Machine Learning
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Time Series Analysis, Forecasting, and Machine Learning
磁力链接/BT种子简介
种子哈希:
0c7d86ce8ad7a9f8a303cd3cd375a2825b7c1d20
文件大小:
4.85G
已经下载:
1244
次
下载速度:
极快
收录时间:
2022-01-09
最近下载:
2024-11-26
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:0C7D86CE8AD7A9F8A303CD3CD375A2825B7C1D20
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
dashing.youth
奎桑提伪娘
付费订阅
cricket
lolly mai
ss-032
黑料
house.of.the.dragon.s02.uhd.bluray.2160p.rus.eng
暑假作业 罗智莹
锅锅酱✨劲爆窈窕身材02年女神黑丝学姐淫欲足交女上位m腿小穴裹茎榨汁
娜娜4k
百丽宫举牌原创
招魂3
10.000
无码流出
hongkongdoll 2024
白丝女仆
悠悠福利姬
欲梦超美
urabukkake
embz
醉
高中萝莉外出
midv-530
电影
克斯汀·邓斯特
shkd-592
锅锅酱✨
maria kazi homeschooling
流浪地球2
文件列表
04 ARIMA/005 ARIMA in Code.mp4
127.5 MB
12 Effective Learning Strategies for Machine Learning FAQ/004 Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
113.4 MB
04 ARIMA/015 Auto ARIMA in Code (Stocks).mp4
110.3 MB
04 ARIMA/014 Auto ARIMA in Code.mp4
108.2 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/007 CNN Architecture.mp4
101.5 MB
08 VIP_ AWS Forecast/005 Code pt 2 (Uploading the data to S3).mp4
95.5 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/005 Activation Functions.mp4
90.7 MB
05 Machine Learning Methods/009 Machine Learning for Time Series Forecasting in Code (pt 1).mp4
90.4 MB
12 Effective Learning Strategies for Machine Learning FAQ/003 Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
83.5 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/002 What is Convolution_.mp4
82.1 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/005 Convolution on Color Images.mp4
77.6 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/008 Feedforward ANN for Time Series Forecasting Code.mp4
74.4 MB
03 Exponential Smoothing and ETS Methods/008 SES Code.mp4
72.9 MB
11 Extra Help With Python Coding for Beginners FAQ/003 Proof that using Jupyter Notebook is the same as not using it.mp4
72.9 MB
05 Machine Learning Methods/002 Supervised Machine Learning_ Classification and Regression.mp4
72.3 MB
02 Time Series Basics/011 Random Walks and the Random Walk Hypothesis.mp4
71.4 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/009 Feedforward ANN for Stock Return and Price Predictions Code.mp4
71.0 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/013 Human Activity Recognition_ Multi-Input ANN.mp4
70.8 MB
04 ARIMA/017 Auto ARIMA in Code (Sales Data).mp4
68.6 MB
05 Machine Learning Methods/008 Extrapolation and Stock Prices.mp4
67.9 MB
08 VIP_ AWS Forecast/004 Code pt 1 (Getting and Transforming the Data).mp4
66.4 MB
01 Welcome/002 Where to Get the Code.mp4
65.0 MB
04 ARIMA/007 Stationarity in Code.mp4
64.5 MB
03 Exponential Smoothing and ETS Methods/014 Walk-Forward Validation in Code.mp4
63.2 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/007 ANN Code Preparation.mp4
60.3 MB
04 ARIMA/006 Stationarity.mp4
57.8 MB
08 VIP_ AWS Forecast/006 Code pt 3 (Building your Model).mp4
57.1 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/004 The Geometrical Picture.mp4
56.6 MB
03 Exponential Smoothing and ETS Methods/004 SMA Code.mp4
56.2 MB
04 ARIMA/002 Autoregressive Models - AR(p).mp4
55.1 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/016 How Does a Neural Network _Learn__.mp4
52.5 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/012 Human Activity Recognition_ Data Exploration.mp4
52.4 MB
08 VIP_ AWS Forecast/007 Code pt 4 (Generating and Evaluating the Forecast).mp4
52.3 MB
03 Exponential Smoothing and ETS Methods/012 Holt-Winters (Code).mp4
52.2 MB
05 Machine Learning Methods/011 Machine Learning for Time Series Forecasting in Code (pt 2).mp4
51.8 MB
11 Extra Help With Python Coding for Beginners FAQ/002 How to Code by Yourself (part 2).mp4
51.6 MB
08 VIP_ AWS Forecast/002 Data Model.mp4
51.3 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/009 CNN for Time Series Forecasting in Code.mp4
51.1 MB
03 Exponential Smoothing and ETS Methods/011 Holt-Winters (Theory).mp4
49.9 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/010 CNN for Human Activity Recognition.mp4
48.6 MB
04 ARIMA/013 Model Selection, AIC and BIC.mp4
48.1 MB
02 Time Series Basics/009 Financial Time Series Primer.mp4
47.0 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/003 Forward Propagation.mp4
47.0 MB
03 Exponential Smoothing and ETS Methods/013 Walk-Forward Validation.mp4
46.5 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/002 The Neuron.mp4
46.0 MB
02 Time Series Basics/008 Forecasting Metrics.mp4
45.8 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/006 Multiclass Classification.mp4
45.7 MB
10 Setting Up Your Environment FAQ/002 How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
45.7 MB
08 VIP_ AWS Forecast/001 AWS Forecast Section Introduction.mp4
45.7 MB
05 Machine Learning Methods/006 Machine Learning Algorithms_ Support Vector Machines.mp4
45.6 MB
04 ARIMA/016 ACF and PACF for Stock Returns.mp4
45.6 MB
05 Machine Learning Methods/012 Application_ Sales Data.mp4
44.2 MB
02 Time Series Basics/013 Naive Forecast and Forecasting Metrics in Code.mp4
43.5 MB
04 ARIMA/004 ARIMA.mp4
43.4 MB
04 ARIMA/010 ACF and PACF in Code (pt 1).mp4
43.3 MB
03 Exponential Smoothing and ETS Methods/016 Application_ Stock Predictions.mp4
42.5 MB
04 ARIMA/012 Auto ARIMA and SARIMAX.mp4
41.4 MB
03 Exponential Smoothing and ETS Methods/006 EWMA Code.mp4
41.3 MB
12 Effective Learning Strategies for Machine Learning FAQ/002 Is this for Beginners or Experts_ Academic or Practical_ Fast or slow-paced_.mp4
40.8 MB
04 ARIMA/018 How to Forecast with ARIMA.mp4
39.8 MB
13 Appendix _ FAQ Finale/002 BONUS_ Where to get discount coupons and FREE deep learning material.mp4
39.6 MB
05 Machine Learning Methods/013 Application_ Predicting Stock Prices and Returns.mp4
39.2 MB
04 ARIMA/008 ACF (Autocorrelation Function).mp4
38.8 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/014 Human Activity Recognition_ Feature-Based Model.mp4
37.8 MB
03 Exponential Smoothing and ETS Methods/005 EWMA Theory.mp4
37.6 MB
03 Exponential Smoothing and ETS Methods/007 SES Theory.mp4
37.3 MB
04 ARIMA/011 ACF and PACF in Code (pt 2).mp4
35.5 MB
02 Time Series Basics/007 Power, Log, and Box-Cox Transformations in Code.mp4
34.9 MB
03 Exponential Smoothing and ETS Methods/009 Holt's Linear Trend Model (Theory).mp4
34.8 MB
02 Time Series Basics/006 Power, Log, and Box-Cox Transformations.mp4
34.2 MB
05 Machine Learning Methods/003 Autoregressive Machine Learning Models.mp4
34.0 MB
02 Time Series Basics/002 What is a Time Series_.mp4
33.8 MB
05 Machine Learning Methods/007 Machine Learning Algorithms_ Random Forest.mp4
33.6 MB
05 Machine Learning Methods/005 Machine Learning Algorithms_ Logistic Regression.mp4
33.3 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/011 Human Activity Recognition_ Code Preparation.mp4
32.8 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/010 Human Activity Recognition Dataset.mp4
32.2 MB
01 Welcome/001 Introduction and Outline.mp4
32.2 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/004 What is Convolution_ (Weight Sharing).mp4
31.9 MB
02 Time Series Basics/012 The Naive Forecast and the Importance of Baselines.mp4
31.6 MB
02 Time Series Basics/004 Why Do We Care About Shapes_.mp4
30.9 MB
03 Exponential Smoothing and ETS Methods/015 Application_ Sales Data.mp4
30.9 MB
10 Setting Up Your Environment FAQ/001 Anaconda Environment Setup.mp4
29.2 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/008 CNN Code Preparation.mp4
28.8 MB
05 Machine Learning Methods/014 Application_ Predicting Stock Movements.mp4
27.6 MB
08 VIP_ AWS Forecast/009 AWS Forecast Section Summary.mp4
26.7 MB
04 ARIMA/009 PACF (Partial Autocorrelation Funtion).mp4
26.3 MB
11 Extra Help With Python Coding for Beginners FAQ/001 How to Code by Yourself (part 1).mp4
25.8 MB
03 Exponential Smoothing and ETS Methods/002 Exponential Smoothing Intuition for Beginners.mp4
25.1 MB
08 VIP_ AWS Forecast/003 Creating an IAM Role.mp4
25.0 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/003 What is Convolution_ (Pattern-Matching).mp4
24.8 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/006 Convolution for Time Series and ARIMA.mp4
24.8 MB
02 Time Series Basics/005 Types of Tasks.mp4
24.7 MB
01 Welcome/003 Warmup (Optional).mp4
24.3 MB
04 ARIMA/001 ARIMA Section Introduction.mp4
24.1 MB
05 Machine Learning Methods/004 Machine Learning Algorithms_ Linear Regression.mp4
22.9 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/015 Human Activity Recognition_ Combined Model.mp4
21.9 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/001 Artificial Neural Networks_ Section Introduction.mp4
20.4 MB
03 Exponential Smoothing and ETS Methods/017 SMA Application_ COVID-19 Counting.mp4
20.3 MB
03 Exponential Smoothing and ETS Methods/019 Exponential Smoothing Section Summary.mp4
20.0 MB
03 Exponential Smoothing and ETS Methods/010 Holt's Linear Trend Model (Code).mp4
20.0 MB
05 Machine Learning Methods/010 Forecasting with Differencing.mp4
19.9 MB
02 Time Series Basics/010 Price Simulations in Code.mp4
19.2 MB
05 Machine Learning Methods/001 Machine Learning Section Introduction.mp4
18.4 MB
02 Time Series Basics/001 Time Series Basics Section Introduction.mp4
18.3 MB
13 Appendix _ FAQ Finale/001 What is the Appendix_.mp4
17.2 MB
02 Time Series Basics/015 Suggestion Box.mp4
16.9 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/011 CNN Section Summary.mp4
16.2 MB
03 Exponential Smoothing and ETS Methods/003 SMA Theory.mp4
16.0 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/001 CNN Section Introduction.mp4
15.0 MB
08 VIP_ AWS Forecast/008 AWS Forecast Exercise.mp4
14.4 MB
03 Exponential Smoothing and ETS Methods/001 Exponential Smoothing Section Introduction.mp4
14.2 MB
02 Time Series Basics/003 Modeling vs. Predicting.mp4
14.1 MB
04 ARIMA/019 ARIMA Section Summary.mp4
13.4 MB
12 Effective Learning Strategies for Machine Learning FAQ/001 How to Succeed in this Course (Long Version).mp4
13.2 MB
02 Time Series Basics/014 Time Series Basics Section Summary.mp4
12.7 MB
03 Exponential Smoothing and ETS Methods/018 SMA Application_ Algorithmic Trading.mp4
12.2 MB
06 Deep Learning_ Artificial Neural Networks (ANN)/017 Artificial Neural Networks_ Section Summary.mp4
11.5 MB
05 Machine Learning Methods/015 Machine Learning Section Summary.mp4
10.9 MB
04 ARIMA/003 Moving Average Models - MA(q).mp4
10.6 MB
07 Deep Learning_ Convolutional Neural Networks (CNN)/007 CNN Architecture.en.srt
34.0 kB
12 Effective Learning Strategies for Machine Learning FAQ/002 Is this for Beginners or Experts_ Academic or Practical_ Fast or slow-paced_.en.srt
33.8 kB
12 Effective Learning Strategies for Machine Learning FAQ/004 Machine Learning and AI Prerequisite Roadmap (pt 2).en.srt
25.0 kB
04 ARIMA/005 ARIMA in Code.en.srt
24.3 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/005 Activation Functions.en.srt
24.3 kB
11 Extra Help With Python Coding for Beginners FAQ/001 How to Code by Yourself (part 1).en.srt
24.0 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/005 Convolution on Color Images.en.srt
22.1 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/002 What is Convolution_.en.srt
22.0 kB
10 Setting Up Your Environment FAQ/001 Anaconda Environment Setup.en.srt
21.6 kB
02 Time Series Basics/011 Random Walks and the Random Walk Hypothesis.en.srt
20.6 kB
05 Machine Learning Methods/002 Supervised Machine Learning_ Classification and Regression.en.srt
20.1 kB
04 ARIMA/006 Stationarity.en.srt
18.6 kB
04 ARIMA/015 Auto ARIMA in Code (Stocks).en.srt
18.2 kB
12 Effective Learning Strategies for Machine Learning FAQ/003 Machine Learning and AI Prerequisite Roadmap (pt 1).en.srt
17.8 kB
04 ARIMA/002 Autoregressive Models - AR(p).en.srt
17.7 kB
08 VIP_ AWS Forecast/005 Code pt 2 (Uploading the data to S3).en.srt
17.5 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/007 ANN Code Preparation.en.srt
17.3 kB
04 ARIMA/014 Auto ARIMA in Code.en.srt
16.7 kB
01 Welcome/002 Where to Get the Code.en.srt
16.4 kB
02 Time Series Basics/008 Forecasting Metrics.en.srt
16.2 kB
02 Time Series Basics/009 Financial Time Series Primer.en.srt
15.9 kB
03 Exponential Smoothing and ETS Methods/011 Holt-Winters (Theory).en.srt
15.9 kB
05 Machine Learning Methods/009 Machine Learning for Time Series Forecasting in Code (pt 1).en.srt
15.9 kB
12 Effective Learning Strategies for Machine Learning FAQ/001 How to Succeed in this Course (Long Version).en.srt
15.5 kB
03 Exponential Smoothing and ETS Methods/005 EWMA Theory.en.srt
15.5 kB
03 Exponential Smoothing and ETS Methods/008 SES Code.en.srt
15.5 kB
10 Setting Up Your Environment FAQ/002 How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.en.srt
15.2 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/016 How Does a Neural Network _Learn__.en.srt
15.1 kB
11 Extra Help With Python Coding for Beginners FAQ/003 Proof that using Jupyter Notebook is the same as not using it.en.srt
14.9 kB
03 Exponential Smoothing and ETS Methods/007 SES Theory.en.srt
14.7 kB
04 ARIMA/004 ARIMA.en.srt
14.7 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/013 Human Activity Recognition_ Multi-Input ANN.en.srt
14.3 kB
04 ARIMA/013 Model Selection, AIC and BIC.en.srt
14.3 kB
11 Extra Help With Python Coding for Beginners FAQ/002 How to Code by Yourself (part 2).en.srt
14.0 kB
05 Machine Learning Methods/006 Machine Learning Algorithms_ Support Vector Machines.en.srt
14.0 kB
04 ARIMA/008 ACF (Autocorrelation Function).en.srt
13.8 kB
08 VIP_ AWS Forecast/004 Code pt 1 (Getting and Transforming the Data).en.srt
13.7 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/002 The Neuron.en.srt
13.4 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/003 Forward Propagation.en.srt
13.2 kB
03 Exponential Smoothing and ETS Methods/013 Walk-Forward Validation.en.srt
13.1 kB
04 ARIMA/012 Auto ARIMA and SARIMAX.en.srt
13.0 kB
08 VIP_ AWS Forecast/002 Data Model.en.srt
13.0 kB
04 ARIMA/018 How to Forecast with ARIMA.en.srt
12.9 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/004 The Geometrical Picture.en.srt
12.5 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/006 Multiclass Classification.en.srt
11.8 kB
04 ARIMA/007 Stationarity in Code.en.srt
11.4 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/008 Feedforward ANN for Time Series Forecasting Code.en.srt
11.4 kB
08 VIP_ AWS Forecast/001 AWS Forecast Section Introduction.en.srt
11.3 kB
04 ARIMA/017 Auto ARIMA in Code (Sales Data).en.srt
10.8 kB
05 Machine Learning Methods/003 Autoregressive Machine Learning Models.en.srt
10.8 kB
03 Exponential Smoothing and ETS Methods/009 Holt's Linear Trend Model (Theory).en.srt
10.7 kB
03 Exponential Smoothing and ETS Methods/014 Walk-Forward Validation in Code.en.srt
10.7 kB
05 Machine Learning Methods/008 Extrapolation and Stock Prices.en.srt
10.4 kB
03 Exponential Smoothing and ETS Methods/006 EWMA Code.en.srt
10.2 kB
03 Exponential Smoothing and ETS Methods/012 Holt-Winters (Code).en.srt
10.2 kB
03 Exponential Smoothing and ETS Methods/004 SMA Code.en.srt
10.1 kB
04 ARIMA/010 ACF and PACF in Code (pt 1).en.srt
9.9 kB
08 VIP_ AWS Forecast/006 Code pt 3 (Building your Model).en.srt
9.8 kB
02 Time Series Basics/012 The Naive Forecast and the Importance of Baselines.en.srt
9.8 kB
05 Machine Learning Methods/007 Machine Learning Algorithms_ Random Forest.en.srt
9.6 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/009 Feedforward ANN for Stock Return and Price Predictions Code.en.srt
9.6 kB
05 Machine Learning Methods/005 Machine Learning Algorithms_ Logistic Regression.en.srt
9.6 kB
02 Time Series Basics/005 Types of Tasks.en.srt
9.5 kB
08 VIP_ AWS Forecast/007 Code pt 4 (Generating and Evaluating the Forecast).en.srt
9.2 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/012 Human Activity Recognition_ Data Exploration.en.srt
9.1 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/004 What is Convolution_ (Weight Sharing).en.srt
9.1 kB
02 Time Series Basics/013 Naive Forecast and Forecasting Metrics in Code.en.srt
8.8 kB
02 Time Series Basics/006 Power, Log, and Box-Cox Transformations.en.srt
8.6 kB
04 ARIMA/011 ACF and PACF in Code (pt 2).en.srt
8.5 kB
04 ARIMA/009 PACF (Partial Autocorrelation Funtion).en.srt
8.5 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/008 CNN Code Preparation.en.srt
8.4 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/011 Human Activity Recognition_ Code Preparation.en.srt
8.4 kB
13 Appendix _ FAQ Finale/002 BONUS_ Where to get discount coupons and FREE deep learning material.en.srt
8.3 kB
02 Time Series Basics/004 Why Do We Care About Shapes_.en.srt
8.1 kB
01 Welcome/001 Introduction and Outline.en.srt
8.0 kB
04 ARIMA/016 ACF and PACF for Stock Returns.en.srt
8.0 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/010 Human Activity Recognition Dataset.en.srt
7.7 kB
03 Exponential Smoothing and ETS Methods/002 Exponential Smoothing Intuition for Beginners.en.srt
7.7 kB
04 ARIMA/001 ARIMA Section Introduction.en.srt
7.6 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/003 What is Convolution_ (Pattern-Matching).en.srt
7.3 kB
02 Time Series Basics/007 Power, Log, and Box-Cox Transformations in Code.en.srt
7.2 kB
08 VIP_ AWS Forecast/009 AWS Forecast Section Summary.en.srt
7.2 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/009 CNN for Time Series Forecasting in Code.en.srt
7.2 kB
05 Machine Learning Methods/011 Machine Learning for Time Series Forecasting in Code (pt 2).en.srt
7.1 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/010 CNN for Human Activity Recognition.en.srt
6.8 kB
05 Machine Learning Methods/004 Machine Learning Algorithms_ Linear Regression.en.srt
6.8 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/006 Convolution for Time Series and ARIMA.en.srt
6.8 kB
02 Time Series Basics/002 What is a Time Series_.en.srt
6.7 kB
03 Exponential Smoothing and ETS Methods/016 Application_ Stock Predictions.en.srt
6.7 kB
01 Welcome/003 Warmup (Optional).en.srt
6.4 kB
02 Time Series Basics/001 Time Series Basics Section Introduction.en.srt
6.2 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/014 Human Activity Recognition_ Feature-Based Model.en.srt
5.9 kB
03 Exponential Smoothing and ETS Methods/019 Exponential Smoothing Section Summary.en.srt
5.7 kB
05 Machine Learning Methods/012 Application_ Sales Data.en.srt
5.7 kB
05 Machine Learning Methods/001 Machine Learning Section Introduction.en.srt
5.7 kB
05 Machine Learning Methods/010 Forecasting with Differencing.en.srt
5.6 kB
03 Exponential Smoothing and ETS Methods/015 Application_ Sales Data.en.srt
5.5 kB
03 Exponential Smoothing and ETS Methods/003 SMA Theory.en.srt
5.1 kB
05 Machine Learning Methods/013 Application_ Predicting Stock Prices and Returns.en.srt
5.1 kB
08 VIP_ AWS Forecast/003 Creating an IAM Role.en.srt
5.1 kB
02 Time Series Basics/015 Suggestion Box.en.srt
5.0 kB
04 ARIMA/019 ARIMA Section Summary.en.srt
4.8 kB
05 Machine Learning Methods/014 Application_ Predicting Stock Movements.en.srt
4.8 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/001 Artificial Neural Networks_ Section Introduction.en.srt
4.6 kB
02 Time Series Basics/014 Time Series Basics Section Summary.en.srt
4.6 kB
03 Exponential Smoothing and ETS Methods/017 SMA Application_ COVID-19 Counting.en.srt
4.5 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/011 CNN Section Summary.en.srt
4.4 kB
04 ARIMA/003 Moving Average Models - MA(q).en.srt
4.4 kB
07 Deep Learning_ Convolutional Neural Networks (CNN)/001 CNN Section Introduction.en.srt
4.3 kB
03 Exponential Smoothing and ETS Methods/001 Exponential Smoothing Section Introduction.en.srt
4.1 kB
13 Appendix _ FAQ Finale/001 What is the Appendix_.en.srt
4.0 kB
08 VIP_ AWS Forecast/008 AWS Forecast Exercise.en.srt
3.9 kB
03 Exponential Smoothing and ETS Methods/010 Holt's Linear Trend Model (Code).en.srt
3.7 kB
02 Time Series Basics/010 Price Simulations in Code.en.srt
3.6 kB
02 Time Series Basics/003 Modeling vs. Predicting.en.srt
3.5 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/015 Human Activity Recognition_ Combined Model.en.srt
3.2 kB
05 Machine Learning Methods/015 Machine Learning Section Summary.en.srt
3.2 kB
03 Exponential Smoothing and ETS Methods/018 SMA Application_ Algorithmic Trading.en.srt
3.0 kB
06 Deep Learning_ Artificial Neural Networks (ANN)/017 Artificial Neural Networks_ Section Summary.en.srt
3.0 kB
09 Extras/001 Colab Notebooks.html
977 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
01 Welcome/external-assets-links.txt
80 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>