搜索
GetFreeCourses.Co-Udemy-Data Science Transformers for Natural Language Processing
磁力链接/BT种子名称
GetFreeCourses.Co-Udemy-Data Science Transformers for Natural Language Processing
磁力链接/BT种子简介
种子哈希:
0c83610b6bd36929682b5042a3507e6c15d4ade3
文件大小:
5.65G
已经下载:
4556
次
下载速度:
极快
收录时间:
2024-01-02
最近下载:
2024-12-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:0C83610B6BD36929682B5042A3507E6C15D4ADE3
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
ちっか
空姐的美
耳舐め asmr
大神对白
打电话入神
网红女奴
jpop
yokohama
大奶美女身材高挑大长腿
维纳
fc2-ppv-4543328
贞操锁绿奴
的表情
fc2ppv+rar
上海留学生小
aavesham 2024
偷偷合集
1545 black
需要保持镇定的情侣面前
韩漫寄宿日记
armored
inversion
常州
teenfidelity.
(上)
同学
技师对白
清纯写真
backroommilf
磁吸
文件列表
4. Fine-Tuning (Intermediate)/9. Fine-Tuning Sentiment Analysis in Python.mp4
137.1 MB
7. Question-Answering (Advanced)/13. From Logits to Answers in Python.mp4
126.5 MB
9. Implement Transformers From Scratch (Advanced)/10. How to Train a Causal Language Model From Scratch.mp4
126.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/14. POS Tagging & Custom Datasets (Solution).mp4
120.7 MB
9. Implement Transformers From Scratch (Advanced)/13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).mp4
113.9 MB
13. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
113.4 MB
4. Fine-Tuning (Intermediate)/10. Fine-Tuning Transformers with Custom Dataset.mp4
112.0 MB
7. Question-Answering (Advanced)/7. Aligning the Targets in Python.mp4
108.4 MB
3. Beginner's Corner/4. Sentiment Analysis in Python.mp4
101.8 MB
7. Question-Answering (Advanced)/12. From Logits to Answers.mp4
100.2 MB
9. Implement Transformers From Scratch (Advanced)/12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).mp4
99.8 MB
9. Implement Transformers From Scratch (Advanced)/11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).mp4
98.6 MB
9. Implement Transformers From Scratch (Advanced)/3. How to Implement Multihead Attention From Scratch.mp4
97.9 MB
9. Implement Transformers From Scratch (Advanced)/7. Train and Evaluate Encoder From Scratch.mp4
93.7 MB
3. Beginner's Corner/18. Zero-Shot Classification in Python.mp4
91.9 MB
3. Beginner's Corner/6. Text Generation in Python.mp4
90.5 MB
4. Fine-Tuning (Intermediate)/4. Models and Tokenizers in Python.mp4
88.4 MB
13. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
83.5 MB
3. Beginner's Corner/2. From RNNs to Attention and Transformers - Intuition.mp4
82.0 MB
7. Question-Answering (Advanced)/9. Applying the Tokenizer in Python.mp4
80.2 MB
7. Question-Answering (Advanced)/5. Using the Tokenizer in Python.mp4
75.6 MB
12. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).mp4
75.3 MB
3. Beginner's Corner/10. Named Entity Recognition (NER) in Python.mp4
73.7 MB
12. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.mp4
72.8 MB
7. Question-Answering (Advanced)/6. Aligning the Targets.mp4
72.4 MB
3. Beginner's Corner/7. Masked Language Modeling (Article Spinner).mp4
70.6 MB
3. Beginner's Corner/8. Masked Language Modeling (Article Spinner) in Python.mp4
70.3 MB
4. Fine-Tuning (Intermediate)/3. Models and Tokenizers.mp4
67.7 MB
8. Transformers and Attention Theory (Advanced)/3. Self-Attention & Scaled Dot-Product Attention.mp4
67.4 MB
3. Beginner's Corner/14. Neural Machine Translation in Python.mp4
67.2 MB
2. Getting Setup/2. How to use Github & Extra Coding Tips (Optional).mp4
67.0 MB
4. Fine-Tuning (Intermediate)/2. Text Preprocessing and Tokenization Review.mp4
66.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/6. Target Alignment (Code).mp4
64.6 MB
4. Fine-Tuning (Intermediate)/5. Transfer Learning & Fine-Tuning (pt 1).mp4
62.7 MB
4. Fine-Tuning (Intermediate)/8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.mp4
61.3 MB
3. Beginner's Corner/5. Text Generation.mp4
59.9 MB
4. Fine-Tuning (Intermediate)/7. Transfer Learning & Fine-Tuning (pt 3).mp4
59.4 MB
4. Fine-Tuning (Intermediate)/13. Fine-Tuning Transformers with Multiple Inputs in Python.mp4
59.4 MB
3. Beginner's Corner/3. Sentiment Analysis.mp4
56.2 MB
11. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.mp4
55.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/7. Model Inputs (Code).mp4
53.9 MB
1. Welcome/2. Outline.mp4
53.1 MB
3. Beginner's Corner/1. Beginner's Corner Section Introduction.mp4
52.2 MB
8. Transformers and Attention Theory (Advanced)/10. Decoder Architecture.mp4
52.0 MB
4. Fine-Tuning (Intermediate)/6. Transfer Learning & Fine-Tuning (pt 2).mp4
51.7 MB
12. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).mp4
51.5 MB
3. Beginner's Corner/16. Question Answering in Python.mp4
50.5 MB
3. Beginner's Corner/12. Text Summarization in Python.mp4
47.7 MB
7. Question-Answering (Advanced)/8. Applying the Tokenizer.mp4
47.2 MB
7. Question-Answering (Advanced)/15. Computing Metrics in Python.mp4
46.4 MB
11. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
45.7 MB
2. Getting Setup/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4
45.7 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/9. Translation Metrics (BLEU Score & BERT Score) (Code).mp4
45.4 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/4. Target Alignment (Code Preparation).mp4
45.1 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/3. Data & Tokenizer (Code).mp4
44.8 MB
2. Getting Setup/5. How to Succeed in This Course.mp4
43.2 MB
4. Fine-Tuning (Intermediate)/11. Hugging Face AutoConfig.mp4
42.8 MB
3. Beginner's Corner/15. Question Answering.mp4
42.0 MB
14. Appendix FAQ Finale/2. BONUS.mp4
41.9 MB
7. Question-Answering (Advanced)/3. Exploring the Dataset (SQuAD) in Python.mp4
41.8 MB
8. Transformers and Attention Theory (Advanced)/11. Encoder-Decoder Architecture.mp4
41.6 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/10. Metrics (Code).mp4
41.2 MB
9. Implement Transformers From Scratch (Advanced)/8. How to Implement Causal Self-Attention From Scratch.mp4
41.1 MB
13. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
7. Question-Answering (Advanced)/17. Train and Evaluate in Python.mp4
39.6 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/5. Aside Seq2Seq Basics (Optional).mp4
38.9 MB
8. Transformers and Attention Theory (Advanced)/2. Basic Self-Attention.mp4
38.8 MB
9. Implement Transformers From Scratch (Advanced)/5. How to Implement Positional Encoding From Scratch.mp4
37.6 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/1. Token Classification Section Introduction.mp4
37.6 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/11. Train & Evaluate (Code).mp4
37.5 MB
1. Welcome/1. Introduction.mp4
36.3 MB
7. Question-Answering (Advanced)/4. Using the Tokenizer.mp4
36.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/4. Data & Tokenizer (Code).mp4
35.8 MB
8. Transformers and Attention Theory (Advanced)/6. Multi-Head Attention.mp4
35.3 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/9. Metrics (Code Preparation).mp4
35.1 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/6. Model Inputs (Code Preparation).mp4
34.0 MB
8. Transformers and Attention Theory (Advanced)/13. GPT.mp4
32.7 MB
3. Beginner's Corner/17. Zero-Shot Classification.mp4
31.6 MB
8. Transformers and Attention Theory (Advanced)/14. GPT-2.mp4
31.1 MB
8. Transformers and Attention Theory (Advanced)/7. Transformer Block.mp4
30.9 MB
8. Transformers and Attention Theory (Advanced)/8. Positional Encodings.mp4
30.4 MB
4. Fine-Tuning (Intermediate)/12. Fine-Tuning with Multiple Inputs (Textual Entailment).mp4
29.8 MB
3. Beginner's Corner/13. Neural Machine Translation.mp4
29.5 MB
9. Implement Transformers From Scratch (Advanced)/9. How to Implement a Transformer Decoder (GPT) From Scratch.mp4
28.6 MB
3. Beginner's Corner/20. Suggestion Box.mp4
28.5 MB
9. Implement Transformers From Scratch (Advanced)/6. How to Implement Transformer Encoder From Scratch.mp4
28.3 MB
2. Getting Setup/4. Are You Beginner, Intermediate, or Advanced All are OK!.mp4
28.0 MB
9. Implement Transformers From Scratch (Advanced)/1. Implementation Section Introduction.mp4
26.8 MB
8. Transformers and Attention Theory (Advanced)/9. Encoder Architecture.mp4
26.4 MB
7. Question-Answering (Advanced)/14. Computing Metrics.mp4
26.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/2. Data & Tokenizer (Code Preparation).mp4
25.7 MB
3. Beginner's Corner/11. Text Summarization.mp4
25.3 MB
8. Transformers and Attention Theory (Advanced)/15. GPT-3.mp4
25.2 MB
8. Transformers and Attention Theory (Advanced)/12. BERT.mp4
24.4 MB
3. Beginner's Corner/19. Beginner's Corner Section Summary.mp4
24.3 MB
9. Implement Transformers From Scratch (Advanced)/2. Encoder Implementation Plan & Outline.mp4
24.1 MB
7. Question-Answering (Advanced)/11. Question-Answering Metrics in Python.mp4
24.0 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/12. Model and Trainer (Code).mp4
23.3 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/7. Data Collator (Code Preparation).mp4
23.2 MB
3. Beginner's Corner/9. Named Entity Recognition (NER).mp4
23.1 MB
8. Transformers and Attention Theory (Advanced)/4. Attention Efficiency.mp4
22.6 MB
7. Question-Answering (Advanced)/1. Question-Answering Section Introduction.mp4
22.6 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/13. POS Tagging & Custom Datasets (Exercise Prompt).mp4
22.4 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/10. Train & Evaluate (Code Preparation).mp4
22.3 MB
8. Transformers and Attention Theory (Advanced)/16. Theory Section Summary.mp4
22.0 MB
4. Fine-Tuning (Intermediate)/1. Fine-Tuning Section Introduction.mp4
21.1 MB
7. Question-Answering (Advanced)/2. Exploring the Dataset (SQuAD).mp4
21.1 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/2. Data & Tokenizer (Code Preparation).mp4
20.3 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).mp4
20.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/5. Create Tokenized Dataset (Code Preparation).mp4
19.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/1. Translation Section Introduction.mp4
19.1 MB
13. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4
18.7 MB
2. Getting Setup/3. Where to get the code, notebooks, and data.mp4
18.6 MB
8. Transformers and Attention Theory (Advanced)/1. Theory Section Introduction.mp4
18.0 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/8. Data Collator (Code).mp4
17.8 MB
7. Question-Answering (Advanced)/10. Question-Answering Metrics.mp4
17.3 MB
14. Appendix FAQ Finale/1. What is the Appendix.mp4
17.2 MB
4. Fine-Tuning (Intermediate)/14. Fine-Tuning Section Summary.mp4
16.5 MB
8. Transformers and Attention Theory (Advanced)/5. Attention Mask.mp4
15.8 MB
9. Implement Transformers From Scratch (Advanced)/4. How to Implement the Transformer Block From Scratch.mp4
15.7 MB
7. Question-Answering (Advanced)/18. Question-Answering Section Summary.mp4
14.9 MB
7. Question-Answering (Advanced)/16. Train and Evaluate.mp4
14.8 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/11. Model and Trainer (Code Preparation).mp4
11.3 MB
9. Implement Transformers From Scratch (Advanced)/14. Implementation Section Summary.mp4
11.1 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/12. Translation Section Summary.mp4
10.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/15. Token Classification Section Summary.mp4
8.4 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/3. Things Move Fast.mp4
6.4 MB
13. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
33.5 kB
7. Question-Answering (Advanced)/12. From Logits to Answers.srt
28.4 kB
3. Beginner's Corner/2. From RNNs to Attention and Transformers - Intuition.srt
24.6 kB
8. Transformers and Attention Theory (Advanced)/3. Self-Attention & Scaled Dot-Product Attention.srt
24.5 kB
13. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
24.5 kB
12. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).srt
23.7 kB
3. Beginner's Corner/4. Sentiment Analysis in Python.srt
21.6 kB
4. Fine-Tuning (Intermediate)/3. Models and Tokenizers.srt
21.1 kB
11. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.srt
20.6 kB
9. Implement Transformers From Scratch (Advanced)/10. How to Train a Causal Language Model From Scratch.srt
20.6 kB
7. Question-Answering (Advanced)/6. Aligning the Targets.srt
19.8 kB
4. Fine-Tuning (Intermediate)/9. Fine-Tuning Sentiment Analysis in Python.srt
19.7 kB
7. Question-Answering (Advanced)/7. Aligning the Targets in Python.srt
19.3 kB
4. Fine-Tuning (Intermediate)/2. Text Preprocessing and Tokenization Review.srt
18.7 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/14. POS Tagging & Custom Datasets (Solution).srt
18.3 kB
9. Implement Transformers From Scratch (Advanced)/13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).srt
17.9 kB
13. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
17.6 kB
7. Question-Answering (Advanced)/13. From Logits to Answers in Python.srt
17.3 kB
4. Fine-Tuning (Intermediate)/8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.srt
17.3 kB
3. Beginner's Corner/18. Zero-Shot Classification in Python.srt
16.8 kB
3. Beginner's Corner/7. Masked Language Modeling (Article Spinner).srt
16.5 kB
11. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
16.2 kB
2. Getting Setup/2. How to use Github & Extra Coding Tips (Optional).srt
16.1 kB
9. Implement Transformers From Scratch (Advanced)/3. How to Implement Multihead Attention From Scratch.srt
15.9 kB
3. Beginner's Corner/5. Text Generation.srt
15.8 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/5. Aside Seq2Seq Basics (Optional).srt
15.6 kB
4. Fine-Tuning (Intermediate)/10. Fine-Tuning Transformers with Custom Dataset.srt
15.5 kB
3. Beginner's Corner/1. Beginner's Corner Section Introduction.srt
15.4 kB
9. Implement Transformers From Scratch (Advanced)/12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).srt
15.3 kB
12. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.srt
15.3 kB
3. Beginner's Corner/6. Text Generation in Python.srt
15.3 kB
8. Transformers and Attention Theory (Advanced)/10. Decoder Architecture.srt
15.0 kB
4. Fine-Tuning (Intermediate)/6. Transfer Learning & Fine-Tuning (pt 2).srt
14.9 kB
3. Beginner's Corner/3. Sentiment Analysis.srt
14.9 kB
13. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt
14.9 kB
4. Fine-Tuning (Intermediate)/4. Models and Tokenizers in Python.srt
14.5 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/4. Target Alignment (Code Preparation).srt
14.1 kB
4. Fine-Tuning (Intermediate)/7. Transfer Learning & Fine-Tuning (pt 3).srt
14.0 kB
1. Welcome/2. Outline.srt
13.8 kB
9. Implement Transformers From Scratch (Advanced)/11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).srt
13.7 kB
12. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).srt
13.6 kB
7. Question-Answering (Advanced)/5. Using the Tokenizer in Python.srt
13.4 kB
2. Getting Setup/5. How to Succeed in This Course.srt
13.3 kB
4. Fine-Tuning (Intermediate)/5. Transfer Learning & Fine-Tuning (pt 1).srt
13.0 kB
8. Transformers and Attention Theory (Advanced)/2. Basic Self-Attention.srt
12.7 kB
9. Implement Transformers From Scratch (Advanced)/7. Train and Evaluate Encoder From Scratch.srt
12.6 kB
7. Question-Answering (Advanced)/8. Applying the Tokenizer.srt
12.6 kB
7. Question-Answering (Advanced)/9. Applying the Tokenizer in Python.srt
12.3 kB
2. Getting Setup/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt
12.3 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/6. Target Alignment (Code).srt
12.1 kB
8. Transformers and Attention Theory (Advanced)/11. Encoder-Decoder Architecture.srt
11.6 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/6. Model Inputs (Code Preparation).srt
11.5 kB
7. Question-Answering (Advanced)/4. Using the Tokenizer.srt
11.1 kB
4. Fine-Tuning (Intermediate)/12. Fine-Tuning with Multiple Inputs (Textual Entailment).srt
10.6 kB
3. Beginner's Corner/15. Question Answering.srt
10.3 kB
3. Beginner's Corner/14. Neural Machine Translation in Python.srt
10.0 kB
3. Beginner's Corner/10. Named Entity Recognition (NER) in Python.srt
9.9 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/1. Token Classification Section Introduction.srt
9.8 kB
8. Transformers and Attention Theory (Advanced)/7. Transformer Block.srt
9.8 kB
8. Transformers and Attention Theory (Advanced)/8. Positional Encodings.srt
9.7 kB
8. Transformers and Attention Theory (Advanced)/6. Multi-Head Attention.srt
9.6 kB
3. Beginner's Corner/8. Masked Language Modeling (Article Spinner) in Python.srt
9.5 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/3. Data & Tokenizer (Code).srt
9.4 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/9. Metrics (Code Preparation).srt
9.4 kB
8. Transformers and Attention Theory (Advanced)/13. GPT.srt
8.9 kB
8. Transformers and Attention Theory (Advanced)/9. Encoder Architecture.srt
8.8 kB
9. Implement Transformers From Scratch (Advanced)/1. Implementation Section Introduction.srt
8.7 kB
9. Implement Transformers From Scratch (Advanced)/2. Encoder Implementation Plan & Outline.srt
8.6 kB
8. Transformers and Attention Theory (Advanced)/14. GPT-2.srt
8.5 kB
3. Beginner's Corner/13. Neural Machine Translation.srt
8.3 kB
14. Appendix FAQ Finale/2. BONUS.srt
8.1 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/7. Model Inputs (Code).srt
8.0 kB
3. Beginner's Corner/17. Zero-Shot Classification.srt
7.8 kB
3. Beginner's Corner/12. Text Summarization in Python.srt
7.7 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/2. Data & Tokenizer (Code Preparation).srt
7.7 kB
2. Getting Setup/4. Are You Beginner, Intermediate, or Advanced All are OK!.srt
7.3 kB
3. Beginner's Corner/11. Text Summarization.srt
7.3 kB
3. Beginner's Corner/16. Question Answering in Python.srt
7.1 kB
8. Transformers and Attention Theory (Advanced)/1. Theory Section Introduction.srt
7.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/13. POS Tagging & Custom Datasets (Exercise Prompt).srt
7.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/2. Data & Tokenizer (Code Preparation).srt
7.0 kB
7. Question-Answering (Advanced)/14. Computing Metrics.srt
6.8 kB
4. Fine-Tuning (Intermediate)/13. Fine-Tuning Transformers with Multiple Inputs in Python.srt
6.8 kB
8. Transformers and Attention Theory (Advanced)/15. GPT-3.srt
6.7 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/4. Data & Tokenizer (Code).srt
6.6 kB
3. Beginner's Corner/19. Beginner's Corner Section Summary.srt
6.5 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/1. Translation Section Introduction.srt
6.5 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/9. Translation Metrics (BLEU Score & BERT Score) (Code).srt
6.5 kB
8. Transformers and Attention Theory (Advanced)/16. Theory Section Summary.srt
6.4 kB
9. Implement Transformers From Scratch (Advanced)/5. How to Implement Positional Encoding From Scratch.srt
6.4 kB
3. Beginner's Corner/9. Named Entity Recognition (NER).srt
6.4 kB
4. Fine-Tuning (Intermediate)/1. Fine-Tuning Section Introduction.srt
6.3 kB
8. Transformers and Attention Theory (Advanced)/12. BERT.srt
6.3 kB
7. Question-Answering (Advanced)/1. Question-Answering Section Introduction.srt
6.3 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/10. Metrics (Code).srt
6.2 kB
7. Question-Answering (Advanced)/15. Computing Metrics in Python.srt
6.2 kB
4. Fine-Tuning (Intermediate)/11. Hugging Face AutoConfig.srt
6.2 kB
8. Transformers and Attention Theory (Advanced)/4. Attention Efficiency.srt
6.0 kB
7. Question-Answering (Advanced)/2. Exploring the Dataset (SQuAD).srt
5.8 kB
9. Implement Transformers From Scratch (Advanced)/8. How to Implement Causal Self-Attention From Scratch.srt
5.8 kB
1. Welcome/1. Introduction.srt
5.8 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/10. Train & Evaluate (Code Preparation).srt
5.8 kB
7. Question-Answering (Advanced)/18. Question-Answering Section Summary.srt
5.2 kB
8. Transformers and Attention Theory (Advanced)/5. Attention Mask.srt
5.2 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/5. Create Tokenized Dataset (Code Preparation).srt
5.1 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).srt
5.1 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/7. Data Collator (Code Preparation).srt
5.0 kB
9. Implement Transformers From Scratch (Advanced)/9. How to Implement a Transformer Decoder (GPT) From Scratch.srt
5.0 kB
3. Beginner's Corner/20. Suggestion Box.srt
4.9 kB
9. Implement Transformers From Scratch (Advanced)/6. How to Implement Transformer Encoder From Scratch.srt
4.9 kB
7. Question-Answering (Advanced)/10. Question-Answering Metrics.srt
4.8 kB
7. Question-Answering (Advanced)/17. Train and Evaluate in Python.srt
4.8 kB
7. Question-Answering (Advanced)/3. Exploring the Dataset (SQuAD) in Python.srt
4.8 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/11. Train & Evaluate (Code).srt
4.7 kB
2. Getting Setup/3. Where to get the code, notebooks, and data.srt
4.4 kB
4. Fine-Tuning (Intermediate)/14. Fine-Tuning Section Summary.srt
4.2 kB
14. Appendix FAQ Finale/1. What is the Appendix.srt
4.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/8. Data Collator (Code).srt
3.8 kB
7. Question-Answering (Advanced)/16. Train and Evaluate.srt
3.4 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/12. Translation Section Summary.srt
3.4 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/12. Model and Trainer (Code).srt
3.2 kB
7. Question-Answering (Advanced)/11. Question-Answering Metrics in Python.srt
3.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/11. Model and Trainer (Code Preparation).srt
3.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/15. Token Classification Section Summary.srt
2.7 kB
9. Implement Transformers From Scratch (Advanced)/4. How to Implement the Transformer Block From Scratch.srt
2.4 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/3. Things Move Fast.srt
2.4 kB
9. Implement Transformers From Scratch (Advanced)/14. Implementation Section Summary.srt
2.0 kB
10. Extras/1. Data Links.html
256 Bytes
How you can help GetFreeCourses.Co.txt
182 Bytes
2. Getting Setup/1.1 Data Links.html
157 Bytes
2. Getting Setup/3.2 Data Links.html
157 Bytes
2. Getting Setup/1.2 Github Link.html
145 Bytes
2. Getting Setup/3.3 Github Link.html
145 Bytes
2. Getting Setup/3.1 Code Link.html
125 Bytes
11. Setting Up Your Environment FAQ/GetFreeCourses.Co.url
116 Bytes
13. Effective Learning Strategies for Machine Learning FAQ/GetFreeCourses.Co.url
116 Bytes
4. Fine-Tuning (Intermediate)/GetFreeCourses.Co.url
116 Bytes
7. Question-Answering (Advanced)/GetFreeCourses.Co.url
116 Bytes
Download Paid Udemy Courses For Free.url
116 Bytes
GetFreeCourses.Co.url
116 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>