搜索
[FreeCourseLab.com] Udemy - Machine Learning & Deep Learning in Python & R
磁力链接/BT种子名称
[FreeCourseLab.com] Udemy - Machine Learning & Deep Learning in Python & R
磁力链接/BT种子简介
种子哈希:
0d7e0ae068c5cda5bae29a0b8a765c2ff2651243
文件大小:
13.15G
已经下载:
789
次
下载速度:
极快
收录时间:
2024-01-27
最近下载:
2024-11-13
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:0D7E0AE068C5CDA5BAE29A0B8A765C2FF2651243
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
果肉
arabic bluray
2048
ps2 fr
rebdb-262
幼幼欧美
女医生
sperm mania
晨曦战队
裸血
裙子地铁
oppenheimer 2160p
偷拍情侣
a little something extra
fc2-ppv-1837748
1975.8
aftersun
楓まい
电影
豪华套房约炮
野蛮
tom sawyer1936
庆假期民宿酒店偷拍穿黑丝小腿袜颜值靓
legend of vox machina
胡子哥少妇
defloration. 24
bloody
4548583
巨乳肥臀渔网
林思
文件列表
27 ANN in R/008 Saving - Restoring Models and Using Callbacks.mp4
226.5 MB
37 Time Series - Preprocessing in Python/003 Time Series - Visualization in Python.mp4
173.2 MB
18 Ensemble technique 3 - Boosting/007 XGBoosting in R.mp4
169.1 MB
26 ANN in Python/009 Building Neural Network for Regression Problem.mp4
163.5 MB
26 ANN in Python/011 Saving - Restoring Models and Using Callbacks.mp4
158.9 MB
23 Creating Support Vector Machine Model in R/004 Classification SVM model using Linear Kernel.mp4
145.9 MB
27 ANN in R/006 Building Regression Model with Functional API.mp4
137.5 MB
27 ANN in R/003 Building,Compiling and Training.mp4
137.1 MB
34 Transfer Learning _ Basics/006 Project - Transfer Learning - VGG16.mp4
135.4 MB
07 Linear Regression/020 Ridge regression and Lasso in Python.mp4
135.1 MB
25 Neural Networks - Stacking cells to create network/003 Back Propagation.mp4
128.1 MB
38 Time Series - Important Concepts/005 Differencing in Python.mp4
118.5 MB
37 Time Series - Preprocessing in Python/005 Time Series - Feature Engineering in Python.mp4
118.2 MB
27 ANN in R/002 Data Normalization and Test-Train Split.mp4
117.2 MB
05 Introduction to Machine Learning/001 Introduction to Machine Learning.mp4
114.5 MB
37 Time Series - Preprocessing in Python/001 Data Loading in Python.mp4
114.1 MB
23 Creating Support Vector Machine Model in R/008 SVM based Regression Model in R.mp4
111.3 MB
07 Linear Regression/021 Ridge regression and Lasso in R.mp4
108.5 MB
14 Simple Decision Trees/013 Building a Regression Tree in R.mp4
108.3 MB
35 Transfer Learning in R/001 Project - Transfer Learning - VGG16 (Implementation).mp4
106.5 MB
37 Time Series - Preprocessing in Python/007 Time Series - Upsampling and Downsampling in Python.mp4
105.6 MB
06 Data Preprocessing/016 Bi-variate analysis and Variable transformation.mp4
105.3 MB
27 ANN in R/004 Evaluating and Predicting.mp4
104.1 MB
06 Data Preprocessing/008 EDD in R.mp4
101.7 MB
03 Setting up R Studio and R crash course/007 Creating Barplots in R.mp4
101.4 MB
07 Linear Regression/003 Assessing accuracy of predicted coefficients.mp4
96.6 MB
26 ANN in Python/010 Using Functional API for complex architectures.mp4
96.6 MB
18 Ensemble technique 3 - Boosting/005 AdaBoosting in R.mp4
93.0 MB
32 Project _ Creating CNN model from scratch/001 Project in R - Data Preprocessing.mp4
92.0 MB
24 Introduction - Deep Learning/004 Python - Creating Perceptron model.mp4
90.8 MB
15 Simple Classification Tree/005 Building a classification Tree in R.mp4
89.2 MB
27 ANN in R/005 ANN with NeuralNets Package.mp4
88.5 MB
23 Creating Support Vector Machine Model in R/006 Polynomial Kernel with Hyperparameter Tuning.mp4
87.2 MB
06 Data Preprocessing/025 Correlation Matrix in R.mp4
87.2 MB
03 Setting up R Studio and R crash course/003 Packages in R.mp4
87.0 MB
15 Simple Classification Tree/004 Classification tree in Python _ Training.mp4
86.7 MB
14 Simple Decision Trees/018 Pruning a Tree in R.mp4
86.1 MB
26 ANN in Python/007 Compiling and Training the Neural Network model.mp4
85.6 MB
17 Ensemble technique 2 - Random Forests/003 Using Grid Search in Python.mp4
84.6 MB
27 ANN in R/007 Complex Architectures using Functional API.mp4
83.4 MB
26 ANN in Python/006 Building the Neural Network using Keras.mp4
83.0 MB
07 Linear Regression/017 Subset selection techniques.mp4
82.9 MB
08 Classification Models_ Data Preparation/001 The Data and the Data Dictionary.mp4
82.8 MB
08 Classification Models_ Data Preparation/004 EDD in Python.mp4
81.4 MB
16 Ensemble technique 1 - Bagging/002 Ensemble technique 1 - Bagging in Python.mp4
81.1 MB
07 Linear Regression/015 Test-Train Split in R.mp4
79.3 MB
12 K-Nearest Neighbors classifier/004 K-Nearest Neighbors classifier.mp4
79.1 MB
18 Ensemble technique 3 - Boosting/006 Ensemble technique 3c - XGBoost in Python.mp4
78.6 MB
40 Time Series - ARIMA model/003 ARIMA model in Python.mp4
78.0 MB
11 Linear Discriminant Analysis (LDA)/003 Linear Discriminant Analysis in R.mp4
78.0 MB
12 K-Nearest Neighbors classifier/003 Test-Train Split in R.mp4
77.8 MB
14 Simple Decision Trees/017 Pruning a tree in Python.mp4
77.1 MB
31 Project _ Creating CNN model from scratch in Python/003 Project - Data Preprocessing in Python.mp4
75.3 MB
30 Creating CNN model in R/003 Creating Model Architecture.mp4
75.1 MB
06 Data Preprocessing/023 Correlation Analysis.mp4
75.1 MB
06 Data Preprocessing/010 Outlier Treatment in Python.mp4
73.7 MB
26 ANN in Python/008 Evaluating performance and Predicting using Keras.mp4
73.3 MB
07 Linear Regression/010 Multiple Linear Regression in Python.mp4
73.1 MB
06 Data Preprocessing/003 The Dataset and the Data Dictionary.mp4
72.6 MB
18 Ensemble technique 3 - Boosting/003 Gradient Boosting in R.mp4
72.4 MB
30 Creating CNN model in R/005 Model Performance.mp4
71.4 MB
28 CNN - Basics/005 Channels.mp4
71.1 MB
22 Creating Support Vector Machine Model in Python/007 SVM based Regression Model in Python.mp4
70.9 MB
30 Creating CNN model in R/002 Data Preprocessing.mp4
70.3 MB
08 Classification Models_ Data Preparation/005 EDD in R.mp4
69.7 MB
41 Time Series - SARIMA model/002 SARIMA model in Python.mp4
69.4 MB
31 Project _ Creating CNN model from scratch in Python/004 Project - Training CNN model in Python.mp4
69.2 MB
04 Basics of Statistics/003 Describing data Graphically.mp4
68.6 MB
02 Setting up Python and Jupyter Notebook/003 Opening Jupyter Notebook.mp4
68.4 MB
12 K-Nearest Neighbors classifier/007 K-Nearest Neighbors in R.mp4
68.0 MB
02 Setting up Python and Jupyter Notebook/006 Strings in Python_ Python Basics.mp4
67.6 MB
22 Creating Support Vector Machine Model in Python/011 SVM Based classification model.mp4
67.2 MB
35 Transfer Learning in R/002 Project - Transfer Learning - VGG16 (Performance).mp4
67.2 MB
37 Time Series - Preprocessing in Python/002 Time Series - Visualization Basics.mp4
66.8 MB
07 Linear Regression/018 Subset selection in R.mp4
66.6 MB
07 Linear Regression/005 Simple Linear Regression in Python.mp4
66.5 MB
36 Time Series Analysis and Forecasting/005 Time Series - Basic Notations.mp4
65.5 MB
07 Linear Regression/011 Multiple Linear Regression in R.mp4
65.4 MB
25 Neural Networks - Stacking cells to create network/004 Some Important Concepts.mp4
65.2 MB
06 Data Preprocessing/007 EDD in Python.mp4
64.8 MB
26 ANN in Python/012 Hyperparameter Tuning.mp4
63.6 MB
23 Creating Support Vector Machine Model in R/005 Hyperparameter Tuning for Linear Kernel.mp4
63.4 MB
25 Neural Networks - Stacking cells to create network/002 Gradient Descent.mp4
63.3 MB
02 Setting up Python and Jupyter Notebook/007 Lists, Tuples and Directories_ Python Basics.mp4
63.2 MB
03 Setting up R Studio and R crash course/006 Inputting data part 3_ Importing from CSV or Text files.mp4
63.0 MB
38 Time Series - Important Concepts/003 Decomposing Time Series in Python.mp4
62.7 MB
37 Time Series - Preprocessing in Python/004 Time Series - Feature Engineering Basics.mp4
62.4 MB
16 Ensemble technique 1 - Bagging/003 Bagging in R.mp4
61.8 MB
29 Creating CNN model in Python/004 Comparison - Pooling vs Without Pooling in Python.mp4
60.8 MB
22 Creating Support Vector Machine Model in Python/012 Hyper Parameter Tuning.mp4
60.5 MB
39 Time Series - Implementation in Python/001 Test Train Split in Python.mp4
60.2 MB
23 Creating Support Vector Machine Model in R/007 Radial Kernel with Hyperparameter Tuning.mp4
59.4 MB
39 Time Series - Implementation in Python/007 Moving Average model in Python.mp4
59.4 MB
32 Project _ Creating CNN model from scratch/005 Project in R - Data Augmentation.mp4
59.1 MB
26 ANN in Python/003 Dataset for classification.mp4
58.9 MB
20 Support Vector Classifier/001 Support Vector classifiers.mp4
58.9 MB
07 Linear Regression/008 The F - statistic.mp4
58.7 MB
10 Logistic Regression/012 Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
58.4 MB
06 Data Preprocessing/018 Variable transformation in R.mp4
58.1 MB
06 Data Preprocessing/024 Correlation Analysis in Python.mp4
58.0 MB
29 Creating CNN model in Python/003 CNN model in Python - Training and results.mp4
57.8 MB
23 Creating Support Vector Machine Model in R/001 Importing Data into R.mp4
56.3 MB
39 Time Series - Implementation in Python/004 Auto Regression Model creation in Python.mp4
56.1 MB
33 Project _ Data Augmentation for avoiding overfitting/002 Project - Data Augmentation Training and Results.mp4
55.6 MB
28 CNN - Basics/004 Filters and Feature maps.mp4
55.3 MB
10 Logistic Regression/009 Creating Confusion Matrix in Python.mp4
53.7 MB
28 CNN - Basics/001 CNN Introduction.mp4
53.6 MB
23 Creating Support Vector Machine Model in R/002 Test-Train Split.mp4
52.9 MB
39 Time Series - Implementation in Python/005 Auto Regression with Walk Forward validation in Python.mp4
52.0 MB
31 Project _ Creating CNN model from scratch in Python/001 Project - Introduction.mp4
51.8 MB
10 Logistic Regression/002 Training a Simple Logistic Model in Python.mp4
50.2 MB
08 Classification Models_ Data Preparation/006 Outlier treatment in Python.mp4
49.6 MB
02 Setting up Python and Jupyter Notebook/009 Working with Pandas Library of Python.mp4
49.2 MB
28 CNN - Basics/006 PoolingLayer.mp4
49.1 MB
17 Ensemble technique 2 - Random Forests/002 Ensemble technique 2 - Random Forests in Python.mp4
49.0 MB
32 Project _ Creating CNN model from scratch/002 CNN Project in R - Structure and Compile.mp4
48.3 MB
15 Simple Classification Tree/003 Classification tree in Python _ Preprocessing.mp4
47.6 MB
22 Creating Support Vector Machine Model in Python/009 Classification model - Preprocessing.mp4
47.6 MB
25 Neural Networks - Stacking cells to create network/005 Hyperparameter.mp4
47.6 MB
07 Linear Regression/014 Test train split in Python.mp4
47.1 MB
24 Introduction - Deep Learning/002 Perceptron.mp4
46.9 MB
30 Creating CNN model in R/006 Comparison - Pooling vs Without Pooling in R.mp4
46.8 MB
08 Classification Models_ Data Preparation/013 Dummy variable creation in R.mp4
46.5 MB
26 ANN in Python/004 Normalization and Test-Train split.mp4
46.3 MB
06 Data Preprocessing/017 Variable transformation and deletion in Python.mp4
46.3 MB
06 Data Preprocessing/022 Dummy variable creation in R.mp4
46.1 MB
14 Simple Decision Trees/011 Splitting Data into Test and Train Set in R.mp4
46.1 MB
02 Setting up Python and Jupyter Notebook/008 Working with Numpy Library of Python.mp4
46.0 MB
14 Simple Decision Trees/002 Understanding a Regression Tree.mp4
45.8 MB
14 Simple Decision Trees/006 Importing the Data set into R.mp4
45.8 MB
07 Linear Regression/004 Assessing Model Accuracy_ RSE and R squared.mp4
45.7 MB
07 Linear Regression/002 Basic Equations and Ordinary Least Squares (OLS) method.mp4
45.5 MB
39 Time Series - Implementation in Python/002 Naive (Persistence) model in Python.mp4
45.5 MB
29 Creating CNN model in Python/002 CNN model in Python - structure and Compile.mp4
45.3 MB
14 Simple Decision Trees/001 Basics of Decision Trees.mp4
44.7 MB
12 K-Nearest Neighbors classifier/006 K-Nearest Neighbors in Python_ Part 2.mp4
44.4 MB
03 Setting up R Studio and R crash course/008 Creating Histograms in R.mp4
44.1 MB
07 Linear Regression/012 Test-train split.mp4
43.9 MB
13 Comparing results from 3 models/001 Understanding the results of classification models.mp4
43.7 MB
33 Project _ Data Augmentation for avoiding overfitting/001 Project - Data Augmentation Preprocessing.mp4
43.4 MB
40 Time Series - ARIMA model/001 ACF and PACF.mp4
43.2 MB
11 Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis.mp4
42.9 MB
02 Setting up Python and Jupyter Notebook/004 Introduction to Jupyter.mp4
42.9 MB
07 Linear Regression/006 Simple Linear Regression in R.mp4
42.8 MB
03 Setting up R Studio and R crash course/004 Inputting data part 1_ Inbuilt datasets of R.mp4
42.7 MB
29 Creating CNN model in Python/001 CNN model in Python - Preprocessing.mp4
42.6 MB
25 Neural Networks - Stacking cells to create network/001 Basic Terminologies.mp4
42.4 MB
02 Setting up Python and Jupyter Notebook/010 Working with Seaborn Library of Python.mp4
42.3 MB
21 Support Vector Machines/001 Kernel Based Support Vector Machines.mp4
42.1 MB
18 Ensemble technique 3 - Boosting/002 Ensemble technique 3a - Boosting in Python.mp4
41.8 MB
05 Introduction to Machine Learning/002 Building a Machine Learning Model.mp4
41.4 MB
12 K-Nearest Neighbors classifier/001 Test-Train Split.mp4
41.2 MB
41 Time Series - SARIMA model/001 SARIMA model.mp4
40.9 MB
03 Setting up R Studio and R crash course/002 Basics of R and R studio.mp4
40.7 MB
37 Time Series - Preprocessing in Python/009 Moving Average.mp4
40.6 MB
04 Basics of Statistics/004 Measures of Centers.mp4
40.4 MB
22 Creating Support Vector Machine Model in Python/006 Standardizing the data.mp4
40.3 MB
08 Classification Models_ Data Preparation/011 Variable transformation in R.mp4
39.9 MB
14 Simple Decision Trees/004 The Data set for this part.mp4
39.1 MB
12 K-Nearest Neighbors classifier/005 K-Nearest Neighbors in Python_ Part 1.mp4
39.0 MB
22 Creating Support Vector Machine Model in Python/014 Radial Kernel with Hyperparameter Tuning.mp4
39.0 MB
22 Creating Support Vector Machine Model in Python/002 The Data set for the Regression problem.mp4
39.0 MB
06 Data Preprocessing/020 Dummy variable creation_ Handling qualitative data.mp4
38.6 MB
03 Setting up R Studio and R crash course/001 Installing R and R studio.mp4
37.4 MB
10 Logistic Regression/010 Evaluating performance of model.mp4
36.9 MB
24 Introduction - Deep Learning/003 Activation Functions.mp4
36.3 MB
36 Time Series Analysis and Forecasting/004 Forecasting model creation - Steps 1 (Goal).mp4
36.2 MB
07 Linear Regression/007 Multiple Linear Regression.mp4
36.0 MB
07 Linear Regression/019 Shrinkage methods_ Ridge and Lasso.mp4
35.0 MB
12 K-Nearest Neighbors classifier/002 Test-Train Split in Python.mp4
34.7 MB
10 Logistic Regression/001 Logistic Regression.mp4
34.5 MB
38 Time Series - Important Concepts/004 Differencing.mp4
33.9 MB
30 Creating CNN model in R/004 Compiling and training.mp4
33.8 MB
40 Time Series - ARIMA model/004 ARIMA model with Walk Forward Validation in Python.mp4
33.7 MB
28 CNN - Basics/003 Padding.mp4
33.2 MB
06 Data Preprocessing/011 Outlier Treatment in R.mp4
32.2 MB
17 Ensemble technique 2 - Random Forests/004 Random Forest in R.mp4
32.2 MB
18 Ensemble technique 3 - Boosting/001 Boosting.mp4
32.1 MB
18 Ensemble technique 3 - Boosting/004 Ensemble technique 3b - AdaBoost in Python.mp4
32.0 MB
34 Transfer Learning _ Basics/005 Transfer Learning.mp4
31.4 MB
19 Maximum Margin Classifier/002 The Concept of a Hyperplane.mp4
30.8 MB
01 Introduction/001 Introduction.mp4
30.8 MB
08 Classification Models_ Data Preparation/010 Variable transformation and Deletion in Python.mp4
30.7 MB
24 Introduction - Deep Learning/001 Introduction to Neural Networks and Course flow.mp4
30.5 MB
15 Simple Classification Tree/001 Classification tree.mp4
29.6 MB
16 Ensemble technique 1 - Bagging/001 Ensemble technique 1 - Bagging.mp4
29.5 MB
06 Data Preprocessing/004 Importing Data in Python.mp4
29.2 MB
10 Logistic Regression/004 Result of Simple Logistic Regression.mp4
28.2 MB
06 Data Preprocessing/021 Dummy variable creation in Python.mp4
27.8 MB
08 Classification Models_ Data Preparation/012 Dummy variable creation in Python.mp4
27.6 MB
10 Logistic Regression/006 Training multiple predictor Logistic model in Python.mp4
27.5 MB
06 Data Preprocessing/014 Missing Value imputation in R.mp4
27.3 MB
36 Time Series Analysis and Forecasting/002 Time Series Forecasting - Use cases.mp4
27.2 MB
14 Simple Decision Trees/005 Importing the Data set into Python.mp4
27.1 MB
22 Creating Support Vector Machine Model in Python/003 Importing data for regression model.mp4
27.1 MB
10 Logistic Regression/003 Training a Simple Logistic model in R.mp4
26.8 MB
03 Setting up R Studio and R crash course/005 Inputting data part 2_ Manual data entry.mp4
26.8 MB
08 Classification Models_ Data Preparation/007 Outlier Treatment in R.mp4
26.6 MB
07 Linear Regression/013 Bias Variance trade-off.mp4
26.3 MB
06 Data Preprocessing/012 Missing Value Imputation.mp4
26.2 MB
14 Simple Decision Trees/008 Dummy Variable creation in Python.mp4
26.2 MB
14 Simple Decision Trees/010 Test-Train split in Python.mp4
26.1 MB
22 Creating Support Vector Machine Model in Python/005 Test-Train Split.mp4
26.1 MB
32 Project _ Creating CNN model from scratch/003 Project in R - Training.mp4
25.8 MB
06 Data Preprocessing/009 Outlier Treatment.mp4
25.7 MB
06 Data Preprocessing/006 Univariate analysis and EDD.mp4
25.4 MB
39 Time Series - Implementation in Python/006 Moving Average model -Basics.mp4
25.3 MB
32 Project _ Creating CNN model from scratch/006 Project in R - Validation Performance.mp4
24.8 MB
06 Data Preprocessing/013 Missing Value Imputation in Python.mp4
24.6 MB
32 Project _ Creating CNN model from scratch/004 Project in R - Model Performance.mp4
24.3 MB
22 Creating Support Vector Machine Model in Python/013 Polynomial Kernel with Hyperparameter Tuning.mp4
24.0 MB
04 Basics of Statistics/005 Measures of Dispersion.mp4
24.0 MB
27 ANN in R/001 Installing Keras and Tensorflow.mp4
23.9 MB
08 Classification Models_ Data Preparation/008 Missing Value Imputation in Python.mp4
23.7 MB
07 Linear Regression/009 Interpreting results of Categorical variables.mp4
23.6 MB
19 Maximum Margin Classifier/003 Maximum Margin Classifier.mp4
23.6 MB
06 Data Preprocessing/001 Gathering Business Knowledge.mp4
23.4 MB
13 Comparing results from 3 models/002 Summary of the three models.mp4
23.3 MB
08 Classification Models_ Data Preparation/002 Data Import in Python.mp4
23.1 MB
04 Basics of Statistics/001 Types of Data.mp4
22.8 MB
14 Simple Decision Trees/015 Plotting decision tree in Python.mp4
22.5 MB
34 Transfer Learning _ Basics/004 GoogLeNet.mp4
22.4 MB
40 Time Series - ARIMA model/002 ARIMA model - Basics.mp4
22.4 MB
38 Time Series - Important Concepts/002 Random Walk.mp4
22.2 MB
10 Logistic Regression/008 Confusion Matrix.mp4
22.1 MB
31 Project _ Creating CNN model from scratch in Python/005 Project in Python - model results.mp4
22.0 MB
34 Transfer Learning _ Basics/001 ILSVRC.mp4
21.9 MB
02 Setting up Python and Jupyter Notebook/002 This is a milestone!.mp4
21.7 MB
06 Data Preprocessing/002 Data Exploration.mp4
21.5 MB
09 The Three classification models/001 Three Classifiers and the problem statement.mp4
21.3 MB
06 Data Preprocessing/019 Non-usable variables.mp4
21.2 MB
26 ANN in Python/002 Installing Tensorflow and Keras.mp4
21.0 MB
08 Classification Models_ Data Preparation/009 Missing Value imputation in R.mp4
20.0 MB
15 Simple Classification Tree/002 The Data set for Classification problem.mp4
19.5 MB
22 Creating Support Vector Machine Model in Python/008 The Data set for the Classification problem.mp4
19.4 MB
14 Simple Decision Trees/016 Pruning a tree.mp4
19.4 MB
17 Ensemble technique 2 - Random Forests/001 Ensemble technique 2 - Random Forests.mp4
19.1 MB
14 Simple Decision Trees/007 Missing value treatment in Python.mp4
18.8 MB
14 Simple Decision Trees/012 Creating Decision tree in Python.mp4
18.7 MB
06 Data Preprocessing/015 Seasonality in Data.mp4
17.8 MB
37 Time Series - Preprocessing in Python/006 Time Series - Upsampling and Downsampling.mp4
17.8 MB
09 The Three classification models/002 Why can't we use Linear Regression_.mp4
17.8 MB
39 Time Series - Implementation in Python/003 Auto Regression Model - Basics.mp4
17.7 MB
28 CNN - Basics/002 Stride.mp4
17.4 MB
07 Linear Regression/016 Regression models other than OLS.mp4
17.3 MB
14 Simple Decision Trees/014 Evaluating model performance in Python.mp4
17.2 MB
02 Setting up Python and Jupyter Notebook/001 Installing Python and Anaconda.mp4
17.1 MB
10 Logistic Regression/007 Training multiple predictor Logistic model in R.mp4
16.5 MB
22 Creating Support Vector Machine Model in Python/004 X-y Split.mp4
15.9 MB
14 Simple Decision Trees/009 Dependent- Independent Data split in Python.mp4
15.9 MB
26 ANN in Python/001 Keras and Tensorflow.mp4
15.6 MB
37 Time Series - Preprocessing in Python/008 Time Series - Power Transformation.mp4
15.6 MB
07 Linear Regression/022 Heteroscedasticity.mp4
15.2 MB
14 Simple Decision Trees/003 The stopping criteria for controlling tree growth.mp4
14.6 MB
08 Classification Models_ Data Preparation/003 Importing the dataset into R.mp4
14.1 MB
06 Data Preprocessing/005 Importing the dataset into R.mp4
13.7 MB
02 Setting up Python and Jupyter Notebook/005 Arithmetic operators in Python_ Python Basics.mp4
13.4 MB
36 Time Series Analysis and Forecasting/001 Introduction.mp4
12.9 MB
42 Bonus Section/001 The final milestone!.mp4
12.4 MB
11 Linear Discriminant Analysis (LDA)/002 LDA in Python.mp4
12.0 MB
38 Time Series - Important Concepts/001 White Noise.mp4
11.9 MB
04 Basics of Statistics/002 Types of Statistics.mp4
11.5 MB
26 ANN in Python/005 Different ways to create ANN using Keras.mp4
11.3 MB
20 Support Vector Classifier/002 Limitations of Support Vector Classifiers.mp4
11.3 MB
19 Maximum Margin Classifier/004 Limitations of Maximum Margin Classifier.mp4
11.1 MB
34 Transfer Learning _ Basics/003 VGG16NET.mp4
10.9 MB
36 Time Series Analysis and Forecasting/003 Forecasting model creation - Steps.mp4
10.6 MB
22 Creating Support Vector Machine Model in Python/010 Classification model - Standardizing the data.mp4
10.2 MB
07 Linear Regression/001 The Problem Statement.mp4
9.8 MB
10 Logistic Regression/011 Evaluating model performance in Python.mp4
9.4 MB
19 Maximum Margin Classifier/001 Content flow.mp4
9.1 MB
10 Logistic Regression/005 Logistic with multiple predictors.mp4
8.9 MB
37 Time Series - Preprocessing in Python/010 Exponential Smoothing.mp4
8.8 MB
30 Creating CNN model in R/001 CNN on MNIST Fashion Dataset - Model Architecture.mp4
7.7 MB
34 Transfer Learning _ Basics/002 LeNET.mp4
7.3 MB
15 Simple Classification Tree/006 Advantages and Disadvantages of Decision Trees.mp4
7.2 MB
41 Time Series - SARIMA model/003 Stationary time Series.mp4
5.9 MB
22 Creating Support Vector Machine Model in Python/001 Regression and Classification Models.mp4
4.2 MB
42 Bonus Section/002 Congratulations & About your certificate.html
2.6 kB
23 Creating Support Vector Machine Model in R/003 More about test-train split.html
1.5 kB
01 Introduction/002 Course Resources.html
1.3 kB
31 Project _ Creating CNN model from scratch in Python/002 Data for the project.html
1.1 kB
[FreeCourseLab.com].url
126 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>