搜索
Udemy - Machine Learning and Deep Learning Bootcamp in Python (1.2025)
磁力链接/BT种子名称
Udemy - Machine Learning and Deep Learning Bootcamp in Python (1.2025)
磁力链接/BT种子简介
种子哈希:
0f3680045254df196e62dc66e7b3de33c0c60d7b
文件大小:
5.86G
已经下载:
348
次
下载速度:
极快
收录时间:
2025-09-19
最近下载:
2026-01-03
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:0F3680045254DF196E62DC66E7B3DE33C0C60D7B
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
小蓝俱乐部
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
母狗园
51动漫
91短视频
抖音Max
海王TV
TikTok成人版
PornHub
暗网Xvideo
草榴社区
哆哔涩漫
呦乐园
萝莉岛
搜同
91暗网
最近搜索
【原档泄密】上海极品御姐性爱图影,完美露脸,姐姐正是最饥渴的时候,生活照床照对比!
shkd-634
spsd-59
桃姐
2160p remux
saba-489
4825892
爆乳 fc2
hoks-201
日本街头
ghap-012
snis-460
加密破解版
真实强奸
空姐尤物女神
死亡的甜蜜
pppd-384
mia melano
fc2-ppv-1509354
桥本有菜
rctd-255
snis-461
stcv574
狗狗熙
xvsr-835
我的英雄學院
舌吻
ssis+721
inu-047
wish you were here 2025
文件列表
37. Q Learning Implementation (Tic Tac Toe)/6. Tic tac toe with Q learning implementation VI.mp4
116.2 MB
05. Linear Regression/4. Linear regression implementation I.mp4
97.0 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/6. Stochastic gradient descent implementation I.mp4
85.0 MB
09. Naive Bayes Classifier/6. Naive Bayes example - clustering news.mp4
83.6 MB
39. Deep Q Learning Implementation (Tic Tac Toe)/3. Tic Tac Toe with deep Q learning implementation III.mp4
76.5 MB
06. Logistic Regression/4. Logistic regression example II- credit scoring.mp4
75.5 MB
06. Logistic Regression/3. Logistic regression example I - sigmoid function.mp4
69.1 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/9. ADAGrad implementation.mp4
62.6 MB
25. Convolutional Neural Networks (CNNs) Implementation/2. Handwritten digit classification II.mp4
60.9 MB
08. K-Nearest Neighbor Classifier/6. K-nearest neighbor implementation II.mp4
59.2 MB
09. Naive Bayes Classifier/1. What is the naive Bayes classifier.mp4
57.7 MB
15. Clustering/3. K-means clustering - text clustering.mp4
57.5 MB
25. Convolutional Neural Networks (CNNs) Implementation/1. Handwritten digit classification I.mp4
57.0 MB
16. Machine Learning Project I - Face Recognition/4. Understanding eigenfaces.mp4
56.2 MB
35. Exploration vs. Exploitation Problem/3. N-armed bandit problem implementation.mp4
55.9 MB
28. Recurrent Neural Networks (RNNs) Implementation/3. Time series analysis example III.mp4
55.2 MB
26. Machine Learning Project III - Identifying Objects with CNNs/5. Tuning the parameters - regularization.mp4
54.5 MB
34. Markov Decision Process (MDP) Theory/3. Markov decision processes - equations.mp4
52.1 MB
37. Q Learning Implementation (Tic Tac Toe)/8. Tic tac toe with Q learning implementation VIII.mp4
51.0 MB
06. Logistic Regression/1. What is logistic regression.mp4
50.7 MB
26. Machine Learning Project III - Identifying Objects with CNNs/3. Fitting the model.mp4
50.2 MB
39. Deep Q Learning Implementation (Tic Tac Toe)/4. Tic Tac Toe with deep Q learning implementation IV.mp4
48.9 MB
31. Generative Adversarial Networks (GANs) Implementation/5. GAN implementation V.mp4
47.6 MB
37. Q Learning Implementation (Tic Tac Toe)/4. Tic tac toe with Q learning implementation IV.mp4
45.6 MB
30. Generative Adversarial Networks (GANs) Theory/4. Training GANs.mp4
45.5 MB
29. Transformers/5. Understanding positional encoding.mp4
44.6 MB
22. Deep Neural Networks Implementation/2. Deep neural network implementation II.mp4
44.1 MB
03. Artificial Intelligence Basics/1. Why to learn artificial intelligence and machine learning.mp4
43.0 MB
03. Artificial Intelligence Basics/2. Types of artificial intelligence learning.mp4
42.7 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/7. Stochastic gradient descent implementation II.mp4
41.5 MB
37. Q Learning Implementation (Tic Tac Toe)/5. Tic tac toe with Q learning implementation V.mp4
41.1 MB
39. Deep Q Learning Implementation (Tic Tac Toe)/2. Tic Tac Toe with deep Q learning implementation II.mp4
41.1 MB
13. Boosting/6. Boosting implementation II -wine classification.mp4
40.5 MB
14. Principal Component Analysis (PCA)/3. Principal component analysis example I.mp4
40.2 MB
31. Generative Adversarial Networks (GANs) Implementation/2. GAN implementation II.mp4
40.0 MB
10. Support Vector Machines (SVMs)/5. Support vector machine example I - simple.mp4
39.4 MB
13. Boosting/4. Boosting introduction - final formula.mp4
38.6 MB
31. Generative Adversarial Networks (GANs) Implementation/3. GAN implementation III.mp4
38.3 MB
29. Transformers/6. The self-attention mechanism I.mp4
38.2 MB
40. Proximal Policy Optimization (PPO) Theory/2. TRPO algorithm introduction I.mp4
37.5 MB
03. Artificial Intelligence Basics/3. Fundamentals of statistics.mp4
37.3 MB
22. Deep Neural Networks Implementation/4. Multiclass classification implementation I.mp4
37.1 MB
25. Convolutional Neural Networks (CNNs) Implementation/3. Handwritten digit classification III.mp4
36.9 MB
05. Linear Regression/2. Linear regression theory - optimization.mp4
36.3 MB
10. Support Vector Machines (SVMs)/4. Kernel functions.mp4
35.8 MB
15. Clustering/8. Hierarchical clustering - market segmentation.mp4
35.5 MB
11. Decision Trees/6. Decision trees implementation I.mp4
35.3 MB
05. Linear Regression/1. What is linear regression.mp4
35.2 MB
12. Random Forest Classifier/6. Random forests example II - credit scoring.mp4
34.8 MB
27. Recurrent Neural Networks (RNNs) Theory/6. Long-short term memory (LSTM) model theory II.mp4
33.7 MB
12. Random Forest Classifier/7. Random forests example III - OCR parameter tuning.mp4
33.5 MB
05. Linear Regression/3. Linear regression theory - gradient descent.mp4
33.2 MB
09. Naive Bayes Classifier/4. What is text clustering.mp4
33.0 MB
22. Deep Neural Networks Implementation/5. Multiclass classification implementation II.mp4
33.0 MB
13. Boosting/5. Boosting implementation I - iris dataset.mp4
32.6 MB
31. Generative Adversarial Networks (GANs) Implementation/4. GAN implementation IV.mp4
32.0 MB
10. Support Vector Machines (SVMs)/2. Linearly separable problems.mp4
31.8 MB
39. Deep Q Learning Implementation (Tic Tac Toe)/5. Tic Tac Toe with deep Q learning implementation V.mp4
31.2 MB
21. Deep Neural Networks Theory/5. Loss functions revisited.mp4
31.0 MB
19. Simple Feed-Forward Neural Network Implementation/3. Credit scoring with simple neural networks.mp4
30.4 MB
18. Feed-Forward Neural Network Theory/8. Gradient descent with backpropagation.mp4
30.2 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/5. Stochastic gradient descent introduction.mp4
29.9 MB
34. Markov Decision Process (MDP) Theory/4. Markov decision processes - illustration.mp4
29.6 MB
30. Generative Adversarial Networks (GANs) Theory/2. GANs fundamentals.mp4
29.6 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/3. Gradient descent implementation.mp4
29.4 MB
29. Transformers/2. Understanding word embeddings I.mp4
29.2 MB
16. Machine Learning Project I - Face Recognition/1. The Olivetti dataset.mp4
28.6 MB
11. Decision Trees/4. The Gini-index approach.mp4
28.4 MB
14. Principal Component Analysis (PCA)/4. Principal component analysis example II.mp4
28.1 MB
11. Decision Trees/2. Entropy and information gain.mp4
28.1 MB
40. Proximal Policy Optimization (PPO) Theory/3. TRPO algorithm introduction II.mp4
27.9 MB
37. Q Learning Implementation (Tic Tac Toe)/7. Tic tac toe with Q learning implementation VII.mp4
27.7 MB
22. Deep Neural Networks Implementation/3. Deep neural network implementation III.mp4
27.4 MB
44. Appendix #3 - Data Structures in Python/15. Sets in Python.mp4
27.3 MB
29. Transformers/7. The self-attention mechanism II.mp4
26.9 MB
12. Random Forest Classifier/3. Bagging introduction.mp4
26.8 MB
10. Support Vector Machines (SVMs)/7. Support vector machines example III - parameter tuning.mp4
26.7 MB
29. Transformers/4. Tokenization and word embeddings.mp4
26.6 MB
29. Transformers/10. The neural network layer.mp4
26.5 MB
30. Generative Adversarial Networks (GANs) Theory/3. GANs learning procedure.mp4
26.5 MB
38. Deep Q Learning Theory/3. Remember and replay.mp4
26.4 MB
28. Recurrent Neural Networks (RNNs) Implementation/5. Time series analysis example V.mp4
26.4 MB
27. Recurrent Neural Networks (RNNs) Theory/5. Long-short term memory (LSTM) model theory I.mp4
26.1 MB
29. Transformers/9. Multi-head architecture.mp4
25.8 MB
07. Cross Validation/1. What is cross validation.mp4
25.6 MB
34. Markov Decision Process (MDP) Theory/7. What is value iteration.mp4
25.4 MB
44. Appendix #3 - Data Structures in Python/16. Sorting.mp4
24.9 MB
19. Simple Feed-Forward Neural Network Implementation/1. Simple neural network implementation - XOR problem.mp4
24.9 MB
34. Markov Decision Process (MDP) Theory/1. What are Markov decision processes.mp4
24.9 MB
29. Transformers/3. Understanding word embeddings II.mp4
24.7 MB
37. Q Learning Implementation (Tic Tac Toe)/3. Tic tac toe with Q learning implementation III.mp4
24.7 MB
24. Convolutional Neural Networks (CNNs) Theory/8. Colored images and tensors.mp4
24.5 MB
44. Appendix #3 - Data Structures in Python/13. Hashing and O(1) running time complexity.mp4
24.2 MB
10. Support Vector Machines (SVMs)/3. Non-linearly separable problems.mp4
24.1 MB
02. Environment Setup/2. Installing PyCharm.mp4
23.9 MB
06. Logistic Regression/2. Logistic regression and maximum likelihood estimation.mp4
23.8 MB
43. Appendix #2 - Functions/3. Positional arguments and keyword arguments.mp4
23.3 MB
10. Support Vector Machines (SVMs)/8. Support vector machine example IV - digit recognition.mp4
23.0 MB
46. Appendix #5 - NumPy/7. Stacking and merging arrays.mp4
23.0 MB
16. Machine Learning Project I - Face Recognition/2. Understanding the dataset.mp4
22.6 MB
16. Machine Learning Project I - Face Recognition/3. Finding optimal number of principal components (eigenvectors).mp4
22.5 MB
36. Q Learning Theory/3. Q learning illustration.mp4
22.5 MB
47. COURSE MATERIALS (DOWNLOADS)/1. PythonMachineLearning.zip
22.2 MB
06. Logistic Regression/5. Logistic regression example III - credit scoring.mp4
22.0 MB
08. K-Nearest Neighbor Classifier/3. Distance metrics - Euclidean-distance.mp4
22.0 MB
23. Machine Learning Project II - Smile Detector/3. Reading the images and constructing the dataset II.mp4
21.8 MB
44. Appendix #3 - Data Structures in Python/11. What are linked list data structures.mp4
21.8 MB
11. Decision Trees/1. What are decision trees.mp4
21.7 MB
15. Clustering/5. DBSCAN example.mp4
21.6 MB
12. Random Forest Classifier/5. Random forests example I - iris dataset.mp4
21.3 MB
27. Recurrent Neural Networks (RNNs) Theory/2. Recurrent neural networks basics.mp4
21.2 MB
15. Clustering/7. Hierarchical clustering example.mp4
21.2 MB
10. Support Vector Machines (SVMs)/1. What are Support Vector Machines (SVMs).mp4
21.1 MB
14. Principal Component Analysis (PCA)/1. Principal component analysis (PCA) introduction.mp4
21.1 MB
26. Machine Learning Project III - Identifying Objects with CNNs/4. What is batch normalization.mp4
20.9 MB
23. Machine Learning Project II - Smile Detector/2. Reading the images and constructing the dataset I.mp4
20.6 MB
35. Exploration vs. Exploitation Problem/2. N-armed bandit problem introduction.mp4
20.5 MB
44. Appendix #3 - Data Structures in Python/14. Dictionaries in Python.mp4
20.4 MB
15. Clustering/2. K-means clustering example.mp4
20.0 MB
18. Feed-Forward Neural Network Theory/4. Neural networks - the big picture.mp4
20.0 MB
16. Machine Learning Project I - Face Recognition/5. Constructing the machine learning models.mp4
19.9 MB
18. Feed-Forward Neural Network Theory/9. Backpropagation explained.mp4
19.8 MB
37. Q Learning Implementation (Tic Tac Toe)/1. Tic tac toe with Q learning implementation I.mp4
19.8 MB
26. Machine Learning Project III - Identifying Objects with CNNs/1. What is the CIFAR-10 dataset.mp4
19.7 MB
44. Appendix #3 - Data Structures in Python/6. Lists in Python - advanced operations.mp4
19.5 MB
46. Appendix #5 - NumPy/3. Dimension of arrays.mp4
19.3 MB
44. Appendix #3 - Data Structures in Python/1. How to measure the running time of algorithms.mp4
19.2 MB
10. Support Vector Machines (SVMs)/6. Support vector machine example II - iris dataset.mp4
19.0 MB
40. Proximal Policy Optimization (PPO) Theory/7. Proximal policy optimization (PPO) algorithm IV.mp4
18.8 MB
45. Appendix #4 - Object Oriented Programming (OOP)/3. Using the constructor.mp4
18.7 MB
11. Decision Trees/3. Example of how to construct decision trees.mp4
18.5 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/12. ADAM optimizer implementation.mp4
18.5 MB
22. Deep Neural Networks Implementation/1. Deep neural network implementation I.mp4
18.3 MB
43. Appendix #2 - Functions/9. What is recursion.mp4
18.2 MB
21. Deep Neural Networks Theory/3. Activation functions and weight initializations.mp4
18.1 MB
45. Appendix #4 - Object Oriented Programming (OOP)/13. Comparing objects - overriding functions.mp4
17.9 MB
24. Convolutional Neural Networks (CNNs) Theory/5. Convolutional neural networks - flattening and the neural network layer.mp4
17.9 MB
46. Appendix #5 - NumPy/6. Reshape.mp4
17.8 MB
37. Q Learning Implementation (Tic Tac Toe)/2. Tic tac toe with Q learning implementation II.mp4
17.7 MB
24. Convolutional Neural Networks (CNNs) Theory/2. Feature selection with kernels.mp4
17.6 MB
46. Appendix #5 - NumPy/2. Creating and updating arrays.mp4
17.6 MB
46. Appendix #5 - NumPy/4. Indexes and slicing.mp4
17.5 MB
15. Clustering/1. K-means clustering introduction.mp4
17.4 MB
15. Clustering/6. Hierarchical clustering introduction.mp4
17.4 MB
28. Recurrent Neural Networks (RNNs) Implementation/2. Time series analysis example II.mp4
17.3 MB
08. K-Nearest Neighbor Classifier/5. K-nearest neighbor implementation I.mp4
17.1 MB
11. Decision Trees/8. Decision tree implementation III - identifying cancer.mp4
17.0 MB
45. Appendix #4 - Object Oriented Programming (OOP)/9. What is polymorphism.mp4
17.0 MB
38. Deep Q Learning Theory/1. What is deep Q learning.mp4
16.8 MB
42. Appendix #1 - Python Basics/9. How to use multiple conditions.mp4
16.7 MB
08. K-Nearest Neighbor Classifier/2. Concept of lazy learning.mp4
16.7 MB
13. Boosting/1. What is boosting.mp4
16.5 MB
28. Recurrent Neural Networks (RNNs) Implementation/6. Time series analysis example VI.mp4
16.5 MB
36. Q Learning Theory/2. Q learning introduction - the algorithm.mp4
16.2 MB
34. Markov Decision Process (MDP) Theory/5. Bellman-equation.mp4
16.2 MB
07. Cross Validation/2. Cross validation example.mp4
16.1 MB
45. Appendix #4 - Object Oriented Programming (OOP)/5. Private variables and name mangling.mp4
16.0 MB
12. Random Forest Classifier/1. What is the bias-variance tradeoff.mp4
16.0 MB
18. Feed-Forward Neural Network Theory/7. Optimization with gradient descent.mp4
16.0 MB
10. Support Vector Machines (SVMs)/9. Support vector machine example V - digit recognition.mp4
15.6 MB
21. Deep Neural Networks Theory/7. Normalization, batches and epochs.mp4
15.5 MB
08. K-Nearest Neighbor Classifier/4. Bias and variance trade-off.mp4
15.4 MB
09. Naive Bayes Classifier/5. Text clustering - inverse document frequency (TF-IDF).mp4
15.4 MB
45. Appendix #4 - Object Oriented Programming (OOP)/4. Class variables and instance variables.mp4
15.4 MB
21. Deep Neural Networks Theory/6. Gradient descent and stochastic gradient descent.mp4
15.4 MB
42. Appendix #1 - Python Basics/4. Strings.mp4
15.3 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/10. What is RMSProp.mp4
15.2 MB
34. Markov Decision Process (MDP) Theory/2. Markov decision processes basics.mp4
14.8 MB
11. Decision Trees/7. Decision trees implementation II - parameter tuning.mp4
14.8 MB
40. Proximal Policy Optimization (PPO) Theory/5. Proximal policy optimization (PPO) algorithm II.mp4
14.6 MB
23. Machine Learning Project II - Smile Detector/5. Evaluating and testing the model.mp4
14.6 MB
30. Generative Adversarial Networks (GANs) Theory/1. What is a generative adversarial network (GAN).mp4
14.6 MB
21. Deep Neural Networks Theory/4. Softmax activation function.mp4
14.5 MB
45. Appendix #4 - Object Oriented Programming (OOP)/10. Polymorphism and abstraction example.mp4
14.4 MB
08. K-Nearest Neighbor Classifier/1. What is the k-nearest neighbor classifier.mp4
14.4 MB
13. Boosting/3. Boosting introduction - equations.mp4
14.1 MB
39. Deep Q Learning Implementation (Tic Tac Toe)/1. Tic Tac Toe with deep Q learning implementation I.mp4
14.0 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/2. What is gradient descent.mp4
14.0 MB
31. Generative Adversarial Networks (GANs) Implementation/1. GAN implementation I.mp4
13.8 MB
08. K-Nearest Neighbor Classifier/7. K-nearest neighbor implementation III.mp4
13.6 MB
38. Deep Q Learning Theory/4. Why use an additional target neural network.mp4
13.4 MB
42. Appendix #1 - Python Basics/5. String slicing.mp4
13.3 MB
14. Principal Component Analysis (PCA)/2. Mathematical formulation of principal components.mp4
13.3 MB
19. Simple Feed-Forward Neural Network Implementation/2. Linearly and non-linearly separable problems.mp4
13.2 MB
05. Linear Regression/5. Linear regression implementation II.mp4
13.2 MB
24. Convolutional Neural Networks (CNNs) Theory/1. What are convolutional neural networks.mp4
13.1 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/8. What is ADAGrad.mp4
13.0 MB
44. Appendix #3 - Data Structures in Python/4. What are array data structures II.mp4
12.9 MB
44. Appendix #3 - Data Structures in Python/3. What are array data structures I.mp4
12.9 MB
18. Feed-Forward Neural Network Theory/3. Why to use activation functions.mp4
12.7 MB
35. Exploration vs. Exploitation Problem/4. Applications AB testing in marketing.mp4
12.7 MB
24. Convolutional Neural Networks (CNNs) Theory/9. Evolution of CNN architectures.mp4
12.5 MB
36. Q Learning Theory/1. What is Q learning.mp4
12.4 MB
18. Feed-Forward Neural Network Theory/6. How to measure the error of the network.mp4
12.3 MB
31. Generative Adversarial Networks (GANs) Implementation/6. GAN implementation VI.mp4
12.3 MB
27. Recurrent Neural Networks (RNNs) Theory/1. Why do recurrent neural networks are important.mp4
12.2 MB
44. Appendix #3 - Data Structures in Python/12. Doubly linked list implementation in Python.mp4
12.0 MB
21. Deep Neural Networks Theory/2. Vanishing and exploding gradients problem.mp4
12.0 MB
44. Appendix #3 - Data Structures in Python/7. Lists in Python - list comprehension.mp4
11.9 MB
15. Clustering/4. DBSCAN introduction.mp4
11.9 MB
16. Machine Learning Project I - Face Recognition/6. Using cross-validation.mp4
11.9 MB
18. Feed-Forward Neural Network Theory/1. What are feed-forward neural networks.mp4
11.9 MB
40. Proximal Policy Optimization (PPO) Theory/4. Proximal policy optimization (PPO) algorithm I.mp4
11.9 MB
13. Boosting/2. Boosting introduction - illustration.mp4
11.7 MB
09. Naive Bayes Classifier/3. Naive Bayes classifier implementation.mp4
11.6 MB
18. Feed-Forward Neural Network Theory/2. Artificial neural networks - the model.mp4
11.6 MB
24. Convolutional Neural Networks (CNNs) Theory/7. How do you update the kernel weights exactly.mp4
11.6 MB
45. Appendix #4 - Object Oriented Programming (OOP)/11. Modules.mp4
11.6 MB
27. Recurrent Neural Networks (RNNs) Theory/3. The backpropagation through time (BPTT) algorithm.mp4
11.5 MB
24. Convolutional Neural Networks (CNNs) Theory/3. Convolutional operation example.mp4
11.3 MB
06. Logistic Regression/6. Why is logistic regression linear.mp4
11.3 MB
42. Appendix #1 - Python Basics/7. Operators.mp4
11.2 MB
12. Random Forest Classifier/4. Random forest classifier introduction.mp4
11.1 MB
21. Deep Neural Networks Theory/8. Regularization.mp4
11.1 MB
24. Convolutional Neural Networks (CNNs) Theory/6. Convolutional neural networks - illustration.mp4
11.1 MB
44. Appendix #3 - Data Structures in Python/5. Lists in Python.mp4
11.0 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/4. Gradient descent with momentum.mp4
10.8 MB
40. Proximal Policy Optimization (PPO) Theory/1. What are the problems with deep Q learning.mp4
10.5 MB
46. Appendix #5 - NumPy/5. Types.mp4
10.4 MB
42. Appendix #1 - Python Basics/15. Break and continue.mp4
10.4 MB
02. Environment Setup/3. Installing TensorFlow and Keras.mp4
10.2 MB
43. Appendix #2 - Functions/2. Defining functions.mp4
10.1 MB
42. Appendix #1 - Python Basics/11. Loops - for loop.mp4
10.0 MB
27. Recurrent Neural Networks (RNNs) Theory/4. Vanishing and exploding gradients problem.mp4
10.0 MB
09. Naive Bayes Classifier/2. Naive Bayes classifier illustration.mp4
9.7 MB
43. Appendix #2 - Functions/6. Yield operator.mp4
9.6 MB
45. Appendix #4 - Object Oriented Programming (OOP)/7. The super keyword.mp4
9.6 MB
21. Deep Neural Networks Theory/1. What are deep neural networks.mp4
9.1 MB
44. Appendix #3 - Data Structures in Python/10. Mutability and immutability.mp4
9.1 MB
23. Machine Learning Project II - Smile Detector/4. Building the deep neural network model.mp4
9.0 MB
42. Appendix #1 - Python Basics/8. Conditional statements.mp4
9.0 MB
28. Recurrent Neural Networks (RNNs) Implementation/4. Time series analysis example IV.mp4
8.9 MB
24. Convolutional Neural Networks (CNNs) Theory/4. Convolutional neural networks - pooling.mp4
8.7 MB
42. Appendix #1 - Python Basics/6. Type casting.mp4
8.6 MB
46. Appendix #5 - NumPy/1. What is the key advantage of NumPy.mp4
8.6 MB
45. Appendix #4 - Object Oriented Programming (OOP)/6. What is inheritance in OOP.mp4
8.5 MB
43. Appendix #2 - Functions/1. What are functions.mp4
8.5 MB
42. Appendix #1 - Python Basics/10. Logical operators.mp4
8.4 MB
01. Introduction/1. Introduction.mp4
8.3 MB
43. Appendix #2 - Functions/10. Local vs global variables.mp4
8.2 MB
11. Decision Trees/5. Decision trees introduction - pros and cons.mp4
8.1 MB
42. Appendix #1 - Python Basics/2. What are the basic data types.mp4
8.1 MB
42. Appendix #1 - Python Basics/14. Enumerate.mp4
8.1 MB
18. Feed-Forward Neural Network Theory/5. Using bias nodes in the neural network.mp4
8.1 MB
45. Appendix #4 - Object Oriented Programming (OOP)/12. The __str__ function.mp4
8.0 MB
46. Appendix #5 - NumPy/8. Filter.mp4
8.0 MB
35. Exploration vs. Exploitation Problem/1. Exploration vs exploitation problem.mp4
8.0 MB
43. Appendix #2 - Functions/8. What are the most relevant built-in functions.mp4
8.0 MB
42. Appendix #1 - Python Basics/12. Loops - while loop.mp4
7.9 MB
44. Appendix #3 - Data Structures in Python/9. What are tuples.mp4
7.9 MB
27. Recurrent Neural Networks (RNNs) Theory/9. Gated recurrent units (GRUs).mp4
7.9 MB
29. Transformers/8. What is masking.mp4
7.8 MB
29. Transformers/11. Understanding the training of transformers.mp4
7.8 MB
42. Appendix #1 - Python Basics/1. First steps in Python.mp4
7.7 MB
27. Recurrent Neural Networks (RNNs) Theory/7. Long-short term memory (LSTM) forward pass example.mp4
7.7 MB
43. Appendix #2 - Functions/11. The __main__ function.mp4
7.7 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/11. ADAM optimizer introduction.mp4
7.5 MB
34. Markov Decision Process (MDP) Theory/8. What is policy iteration.mp4
7.3 MB
28. Recurrent Neural Networks (RNNs) Implementation/1. Time series analysis example I.mp4
7.3 MB
13. Boosting/7. Boosting vs. bagging.mp4
7.2 MB
44. Appendix #3 - Data Structures in Python/2. Data structures introduction.mp4
7.0 MB
33. ### REINFORCEMENT LEARNING ###/2. Applications of reinforcement learning.mp4
6.9 MB
45. Appendix #4 - Object Oriented Programming (OOP)/8. Function (method) override.mp4
6.8 MB
26. Machine Learning Project III - Identifying Objects with CNNs/2. Preprocessing the data.mp4
6.5 MB
38. Deep Q Learning Theory/2. Deep Q learning and ε-greedy strategy.mp4
6.5 MB
43. Appendix #2 - Functions/5. Returning multiple values.mp4
6.3 MB
10. Support Vector Machines (SVMs)/10. Advantages and disadvantages.mp4
6.3 MB
42. Appendix #1 - Python Basics/13. What are nested loops.mp4
6.2 MB
29. Transformers/1. Transformers chapter overview.mp4
6.1 MB
40. Proximal Policy Optimization (PPO) Theory/6. Proximal policy optimization (PPO) algorithm III.mp4
6.1 MB
20. Deep Learning/1. Types of neural networks.mp4
6.1 MB
29. Transformers/12. What is ChatGPT.mp4
6.0 MB
34. Markov Decision Process (MDP) Theory/6. How to solve MDP problems.mp4
6.0 MB
27. Recurrent Neural Networks (RNNs) Theory/8. Long-short term memory (LSTM) backpropagation example.mp4
5.9 MB
45. Appendix #4 - Object Oriented Programming (OOP)/2. Class and objects basics.mp4
5.6 MB
45. Appendix #4 - Object Oriented Programming (OOP)/1. What is object oriented programming (OOP).mp4
5.5 MB
02. Environment Setup/1. Installing Python.mp4
5.0 MB
43. Appendix #2 - Functions/7. Local and global variables.mp4
4.5 MB
43. Appendix #2 - Functions/4. Returning values.mp4
4.3 MB
42. Appendix #1 - Python Basics/16. Calculating Fibonacci-numbers.mp4
4.2 MB
41. ### PYTHON PROGRAMMING CRASH COURSE ###/1. Python crash course introduction.mp4
4.2 MB
12. Random Forest Classifier/2. Pruning introduction.mp4
3.9 MB
42. Appendix #1 - Python Basics/3. Booleans.mp4
3.7 MB
23. Machine Learning Project II - Smile Detector/1. Understanding the classification problem.mp4
3.6 MB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/6. Stochastic gradient descent implementation I.vtt
31.1 kB
29. Transformers/5. Understanding positional encoding.vtt
20.5 kB
21. Deep Neural Networks Theory/10.13 Deep Neural Networks Quiz.html
18.3 kB
18. Feed-Forward Neural Network Theory/11.12 Feed-Forward Neural Networks Quiz.html
18.2 kB
34. Markov Decision Process (MDP) Theory/10.18 Reinforcement Learning Basics Quiz.html
18.2 kB
27. Recurrent Neural Networks (RNNs) Theory/11.15 Recurrent Neural Networks Quiz.html
18.2 kB
08. K-Nearest Neighbor Classifier/9.4 K-Nearest Neighbor Quiz.html
18.0 kB
29. Transformers/14.16 Transformers Quiz.html
18.0 kB
40. Proximal Policy Optimization (PPO) Theory/8.22 PPO Quiz.html
17.7 kB
10. Support Vector Machines (SVMs)/12.6 Support Vector Machines Quiz.html
17.6 kB
30. Generative Adversarial Networks (GANs) Theory/6.17 GANs Quiz.html
17.6 kB
05. Linear Regression/7.1 Linear Regression Quiz.html
17.6 kB
24. Convolutional Neural Networks (CNNs) Theory/12.14 Convolutional Neural Networks (CNNs) Quiz.html
17.5 kB
12. Random Forest Classifier/9.8 Random Forests Quiz.html
17.4 kB
11. Decision Trees/10.7 Decision Trees Quiz.html
17.4 kB
06. Logistic Regression/8.2 Logistic Regression Quiz.html
17.4 kB
07. Cross Validation/3.3 Cross Validation Quiz.html
17.4 kB
13. Boosting/9.9 Boosting Quiz.html
17.2 kB
10. Support Vector Machines (SVMs)/2. Linearly separable problems.vtt
17.1 kB
09. Naive Bayes Classifier/8.5 Naive Bayes Classifier Quiz.html
17.0 kB
14. Principal Component Analysis (PCA)/6.10 PCA Quiz.html
17.0 kB
35. Exploration vs. Exploitation Problem/5.19 Exploration vs. Exploitation Quiz.html
16.9 kB
09. Naive Bayes Classifier/6. Naive Bayes example - clustering news.vtt
16.7 kB
36. Q Learning Theory/5.20 Q Learning Quiz.html
16.6 kB
29. Transformers/6. The self-attention mechanism I.vtt
16.6 kB
38. Deep Q Learning Theory/6.21 Deep Q Learning Quiz.html
16.4 kB
15. Clustering/10.11 Clustering Quiz.html
16.2 kB
27. Recurrent Neural Networks (RNNs) Theory/5. Long-short term memory (LSTM) model theory I.vtt
16.1 kB
06. Logistic Regression/1. What is logistic regression.vtt
16.1 kB
05. Linear Regression/4. Linear regression implementation I.vtt
15.7 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/9. ADAGrad implementation.vtt
15.7 kB
35. Exploration vs. Exploitation Problem/3. N-armed bandit problem implementation.vtt
15.6 kB
36. Q Learning Theory/3. Q learning illustration.vtt
15.6 kB
25. Convolutional Neural Networks (CNNs) Implementation/1. Handwritten digit classification I.vtt
15.5 kB
15. Clustering/1. K-means clustering introduction.vtt
15.1 kB
34. Markov Decision Process (MDP) Theory/3. Markov decision processes - equations.vtt
15.1 kB
13. Boosting/6. Boosting implementation II -wine classification.vtt
15.0 kB
25. Convolutional Neural Networks (CNNs) Implementation/2. Handwritten digit classification II.vtt
14.8 kB
27. Recurrent Neural Networks (RNNs) Theory/2. Recurrent neural networks basics.vtt
14.8 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/5. Stochastic gradient descent introduction.vtt
14.7 kB
44. Appendix #3 - Data Structures in Python/1. How to measure the running time of algorithms.vtt
14.7 kB
18. Feed-Forward Neural Network Theory/9. Backpropagation explained.vtt
14.6 kB
37. Q Learning Implementation (Tic Tac Toe)/6. Tic tac toe with Q learning implementation VI.vtt
14.1 kB
10. Support Vector Machines (SVMs)/4. Kernel functions.vtt
13.8 kB
12. Random Forest Classifier/7. Random forests example III - OCR parameter tuning.vtt
13.4 kB
18. Feed-Forward Neural Network Theory/8. Gradient descent with backpropagation.vtt
13.4 kB
43. Appendix #2 - Functions/3. Positional arguments and keyword arguments.vtt
13.3 kB
09. Naive Bayes Classifier/4. What is text clustering.vtt
13.1 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/3. Gradient descent implementation.vtt
13.0 kB
06. Logistic Regression/3. Logistic regression example I - sigmoid function.vtt
12.9 kB
30. Generative Adversarial Networks (GANs) Theory/4. Training GANs.vtt
12.8 kB
46. Appendix #5 - NumPy/3. Dimension of arrays.vtt
12.8 kB
40. Proximal Policy Optimization (PPO) Theory/3. TRPO algorithm introduction II.vtt
12.8 kB
14. Principal Component Analysis (PCA)/1. Principal component analysis (PCA) introduction.vtt
12.8 kB
10. Support Vector Machines (SVMs)/5. Support vector machine example I - simple.vtt
12.8 kB
44. Appendix #3 - Data Structures in Python/16. Sorting.vtt
12.8 kB
29. Transformers/2. Understanding word embeddings I.vtt
12.7 kB
09. Naive Bayes Classifier/1. What is the naive Bayes classifier.vtt
12.7 kB
06. Logistic Regression/4. Logistic regression example II- credit scoring.vtt
12.6 kB
44. Appendix #3 - Data Structures in Python/14. Dictionaries in Python.vtt
12.5 kB
14. Principal Component Analysis (PCA)/3. Principal component analysis example I.vtt
12.4 kB
44. Appendix #3 - Data Structures in Python/11. What are linked list data structures.vtt
12.2 kB
39. Deep Q Learning Implementation (Tic Tac Toe)/3. Tic Tac Toe with deep Q learning implementation III.vtt
12.1 kB
18. Feed-Forward Neural Network Theory/4. Neural networks - the big picture.vtt
12.0 kB
26. Machine Learning Project III - Identifying Objects with CNNs/5. Tuning the parameters - regularization.vtt
12.0 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/12. ADAM optimizer implementation.vtt
12.0 kB
05. Linear Regression/2. Linear regression theory - optimization.vtt
11.9 kB
26. Machine Learning Project III - Identifying Objects with CNNs/3. Fitting the model.vtt
11.9 kB
43. Appendix #2 - Functions/9. What is recursion.vtt
11.7 kB
15. Clustering/3. K-means clustering - text clustering.vtt
11.6 kB
40. Proximal Policy Optimization (PPO) Theory/2. TRPO algorithm introduction I.vtt
11.6 kB
44. Appendix #3 - Data Structures in Python/15. Sets in Python.vtt
11.5 kB
13. Boosting/4. Boosting introduction - final formula.vtt
11.4 kB
35. Exploration vs. Exploitation Problem/2. N-armed bandit problem introduction.vtt
11.4 kB
19. Simple Feed-Forward Neural Network Implementation/3. Credit scoring with simple neural networks.vtt
11.4 kB
44. Appendix #3 - Data Structures in Python/13. Hashing and O(1) running time complexity.vtt
11.3 kB
10. Support Vector Machines (SVMs)/8. Support vector machine example IV - digit recognition.vtt
11.3 kB
40. Proximal Policy Optimization (PPO) Theory/7. Proximal policy optimization (PPO) algorithm IV.vtt
11.2 kB
05. Linear Regression/3. Linear regression theory - gradient descent.vtt
11.0 kB
15. Clustering/8. Hierarchical clustering - market segmentation.vtt
11.0 kB
46. Appendix #5 - NumPy/4. Indexes and slicing.vtt
11.0 kB
05. Linear Regression/1. What is linear regression.vtt
10.9 kB
46. Appendix #5 - NumPy/6. Reshape.vtt
10.8 kB
19. Simple Feed-Forward Neural Network Implementation/1. Simple neural network implementation - XOR problem.vtt
10.8 kB
11. Decision Trees/2. Entropy and information gain.vtt
10.8 kB
45. Appendix #4 - Object Oriented Programming (OOP)/13. Comparing objects - overriding functions.vtt
10.7 kB
29. Transformers/3. Understanding word embeddings II.vtt
10.7 kB
29. Transformers/7. The self-attention mechanism II.vtt
10.6 kB
03. Artificial Intelligence Basics/2. Types of artificial intelligence learning.vtt
10.6 kB
29. Transformers/4. Tokenization and word embeddings.vtt
10.6 kB
42. Appendix #1 - Python Basics/9. How to use multiple conditions.vtt
10.5 kB
14. Principal Component Analysis (PCA)/4. Principal component analysis example II.vtt
10.4 kB
44. Appendix #3 - Data Structures in Python/4. What are array data structures II.vtt
10.4 kB
15. Clustering/5. DBSCAN example.vtt
10.3 kB
34. Markov Decision Process (MDP) Theory/4. Markov decision processes - illustration.vtt
10.3 kB
42. Appendix #1 - Python Basics/4. Strings.vtt
10.0 kB
15. Clustering/4. DBSCAN introduction.vtt
10.0 kB
27. Recurrent Neural Networks (RNNs) Theory/6. Long-short term memory (LSTM) model theory II.vtt
10.0 kB
08. K-Nearest Neighbor Classifier/6. K-nearest neighbor implementation II.vtt
9.9 kB
10. Support Vector Machines (SVMs)/3. Non-linearly separable problems.vtt
9.9 kB
24. Convolutional Neural Networks (CNNs) Theory/7. How do you update the kernel weights exactly.vtt
9.8 kB
36. Q Learning Theory/2. Q learning introduction - the algorithm.vtt
9.8 kB
44. Appendix #3 - Data Structures in Python/6. Lists in Python - advanced operations.vtt
9.8 kB
15. Clustering/6. Hierarchical clustering introduction.vtt
9.7 kB
38. Deep Q Learning Theory/1. What is deep Q learning.vtt
9.7 kB
44. Appendix #3 - Data Structures in Python/3. What are array data structures I.vtt
9.6 kB
22. Deep Neural Networks Implementation/4. Multiclass classification implementation I.vtt
9.5 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/2. What is gradient descent.vtt
9.4 kB
13. Boosting/3. Boosting introduction - equations.vtt
9.4 kB
21. Deep Neural Networks Theory/7. Normalization, batches and epochs.vtt
9.3 kB
39. Deep Q Learning Implementation (Tic Tac Toe)/5. DeepQLearningTicTacToe.py
9.2 kB
15. Clustering/2. K-means clustering example.vtt
9.2 kB
12. Random Forest Classifier/1. What is the bias-variance tradeoff.vtt
9.2 kB
18. Feed-Forward Neural Network Theory/7. Optimization with gradient descent.vtt
9.2 kB
08. K-Nearest Neighbor Classifier/3. Distance metrics - Euclidean-distance.vtt
9.2 kB
15. Clustering/7. Hierarchical clustering example.vtt
9.1 kB
31. Generative Adversarial Networks (GANs) Implementation/5. GAN implementation V.vtt
9.1 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/8. What is ADAGrad.vtt
9.1 kB
16. Machine Learning Project I - Face Recognition/1. The Olivetti dataset.vtt
9.0 kB
37. Q Learning Implementation (Tic Tac Toe)/2. Tic tac toe with Q learning implementation II.vtt
9.0 kB
34. Markov Decision Process (MDP) Theory/2. Markov decision processes basics.vtt
9.0 kB
40. Proximal Policy Optimization (PPO) Theory/5. Proximal policy optimization (PPO) algorithm II.vtt
9.0 kB
03. Artificial Intelligence Basics/3. Fundamentals of statistics.vtt
9.0 kB
30. Generative Adversarial Networks (GANs) Theory/2. GANs fundamentals.vtt
9.0 kB
14. Principal Component Analysis (PCA)/2. Mathematical formulation of principal components.vtt
8.9 kB
21. Deep Neural Networks Theory/5. Loss functions revisited.vtt
8.9 kB
16. Machine Learning Project I - Face Recognition/4. Understanding eigenfaces.vtt
8.9 kB
11. Decision Trees/6. Decision trees implementation I.vtt
8.8 kB
13. Boosting/5. Boosting implementation I - iris dataset.vtt
8.7 kB
42. Appendix #1 - Python Basics/5. String slicing.vtt
8.5 kB
37. Q Learning Implementation (Tic Tac Toe)/3. Tic tac toe with Q learning implementation III.vtt
8.5 kB
24. Convolutional Neural Networks (CNNs) Theory/5. Convolutional neural networks - flattening and the neural network layer.vtt
8.5 kB
31. Generative Adversarial Networks (GANs) Implementation/4. GAN implementation IV.vtt
8.5 kB
18. Feed-Forward Neural Network Theory/3. Why to use activation functions.vtt
8.5 kB
34. Markov Decision Process (MDP) Theory/7. What is value iteration.vtt
8.4 kB
21. Deep Neural Networks Theory/4. Softmax activation function.vtt
8.4 kB
08. K-Nearest Neighbor Classifier/1. What is the k-nearest neighbor classifier.vtt
8.4 kB
37. Q Learning Implementation (Tic Tac Toe)/4. Tic tac toe with Q learning implementation IV.vtt
8.3 kB
11. Decision Trees/3. Example of how to construct decision trees.vtt
8.3 kB
24. Convolutional Neural Networks (CNNs) Theory/3. Convolutional operation example.vtt
8.3 kB
46. Appendix #5 - NumPy/7. Stacking and merging arrays.vtt
8.3 kB
30. Generative Adversarial Networks (GANs) Theory/3. GANs learning procedure.vtt
8.3 kB
29. Transformers/9. Multi-head architecture.vtt
8.3 kB
46. Appendix #5 - NumPy/2. Creating and updating arrays.vtt
8.3 kB
10. Support Vector Machines (SVMs)/7. Support vector machines example III - parameter tuning.vtt
8.3 kB
03. Artificial Intelligence Basics/1. Why to learn artificial intelligence and machine learning.vtt
8.2 kB
22. Deep Neural Networks Implementation/2. Deep neural network implementation II.vtt
8.2 kB
31. Generative Adversarial Networks (GANs) Implementation/2. GAN implementation II.vtt
8.1 kB
24. Convolutional Neural Networks (CNNs) Theory/8. Colored images and tensors.vtt
8.1 kB
38. Deep Q Learning Theory/4. Why use an additional target neural network.vtt
8.1 kB
45. Appendix #4 - Object Oriented Programming (OOP)/3. Using the constructor.vtt
8.1 kB
42. Appendix #1 - Python Basics/11. Loops - for loop.vtt
8.0 kB
26. Machine Learning Project III - Identifying Objects with CNNs/1. What is the CIFAR-10 dataset.vtt
8.0 kB
08. K-Nearest Neighbor Classifier/5. K-nearest neighbor implementation I.vtt
8.0 kB
25. Convolutional Neural Networks (CNNs) Implementation/3. Handwritten digit classification III.vtt
8.0 kB
10. Support Vector Machines (SVMs)/1. What are Support Vector Machines (SVMs).vtt
7.9 kB
22. Deep Neural Networks Implementation/1. Deep neural network implementation I.vtt
7.9 kB
37. Q Learning Implementation (Tic Tac Toe)/8. Tic tac toe with Q learning implementation VIII.vtt
7.9 kB
39. Deep Q Learning Implementation (Tic Tac Toe)/2. Tic Tac Toe with deep Q learning implementation II.vtt
7.9 kB
38. Deep Q Learning Theory/3. Remember and replay.vtt
7.9 kB
28. Recurrent Neural Networks (RNNs) Implementation/3. Time series analysis example III.vtt
7.8 kB
29. Transformers/10. The neural network layer.vtt
7.8 kB
45. Appendix #4 - Object Oriented Programming (OOP)/11. Modules.vtt
7.8 kB
12. Random Forest Classifier/5. Random forests example I - iris dataset.vtt
7.7 kB
11. Decision Trees/4. The Gini-index approach.vtt
7.7 kB
37. Q Learning Implementation (Tic Tac Toe)/8. QLearningTicTacToe.py
7.6 kB
24. Convolutional Neural Networks (CNNs) Theory/1. What are convolutional neural networks.vtt
7.6 kB
36. Q Learning Theory/1. What is Q learning.vtt
7.6 kB
42. Appendix #1 - Python Basics/1. First steps in Python.vtt
7.5 kB
12. Random Forest Classifier/6. Random forests example II - credit scoring.vtt
7.5 kB
18. Feed-Forward Neural Network Theory/6. How to measure the error of the network.vtt
7.5 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/7. Stochastic gradient descent implementation II.vtt
7.5 kB
44. Appendix #3 - Data Structures in Python/5. Lists in Python.vtt
7.5 kB
42. Appendix #1 - Python Basics/15. Break and continue.vtt
7.5 kB
13. Boosting/2. Boosting introduction - illustration.vtt
7.4 kB
24. Convolutional Neural Networks (CNNs) Theory/2. Feature selection with kernels.vtt
7.4 kB
10. Support Vector Machines (SVMs)/6. Support vector machine example II - iris dataset.vtt
7.4 kB
43. Appendix #2 - Functions/2. Defining functions.vtt
7.3 kB
44. Appendix #3 - Data Structures in Python/7. Lists in Python - list comprehension.vtt
7.3 kB
44. Appendix #3 - Data Structures in Python/12. Doubly linked list implementation in Python.vtt
7.3 kB
18. Feed-Forward Neural Network Theory/2. Artificial neural networks - the model.vtt
7.3 kB
22. Deep Neural Networks Implementation/3. Deep neural network implementation III.vtt
7.3 kB
34. Markov Decision Process (MDP) Theory/5. Bellman-equation.vtt
7.2 kB
37. Q Learning Implementation (Tic Tac Toe)/7. Tic tac toe with Q learning implementation VII.vtt
7.2 kB
07. Cross Validation/1. What is cross validation.vtt
7.2 kB
45. Appendix #4 - Object Oriented Programming (OOP)/10. Polymorphism and abstraction example.vtt
7.2 kB
12. Random Forest Classifier/3. Bagging introduction.vtt
7.1 kB
40. Proximal Policy Optimization (PPO) Theory/4. Proximal policy optimization (PPO) algorithm I.vtt
7.1 kB
06. Logistic Regression/2. Logistic regression and maximum likelihood estimation.vtt
7.1 kB
27. Recurrent Neural Networks (RNNs) Theory/3. The backpropagation through time (BPTT) algorithm.vtt
7.0 kB
11. Decision Trees/1. What are decision trees.vtt
7.0 kB
43. Appendix #2 - Functions/6. Yield operator.vtt
6.9 kB
23. Machine Learning Project II - Smile Detector/2. Reading the images and constructing the dataset I.vtt
6.9 kB
16. Machine Learning Project I - Face Recognition/2. Understanding the dataset.vtt
6.8 kB
27. Recurrent Neural Networks (RNNs) Theory/7. Long-short term memory (LSTM) forward pass example.vtt
6.8 kB
31. Generative Adversarial Networks (GANs) Implementation/3. GAN implementation III.vtt
6.8 kB
16. Machine Learning Project I - Face Recognition/3. Finding optimal number of principal components (eigenvectors).vtt
6.8 kB
42. Appendix #1 - Python Basics/7. Operators.vtt
6.7 kB
24. Convolutional Neural Networks (CNNs) Theory/9. Evolution of CNN architectures.vtt
6.5 kB
39. Deep Q Learning Implementation (Tic Tac Toe)/4. Tic Tac Toe with deep Q learning implementation IV.vtt
6.5 kB
42. Appendix #1 - Python Basics/2. What are the basic data types.vtt
6.5 kB
22. Deep Neural Networks Implementation/5. Multiclass classification implementation II.vtt
6.5 kB
12. Random Forest Classifier/4. Random forest classifier introduction.vtt
6.4 kB
45. Appendix #4 - Object Oriented Programming (OOP)/9. What is polymorphism.vtt
6.4 kB
11. Decision Trees/8. Decision tree implementation III - identifying cancer.vtt
6.4 kB
28. Recurrent Neural Networks (RNNs) Implementation/2. Time series analysis example II.vtt
6.4 kB
09. Naive Bayes Classifier/2. Naive Bayes classifier illustration.vtt
6.4 kB
18. Feed-Forward Neural Network Theory/1. What are feed-forward neural networks.vtt
6.4 kB
10. Support Vector Machines (SVMs)/9. Support vector machine example V - digit recognition.vtt
6.3 kB
34. Markov Decision Process (MDP) Theory/1. What are Markov decision processes.vtt
6.3 kB
21. Deep Neural Networks Theory/2. Vanishing and exploding gradients problem.vtt
6.3 kB
21. Deep Neural Networks Theory/3. Activation functions and weight initializations.vtt
6.3 kB
28. Recurrent Neural Networks (RNNs) Implementation/5. Time series analysis example V.vtt
6.2 kB
06. Logistic Regression/5. Logistic regression example III - credit scoring.vtt
6.2 kB
11. Decision Trees/7. Decision trees implementation II - parameter tuning.vtt
6.2 kB
44. Appendix #3 - Data Structures in Python/10. Mutability and immutability.vtt
6.2 kB
43. Appendix #2 - Functions/1. What are functions.vtt
6.1 kB
07. Cross Validation/2. Cross validation example.vtt
6.1 kB
45. Appendix #4 - Object Oriented Programming (OOP)/5. Private variables and name mangling.vtt
6.1 kB
13. Boosting/1. What is boosting.vtt
6.1 kB
31. Generative Adversarial Networks (GANs) Implementation/1. GAN implementation I.vtt
6.1 kB
06. Logistic Regression/6. Why is logistic regression linear.vtt
6.1 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/11. ADAM optimizer introduction.vtt
6.0 kB
09. Naive Bayes Classifier/5. Text clustering - inverse document frequency (TF-IDF).vtt
6.0 kB
35. Exploration vs. Exploitation Problem/4. Applications AB testing in marketing.vtt
6.0 kB
29. Transformers/11. Understanding the training of transformers.vtt
5.9 kB
46. Appendix #5 - NumPy/1. What is the key advantage of NumPy.vtt
5.9 kB
46. Appendix #5 - NumPy/5. Types.vtt
5.9 kB
43. Appendix #2 - Functions/8. What are the most relevant built-in functions.vtt
5.9 kB
45. Appendix #4 - Object Oriented Programming (OOP)/7. The super keyword.vtt
5.8 kB
30. Generative Adversarial Networks (GANs) Theory/1. What is a generative adversarial network (GAN).vtt
5.7 kB
42. Appendix #1 - Python Basics/12. Loops - while loop.vtt
5.7 kB
45. Appendix #4 - Object Oriented Programming (OOP)/4. Class variables and instance variables.vtt
5.7 kB
43. Appendix #2 - Functions/10. Local vs global variables.vtt
5.7 kB
42. Appendix #1 - Python Basics/8. Conditional statements.vtt
5.6 kB
42. Appendix #1 - Python Basics/6. Type casting.vtt
5.6 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/4. Gradient descent with momentum.vtt
5.6 kB
39. Deep Q Learning Implementation (Tic Tac Toe)/5. Tic Tac Toe with deep Q learning implementation V.vtt
5.5 kB
09. Naive Bayes Classifier/3. Naive Bayes classifier implementation.vtt
5.5 kB
26. Machine Learning Project III - Identifying Objects with CNNs/4. What is batch normalization.vtt
5.5 kB
37. Q Learning Implementation (Tic Tac Toe)/5. Tic tac toe with Q learning implementation V.vtt
5.5 kB
01. Introduction/1. Introduction.vtt
5.4 kB
44. Appendix #3 - Data Structures in Python/9. What are tuples.vtt
5.4 kB
02. Environment Setup/2. Installing PyCharm.vtt
5.4 kB
29. Transformers/8. What is masking.vtt
5.4 kB
08. K-Nearest Neighbor Classifier/4. Bias and variance trade-off.vtt
5.4 kB
21. Deep Neural Networks Theory/6. Gradient descent and stochastic gradient descent.vtt
5.3 kB
34. Markov Decision Process (MDP) Theory/8. What is policy iteration.vtt
5.3 kB
42. Appendix #1 - Python Basics/14. Enumerate.vtt
5.2 kB
40. Proximal Policy Optimization (PPO) Theory/1. What are the problems with deep Q learning.vtt
5.2 kB
21. Deep Neural Networks Theory/8. Regularization.vtt
5.2 kB
27. Recurrent Neural Networks (RNNs) Theory/1. Why do recurrent neural networks are important.vtt
5.2 kB
23. Machine Learning Project II - Smile Detector/3. Reading the images and constructing the dataset II.vtt
5.2 kB
31. Generative Adversarial Networks (GANs) Implementation/6. GAN.py
5.2 kB
28. Recurrent Neural Networks (RNNs) Implementation/6. Time series analysis example VI.vtt
5.1 kB
05. Linear Regression/5. Linear regression implementation II.vtt
5.1 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/10. What is RMSProp.vtt
5.1 kB
16. Machine Learning Project I - Face Recognition/5. Constructing the machine learning models.vtt
5.1 kB
24. Convolutional Neural Networks (CNNs) Theory/4. Convolutional neural networks - pooling.vtt
5.1 kB
21. Deep Neural Networks Theory/1. What are deep neural networks.vtt
5.0 kB
27. Recurrent Neural Networks (RNNs) Theory/9. Gated recurrent units (GRUs).vtt
5.0 kB
44. Appendix #3 - Data Structures in Python/2. Data structures introduction.vtt
5.0 kB
28. Recurrent Neural Networks (RNNs) Implementation/1. Time series analysis example I.vtt
5.0 kB
35. Exploration vs. Exploitation Problem/1. Exploration vs exploitation problem.vtt
4.9 kB
45. Appendix #4 - Object Oriented Programming (OOP)/6. What is inheritance in OOP.vtt
4.9 kB
46. Appendix #5 - NumPy/8. Filter.vtt
4.9 kB
43. Appendix #2 - Functions/11. The __main__ function.vtt
4.8 kB
31. Generative Adversarial Networks (GANs) Implementation/6. GAN implementation VI.vtt
4.8 kB
42. Appendix #1 - Python Basics/10. Logical operators.vtt
4.7 kB
37. Q Learning Implementation (Tic Tac Toe)/1. Tic tac toe with Q learning implementation I.vtt
4.7 kB
08. K-Nearest Neighbor Classifier/7. K-nearest neighbor implementation III.vtt
4.7 kB
11. Decision Trees/5. Decision trees introduction - pros and cons.vtt
4.6 kB
38. Deep Q Learning Theory/2. Deep Q learning and ε-greedy strategy.vtt
4.6 kB
39. Deep Q Learning Implementation (Tic Tac Toe)/1. Tic Tac Toe with deep Q learning implementation I.vtt
4.6 kB
08. K-Nearest Neighbor Classifier/2. Concept of lazy learning.vtt
4.5 kB
18. Feed-Forward Neural Network Theory/5. Using bias nodes in the neural network.vtt
4.5 kB
27. Recurrent Neural Networks (RNNs) Theory/4. Vanishing and exploding gradients problem.vtt
4.4 kB
13. Boosting/7. Boosting vs. bagging.vtt
4.4 kB
23. Machine Learning Project II - Smile Detector/5. Evaluating and testing the model.vtt
4.2 kB
27. Recurrent Neural Networks (RNNs) Theory/8. Long-short term memory (LSTM) backpropagation example.vtt
4.2 kB
45. Appendix #4 - Object Oriented Programming (OOP)/12. The __str__ function.vtt
4.2 kB
40. Proximal Policy Optimization (PPO) Theory/6. Proximal policy optimization (PPO) algorithm III.vtt
4.1 kB
43. Appendix #2 - Functions/5. Returning multiple values.vtt
4.0 kB
10. Support Vector Machines (SVMs)/10. Advantages and disadvantages.vtt
4.0 kB
45. Appendix #4 - Object Oriented Programming (OOP)/2. Class and objects basics.vtt
3.8 kB
29. Transformers/1. Transformers chapter overview.vtt
3.7 kB
33. ### REINFORCEMENT LEARNING ###/2. Applications of reinforcement learning.vtt
3.7 kB
42. Appendix #1 - Python Basics/13. What are nested loops.vtt
3.7 kB
23. Machine Learning Project II - Smile Detector/4. Building the deep neural network model.vtt
3.6 kB
28. Recurrent Neural Networks (RNNs) Implementation/4. Time series analysis example IV.vtt
3.6 kB
02. Environment Setup/1. Installing Python.vtt
3.4 kB
45. Appendix #4 - Object Oriented Programming (OOP)/1. What is object oriented programming (OOP).vtt
3.3 kB
45. Appendix #4 - Object Oriented Programming (OOP)/8. Function (method) override.vtt
3.3 kB
42. Appendix #1 - Python Basics/16. Calculating Fibonacci-numbers.vtt
3.3 kB
34. Markov Decision Process (MDP) Theory/6. How to solve MDP problems.vtt
3.3 kB
41. ### PYTHON PROGRAMMING CRASH COURSE ###/1. Python crash course introduction.vtt
3.2 kB
24. Convolutional Neural Networks (CNNs) Theory/6. Convolutional neural networks - illustration.vtt
3.2 kB
20. Deep Learning/1. Types of neural networks.vtt
3.1 kB
43. Appendix #2 - Functions/4. Returning values.vtt
3.1 kB
29. Transformers/12. What is ChatGPT.vtt
3.0 kB
16. Machine Learning Project I - Face Recognition/6. Using cross-validation.vtt
3.0 kB
02. Environment Setup/3. Installing TensorFlow and Keras.vtt
3.0 kB
43. Appendix #2 - Functions/7. Local and global variables.vtt
2.8 kB
12. Random Forest Classifier/2. Pruning introduction.vtt
2.8 kB
42. Appendix #1 - Python Basics/3. Booleans.vtt
2.7 kB
23. Machine Learning Project II - Smile Detector/1. Understanding the classification problem.vtt
2.4 kB
19. Simple Feed-Forward Neural Network Implementation/2. Linearly and non-linearly separable problems.vtt
2.2 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/7. StochasticGradientDescentRegression.py
2.2 kB
26. Machine Learning Project III - Identifying Objects with CNNs/2. Preprocessing the data.vtt
2.2 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/6. StochasticGradientDescent.py
2.0 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/9. GradientDescentAdaGrad.py
1.6 kB
46. Appendix #5 - NumPy/9. Running time comparison arrays and lists.html
1.3 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/3. GradientDescent.py
1.3 kB
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/12. ADAM.py
1.1 kB
33. ### REINFORCEMENT LEARNING ###/1. What is reinforcement learning.html
899 Bytes
44. Appendix #3 - Data Structures in Python/8. (!!!) Python lists and arrays.html
631 Bytes
15. Clustering/9. Mathematical formulation of clustering.html
629 Bytes
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/1. Numerical optimization algorithms in machine learning.html
599 Bytes
04. ### MACHINE LEARNING ###/1. Machine learning section.html
471 Bytes
10. Support Vector Machines (SVMs)/11. Mathematical formulation of Support Vector Machines (SVMs).html
419 Bytes
17. ### NEURAL NETWORKS AND DEEP LEARNING ###/1. Neural networks and deep learning section.html
374 Bytes
11. Decision Trees/9. Mathematical formulation of decision trees.html
356 Bytes
29. Transformers/13. Mathematical formulation of transformers.html
323 Bytes
13. Boosting/8. Mathematical formulation of boosting.html
290 Bytes
21. Deep Neural Networks Theory/9. Mathematical formulation of deep neural networks.html
290 Bytes
24. Convolutional Neural Networks (CNNs) Theory/11. Mathematical formulation of convolution neural networks.html
290 Bytes
34. Markov Decision Process (MDP) Theory/9. Mathematical formulation of reinforcement learning.html
284 Bytes
14. Principal Component Analysis (PCA)/5. Mathematical formulation of principle component analysis (PCA).html
282 Bytes
08. K-Nearest Neighbor Classifier/8. Mathematical formulation of k-nearest neighbor classifier.html
276 Bytes
05. Linear Regression/6. Mathematical formulation of linear regression.html
275 Bytes
32. ### NUMERICAL OPTIMIZATION (OPTIMIZERS) ###/13. Mathematical formulation of optimization algorithms in machine learning.html
275 Bytes
38. Deep Q Learning Theory/5. Mathematical formulation of deep Q learning.html
272 Bytes
06. Logistic Regression/7. Mathematical formulation of logistic regression.html
263 Bytes
12. Random Forest Classifier/8. Mathematical formulation of random forest classifiers.html
263 Bytes
36. Q Learning Theory/4. Mathematical formulation of Q learning.html
262 Bytes
18. Feed-Forward Neural Network Theory/10. Mathematical formulation of feed-forward neural networks.html
261 Bytes
27. Recurrent Neural Networks (RNNs) Theory/10. Mathematical formulation of recurrent neural networks.html
258 Bytes
09. Naive Bayes Classifier/7. Mathematical formulation of naive Bayes classifier.html
246 Bytes
30. Generative Adversarial Networks (GANs) Theory/5. Mathematical formulation of GANs.html
234 Bytes
24. Convolutional Neural Networks (CNNs) Theory/10. CNN visualization tool.html
126 Bytes
47. COURSE MATERIALS (DOWNLOADS)/1. Course materials (source code and slides).html
66 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!