MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - Complete SQL for Data Analytics and Business Intelligence (1.2025)

磁力链接/BT种子名称

Udemy - Complete SQL for Data Analytics and Business Intelligence (1.2025)

磁力链接/BT种子简介

种子哈希:1100193c75dfa90c77ae198576f0cee6be29eec7
文件大小: 9.48G
已经下载:12次
下载速度:极快
收录时间:2025-09-01
最近下载:2025-09-02

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:1100193C75DFA90C77AE198576F0CEE6BE29EEC7
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 她趣 TikTok成人版 PornHub 听泉鉴鲍 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

极致粉穴 强奸海角 女机器人叶子楣 크리시 金先生 调教 视频合 极品丰满顶级+小哥连续两场双飞都不带大喘气的 电影 佐山爱uc 训练 stad.pro v8i crack f1 the movie 佚名情侣主 laxd ppv rctd–128 girlsdoporn elly clutch 糖心 券商 走光 blackxxxx21 贞操锁+图 pregnant 调教全集 leah+gotti,+dana+dearmond 姜惠琳原版 vicky shinaryen 经典3p 衬衣舞 +性感留学生艾熙难以抗拒大肉棒的诱惑

文件列表

  • 18. Window Functions/3. The RANK() Window Function.mp4 268.8 MB
  • 19. Common Table Expressions (CTEs)/2. Common Table Expressions (CTEs) In Detail.mp4 178.6 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/6. A Generic and Reusable Date Dimension Table.mp4 173.0 MB
  • 17. Working with JSON Data Type/6. Filtering Records Based on JSON Fields.mp4 164.5 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/5. Date Dimension Table and Fact Table.mp4 158.7 MB
  • 12. Subqueries/8. Correlated Subquery.mp4 157.4 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/4. Handling Duplicates.mp4 154.2 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/3. Exploratory Data Analysis (EDA).mp4 152.7 MB
  • 12. Subqueries/6. Subquery in JOIN Clause.mp4 150.8 MB
  • 17. Working with JSON Data Type/5. Accessing JSON Fields.mp4 148.7 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/3. Handling Missing Values.mp4 145.6 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/4. Identifying Sales Trends.mp4 144.9 MB
  • 18. Window Functions/6. The LAG() and LEAD() Window Function.mp4 141.1 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/7. Top Business Categories By Sales.mp4 139.6 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/8. Year-over-Year (YoY) Sales Analysis.mp4 137.8 MB
  • 08. Table Relationships and Constraints/4. Primary Keys.mp4 134.7 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/1. Section Introduction.mp4 134.7 MB
  • 02. Setting up Local Environment/2. Database Servers and Clients.mp4 134.4 MB
  • 10. Grouping and Aggregating Records/8. Using WHERE and HAVING Together.mp4 130.5 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/2. Importing Data From CSV to PostgreSQL Database.mp4 128.9 MB
  • 05. Reading Data From Table/3. Common String Operators and Functions.mp4 128.4 MB
  • 10. Grouping and Aggregating Records/5. Combining Grouping and Aggregation.mp4 127.5 MB
  • 08. Table Relationships and Constraints/8. Other Column Constraints.mp4 126.1 MB
  • 12. Subqueries/7. Subquery in WHERE Clause.mp4 124.3 MB
  • 16. Working with Array Data Type/8. Array Aggregation.mp4 123.1 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/15. Solution - Exercise 6.mp4 123.0 MB
  • 09. Joining Tables (SQL Joins)/2. Preparing Dataset.mp4 121.0 MB
  • 10. Grouping and Aggregating Records/2. Aggregate Functions.mp4 119.6 MB
  • 09. Joining Tables (SQL Joins)/5. Left Outer Join.mp4 115.1 MB
  • 09. Joining Tables (SQL Joins)/8. Exercise 1.mp4 113.1 MB
  • 04. Creating Table and Inserting Data into the Table/9. Inserting Data into Table.mp4 113.0 MB
  • 10. Grouping and Aggregating Records/4. Visualizing GROUP BY Operation.mp4 112.3 MB
  • 12. Subqueries/4. Subquery in SELECT Clause.mp4 111.9 MB
  • 08. Table Relationships and Constraints/6. Foreign Key Constraint on Delete.mp4 109.5 MB
  • 08. Table Relationships and Constraints/5. Foreign Keys.mp4 107.8 MB
  • 12. Subqueries/5. Subquery in FROM Clause.mp4 106.7 MB
  • 02. Setting up Local Environment/3. Local Set up - Mac.mp4 106.1 MB
  • 15. Working with Date and Time Data Types/5. Example Truncating Date and Timestamp.mp4 105.0 MB
  • 08. Table Relationships and Constraints/1. Section Introduction.mp4 103.4 MB
  • 09. Joining Tables (SQL Joins)/11. Exercise 3.mp4 97.6 MB
  • 09. Joining Tables (SQL Joins)/4. Inner Join.mp4 96.1 MB
  • 23. Next Steps Roadmap and Career Guidance/1. Data Analyst Data Scientist Roadmap.mp4 95.6 MB
  • 17. Working with JSON Data Type/2. What is JSON.mp4 95.5 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/8. Exercise 3 Calculate the Average Order Value (AOV).mp4 92.2 MB
  • 18. Window Functions/4. The DENSE_RANK() Window Function.mp4 85.8 MB
  • 15. Working with Date and Time Data Types/3. Time Zone Conversions.mp4 84.5 MB
  • 10. Grouping and Aggregating Records/6. Exercise Using Aggregation with Grouping.mp4 83.8 MB
  • 10. Grouping and Aggregating Records/7. Filtering Groups.mp4 83.5 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/7. Solution - Exercise 2.mp4 82.7 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/11. Solution - Exercise 4.mp4 82.3 MB
  • 08. Table Relationships and Constraints/9. Getting Table Schema Information.mp4 81.7 MB
  • 09. Joining Tables (SQL Joins)/12. Exercise 4.mp4 77.6 MB
  • 11. Sorting Records/3. Limiting and Skipping Records.mp4 76.9 MB
  • 18. Window Functions/5. The ROW_NUMBER() Window Function.mp4 74.9 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/13. Solution - Exercise 5.mp4 73.7 MB
  • 09. Joining Tables (SQL Joins)/6. Right Outer Join.mp4 72.5 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/5. Handling Outliers.mp4 70.9 MB
  • 09. Joining Tables (SQL Joins)/7. Full Outer Join.mp4 70.6 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/14. Exercise 6 Show the most recent review for each product.mp4 70.4 MB
  • 10. Grouping and Aggregating Records/3. Why do we group records.mp4 69.3 MB
  • 17. Working with JSON Data Type/7. Constructing JSON Objects.mp4 67.4 MB
  • 16. Working with Array Data Type/9. Exercise Array Aggregation.mp4 64.3 MB
  • 17. Working with JSON Data Type/8. JSON Aggregation.mp4 62.7 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/8. Consistent Format for Numeric Data.mp4 62.4 MB
  • 09. Joining Tables (SQL Joins)/13. Join with Filter.mp4 60.0 MB
  • 16. Working with Array Data Type/7. Array Functions.mp4 59.6 MB
  • 03. Database Terminologies/4. Creating a Database.mp4 58.6 MB
  • 16. Working with Array Data Type/5. Filtering Records Based on Array Values.mp4 58.2 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/9. Quick Recap of the Key Concepts.mp4 58.1 MB
  • 11. Sorting Records/2. Sorting Records.mp4 55.1 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/6. Exercise 2 Identify the top selling products.mp4 53.5 MB
  • 02. Setting up Local Environment/4. Local Set up - Windows.mp4 53.1 MB
  • 08. Table Relationships and Constraints/2. One-to-Many and Many-to-One Relationships.mp4 53.0 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/17. Solution - Exercise 7.mp4 52.4 MB
  • 18. Window Functions/7. LAG() Function - A Practical Use Case.mp4 50.5 MB
  • 14. Type Casting/2. Explicit Type Casting.mp4 50.4 MB
  • 15. Working with Date and Time Data Types/6. Extracting Parts of Date and Timestamp.mp4 50.0 MB
  • 07. Updating and Deleting Records/2. Updating Records in a Table.mp4 49.8 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/3. Analytics Data Setup.mp4 49.7 MB
  • 09. Joining Tables (SQL Joins)/10. Exercise 2.mp4 49.4 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/6. Standardizing Values in Categorical Columns.mp4 48.8 MB
  • 02. Setting up Local Environment/5. Getting Familiar with pgAdmin.mp4 48.4 MB
  • 17. Working with JSON Data Type/4. Inserting Data into JSON Columns.mp4 47.4 MB
  • 08. Table Relationships and Constraints/3. One-to-One and Many-to-Many Relationships.mp4 47.2 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/10. Exercise 4 Calculate the Customer Lifetime Value (CLV).mp4 46.7 MB
  • 06. Filtering Records/2. The WHERE Clause.mp4 46.2 MB
  • 15. Working with Date and Time Data Types/8. Date Math.mp4 45.0 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/7. Standardizing Text Data.mp4 44.4 MB
  • 15. Working with Date and Time Data Types/4. Truncating Date and Timestamp.mp4 43.9 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/12. Exercise 5 Identify customers who have not made a purchase in a while.mp4 42.9 MB
  • 04. Creating Table and Inserting Data into the Table/4. Character Data Types.mp4 42.5 MB
  • 03. Database Terminologies/3. Multiple databases and schemas.mp4 42.1 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/1. Quick Recap!.mp4 42.1 MB
  • 06. Filtering Records/6. Using WHERE with pattern matching.mp4 40.9 MB
  • 19. Common Table Expressions (CTEs)/1. Section Introduction.mp4 40.0 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/19. Solution - Exercise 8.mp4 39.7 MB
  • 07. Updating and Deleting Records/3. Deleting Records from a Table.mp4 38.6 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/9. Solution - Exercise 3.mp4 38.0 MB
  • 15. Working with Date and Time Data Types/7. Formatting Date and Timestamp.mp4 37.5 MB
  • 04. Creating Table and Inserting Data into the Table/2. Numeric Data Types.mp4 37.3 MB
  • 06. Filtering Records/3. Comparison operators in WHERE Clause.mp4 36.7 MB
  • 16. Working with Array Data Type/4. Inserting Data into Array Columns.mp4 36.4 MB
  • 12. Subqueries/3. Where is a Subquery Used.mp4 36.4 MB
  • 10. Grouping and Aggregating Records/1. Section Introduction.mp4 36.1 MB
  • 15. Working with Date and Time Data Types/2. Current Date and Time.mp4 35.9 MB
  • 16. Working with Array Data Type/6. Array Indexing.mp4 35.2 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/16. Exercise 7 Identify the top rated products.mp4 35.0 MB
  • 12. Subqueries/2. What is a Subquery.mp4 34.9 MB
  • 17. Working with JSON Data Type/3. Adding Columns of JSON Data Type.mp4 34.5 MB
  • 06. Filtering Records/5. Using WHERE within a specified range.mp4 34.3 MB
  • 16. Working with Array Data Type/2. What is an Array.mp4 34.1 MB
  • 01. Introduction to Data Analytics/1. Data Roles and Responsibilities.mp4 34.0 MB
  • 16. Working with Array Data Type/3. Adding Columns of Array Data Type.mp4 33.9 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/1. Section Introduction.mp4 33.0 MB
  • 04. Creating Table and Inserting Data into the Table/8. Creating a Table.mp4 31.7 MB
  • 14. Type Casting/3. Implicit Type Casting.mp4 31.1 MB
  • 05. Reading Data From Table/4. Using Comments in SQL.mp4 31.0 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/2. Section Introduction.mp4 30.3 MB
  • 08. Table Relationships and Constraints/7. Foreign Key Constraint on Insert.mp4 29.9 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/5. Solution - Exercise 1.mp4 29.3 MB
  • 06. Filtering Records/7. Compound WHERE Clause.mp4 29.2 MB
  • 17. Working with JSON Data Type/1. Section Introduction.mp4 29.2 MB
  • 04. Creating Table and Inserting Data into the Table/7. Other Important Data Types.mp4 28.9 MB
  • 16. Working with Array Data Type/1. Section Introduction.mp4 28.1 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/18. Exercise 8 Calculate discount based on order value.mp4 27.6 MB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/4. Exercise 1 Calculate the total revenue.mp4 27.4 MB
  • 09. Joining Tables (SQL Joins)/9. Table and Column Alias.mp4 27.2 MB
  • 05. Reading Data From Table/2. The SELECT statement.mp4 27.2 MB
  • 06. Filtering Records/4. Using WHERE with a List of Values.mp4 27.1 MB
  • 16. Working with Array Data Type/10. Flattening of Arrays.mp4 26.5 MB
  • 04. Creating Table and Inserting Data into the Table/5. Date and Time Data Types.mp4 22.3 MB
  • 09. Joining Tables (SQL Joins)/3. Why do we need Joins.mp4 21.4 MB
  • 07. Updating and Deleting Records/4. Dropping a Table from Database.mp4 20.8 MB
  • 20. SQL for Cleaning Data for Analysis and Reporting/2. Data Setup.mp4 20.7 MB
  • 14. Type Casting/1. Section Introduction.mp4 19.9 MB
  • 03. Database Terminologies/2. Tables.mp4 17.7 MB
  • 04. Creating Table and Inserting Data into the Table/1. Section Introduction.mp4 17.6 MB
  • 03. Database Terminologies/1. Database and Schema.mp4 17.1 MB
  • 15. Working with Date and Time Data Types/1. Section Introduction.mp4 12.5 MB
  • 09. Joining Tables (SQL Joins)/1. Section Introduction.mp4 12.0 MB
  • 18. Window Functions/2. Data Setup.mp4 10.5 MB
  • 12. Subqueries/1. Section Introduction.mp4 8.5 MB
  • 18. Window Functions/1. Section Introduction.mp4 7.8 MB
  • 11. Sorting Records/1. Section Introduction.mp4 7.7 MB
  • 04. Creating Table and Inserting Data into the Table/6. Boolean Data Type.mp4 6.8 MB
  • 06. Filtering Records/1. Section Introduction.mp4 6.0 MB
  • 07. Updating and Deleting Records/1. Section Introduction.mp4 5.8 MB
  • 05. Reading Data From Table/1. Section Introduction.mp4 5.6 MB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/2. us_retail_sales.csv 1.3 MB
  • 02. Setting up Local Environment/1. Section Introduction.mp4 1.2 MB
  • 09. Joining Tables (SQL Joins)/7. full_join.png 699.5 kB
  • 09. Joining Tables (SQL Joins)/6. right_join.png 656.8 kB
  • 18. Window Functions/8. 2024-11-21_13-44-00-0eb1e38674b8bf9602a76bf0eac228b2.png 641.4 kB
  • 09. Joining Tables (SQL Joins)/5. left_join.png 641.2 kB
  • 09. Joining Tables (SQL Joins)/4. inner_join.png 591.7 kB
  • 10. Grouping and Aggregating Records/9. 2024-11-10_17-59-04-8600b09d5bdaa0bd281190ac1a380b0a.png 355.8 kB
  • 02. Setting up Local Environment/2. server_client.png 352.7 kB
  • 02. Setting up Local Environment/6. 2024-12-02_14-38-07-ea5fafe8a3a58701a11f427500a28607.png 352.7 kB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/1. sql_topics.png 289.7 kB
  • 18. Window Functions/1. window_functions.png 282.7 kB
  • 18. Window Functions/8. 2024-11-21_13-44-00-f4657878fbc6ca7ce6d115a864555b14.png 282.7 kB
  • 16. Working with Array Data Type/11. 2024-11-19_12-03-27-ef3be7da1bf82e66c276e569f9e49097.png 280.9 kB
  • 16. Working with Array Data Type/2. array_datatype.png 280.9 kB
  • 20. SQL for Cleaning Data for Analysis and Reporting/1. analysis_process.png 215.7 kB
  • 20. SQL for Cleaning Data for Analysis and Reporting/9. 2024-11-23_19-58-44-059632582b9adcf9ba495eeec822bced.png 215.7 kB
  • 18. Window Functions/7. lag_ex.png 211.7 kB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/1. order_exec.png 188.0 kB
  • 06. Filtering Records/8. 2024-11-05_14-37-46-5a167c0f7681a228041f564c25cd2542.png 103.1 kB
  • 06. Filtering Records/9.6 Comparison Operators and Pattern Matching.html 25.5 kB
  • 08. Table Relationships and Constraints/11.8 Table Relationships and Column Constraints.html 23.6 kB
  • 04. Creating Table and Inserting Data into the Table/11.3 Data Types.html 23.5 kB
  • 09. Joining Tables (SQL Joins)/15.9 Joining Tables.html 23.1 kB
  • 11. Sorting Records/5.11 Sorting, Limiting and Skipping Records.html 21.5 kB
  • 07. Updating and Deleting Records/6.7 Update and Delete Operations.html 20.8 kB
  • 05. Reading Data From Table/6.4 String Operators and Functions.html 20.2 kB
  • 10. Grouping and Aggregating Records/10.10 Grouping and Aggregating Records.html 19.7 kB
  • 12. Subqueries/10.12 Subqueries.html 19.0 kB
  • 03. Database Terminologies/5.1 Database Schema.html 17.0 kB
  • 05. Reading Data From Table/7.5 Alias for column name.html 16.6 kB
  • 04. Creating Table and Inserting Data into the Table/3.2 SERIAL Data Type.html 16.5 kB
  • 20. SQL for Cleaning Data for Analysis and Reporting/9. Lecture Notes.html 10.2 kB
  • 08. Table Relationships and Constraints/10. Lecture Notes.html 9.6 kB
  • 22. Some More Interview Questions From Top Companies/2.15 Interview Question (CVS Health).html 8.8 kB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/10.13 Interview Question (Wayfair).html 8.0 kB
  • 09. Joining Tables (SQL Joins)/16.2 Interview Question (TikTok).html 7.9 kB
  • 19. Common Table Expressions (CTEs)/4.12 Interview Question (LinkedIn).html 7.9 kB
  • 18. Window Functions/10.11 Interview Question (Amazon).html 7.4 kB
  • 22. Some More Interview Questions From Top Companies/4.17 Interview Question (Facebook).html 7.3 kB
  • 15. Working with Date and Time Data Types/10.9 Interview Question (Microsoft).html 7.0 kB
  • 12. Subqueries/12.8 Interview Question (FAANG).html 6.9 kB
  • 06. Filtering Records/10.1 Interview Question (Tesla).html 6.7 kB
  • 11. Sorting Records/7.6 Interview Question (CVS Health) Part 2.html 6.6 kB
  • 22. Some More Interview Questions From Top Companies/3.16 Interview Question (UnitedHealth Group).html 6.6 kB
  • 22. Some More Interview Questions From Top Companies/1.14 Interview Question (JP Morgan).html 6.4 kB
  • 11. Sorting Records/6.5 Interview Question (CVS Health) Part 1.html 6.3 kB
  • 22. Some More Interview Questions From Top Companies/5.18 Interview Question (Amazon).html 6.2 kB
  • 10. Grouping and Aggregating Records/12.4 Interview Question (New York Times).html 6.2 kB
  • 12. Subqueries/11.7 Interview Question (Facebook).html 6.1 kB
  • 17. Working with JSON Data Type/9. Lecture Notes.html 5.8 kB
  • 18. Window Functions/9.10 Interview Question (Uber).html 5.8 kB
  • 15. Working with Date and Time Data Types/9. Lecture Notes.html 5.6 kB
  • 10. Grouping and Aggregating Records/11.3 Interview Question (LinkedIn).html 5.6 kB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/3. analytical_dataset.sql 4.7 kB
  • 04. Creating Table and Inserting Data into the Table/10. Lecture Notes.html 4.7 kB
  • 09. Joining Tables (SQL Joins)/14. Lecture Notes.html 4.3 kB
  • 18. Window Functions/8. Lecture Notes.html 3.8 kB
  • 16. Working with Array Data Type/11. Lecture Notes.html 3.5 kB
  • 10. Grouping and Aggregating Records/9. Lecture Notes.html 3.4 kB
  • 12. Subqueries/9. Lecture Notes.html 3.0 kB
  • 09. Joining Tables (SQL Joins)/2. shopeasy_dataset.sql 2.9 kB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/9. key_concepts.sql 2.9 kB
  • 17. Working with JSON Data Type/6. filter.sql 1.9 kB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/9. 3_average_order_value.sql 1.8 kB
  • 20. SQL for Cleaning Data for Analysis and Reporting/2. data_setup.sql 1.8 kB
  • 11. Sorting Records/4. Lecture Notes.html 1.5 kB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/6. date_dim_table.sql 1.5 kB
  • 03. Database Terminologies/6. Lecture Notes.html 1.4 kB
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/3. eda.sql 1.4 kB
  • 05. Reading Data From Table/5. Lecture Notes.html 1.4 kB
  • 15. Working with Date and Time Data Types/8. date_math.sql 1.3 kB
  • 19. Common Table Expressions (CTEs)/3. Lecture Notes.html 1.3 kB
  • 07. Updating and Deleting Records/5. Lecture Notes.html 1.3 kB
  • 15. Working with Date and Time Data Types/7. to_char.sql 1.2 kB
  • 06. Filtering Records/8. Lecture Notes.html 1.2 kB
  • 15. Working with Date and Time Data Types/6. extract.sql 1.2 kB
  • 14. Type Casting/4. Lecture Notes.html 1.2 kB
  • 20. SQL for Cleaning Data for Analysis and Reporting/4. removing_duplicates.sql 1.1 kB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/15. 6_reviews_in_real_time.sql 1.1 kB
  • 15. Working with Date and Time Data Types/4. date_trunc.sql 1.0 kB
  • 12. Subqueries/7. where_subquery.sql 1.0 kB
  • 15. Working with Date and Time Data Types/6. date_part.sql 1.0 kB
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/19. 8_discount_order_value.sql 926 Bytes
  • 19. Common Table Expressions (CTEs)/2. cte_example.sql 884 Bytes
  • 06. Filtering Records/8. filtering_records.sql 883 Bytes
  • 17. Working with JSON Data Type/4. insert_data.sql 866 Bytes
  • 02. Setting up Local Environment/6. Lecture Notes.html 851 Bytes
  • 03. Database Terminologies/7. Interview Questions.html 741 Bytes
  • 17. Working with JSON Data Type/5. access.sql 737 Bytes
  • 10. Grouping and Aggregating Records/2. aggregate_functions.sql 726 Bytes
  • 09. Joining Tables (SQL Joins)/6. right_join.sql 717 Bytes
  • 11. Sorting Records/3. limit_offset.sql 713 Bytes
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/13. 5_customers_not_purchased.sql 685 Bytes
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/8. yoy_sales_growth.sql 682 Bytes
  • 18. Window Functions/6. lag_lead.sql 665 Bytes
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/11. 4_customer_lifetime_value.sql 663 Bytes
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/17. 7_top_rated_products.sql 663 Bytes
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/5. date_dim.sql 650 Bytes
  • 12. Subqueries/5. from_subquery.sql 633 Bytes
  • 18. Window Functions/2. data_setup.sql 614 Bytes
  • 15. Working with Date and Time Data Types/2. current_date_time.sql 592 Bytes
  • 09. Joining Tables (SQL Joins)/5. left_join.sql 565 Bytes
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/7. top_businesses.sql 548 Bytes
  • 17. Working with JSON Data Type/7. constructing_json.sql 547 Bytes
  • 09. Joining Tables (SQL Joins)/4. inner_join.sql 532 Bytes
  • 20. SQL for Cleaning Data for Analysis and Reporting/6. categorical_column.sql 527 Bytes
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/2. data_setup.sql 502 Bytes
  • 04. Creating Table and Inserting Data into the Table/9. insert_rows.sql 484 Bytes
  • 17. Working with JSON Data Type/8. aggregation.sql 471 Bytes
  • 20. SQL for Cleaning Data for Analysis and Reporting/3. missing_values.sql 462 Bytes
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/7. 2_top_selling_products.sql 454 Bytes
  • 05. Reading Data From Table/3. string_functions.sql 450 Bytes
  • 12. Subqueries/8. correlated_subquery.sql 447 Bytes
  • 12. Subqueries/4. select_subquery.sql 428 Bytes
  • 21. Case Study 2 Time Series Analysis with Retail Sales Dataset/4. trends.sql 416 Bytes
  • 20. SQL for Cleaning Data for Analysis and Reporting/5. handling_outliers.sql 413 Bytes
  • 09. Joining Tables (SQL Joins)/7. full_outer.sql 399 Bytes
  • 13. Case Study 1 Extracting Insights from E-commerce Dataset/5. 1_total_revenue.sql 389 Bytes
  • 07. Updating and Deleting Records/2. update_records.sql 374 Bytes
  • 16. Working with Array Data Type/7. array_functions.sql 363 Bytes
  • 12. Subqueries/6. join_subqueries.sql 350 Bytes
  • 14. Type Casting/2. explicit_type_casting.sql 310 Bytes
  • 16. Working with Array Data Type/5. filter_records.sql 295 Bytes
  • 11. Sorting Records/2. sorting_records.sql 283 Bytes
  • 16. Working with Array Data Type/9. array_agg_exercise.sql 282 Bytes
  • 15. Working with Date and Time Data Types/5. date_trunc_ex.sql 270 Bytes
  • 10. Grouping and Aggregating Records/8. where_having.sql 268 Bytes
  • 14. Type Casting/3. implicit_type_casting.sql 262 Bytes
  • 18. Window Functions/3. rank.sql 248 Bytes
  • 15. Working with Date and Time Data Types/3. time_zone-conversions.sql 239 Bytes
  • 18. Window Functions/4. dense_rank.sql 236 Bytes
  • 07. Updating and Deleting Records/3. delete_records.sql 207 Bytes
  • 04. Creating Table and Inserting Data into the Table/8. create_table.sql 199 Bytes
  • 16. Working with Array Data Type/4. insert_data.sql 180 Bytes
  • 12. Subqueries/2. subquery_ex1.sql 178 Bytes
  • 18. Window Functions/5. row_number.sql 169 Bytes
  • 20. SQL for Cleaning Data for Analysis and Reporting/7. text_data.sql 168 Bytes
  • 10. Grouping and Aggregating Records/7. having_clause.sql 163 Bytes
  • 16. Working with Array Data Type/8. array_agg.sql 140 Bytes
  • 17. Working with JSON Data Type/3. add_column.sql 107 Bytes
  • 16. Working with Array Data Type/3. add_column.sql 104 Bytes
  • 16. Working with Array Data Type/10. array_flat.sql 103 Bytes
  • 20. SQL for Cleaning Data for Analysis and Reporting/8. number_format.sql 97 Bytes
  • 16. Working with Array Data Type/6. array_index.sql 96 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!