搜索
Udemy - Complete SQL for Data Analytics and Business Intelligence (1.2025)
磁力链接/BT种子名称
Udemy - Complete SQL for Data Analytics and Business Intelligence (1.2025)
磁力链接/BT种子简介
种子哈希:
1100193c75dfa90c77ae198576f0cee6be29eec7
文件大小:
9.48G
已经下载:
12
次
下载速度:
极快
收录时间:
2025-09-01
最近下载:
2025-09-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:1100193C75DFA90C77AE198576F0CEE6BE29EEC7
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
她趣
TikTok成人版
PornHub
听泉鉴鲍
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
极致粉穴
强奸海角
女机器人叶子楣
크리시 金先生
调教
视频合
极品丰满顶级+小哥连续两场双飞都不带大喘气的
电影
佐山爱uc
训练
stad.pro v8i crack
f1 the movie
佚名情侣主
laxd ppv
rctd–128
girlsdoporn
elly clutch
糖心 券商
走光
blackxxxx21
贞操锁+图
pregnant
调教全集
leah+gotti,+dana+dearmond
姜惠琳原版
vicky
shinaryen
经典3p
衬衣舞
+性感留学生艾熙难以抗拒大肉棒的诱惑
文件列表
18. Window Functions/3. The RANK() Window Function.mp4
268.8 MB
19. Common Table Expressions (CTEs)/2. Common Table Expressions (CTEs) In Detail.mp4
178.6 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/6. A Generic and Reusable Date Dimension Table.mp4
173.0 MB
17. Working with JSON Data Type/6. Filtering Records Based on JSON Fields.mp4
164.5 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/5. Date Dimension Table and Fact Table.mp4
158.7 MB
12. Subqueries/8. Correlated Subquery.mp4
157.4 MB
20. SQL for Cleaning Data for Analysis and Reporting/4. Handling Duplicates.mp4
154.2 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/3. Exploratory Data Analysis (EDA).mp4
152.7 MB
12. Subqueries/6. Subquery in JOIN Clause.mp4
150.8 MB
17. Working with JSON Data Type/5. Accessing JSON Fields.mp4
148.7 MB
20. SQL for Cleaning Data for Analysis and Reporting/3. Handling Missing Values.mp4
145.6 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/4. Identifying Sales Trends.mp4
144.9 MB
18. Window Functions/6. The LAG() and LEAD() Window Function.mp4
141.1 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/7. Top Business Categories By Sales.mp4
139.6 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/8. Year-over-Year (YoY) Sales Analysis.mp4
137.8 MB
08. Table Relationships and Constraints/4. Primary Keys.mp4
134.7 MB
20. SQL for Cleaning Data for Analysis and Reporting/1. Section Introduction.mp4
134.7 MB
02. Setting up Local Environment/2. Database Servers and Clients.mp4
134.4 MB
10. Grouping and Aggregating Records/8. Using WHERE and HAVING Together.mp4
130.5 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/2. Importing Data From CSV to PostgreSQL Database.mp4
128.9 MB
05. Reading Data From Table/3. Common String Operators and Functions.mp4
128.4 MB
10. Grouping and Aggregating Records/5. Combining Grouping and Aggregation.mp4
127.5 MB
08. Table Relationships and Constraints/8. Other Column Constraints.mp4
126.1 MB
12. Subqueries/7. Subquery in WHERE Clause.mp4
124.3 MB
16. Working with Array Data Type/8. Array Aggregation.mp4
123.1 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/15. Solution - Exercise 6.mp4
123.0 MB
09. Joining Tables (SQL Joins)/2. Preparing Dataset.mp4
121.0 MB
10. Grouping and Aggregating Records/2. Aggregate Functions.mp4
119.6 MB
09. Joining Tables (SQL Joins)/5. Left Outer Join.mp4
115.1 MB
09. Joining Tables (SQL Joins)/8. Exercise 1.mp4
113.1 MB
04. Creating Table and Inserting Data into the Table/9. Inserting Data into Table.mp4
113.0 MB
10. Grouping and Aggregating Records/4. Visualizing GROUP BY Operation.mp4
112.3 MB
12. Subqueries/4. Subquery in SELECT Clause.mp4
111.9 MB
08. Table Relationships and Constraints/6. Foreign Key Constraint on Delete.mp4
109.5 MB
08. Table Relationships and Constraints/5. Foreign Keys.mp4
107.8 MB
12. Subqueries/5. Subquery in FROM Clause.mp4
106.7 MB
02. Setting up Local Environment/3. Local Set up - Mac.mp4
106.1 MB
15. Working with Date and Time Data Types/5. Example Truncating Date and Timestamp.mp4
105.0 MB
08. Table Relationships and Constraints/1. Section Introduction.mp4
103.4 MB
09. Joining Tables (SQL Joins)/11. Exercise 3.mp4
97.6 MB
09. Joining Tables (SQL Joins)/4. Inner Join.mp4
96.1 MB
23. Next Steps Roadmap and Career Guidance/1. Data Analyst Data Scientist Roadmap.mp4
95.6 MB
17. Working with JSON Data Type/2. What is JSON.mp4
95.5 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/8. Exercise 3 Calculate the Average Order Value (AOV).mp4
92.2 MB
18. Window Functions/4. The DENSE_RANK() Window Function.mp4
85.8 MB
15. Working with Date and Time Data Types/3. Time Zone Conversions.mp4
84.5 MB
10. Grouping and Aggregating Records/6. Exercise Using Aggregation with Grouping.mp4
83.8 MB
10. Grouping and Aggregating Records/7. Filtering Groups.mp4
83.5 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/7. Solution - Exercise 2.mp4
82.7 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/11. Solution - Exercise 4.mp4
82.3 MB
08. Table Relationships and Constraints/9. Getting Table Schema Information.mp4
81.7 MB
09. Joining Tables (SQL Joins)/12. Exercise 4.mp4
77.6 MB
11. Sorting Records/3. Limiting and Skipping Records.mp4
76.9 MB
18. Window Functions/5. The ROW_NUMBER() Window Function.mp4
74.9 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/13. Solution - Exercise 5.mp4
73.7 MB
09. Joining Tables (SQL Joins)/6. Right Outer Join.mp4
72.5 MB
20. SQL for Cleaning Data for Analysis and Reporting/5. Handling Outliers.mp4
70.9 MB
09. Joining Tables (SQL Joins)/7. Full Outer Join.mp4
70.6 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/14. Exercise 6 Show the most recent review for each product.mp4
70.4 MB
10. Grouping and Aggregating Records/3. Why do we group records.mp4
69.3 MB
17. Working with JSON Data Type/7. Constructing JSON Objects.mp4
67.4 MB
16. Working with Array Data Type/9. Exercise Array Aggregation.mp4
64.3 MB
17. Working with JSON Data Type/8. JSON Aggregation.mp4
62.7 MB
20. SQL for Cleaning Data for Analysis and Reporting/8. Consistent Format for Numeric Data.mp4
62.4 MB
09. Joining Tables (SQL Joins)/13. Join with Filter.mp4
60.0 MB
16. Working with Array Data Type/7. Array Functions.mp4
59.6 MB
03. Database Terminologies/4. Creating a Database.mp4
58.6 MB
16. Working with Array Data Type/5. Filtering Records Based on Array Values.mp4
58.2 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/9. Quick Recap of the Key Concepts.mp4
58.1 MB
11. Sorting Records/2. Sorting Records.mp4
55.1 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/6. Exercise 2 Identify the top selling products.mp4
53.5 MB
02. Setting up Local Environment/4. Local Set up - Windows.mp4
53.1 MB
08. Table Relationships and Constraints/2. One-to-Many and Many-to-One Relationships.mp4
53.0 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/17. Solution - Exercise 7.mp4
52.4 MB
18. Window Functions/7. LAG() Function - A Practical Use Case.mp4
50.5 MB
14. Type Casting/2. Explicit Type Casting.mp4
50.4 MB
15. Working with Date and Time Data Types/6. Extracting Parts of Date and Timestamp.mp4
50.0 MB
07. Updating and Deleting Records/2. Updating Records in a Table.mp4
49.8 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/3. Analytics Data Setup.mp4
49.7 MB
09. Joining Tables (SQL Joins)/10. Exercise 2.mp4
49.4 MB
20. SQL for Cleaning Data for Analysis and Reporting/6. Standardizing Values in Categorical Columns.mp4
48.8 MB
02. Setting up Local Environment/5. Getting Familiar with pgAdmin.mp4
48.4 MB
17. Working with JSON Data Type/4. Inserting Data into JSON Columns.mp4
47.4 MB
08. Table Relationships and Constraints/3. One-to-One and Many-to-Many Relationships.mp4
47.2 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/10. Exercise 4 Calculate the Customer Lifetime Value (CLV).mp4
46.7 MB
06. Filtering Records/2. The WHERE Clause.mp4
46.2 MB
15. Working with Date and Time Data Types/8. Date Math.mp4
45.0 MB
20. SQL for Cleaning Data for Analysis and Reporting/7. Standardizing Text Data.mp4
44.4 MB
15. Working with Date and Time Data Types/4. Truncating Date and Timestamp.mp4
43.9 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/12. Exercise 5 Identify customers who have not made a purchase in a while.mp4
42.9 MB
04. Creating Table and Inserting Data into the Table/4. Character Data Types.mp4
42.5 MB
03. Database Terminologies/3. Multiple databases and schemas.mp4
42.1 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/1. Quick Recap!.mp4
42.1 MB
06. Filtering Records/6. Using WHERE with pattern matching.mp4
40.9 MB
19. Common Table Expressions (CTEs)/1. Section Introduction.mp4
40.0 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/19. Solution - Exercise 8.mp4
39.7 MB
07. Updating and Deleting Records/3. Deleting Records from a Table.mp4
38.6 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/9. Solution - Exercise 3.mp4
38.0 MB
15. Working with Date and Time Data Types/7. Formatting Date and Timestamp.mp4
37.5 MB
04. Creating Table and Inserting Data into the Table/2. Numeric Data Types.mp4
37.3 MB
06. Filtering Records/3. Comparison operators in WHERE Clause.mp4
36.7 MB
16. Working with Array Data Type/4. Inserting Data into Array Columns.mp4
36.4 MB
12. Subqueries/3. Where is a Subquery Used.mp4
36.4 MB
10. Grouping and Aggregating Records/1. Section Introduction.mp4
36.1 MB
15. Working with Date and Time Data Types/2. Current Date and Time.mp4
35.9 MB
16. Working with Array Data Type/6. Array Indexing.mp4
35.2 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/16. Exercise 7 Identify the top rated products.mp4
35.0 MB
12. Subqueries/2. What is a Subquery.mp4
34.9 MB
17. Working with JSON Data Type/3. Adding Columns of JSON Data Type.mp4
34.5 MB
06. Filtering Records/5. Using WHERE within a specified range.mp4
34.3 MB
16. Working with Array Data Type/2. What is an Array.mp4
34.1 MB
01. Introduction to Data Analytics/1. Data Roles and Responsibilities.mp4
34.0 MB
16. Working with Array Data Type/3. Adding Columns of Array Data Type.mp4
33.9 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/1. Section Introduction.mp4
33.0 MB
04. Creating Table and Inserting Data into the Table/8. Creating a Table.mp4
31.7 MB
14. Type Casting/3. Implicit Type Casting.mp4
31.1 MB
05. Reading Data From Table/4. Using Comments in SQL.mp4
31.0 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/2. Section Introduction.mp4
30.3 MB
08. Table Relationships and Constraints/7. Foreign Key Constraint on Insert.mp4
29.9 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/5. Solution - Exercise 1.mp4
29.3 MB
06. Filtering Records/7. Compound WHERE Clause.mp4
29.2 MB
17. Working with JSON Data Type/1. Section Introduction.mp4
29.2 MB
04. Creating Table and Inserting Data into the Table/7. Other Important Data Types.mp4
28.9 MB
16. Working with Array Data Type/1. Section Introduction.mp4
28.1 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/18. Exercise 8 Calculate discount based on order value.mp4
27.6 MB
13. Case Study 1 Extracting Insights from E-commerce Dataset/4. Exercise 1 Calculate the total revenue.mp4
27.4 MB
09. Joining Tables (SQL Joins)/9. Table and Column Alias.mp4
27.2 MB
05. Reading Data From Table/2. The SELECT statement.mp4
27.2 MB
06. Filtering Records/4. Using WHERE with a List of Values.mp4
27.1 MB
16. Working with Array Data Type/10. Flattening of Arrays.mp4
26.5 MB
04. Creating Table and Inserting Data into the Table/5. Date and Time Data Types.mp4
22.3 MB
09. Joining Tables (SQL Joins)/3. Why do we need Joins.mp4
21.4 MB
07. Updating and Deleting Records/4. Dropping a Table from Database.mp4
20.8 MB
20. SQL for Cleaning Data for Analysis and Reporting/2. Data Setup.mp4
20.7 MB
14. Type Casting/1. Section Introduction.mp4
19.9 MB
03. Database Terminologies/2. Tables.mp4
17.7 MB
04. Creating Table and Inserting Data into the Table/1. Section Introduction.mp4
17.6 MB
03. Database Terminologies/1. Database and Schema.mp4
17.1 MB
15. Working with Date and Time Data Types/1. Section Introduction.mp4
12.5 MB
09. Joining Tables (SQL Joins)/1. Section Introduction.mp4
12.0 MB
18. Window Functions/2. Data Setup.mp4
10.5 MB
12. Subqueries/1. Section Introduction.mp4
8.5 MB
18. Window Functions/1. Section Introduction.mp4
7.8 MB
11. Sorting Records/1. Section Introduction.mp4
7.7 MB
04. Creating Table and Inserting Data into the Table/6. Boolean Data Type.mp4
6.8 MB
06. Filtering Records/1. Section Introduction.mp4
6.0 MB
07. Updating and Deleting Records/1. Section Introduction.mp4
5.8 MB
05. Reading Data From Table/1. Section Introduction.mp4
5.6 MB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/2. us_retail_sales.csv
1.3 MB
02. Setting up Local Environment/1. Section Introduction.mp4
1.2 MB
09. Joining Tables (SQL Joins)/7. full_join.png
699.5 kB
09. Joining Tables (SQL Joins)/6. right_join.png
656.8 kB
18. Window Functions/8. 2024-11-21_13-44-00-0eb1e38674b8bf9602a76bf0eac228b2.png
641.4 kB
09. Joining Tables (SQL Joins)/5. left_join.png
641.2 kB
09. Joining Tables (SQL Joins)/4. inner_join.png
591.7 kB
10. Grouping and Aggregating Records/9. 2024-11-10_17-59-04-8600b09d5bdaa0bd281190ac1a380b0a.png
355.8 kB
02. Setting up Local Environment/2. server_client.png
352.7 kB
02. Setting up Local Environment/6. 2024-12-02_14-38-07-ea5fafe8a3a58701a11f427500a28607.png
352.7 kB
13. Case Study 1 Extracting Insights from E-commerce Dataset/1. sql_topics.png
289.7 kB
18. Window Functions/1. window_functions.png
282.7 kB
18. Window Functions/8. 2024-11-21_13-44-00-f4657878fbc6ca7ce6d115a864555b14.png
282.7 kB
16. Working with Array Data Type/11. 2024-11-19_12-03-27-ef3be7da1bf82e66c276e569f9e49097.png
280.9 kB
16. Working with Array Data Type/2. array_datatype.png
280.9 kB
20. SQL for Cleaning Data for Analysis and Reporting/1. analysis_process.png
215.7 kB
20. SQL for Cleaning Data for Analysis and Reporting/9. 2024-11-23_19-58-44-059632582b9adcf9ba495eeec822bced.png
215.7 kB
18. Window Functions/7. lag_ex.png
211.7 kB
13. Case Study 1 Extracting Insights from E-commerce Dataset/1. order_exec.png
188.0 kB
06. Filtering Records/8. 2024-11-05_14-37-46-5a167c0f7681a228041f564c25cd2542.png
103.1 kB
06. Filtering Records/9.6 Comparison Operators and Pattern Matching.html
25.5 kB
08. Table Relationships and Constraints/11.8 Table Relationships and Column Constraints.html
23.6 kB
04. Creating Table and Inserting Data into the Table/11.3 Data Types.html
23.5 kB
09. Joining Tables (SQL Joins)/15.9 Joining Tables.html
23.1 kB
11. Sorting Records/5.11 Sorting, Limiting and Skipping Records.html
21.5 kB
07. Updating and Deleting Records/6.7 Update and Delete Operations.html
20.8 kB
05. Reading Data From Table/6.4 String Operators and Functions.html
20.2 kB
10. Grouping and Aggregating Records/10.10 Grouping and Aggregating Records.html
19.7 kB
12. Subqueries/10.12 Subqueries.html
19.0 kB
03. Database Terminologies/5.1 Database Schema.html
17.0 kB
05. Reading Data From Table/7.5 Alias for column name.html
16.6 kB
04. Creating Table and Inserting Data into the Table/3.2 SERIAL Data Type.html
16.5 kB
20. SQL for Cleaning Data for Analysis and Reporting/9. Lecture Notes.html
10.2 kB
08. Table Relationships and Constraints/10. Lecture Notes.html
9.6 kB
22. Some More Interview Questions From Top Companies/2.15 Interview Question (CVS Health).html
8.8 kB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/10.13 Interview Question (Wayfair).html
8.0 kB
09. Joining Tables (SQL Joins)/16.2 Interview Question (TikTok).html
7.9 kB
19. Common Table Expressions (CTEs)/4.12 Interview Question (LinkedIn).html
7.9 kB
18. Window Functions/10.11 Interview Question (Amazon).html
7.4 kB
22. Some More Interview Questions From Top Companies/4.17 Interview Question (Facebook).html
7.3 kB
15. Working with Date and Time Data Types/10.9 Interview Question (Microsoft).html
7.0 kB
12. Subqueries/12.8 Interview Question (FAANG).html
6.9 kB
06. Filtering Records/10.1 Interview Question (Tesla).html
6.7 kB
11. Sorting Records/7.6 Interview Question (CVS Health) Part 2.html
6.6 kB
22. Some More Interview Questions From Top Companies/3.16 Interview Question (UnitedHealth Group).html
6.6 kB
22. Some More Interview Questions From Top Companies/1.14 Interview Question (JP Morgan).html
6.4 kB
11. Sorting Records/6.5 Interview Question (CVS Health) Part 1.html
6.3 kB
22. Some More Interview Questions From Top Companies/5.18 Interview Question (Amazon).html
6.2 kB
10. Grouping and Aggregating Records/12.4 Interview Question (New York Times).html
6.2 kB
12. Subqueries/11.7 Interview Question (Facebook).html
6.1 kB
17. Working with JSON Data Type/9. Lecture Notes.html
5.8 kB
18. Window Functions/9.10 Interview Question (Uber).html
5.8 kB
15. Working with Date and Time Data Types/9. Lecture Notes.html
5.6 kB
10. Grouping and Aggregating Records/11.3 Interview Question (LinkedIn).html
5.6 kB
13. Case Study 1 Extracting Insights from E-commerce Dataset/3. analytical_dataset.sql
4.7 kB
04. Creating Table and Inserting Data into the Table/10. Lecture Notes.html
4.7 kB
09. Joining Tables (SQL Joins)/14. Lecture Notes.html
4.3 kB
18. Window Functions/8. Lecture Notes.html
3.8 kB
16. Working with Array Data Type/11. Lecture Notes.html
3.5 kB
10. Grouping and Aggregating Records/9. Lecture Notes.html
3.4 kB
12. Subqueries/9. Lecture Notes.html
3.0 kB
09. Joining Tables (SQL Joins)/2. shopeasy_dataset.sql
2.9 kB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/9. key_concepts.sql
2.9 kB
17. Working with JSON Data Type/6. filter.sql
1.9 kB
13. Case Study 1 Extracting Insights from E-commerce Dataset/9. 3_average_order_value.sql
1.8 kB
20. SQL for Cleaning Data for Analysis and Reporting/2. data_setup.sql
1.8 kB
11. Sorting Records/4. Lecture Notes.html
1.5 kB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/6. date_dim_table.sql
1.5 kB
03. Database Terminologies/6. Lecture Notes.html
1.4 kB
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/3. eda.sql
1.4 kB
05. Reading Data From Table/5. Lecture Notes.html
1.4 kB
15. Working with Date and Time Data Types/8. date_math.sql
1.3 kB
19. Common Table Expressions (CTEs)/3. Lecture Notes.html
1.3 kB
07. Updating and Deleting Records/5. Lecture Notes.html
1.3 kB
15. Working with Date and Time Data Types/7. to_char.sql
1.2 kB
06. Filtering Records/8. Lecture Notes.html
1.2 kB
15. Working with Date and Time Data Types/6. extract.sql
1.2 kB
14. Type Casting/4. Lecture Notes.html
1.2 kB
20. SQL for Cleaning Data for Analysis and Reporting/4. removing_duplicates.sql
1.1 kB
13. Case Study 1 Extracting Insights from E-commerce Dataset/15. 6_reviews_in_real_time.sql
1.1 kB
15. Working with Date and Time Data Types/4. date_trunc.sql
1.0 kB
12. Subqueries/7. where_subquery.sql
1.0 kB
15. Working with Date and Time Data Types/6. date_part.sql
1.0 kB
13. Case Study 1 Extracting Insights from E-commerce Dataset/19. 8_discount_order_value.sql
926 Bytes
19. Common Table Expressions (CTEs)/2. cte_example.sql
884 Bytes
06. Filtering Records/8. filtering_records.sql
883 Bytes
17. Working with JSON Data Type/4. insert_data.sql
866 Bytes
02. Setting up Local Environment/6. Lecture Notes.html
851 Bytes
03. Database Terminologies/7. Interview Questions.html
741 Bytes
17. Working with JSON Data Type/5. access.sql
737 Bytes
10. Grouping and Aggregating Records/2. aggregate_functions.sql
726 Bytes
09. Joining Tables (SQL Joins)/6. right_join.sql
717 Bytes
11. Sorting Records/3. limit_offset.sql
713 Bytes
13. Case Study 1 Extracting Insights from E-commerce Dataset/13. 5_customers_not_purchased.sql
685 Bytes
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/8. yoy_sales_growth.sql
682 Bytes
18. Window Functions/6. lag_lead.sql
665 Bytes
13. Case Study 1 Extracting Insights from E-commerce Dataset/11. 4_customer_lifetime_value.sql
663 Bytes
13. Case Study 1 Extracting Insights from E-commerce Dataset/17. 7_top_rated_products.sql
663 Bytes
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/5. date_dim.sql
650 Bytes
12. Subqueries/5. from_subquery.sql
633 Bytes
18. Window Functions/2. data_setup.sql
614 Bytes
15. Working with Date and Time Data Types/2. current_date_time.sql
592 Bytes
09. Joining Tables (SQL Joins)/5. left_join.sql
565 Bytes
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/7. top_businesses.sql
548 Bytes
17. Working with JSON Data Type/7. constructing_json.sql
547 Bytes
09. Joining Tables (SQL Joins)/4. inner_join.sql
532 Bytes
20. SQL for Cleaning Data for Analysis and Reporting/6. categorical_column.sql
527 Bytes
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/2. data_setup.sql
502 Bytes
04. Creating Table and Inserting Data into the Table/9. insert_rows.sql
484 Bytes
17. Working with JSON Data Type/8. aggregation.sql
471 Bytes
20. SQL for Cleaning Data for Analysis and Reporting/3. missing_values.sql
462 Bytes
13. Case Study 1 Extracting Insights from E-commerce Dataset/7. 2_top_selling_products.sql
454 Bytes
05. Reading Data From Table/3. string_functions.sql
450 Bytes
12. Subqueries/8. correlated_subquery.sql
447 Bytes
12. Subqueries/4. select_subquery.sql
428 Bytes
21. Case Study 2 Time Series Analysis with Retail Sales Dataset/4. trends.sql
416 Bytes
20. SQL for Cleaning Data for Analysis and Reporting/5. handling_outliers.sql
413 Bytes
09. Joining Tables (SQL Joins)/7. full_outer.sql
399 Bytes
13. Case Study 1 Extracting Insights from E-commerce Dataset/5. 1_total_revenue.sql
389 Bytes
07. Updating and Deleting Records/2. update_records.sql
374 Bytes
16. Working with Array Data Type/7. array_functions.sql
363 Bytes
12. Subqueries/6. join_subqueries.sql
350 Bytes
14. Type Casting/2. explicit_type_casting.sql
310 Bytes
16. Working with Array Data Type/5. filter_records.sql
295 Bytes
11. Sorting Records/2. sorting_records.sql
283 Bytes
16. Working with Array Data Type/9. array_agg_exercise.sql
282 Bytes
15. Working with Date and Time Data Types/5. date_trunc_ex.sql
270 Bytes
10. Grouping and Aggregating Records/8. where_having.sql
268 Bytes
14. Type Casting/3. implicit_type_casting.sql
262 Bytes
18. Window Functions/3. rank.sql
248 Bytes
15. Working with Date and Time Data Types/3. time_zone-conversions.sql
239 Bytes
18. Window Functions/4. dense_rank.sql
236 Bytes
07. Updating and Deleting Records/3. delete_records.sql
207 Bytes
04. Creating Table and Inserting Data into the Table/8. create_table.sql
199 Bytes
16. Working with Array Data Type/4. insert_data.sql
180 Bytes
12. Subqueries/2. subquery_ex1.sql
178 Bytes
18. Window Functions/5. row_number.sql
169 Bytes
20. SQL for Cleaning Data for Analysis and Reporting/7. text_data.sql
168 Bytes
10. Grouping and Aggregating Records/7. having_clause.sql
163 Bytes
16. Working with Array Data Type/8. array_agg.sql
140 Bytes
17. Working with JSON Data Type/3. add_column.sql
107 Bytes
16. Working with Array Data Type/3. add_column.sql
104 Bytes
16. Working with Array Data Type/10. array_flat.sql
103 Bytes
20. SQL for Cleaning Data for Analysis and Reporting/8. number_format.sql
97 Bytes
16. Working with Array Data Type/6. array_index.sql
96 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!