搜索
[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子简介
种子哈希:
1354286108bba68822d0987e222162cedf3c69a2
文件大小:
3.11G
已经下载:
56
次
下载速度:
极快
收录时间:
2021-03-24
最近下载:
2024-07-26
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:1354286108BBA68822D0987E222162CEDF3C69A2
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
+长靴
2023 最新
178车模
永夜
kay lovely facials4k
约炮兼职女医生琪琪陪玩一天酒店豪华套房啪啪
国产 大尺度
fc2ppv+4533659
the ballad of songbirds
ellelee+李艾莉
侄子
bluray.1080p.avc.dts-hd.ma5.1
春丽
27岁d奶姐姐乱伦后续1
+同学聚会
thzu 指压馆
amadeus+
n0646;sky-010;cwp-46;mkd-s03
丁字裤+丝袜
足交润滑
七日探花
migd-749
tática
360白色
real-voyeur
charlotte sins pov
嫩 2024
上海火辣
love of 100 days
i+want++you
文件列表
10. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.mp4
195.4 MB
4. Markov Decision Proccesses/11. Bellman Examples.mp4
91.4 MB
11. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).mp4
78.1 MB
5. Dynamic Programming/4. Iterative Policy Evaluation in Code.mp4
71.8 MB
9. Stock Trading Project with Reinforcement Learning/6. Code pt 2.mp4
68.5 MB
1. Welcome/5. Warmup.mp4
65.7 MB
4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).mp4
64.7 MB
5. Dynamic Programming/9. Policy Iteration in Code.mp4
59.1 MB
4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).mp4
58.8 MB
2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).mp4
58.6 MB
2. Return of the Multi-Armed Bandit/12. UCB1 Theory.mp4
58.2 MB
3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.mp4
57.3 MB
4. Markov Decision Proccesses/2. Gridworld.mp4
56.6 MB
9. Stock Trading Project with Reinforcement Learning/2. Data and Environment.mp4
54.5 MB
2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.mp4
54.5 MB
5. Dynamic Programming/10. Policy Iteration in Windy Gridworld.mp4
53.9 MB
2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp4
53.7 MB
2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.mp4
52.8 MB
9. Stock Trading Project with Reinforcement Learning/5. Code pt 1.mp4
52.1 MB
9. Stock Trading Project with Reinforcement Learning/8. Code pt 4.mp4
51.5 MB
2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.mp4
50.9 MB
5. Dynamic Programming/6. Iterative Policy Evaluation for Windy Gridworld in Code.mp4
49.2 MB
5. Dynamic Programming/3. Gridworld in Code.mp4
49.1 MB
5. Dynamic Programming/12. Value Iteration in Code.mp4
47.9 MB
9. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.mp4
47.1 MB
10. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.mp4
45.8 MB
2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.mp4
45.5 MB
5. Dynamic Programming/5. Windy Gridworld in Code.mp4
43.5 MB
2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.mp4
43.5 MB
3. High Level Overview of Reinforcement Learning/3. From Bandits to Full Reinforcement Learning.mp4
43.2 MB
1. Welcome/2. Course Outline and Big Picture.mp4
41.6 MB
4. Markov Decision Proccesses/6. Future Rewards.mp4
41.4 MB
12. Effective Learning Strategies for Machine Learning/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
13. Appendix FAQ/2. BONUS Where to get discount coupons and FREE deep learning material.mp4
39.7 MB
12. Effective Learning Strategies for Machine Learning/4. What order should I take your courses in (part 2).mp4
39.5 MB
4. Markov Decision Proccesses/1. MDP Section Introduction.mp4
39.0 MB
3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.mp4
38.9 MB
2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.mp4
36.3 MB
1. Welcome/1. Introduction.mp4
35.9 MB
9. Stock Trading Project with Reinforcement Learning/7. Code pt 3.mp4
35.4 MB
2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.mp4
34.4 MB
4. Markov Decision Proccesses/3. Choosing Rewards.mp4
34.1 MB
2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.mp4
32.5 MB
12. Effective Learning Strategies for Machine Learning/3. What order should I take your courses in (part 1).mp4
30.7 MB
2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.mp4
30.1 MB
2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.mp4
29.7 MB
4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).mp4
29.1 MB
2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.mp4
28.7 MB
9. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.mp4
28.1 MB
4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).mp4
28.0 MB
4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).mp4
25.9 MB
2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.mp4
25.8 MB
11. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).mp4
25.7 MB
2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.mp4
25.7 MB
2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.mp4
24.7 MB
9. Stock Trading Project with Reinforcement Learning/4. Design of the Program.mp4
24.5 MB
2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).mp4
24.3 MB
1. Welcome/3. Where to get the Code.mp4
23.8 MB
5. Dynamic Programming/2. Designing Your RL Program.mp4
23.4 MB
4. Markov Decision Proccesses/4. The Markov Property.mp4
22.8 MB
2. Return of the Multi-Armed Bandit/14. UCB1 Code.mp4
21.7 MB
4. Markov Decision Proccesses/7. Value Functions.srt
19.5 MB
4. Markov Decision Proccesses/7. Value Functions.mp4
19.5 MB
12. Effective Learning Strategies for Machine Learning/1. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.mp4
18.8 MB
2. Return of the Multi-Armed Bandit/25. Suggestion Box.mp4
16.9 MB
9. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.mp4
16.6 MB
4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).mp4
16.5 MB
1. Welcome/4. How to Succeed in this Course.mp4
16.5 MB
11. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).mp4
15.5 MB
4. Markov Decision Proccesses/14. MDP Summary.mp4
15.0 MB
2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.mp4
14.4 MB
8. Approximation Methods/9. Course Summary and Next Steps.mp4
13.9 MB
2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.mp4
13.4 MB
8. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4
11.1 MB
6. Monte Carlo/6. Monte Carlo Control in Code.mp4
10.7 MB
6. Monte Carlo/5. Monte Carlo Control.mp4
9.7 MB
7. Temporal Difference Learning/5. SARSA in Code.mp4
9.2 MB
6. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4
9.2 MB
8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4
8.8 MB
5. Dynamic Programming/13. Dynamic Programming Summary.mp4
8.7 MB
7. Temporal Difference Learning/4. SARSA.mp4
8.6 MB
6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4
8.4 MB
6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4
8.3 MB
11. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.mp4
8.2 MB
6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4
8.2 MB
8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4
6.9 MB
8. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4
6.8 MB
8. Approximation Methods/1. Approximation Intro.mp4
6.8 MB
8. Approximation Methods/3. Features.mp4
6.5 MB
5. Dynamic Programming/11. Value Iteration.mp4
6.5 MB
7. Temporal Difference Learning/2. TD(0) Prediction.mp4
6.1 MB
6. Monte Carlo/9. Monte Carlo Summary.mp4
6.0 MB
13. Appendix FAQ/1. What is the Appendix.mp4
5.7 MB
7. Temporal Difference Learning/7. Q Learning in Code.mp4
5.7 MB
7. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4
5.6 MB
6. Monte Carlo/1. Monte Carlo Intro.mp4
5.2 MB
5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4
5.1 MB
7. Temporal Difference Learning/6. Q Learning.mp4
5.1 MB
8. Approximation Methods/7. Semi-Gradient SARSA.mp4
4.9 MB
6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4
4.8 MB
5. Dynamic Programming/7. Policy Improvement.mp4
4.8 MB
7. Temporal Difference Learning/8. TD Summary.mp4
4.1 MB
5. Dynamic Programming/8. Policy Iteration.mp4
3.3 MB
8. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4
3.0 MB
7. Temporal Difference Learning/1. Temporal Difference Intro.mp4
2.9 MB
12. Effective Learning Strategies for Machine Learning/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
34.4 kB
11. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).srt
30.9 kB
4. Markov Decision Proccesses/11. Bellman Examples.srt
29.9 kB
2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).srt
26.3 kB
12. Effective Learning Strategies for Machine Learning/4. What order should I take your courses in (part 2).srt
25.6 kB
2. Return of the Multi-Armed Bandit/12. UCB1 Theory.srt
22.5 kB
4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).srt
22.4 kB
10. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.srt
21.9 kB
1. Welcome/5. Warmup.srt
20.0 kB
4. Markov Decision Proccesses/2. Gridworld.srt
19.6 kB
11. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).srt
18.9 kB
2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).srt
18.8 kB
10. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
18.8 kB
5. Dynamic Programming/4. Iterative Policy Evaluation in Code.srt
18.5 kB
5. Dynamic Programming/3. Gridworld in Code.srt
18.5 kB
12. Effective Learning Strategies for Machine Learning/3. What order should I take your courses in (part 1).srt
17.5 kB
9. Stock Trading Project with Reinforcement Learning/2. Data and Environment.srt
17.0 kB
2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.srt
16.9 kB
8. Approximation Methods/9. Course Summary and Next Steps.srt
16.3 kB
2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.srt
15.5 kB
12. Effective Learning Strategies for Machine Learning/1. How to Succeed in this Course (Long Version).srt
15.4 kB
11. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.srt
15.2 kB
2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.srt
15.1 kB
4. Markov Decision Proccesses/6. Future Rewards.srt
14.5 kB
3. High Level Overview of Reinforcement Learning/3. From Bandits to Full Reinforcement Learning.srt
13.6 kB
9. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.srt
13.3 kB
9. Stock Trading Project with Reinforcement Learning/6. Code pt 2.srt
13.1 kB
4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).srt
13.1 kB
5. Dynamic Programming/10. Policy Iteration in Windy Gridworld.srt
12.6 kB
4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).srt
12.6 kB
5. Dynamic Programming/9. Policy Iteration in Code.srt
12.5 kB
3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.srt
12.1 kB
2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.srt
12.0 kB
1. Welcome/2. Course Outline and Big Picture.srt
11.4 kB
5. Dynamic Programming/5. Windy Gridworld in Code.srt
11.4 kB
5. Dynamic Programming/6. Iterative Policy Evaluation for Windy Gridworld in Code.srt
11.2 kB
6. Monte Carlo/2. Monte Carlo Policy Evaluation.srt
11.1 kB
2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.srt
10.7 kB
9. Stock Trading Project with Reinforcement Learning/5. Code pt 1.srt
10.7 kB
6. Monte Carlo/5. Monte Carlo Control.srt
10.5 kB
2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.srt
10.4 kB
2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.srt
10.3 kB
5. Dynamic Programming/12. Value Iteration in Code.srt
10.1 kB
7. Temporal Difference Learning/4. SARSA.srt
9.9 kB
4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).srt
9.7 kB
5. Dynamic Programming/13. Dynamic Programming Summary.srt
9.6 kB
2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.srt
9.6 kB
4. Markov Decision Proccesses/1. MDP Section Introduction.srt
9.6 kB
9. Stock Trading Project with Reinforcement Learning/4. Design of the Program.srt
9.5 kB
4. Markov Decision Proccesses/4. The Markov Property.srt
9.1 kB
9. Stock Trading Project with Reinforcement Learning/8. Code pt 4.srt
9.0 kB
4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).srt
8.9 kB
3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.srt
8.8 kB
2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).srt
8.7 kB
2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.srt
8.6 kB
13. Appendix FAQ/2. BONUS Where to get discount coupons and FREE deep learning material.srt
8.5 kB
2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.srt
8.3 kB
8. Approximation Methods/1. Approximation Intro.srt
8.2 kB
2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.srt
8.1 kB
8. Approximation Methods/2. Linear Models for Reinforcement Learning.srt
7.6 kB
9. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.srt
7.3 kB
2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.srt
7.3 kB
6. Monte Carlo/9. Monte Carlo Summary.srt
7.3 kB
5. Dynamic Programming/2. Designing Your RL Program.srt
7.2 kB
2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.srt
7.2 kB
5. Dynamic Programming/11. Value Iteration.srt
7.1 kB
1. Welcome/3. Where to get the Code.srt
7.1 kB
8. Approximation Methods/3. Features.srt
7.1 kB
11. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.srt
6.6 kB
7. Temporal Difference Learning/2. TD(0) Prediction.srt
6.5 kB
8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.srt
6.5 kB
2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.srt
6.5 kB
6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.srt
6.3 kB
2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.srt
6.1 kB
6. Monte Carlo/1. Monte Carlo Intro.srt
6.1 kB
4. Markov Decision Proccesses/3. Choosing Rewards.srt
6.0 kB
9. Stock Trading Project with Reinforcement Learning/7. Code pt 3.srt
6.0 kB
6. Monte Carlo/6. Monte Carlo Control in Code.srt
6.0 kB
7. Temporal Difference Learning/6. Q Learning.srt
6.0 kB
2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.srt
5.9 kB
7. Temporal Difference Learning/5. SARSA in Code.srt
5.7 kB
6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.srt
5.7 kB
8. Approximation Methods/7. Semi-Gradient SARSA.srt
5.6 kB
4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).srt
5.6 kB
8. Approximation Methods/8. Semi-Gradient SARSA in Code.srt
5.5 kB
5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.srt
5.5 kB
6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.srt
5.4 kB
5. Dynamic Programming/7. Policy Improvement.srt
5.3 kB
2. Return of the Multi-Armed Bandit/25. Suggestion Box.srt
5.2 kB
7. Temporal Difference Learning/8. TD Summary.srt
4.8 kB
9. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.srt
4.7 kB
1. Welcome/1. Introduction.srt
4.6 kB
1. Welcome/4. How to Succeed in this Course.srt
4.5 kB
2. Return of the Multi-Armed Bandit/14. UCB1 Code.srt
4.4 kB
8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.srt
4.1 kB
4. Markov Decision Proccesses/14. MDP Summary.srt
4.1 kB
7. Temporal Difference Learning/3. TD(0) Prediction in Code.srt
4.1 kB
13. Appendix FAQ/1. What is the Appendix.srt
3.9 kB
2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.srt
3.9 kB
6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.srt
3.7 kB
5. Dynamic Programming/8. Policy Iteration.srt
3.5 kB
7. Temporal Difference Learning/7. Q Learning in Code.srt
3.5 kB
7. Temporal Difference Learning/1. Temporal Difference Intro.srt
3.4 kB
2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.srt
3.2 kB
2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.srt
3.1 kB
8. Approximation Methods/4. Monte Carlo Prediction with Approximation.srt
2.5 kB
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>