MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[DesireCourse.Net] Udemy - Neural Networks (ANN) using Keras and TensorFlow in Python

磁力链接/BT种子名称

[DesireCourse.Net] Udemy - Neural Networks (ANN) using Keras and TensorFlow in Python

磁力链接/BT种子简介

种子哈希:14d6d6ef2db6317ba959d356df9a36b2e4a3ef7a
文件大小: 3.01G
已经下载:1010次
下载速度:极快
收录时间:2021-05-07
最近下载:2025-07-26

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:14D6D6EF2DB6317BA959D356DF9A36B2E4A3EF7A
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 小蓝俱乐部 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 51动漫 91短视频 抖音Max TikTok成人版 PornHub 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 搜同

最近搜索

潜规则售楼员+颤抖 elyn520520 自撮り 武庚纪 风字幕 jimmybiiig 直立靠墙 minitool data recovery del este al oeste 白人干黑人 knotty 受难 制服私拍 白虎打桩 欧美白丝 第三部 岐蛮不蛮 凌辱ゲリラ狩り3 【厕拍 家居家裸 泄密 엑기스 桥本香菜+妈妈的肉体性教育 sdde-230 patient 2022 清纯小妹妹 萧蔷 脱衣室 172cm高身長高感度 angel youngs onlyfans

文件列表

  • 11. Python - Solving a Regression problem using ANN/1. Building Neural Network for Regression Problem.mp4 163.5 MB
  • 13. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4 158.9 MB
  • 4. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4 128.1 MB
  • 15. Add-on 1 Data Preprocessing/13. Bi-variate analysis and Variable transformation.mp4 105.3 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/3. Assessing accuracy of predicted coefficients.mp4 96.6 MB
  • 12. Complex ANN Architectures using Functional API/1. Using Functional API for complex architectures.mp4 96.6 MB
  • 3. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp4 90.8 MB
  • 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp4 85.7 MB
  • 10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp4 83.0 MB
  • 15. Add-on 1 Data Preprocessing/18. Correlation Analysis.mp4 75.1 MB
  • 15. Add-on 1 Data Preprocessing/9. Outlier Treatment in Python.mp4 73.6 MB
  • 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp4 73.3 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/9. Multiple Linear Regression in Python.mp4 73.1 MB
  • 15. Add-on 1 Data Preprocessing/3. The Dataset and the Data Dictionary.mp4 72.7 MB
  • 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4 68.3 MB
  • 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4 67.6 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/5. Simple Linear Regression in Python.mp4 66.5 MB
  • 5. Important concepts Common Interview questions/1. Some Important Concepts.mp4 65.2 MB
  • 15. Add-on 1 Data Preprocessing/7. EDD in Python.mp4 64.8 MB
  • 14. Hyperparameter Tuning/1. Hyperparameter Tuning.mp4 63.6 MB
  • 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4 63.3 MB
  • 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4 63.3 MB
  • 9. Python - Dataset for classification problem/1. Dataset for classification.mp4 58.9 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/7. The F - statistic.mp4 58.7 MB
  • 15. Add-on 1 Data Preprocessing/19. Correlation Analysis in Python.mp4 58.0 MB
  • 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp4 49.2 MB
  • 6. Standard Model Parameters/1. Hyperparameters.mp4 47.6 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/12. Test train split in Python.mp4 47.0 MB
  • 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4 46.9 MB
  • 9. Python - Dataset for classification problem/2. Normalization and Test-Train split.mp4 46.3 MB
  • 15. Add-on 1 Data Preprocessing/14. Variable transformation and deletion in Python.mp4 46.2 MB
  • 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4 46.0 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4 45.7 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 45.5 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/10. Test-train split.mp4 43.9 MB
  • 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4 42.9 MB
  • 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4 42.4 MB
  • 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4 42.3 MB
  • 15. Add-on 1 Data Preprocessing/16. Dummy variable creation Handling qualitative data.mp4 38.6 MB
  • 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4 36.3 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/6. Multiple Linear Regression.mp4 36.0 MB
  • 1. Introduction/2. Introduction to Neural Networks and Course flow.mp4 30.5 MB
  • 15. Add-on 1 Data Preprocessing/5. Importing Data in Python.mp4 29.2 MB
  • 15. Add-on 1 Data Preprocessing/17. Dummy variable creation in Python.mp4 27.8 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/11. Bias Variance trade-off.mp4 26.3 MB
  • 15. Add-on 1 Data Preprocessing/10. Missing Value Imputation.mp4 26.2 MB
  • 15. Add-on 1 Data Preprocessing/8. Outlier Treatment.mp4 25.7 MB
  • 15. Add-on 1 Data Preprocessing/6. Univariate analysis and EDD.mp4 25.4 MB
  • 15. Add-on 1 Data Preprocessing/11. Missing Value Imputation in Python.mp4 24.6 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/8. Interpreting results of Categorical variables.mp4 23.6 MB
  • 15. Add-on 1 Data Preprocessing/1. Gathering Business Knowledge.mp4 23.4 MB
  • 1. Introduction/1. Welcome to the course.mp4 22.5 MB
  • 15. Add-on 1 Data Preprocessing/2. Data Exploration.mp4 21.5 MB
  • 15. Add-on 1 Data Preprocessing/15. Non-usable variables.mp4 21.2 MB
  • 8. Tensorflow and Keras/2. Installing Tensorflow and Keras.mp4 21.0 MB
  • 15. Add-on 1 Data Preprocessing/12. Seasonality in Data.mp4 17.9 MB
  • 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 17.1 MB
  • 8. Tensorflow and Keras/1. Keras and Tensorflow.mp4 15.6 MB
  • 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4 13.4 MB
  • 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp4 11.3 MB
  • 1. Introduction/3.1 Files_ANN_Py.zip 11.0 MB
  • 16. Add-on 2 Classic ML models - Linear Regression/1. The Problem Statement.mp4 9.8 MB
  • 15. Add-on 1 Data Preprocessing/4.1 Files_linear_py.zip 9.3 MB
  • 4. Neural Networks - Stacking cells to create network/3. Back Propagation.srt 23.3 kB
  • 11. Python - Solving a Regression problem using ANN/1. Building Neural Network for Regression Problem.srt 22.2 kB
  • 13. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt 19.2 kB
  • 15. Add-on 1 Data Preprocessing/13. Bi-variate analysis and Variable transformation.srt 18.7 kB
  • 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.srt 17.4 kB
  • 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.srt 16.8 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/3. Assessing accuracy of predicted coefficients.srt 16.2 kB
  • 3. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.srt 14.9 kB
  • 5. Important concepts Common Interview questions/1. Some Important Concepts.srt 13.4 kB
  • 15. Add-on 1 Data Preprocessing/9. Outlier Treatment in Python.srt 13.3 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/9. Multiple Linear Regression in Python.srt 12.6 kB
  • 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.srt 12.6 kB
  • 10. Python - Building and training the Model/2. Building the Neural Network using Keras.srt 12.2 kB
  • 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt 12.2 kB
  • 12. Complex ANN Architectures using Functional API/1. Using Functional API for complex architectures.srt 11.8 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/5. Simple Linear Regression in Python.srt 11.6 kB
  • 15. Add-on 1 Data Preprocessing/18. Correlation Analysis.srt 11.3 kB
  • 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.srt 10.7 kB
  • 15. Add-on 1 Data Preprocessing/7. EDD in Python.srt 10.6 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/10. Test-train split.srt 10.3 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.srt 10.1 kB
  • 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.srt 9.9 kB
  • 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.srt 9.8 kB
  • 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt 9.7 kB
  • 14. Hyperparameter Tuning/1. Hyperparameter Tuning.srt 9.7 kB
  • 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.srt 9.4 kB
  • 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.srt 9.2 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/7. The F - statistic.srt 9.2 kB
  • 6. Standard Model Parameters/1. Hyperparameters.srt 9.2 kB
  • 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.srt 8.3 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/12. Test train split in Python.srt 8.2 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/4. Assessing Model Accuracy RSE and R squared.srt 8.2 kB
  • 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.srt 8.0 kB
  • 15. Add-on 1 Data Preprocessing/3. The Dataset and the Data Dictionary.srt 8.0 kB
  • 15. Add-on 1 Data Preprocessing/14. Variable transformation and deletion in Python.srt 7.7 kB
  • 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.srt 7.7 kB
  • 9. Python - Dataset for classification problem/1. Dataset for classification.srt 7.3 kB
  • 15. Add-on 1 Data Preprocessing/19. Correlation Analysis in Python.srt 6.7 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/11. Bias Variance trade-off.srt 6.5 kB
  • 9. Python - Dataset for classification problem/2. Normalization and Test-Train split.srt 5.9 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/6. Multiple Linear Regression.srt 5.9 kB
  • 15. Add-on 1 Data Preprocessing/5. Importing Data in Python.srt 5.7 kB
  • 15. Add-on 1 Data Preprocessing/17. Dummy variable creation in Python.srt 5.6 kB
  • 15. Add-on 1 Data Preprocessing/15. Non-usable variables.srt 5.5 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/8. Interpreting results of Categorical variables.srt 5.4 kB
  • 15. Add-on 1 Data Preprocessing/16. Dummy variable creation Handling qualitative data.srt 5.0 kB
  • 1. Introduction/2. Introduction to Neural Networks and Course flow.srt 4.7 kB
  • 15. Add-on 1 Data Preprocessing/8. Outlier Treatment.srt 4.6 kB
  • 15. Add-on 1 Data Preprocessing/10. Missing Value Imputation.srt 4.2 kB
  • 15. Add-on 1 Data Preprocessing/11. Missing Value Imputation in Python.srt 4.2 kB
  • 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.srt 4.1 kB
  • 15. Add-on 1 Data Preprocessing/1. Gathering Business Knowledge.srt 4.0 kB
  • 8. Tensorflow and Keras/2. Installing Tensorflow and Keras.srt 3.9 kB
  • 15. Add-on 1 Data Preprocessing/12. Seasonality in Data.srt 3.9 kB
  • 15. Add-on 1 Data Preprocessing/2. Data Exploration.srt 3.7 kB
  • 8. Tensorflow and Keras/1. Keras and Tensorflow.srt 3.6 kB
  • 15. Add-on 1 Data Preprocessing/6. Univariate analysis and EDD.srt 3.5 kB
  • 1. Introduction/1. Welcome to the course.srt 3.2 kB
  • 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt 2.6 kB
  • 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.srt 1.9 kB
  • 16. Add-on 2 Classic ML models - Linear Regression/1. The Problem Statement.srt 1.7 kB
  • 18. Bonus Section/1. Congratulations & About your certificate.html 1.6 kB
  • 17. Practice Assignment/1. Neural Networks Classification Assignment.html 173 Bytes
  • 5. Important concepts Common Interview questions/2. Quiz.html 169 Bytes
  • 7. Practice Test/1. Test your conceptual understanding.html 169 Bytes
  • 15. Add-on 1 Data Preprocessing/4. Add-on Resources.html 131 Bytes
  • 1. Introduction/3. Course resources.html 117 Bytes
  • 0. Websites you may like/[DesireCourse.Net].url 51 Bytes
  • 1. Introduction/[DesireCourse.Net].url 51 Bytes
  • 10. Python - Building and training the Model/[DesireCourse.Net].url 51 Bytes
  • 14. Hyperparameter Tuning/[DesireCourse.Net].url 51 Bytes
  • 17. Practice Assignment/[DesireCourse.Net].url 51 Bytes
  • 5. Important concepts Common Interview questions/[DesireCourse.Net].url 51 Bytes
  • [DesireCourse.Net].url 51 Bytes
  • 0. Websites you may like/[CourseClub.Me].url 48 Bytes
  • 1. Introduction/[CourseClub.Me].url 48 Bytes
  • 10. Python - Building and training the Model/[CourseClub.Me].url 48 Bytes
  • 14. Hyperparameter Tuning/[CourseClub.Me].url 48 Bytes
  • 17. Practice Assignment/[CourseClub.Me].url 48 Bytes
  • 5. Important concepts Common Interview questions/[CourseClub.Me].url 48 Bytes
  • [CourseClub.Me].url 48 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!