搜索
[FreeAllCourse.Com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
磁力链接/BT种子名称
[FreeAllCourse.Com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
磁力链接/BT种子简介
种子哈希:
1584722b95c30eec96b4319cc54a1b609dd61985
文件大小:
6.04G
已经下载:
17
次
下载速度:
极快
收录时间:
2022-03-29
最近下载:
2024-06-23
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:1584722B95C30EEC96B4319CC54A1B609DD61985
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
2024-3
还没毛
大学+情侣+宿舍
美丽心灵
安徽多金财务部短发人妻少妇
小店偷情
肏出
jiaoyu
67
李雅讲
sone-049
2022-02-09
小众资源
推特伪娘白
反差婊子人人爱
abre los ojos 1997 bdremux
stp29489
网易 温凉
济公+1985
2024-3-4
kink+com+
雅典娜棉被
极品淫妻 丸子
足交吞精车震女上全自动
katsuni+orgy
megapack photobook
fum
东北蘑菇头
逼逼+特写
2024年12月直播
文件列表
1. Welcome to the course!/6.1 Machine_Learning_A-Z_New.zip.zip
239.5 MB
36. Kernel PCA/3. Kernel PCA in R.mp4
59.3 MB
1. Welcome to the course!/7. Updates on Udemy Reviews.mp4
55.5 MB
39. XGBoost/5. THANK YOU bonus video.mp4
54.8 MB
12. Logistic Regression/13. Logistic Regression in R - Step 5.mp4
54.2 MB
35. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4
53.8 MB
17. Decision Tree Classification/4. Decision Tree Classification in R.mp4
53.7 MB
18. Random Forest Classification/4. Random Forest Classification in R.mp4
51.8 MB
31. Artificial Neural Networks/13. ANN in Python - Step 2.mp4
50.4 MB
39. XGBoost/4. XGBoost in R.mp4
49.6 MB
27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.srt
49.5 MB
27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.mp4
49.5 MB
18. Random Forest Classification/3. Random Forest Classification in Python.mp4
49.4 MB
32. Convolutional Neural Networks/20. CNN in Python - Step 9.mp4
49.1 MB
7. Support Vector Regression (SVR)/2. SVR Intuition.mp4
48.9 MB
7. Support Vector Regression (SVR)/3. SVR in Python.mp4
48.4 MB
35. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4
47.6 MB
8. Decision Tree Regression/4. Decision Tree Regression in R.mp4
46.5 MB
16. Naive Bayes/1. Bayes Theorem.mp4
46.0 MB
24. Apriori/5. Apriori in R - Step 3.mp4
46.0 MB
38. Model Selection/3. k-Fold Cross Validation in R.mp4
45.8 MB
6. Polynomial Regression/10. Polynomial Regression in R - Step 3.mp4
45.4 MB
28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4
45.2 MB
6. Polynomial Regression/5. Polynomial Regression in Python - Step 3.mp4
45.1 MB
24. Apriori/3. Apriori in R - Step 1.mp4
45.0 MB
32. Convolutional Neural Networks/7. Step 4 - Full Connection.srt
44.9 MB
32. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4
44.8 MB
12. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4
44.6 MB
15. Kernel SVM/6. Kernel SVM in Python.mp4
43.6 MB
13. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4
43.4 MB
29. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.mp4
43.2 MB
27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4
43.1 MB
28. Thompson Sampling/6. Thompson Sampling in R - Step 1.mp4
42.9 MB
2. -------------------- Part 1 Data Preprocessing --------------------/7. Categorical Data.mp4
42.8 MB
15. Kernel SVM/7. Kernel SVM in R.mp4
42.4 MB
29. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.mp4
42.3 MB
9. Random Forest Regression/4. Random Forest Regression in R.mp4
42.3 MB
32. Convolutional Neural Networks/5. Step 2 - Pooling.mp4
42.2 MB
21. K-Means Clustering/5. K-Means Clustering in Python.mp4
41.7 MB
5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4
41.7 MB
5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4
41.5 MB
29. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 8.mp4
41.4 MB
9. Random Forest Regression/3. Random Forest Regression in Python.mp4
41.4 MB
2. -------------------- Part 1 Data Preprocessing --------------------/9. Splitting the Dataset into the Training set and Test set.mp4
40.9 MB
31. Artificial Neural Networks/22. ANN in R - Step 1.mp4
40.4 MB
38. Model Selection/4. Grid Search in Python - Step 1.mp4
40.1 MB
24. Apriori/6. Apriori in Python - Step 1.mp4
39.8 MB
4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4
39.2 MB
16. Naive Bayes/7. Naive Bayes in R.mp4
39.1 MB
28. Thompson Sampling/1. Thompson Sampling Intuition.mp4
39.1 MB
34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.mp4
38.5 MB
38. Model Selection/6. Grid Search in R.mp4
37.3 MB
27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4
37.2 MB
13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4
36.9 MB
29. -------------------- Part 7 Natural Language Processing --------------------/4. Natural Language Processing in Python - Step 1.mp4
36.9 MB
24. Apriori/1. Apriori Intuition.mp4
36.7 MB
2. -------------------- Part 1 Data Preprocessing --------------------/10. Feature Scaling.mp4
36.3 MB
8. Decision Tree Regression/3. Decision Tree Regression in Python.mp4
35.2 MB
31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).mp4
35.1 MB
36. Kernel PCA/2. Kernel PCA in Python.mp4
35.0 MB
32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4
34.8 MB
38. Model Selection/2. k-Fold Cross Validation in Python.mp4
34.4 MB
5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4
34.2 MB
14. Support Vector Machine (SVM)/4. SVM in R.mp4
33.8 MB
2. -------------------- Part 1 Data Preprocessing --------------------/6. Missing Data.mp4
33.7 MB
34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4
33.7 MB
39. XGBoost/3. XGBoost in Python - Step 2.mp4
33.5 MB
34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4
33.5 MB
27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4
33.1 MB
30. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.mp4
32.8 MB
14. Support Vector Machine (SVM)/3. SVM in Python.mp4
32.7 MB
32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4
32.5 MB
4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.mp4
32.3 MB
34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.mp4
32.1 MB
24. Apriori/4. Apriori in R - Step 2.mp4
32.0 MB
27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4
31.7 MB
31. Artificial Neural Networks/2. The Neuron.mp4
31.3 MB
17. Decision Tree Classification/3. Decision Tree Classification in Python.mp4
31.2 MB
29. -------------------- Part 7 Natural Language Processing --------------------/2. Natural Language Processing Intuition.mp4
31.1 MB
31. Artificial Neural Networks/16. ANN in Python - Step 5.mp4
31.0 MB
24. Apriori/7. Apriori in Python - Step 2.mp4
31.0 MB
38. Model Selection/5. Grid Search in Python - Step 2.mp4
30.9 MB
32. Convolutional Neural Networks/2. What are convolutional neural networks.mp4
30.9 MB
27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4
30.7 MB
31. Artificial Neural Networks/12. ANN in Python - Step 1.mp4
30.7 MB
15. Kernel SVM/3. The Kernel Trick.mp4
30.7 MB
12. Logistic Regression/1. Logistic Regression Intuition.mp4
30.6 MB
34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.mp4
30.4 MB
27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.mp4
30.4 MB
21. K-Means Clustering/6. K-Means Clustering in R.mp4
30.4 MB
29. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.mp4
30.4 MB
31. Artificial Neural Networks/24. ANN in R - Step 3.mp4
30.3 MB
5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.mp4
30.2 MB
27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.mp4
29.4 MB
16. Naive Bayes/2. Naive Bayes Intuition.mp4
29.1 MB
6. Polynomial Regression/7. Python Regression Template.mp4
28.8 MB
32. Convolutional Neural Networks/15. CNN in Python - Step 4.mp4
28.5 MB
5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4
28.5 MB
6. Polynomial Regression/4. Polynomial Regression in Python - Step 2.mp4
28.4 MB
35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4
28.3 MB
24. Apriori/8. Apriori in Python - Step 3.mp4
28.3 MB
21. K-Means Clustering/1. K-Means Clustering Intuition.mp4
28.2 MB
31. Artificial Neural Networks/5. How do Neural Networks learn.mp4
27.9 MB
5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.mp4
27.2 MB
7. Support Vector Regression (SVR)/4. SVR in R.mp4
27.1 MB
34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.mp4
26.7 MB
6. Polynomial Regression/12. R Regression Template.mp4
26.6 MB
32. Convolutional Neural Networks/12. CNN in Python - Step 1.mp4
26.1 MB
6. Polynomial Regression/3. Polynomial Regression in Python - Step 1.mp4
26.1 MB
10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.mp4
25.4 MB
29. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - Step 10.mp4
25.3 MB
29. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 4.mp4
25.2 MB
6. Polynomial Regression/9. Polynomial Regression in R - Step 2.mp4
25.0 MB
5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4
25.0 MB
31. Artificial Neural Networks/4. How do Neural Networks work.mp4
24.7 MB
16. Naive Bayes/6. Naive Bayes in Python.mp4
24.5 MB
2. -------------------- Part 1 Data Preprocessing --------------------/4. Importing the Dataset.mp4
24.4 MB
21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4
24.3 MB
22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.mp4
23.9 MB
8. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4
23.8 MB
6. Polynomial Regression/11. Polynomial Regression in R - Step 4.mp4
23.4 MB
34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4
23.1 MB
29. -------------------- Part 7 Natural Language Processing --------------------/5. Natural Language Processing in Python - Step 2.mp4
23.0 MB
10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.mp4
23.0 MB
4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.mp4
22.8 MB
39. XGBoost/2. XGBoost in Python - Step 1.mp4
22.4 MB
2. -------------------- Part 1 Data Preprocessing --------------------/2. Get the dataset.mp4
22.2 MB
25. Eclat/3. Eclat in R.mp4
21.7 MB
32. Convolutional Neural Networks/21. CNN in Python - Step 10.mp4
21.6 MB
2. -------------------- Part 1 Data Preprocessing --------------------/11. And here is our Data Preprocessing Template!.mp4
20.6 MB
1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).mp4
20.5 MB
18. Random Forest Classification/1. Random Forest Classification Intuition.mp4
20.4 MB
10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4
20.2 MB
16. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4
19.9 MB
17. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4
19.7 MB
4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.mp4
19.7 MB
19. Evaluating Classification Models Performance/4. CAP Curve.mp4
19.6 MB
31. Artificial Neural Networks/6. Gradient Descent.mp4
19.4 MB
31. Artificial Neural Networks/19. ANN in Python - Step 8.mp4
19.0 MB
14. Support Vector Machine (SVM)/1. SVM Intuition.mp4
18.9 MB
5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.mp4
18.8 MB
6. Polynomial Regression/8. Polynomial Regression in R - Step 1.mp4
18.6 MB
1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).mp4
18.4 MB
29. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.mp4
18.3 MB
22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.mp4
18.3 MB
5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4
18.1 MB
29. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 7.mp4
17.9 MB
31. Artificial Neural Networks/21. ANN in Python - Step 10.mp4
17.9 MB
31. Artificial Neural Networks/20. ANN in Python - Step 9.mp4
17.7 MB
31. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4
17.6 MB
22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.mp4
17.3 MB
31. Artificial Neural Networks/10. Business Problem Description.mp4
17.2 MB
4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.mp4
16.4 MB
21. K-Means Clustering/2. K-Means Random Initialization Trap.mp4
16.1 MB
29. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 5.mp4
15.6 MB
31. Artificial Neural Networks/3. The Activation Function.mp4
15.5 MB
12. Logistic Regression/11. Logistic Regression in R - Step 3.mp4
15.3 MB
4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4
15.1 MB
5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4
15.0 MB
5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.mp4
15.0 MB
31. Artificial Neural Networks/23. ANN in R - Step 2.mp4
14.9 MB
32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4
14.8 MB
28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4
14.8 MB
29. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 9.mp4
14.7 MB
9. Random Forest Regression/1. Random Forest Regression Intuition.mp4
14.5 MB
15. Kernel SVM/2. Mapping to a higher dimension.mp4
14.4 MB
19. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4
14.3 MB
29. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.mp4
14.2 MB
6. Polynomial Regression/6. Polynomial Regression in Python - Step 4.mp4
14.2 MB
5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.srt
14.0 MB
16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4
13.9 MB
29. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.mp4
13.9 MB
32. Convolutional Neural Networks/18. CNN in Python - Step 7.mp4
13.6 MB
12. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4
13.6 MB
1. Welcome to the course!/3. Why Machine Learning is the Future.mp4
13.4 MB
29. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.mp4
13.3 MB
22. Hierarchical Clustering/6. HC in Python - Step 2.mp4
13.3 MB
12. Logistic Regression/9. Logistic Regression in R - Step 1.mp4
13.2 MB
12. Logistic Regression/14. R Classification Template.mp4
13.1 MB
22. Hierarchical Clustering/7. HC in Python - Step 3.mp4
12.9 MB
15. Kernel SVM/4. Types of Kernel Functions.mp4
12.9 MB
12. Logistic Regression/8. Python Classification Template.mp4
12.7 MB
22. Hierarchical Clustering/8. HC in Python - Step 4.mp4
12.6 MB
12. Logistic Regression/2. How to get the dataset.mp4
12.3 MB
17. Decision Tree Classification/2. How to get the dataset.mp4
12.3 MB
32. Convolutional Neural Networks/10. How to get the dataset.mp4
12.3 MB
35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.mp4
12.3 MB
13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.mp4
12.3 MB
14. Support Vector Machine (SVM)/2. How to get the dataset.mp4
12.3 MB
15. Kernel SVM/5. How to get the dataset.mp4
12.3 MB
16. Naive Bayes/5. How to get the dataset.mp4
12.3 MB
18. Random Forest Classification/2. How to get the dataset.mp4
12.3 MB
21. K-Means Clustering/4. How to get the dataset.mp4
12.3 MB
22. Hierarchical Clustering/4. How to get the dataset.mp4
12.3 MB
24. Apriori/2. How to get the dataset.mp4
12.3 MB
25. Eclat/2. How to get the dataset.mp4
12.3 MB
27. Upper Confidence Bound (UCB)/3. How to get the dataset.mp4
12.3 MB
28. Thompson Sampling/3. How to get the dataset.mp4
12.3 MB
29. -------------------- Part 7 Natural Language Processing --------------------/3. How to get the dataset.mp4
12.3 MB
31. Artificial Neural Networks/9. How to get the dataset.mp4
12.3 MB
34. Principal Component Analysis (PCA)/2. How to get the dataset.mp4
12.3 MB
36. Kernel PCA/1. How to get the dataset.mp4
12.3 MB
38. Model Selection/1. How to get the dataset.mp4
12.3 MB
39. XGBoost/1. How to get the dataset.mp4
12.3 MB
4. Simple Linear Regression/1. How to get the dataset.mp4
12.3 MB
5. Multiple Linear Regression/1. How to get the dataset.mp4
12.3 MB
6. Polynomial Regression/2. How to get the dataset.mp4
12.3 MB
7. Support Vector Regression (SVR)/1. How to get the dataset.mp4
12.3 MB
8. Decision Tree Regression/2. How to get the dataset.mp4
12.3 MB
9. Random Forest Regression/2. How to get the dataset.mp4
12.3 MB
19. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4
12.1 MB
22. Hierarchical Clustering/11. HC in R - Step 2.mp4
11.7 MB
2. -------------------- Part 1 Data Preprocessing --------------------/3. Importing the Libraries.mp4
11.6 MB
31. Artificial Neural Networks/8. Backpropagation.mp4
11.5 MB
22. Hierarchical Clustering/5. HC in Python - Step 1.mp4
11.2 MB
25. Eclat/1. Eclat Intuition.mp4
11.2 MB
5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.mp4
10.9 MB
12. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4
10.9 MB
5. Multiple Linear Regression/2. Dataset + Business Problem Description.mp4
10.5 MB
32. Convolutional Neural Networks/16. CNN in Python - Step 5.mp4
10.4 MB
32. Convolutional Neural Networks/17. CNN in Python - Step 6.mp4
10.2 MB
4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4
10.0 MB
4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.mp4
9.9 MB
6. Polynomial Regression/1. Polynomial Regression Intuition.mp4
9.9 MB
13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4
9.7 MB
27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4
9.6 MB
31. Artificial Neural Networks/18. ANN in Python - Step 7.mp4
9.4 MB
10. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4
9.3 MB
4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4
9.1 MB
28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4
8.8 MB
22. Hierarchical Clustering/9. HC in Python - Step 5.mp4
8.8 MB
31. Artificial Neural Networks/14. ANN in Python - Step 3.mp4
8.8 MB
12. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4
8.6 MB
19. Evaluating Classification Models Performance/2. Confusion Matrix.mp4
8.6 MB
1. Welcome to the course!/1. Applications of Machine Learning.mp4
8.4 MB
32. Convolutional Neural Networks/8. Summary.mp4
8.3 MB
12. Logistic Regression/10. Logistic Regression in R - Step 2.mp4
8.2 MB
22. Hierarchical Clustering/12. HC in R - Step 3.mp4
8.2 MB
29. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.mp4
7.9 MB
28. Thompson Sampling/7. Thompson Sampling in R - Step 2.mp4
7.8 MB
22. Hierarchical Clustering/13. HC in R - Step 4.mp4
7.8 MB
27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.mp4
7.8 MB
22. Hierarchical Clustering/10. HC in R - Step 1.mp4
7.8 MB
5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4
7.6 MB
31. Artificial Neural Networks/17. ANN in Python - Step 6.mp4
7.4 MB
12. Logistic Regression/12. Logistic Regression in R - Step 4.mp4
7.2 MB
22. Hierarchical Clustering/14. HC in R - Step 5.mp4
7.2 MB
32. Convolutional Neural Networks/19. CNN in Python - Step 8.mp4
7.1 MB
4. Simple Linear Regression/2. Dataset + Business Problem Description.mp4
7.0 MB
29. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 6.mp4
6.8 MB
29. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.mp4
6.8 MB
36. Kernel PCA/2. Kernel PCA in Python.srt
6.3 MB
12. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4
6.3 MB
32. Convolutional Neural Networks/1. Plan of attack.mp4
6.2 MB
31. Artificial Neural Networks/15. ANN in Python - Step 4.mp4
6.2 MB
32. Convolutional Neural Networks/13. CNN in Python - Step 2.mp4
6.1 MB
15. Kernel SVM/1. Kernel SVM Intuition.mp4
6.1 MB
29. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.srt
5.9 MB
4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.mp4
5.6 MB
31. Artificial Neural Networks/1. Plan of attack.mp4
5.0 MB
29. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.mp4
4.8 MB
5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.mp4
4.7 MB
19. Evaluating Classification Models Performance/3. Accuracy Paradox.srt
4.0 MB
19. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4
4.0 MB
29. -------------------- Part 7 Natural Language Processing --------------------/6. Natural Language Processing in Python - Step 3.mp4
3.5 MB
32. Convolutional Neural Networks/6. Step 3 - Flattening.mp4
3.4 MB
2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.mp4
3.1 MB
1. Welcome to the course!/5.1 Machine_Learning_A_Z_Q_A.pdf.pdf
2.4 MB
32. Convolutional Neural Networks/14. CNN in Python - Step 3.mp4
2.3 MB
5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.mp4
1.9 MB
5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.mp4
1.9 MB
25. Eclat/3.1 Eclat.zip.zip
49.7 kB
16. Naive Bayes/1. Bayes Theorem.srt
35.3 kB
18. Random Forest Classification/4. Random Forest Classification in R.srt
33.2 kB
8. Decision Tree Regression/4. Decision Tree Regression in R.srt
32.9 kB
6. Polynomial Regression/5. Polynomial Regression in Python - Step 3.srt
32.2 kB
24. Apriori/5. Apriori in R - Step 3.srt
31.9 kB
24. Apriori/3. Apriori in R - Step 1.srt
31.8 kB
7. Support Vector Regression (SVR)/3. SVR in Python.srt
31.6 kB
6. Polynomial Regression/10. Polynomial Regression in R - Step 3.srt
31.6 kB
36. Kernel PCA/3. Kernel PCA in R.srt
31.5 kB
18. Random Forest Classification/3. Random Forest Classification in Python.srt
31.5 kB
12. Logistic Regression/7. Logistic Regression in Python - Step 5.srt
30.4 kB
35. Linear Discriminant Analysis (LDA)/4. LDA in R.srt
30.4 kB
32. Convolutional Neural Networks/20. CNN in Python - Step 9.srt
30.1 kB
17. Decision Tree Classification/4. Decision Tree Classification in R.srt
29.8 kB
12. Logistic Regression/13. Logistic Regression in R - Step 5.srt
29.8 kB
31. Artificial Neural Networks/13. ANN in Python - Step 2.srt
29.6 kB
28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.srt
29.6 kB
15. Kernel SVM/6. Kernel SVM in Python.srt
28.9 kB
21. K-Means Clustering/5. K-Means Clustering in Python.srt
28.9 kB
9. Random Forest Regression/4. Random Forest Regression in R.srt
28.8 kB
24. Apriori/6. Apriori in Python - Step 1.srt
28.6 kB
38. Model Selection/3. k-Fold Cross Validation in R.srt
28.6 kB
28. Thompson Sampling/6. Thompson Sampling in R - Step 1.srt
28.5 kB
9. Random Forest Regression/3. Random Forest Regression in Python.srt
28.2 kB
28. Thompson Sampling/1. Thompson Sampling Intuition.srt
28.2 kB
5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.srt
28.1 kB
2. -------------------- Part 1 Data Preprocessing --------------------/7. Categorical Data.srt
27.7 kB
27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.srt
27.6 kB
2. -------------------- Part 1 Data Preprocessing --------------------/9. Splitting the Dataset into the Training set and Test set.srt
27.6 kB
31. Artificial Neural Networks/22. ANN in R - Step 1.srt
27.4 kB
35. Linear Discriminant Analysis (LDA)/3. LDA in Python.srt
27.1 kB
29. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.srt
26.9 kB
39. XGBoost/4. XGBoost in R.srt
26.6 kB
24. Apriori/1. Apriori Intuition.srt
26.5 kB
22. Hierarchical Clustering/16.1 Clustering-Pros-Cons.pdf.pdf
26.4 kB
15. Kernel SVM/7. Kernel SVM in R.srt
26.1 kB
32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.srt
25.9 kB
27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.srt
25.9 kB
31. Artificial Neural Networks/2. The Neuron.srt
25.6 kB
5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.srt
25.0 kB
29. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.srt
24.6 kB
12. Logistic Regression/1. Logistic Regression Intuition.srt
24.5 kB
4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.srt
24.5 kB
29. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 8.srt
24.4 kB
8. Decision Tree Regression/3. Decision Tree Regression in Python.srt
24.3 kB
5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.srt
24.1 kB
2. -------------------- Part 1 Data Preprocessing --------------------/10. Feature Scaling.srt
24.0 kB
13. K-Nearest Neighbors (K-NN)/4. K-NN in R.srt
23.9 kB
21. K-Means Clustering/1. K-Means Clustering Intuition.srt
23.9 kB
16. Naive Bayes/2. Naive Bayes Intuition.srt
23.9 kB
32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.srt
23.8 kB
24. Apriori/4. Apriori in R - Step 2.srt
23.6 kB
2. -------------------- Part 1 Data Preprocessing --------------------/6. Missing Data.srt
23.2 kB
24. Apriori/7. Apriori in Python - Step 2.srt
23.1 kB
4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.srt
23.0 kB
27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.srt
22.8 kB
27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.srt
22.7 kB
32. Convolutional Neural Networks/2. What are convolutional neural networks.srt
22.6 kB
38. Model Selection/4. Grid Search in Python - Step 1.srt
22.6 kB
27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.srt
22.4 kB
16. Naive Bayes/7. Naive Bayes in R.srt
22.4 kB
27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.srt
22.4 kB
13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.srt
21.7 kB
32. Convolutional Neural Networks/5. Step 2 - Pooling.srt
21.5 kB
38. Model Selection/6. Grid Search in R.srt
21.4 kB
31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).srt
21.2 kB
27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.srt
21.0 kB
38. Model Selection/2. k-Fold Cross Validation in Python.srt
20.7 kB
31. Artificial Neural Networks/12. ANN in Python - Step 1.srt
20.5 kB
34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.srt
20.2 kB
5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.srt
20.2 kB
29. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.srt
20.1 kB
24. Apriori/8. Apriori in Python - Step 3.srt
20.1 kB
31. Artificial Neural Networks/16. ANN in Python - Step 5.srt
20.0 kB
21. K-Means Clustering/6. K-Means Clustering in R.srt
19.9 kB
17. Decision Tree Classification/3. Decision Tree Classification in Python.srt
19.9 kB
32. Convolutional Neural Networks/15. CNN in Python - Step 4.srt
19.7 kB
14. Support Vector Machine (SVM)/3. SVM in Python.srt
19.6 kB
31. Artificial Neural Networks/4. How do Neural Networks work.srt
19.6 kB
31. Artificial Neural Networks/5. How do Neural Networks learn.srt
19.4 kB
39. XGBoost/3. XGBoost in Python - Step 2.srt
19.3 kB
31. Artificial Neural Networks/24. ANN in R - Step 3.srt
19.3 kB
34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.srt
19.1 kB
7. Support Vector Regression (SVR)/4. SVR in R.srt
19.1 kB
2. -------------------- Part 1 Data Preprocessing --------------------/4. Importing the Dataset.srt
19.1 kB
6. Polynomial Regression/12. R Regression Template.srt
19.1 kB
21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.srt
18.9 kB
14. Support Vector Machine (SVM)/4. SVM in R.srt
18.8 kB
32. Convolutional Neural Networks/12. CNN in Python - Step 1.srt
18.8 kB
29. -------------------- Part 7 Natural Language Processing --------------------/4. Natural Language Processing in Python - Step 1.srt
18.8 kB
30. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.srt
18.6 kB
34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.srt
18.1 kB
22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.srt
18.0 kB
6. Polynomial Regression/3. Polynomial Regression in Python - Step 1.srt
17.9 kB
29. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 4.srt
17.9 kB
6. Polynomial Regression/4. Polynomial Regression in Python - Step 2.srt
17.6 kB
8. Decision Tree Regression/1. Decision Tree Regression Intuition.srt
17.5 kB
34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.srt
17.3 kB
15. Kernel SVM/3. The Kernel Trick.srt
16.9 kB
6. Polynomial Regression/7. Python Regression Template.srt
16.8 kB
19. Evaluating Classification Models Performance/4. CAP Curve.srt
16.6 kB
16. Naive Bayes/4. Naive Bayes Intuition (Extras).srt
16.3 kB
29. -------------------- Part 7 Natural Language Processing --------------------/5. Natural Language Processing in Python - Step 2.srt
16.2 kB
25. Eclat/3. Eclat in R.srt
16.2 kB
14. Support Vector Machine (SVM)/1. SVM Intuition.srt
16.1 kB
4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.srt
15.8 kB
6. Polynomial Regression/11. Polynomial Regression in R - Step 4.srt
15.8 kB
5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.srt
15.8 kB
38. Model Selection/5. Grid Search in Python - Step 2.srt
15.7 kB
6. Polynomial Regression/9. Polynomial Regression in R - Step 2.srt
15.6 kB
5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.srt
15.3 kB
34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.srt
15.2 kB
22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.srt
14.9 kB
10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.srt
14.8 kB
29. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - Step 10.srt
14.7 kB
22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.srt
14.7 kB
2. -------------------- Part 1 Data Preprocessing --------------------/11. And here is our Data Preprocessing Template!.srt
14.5 kB
6. Polynomial Regression/8. Polynomial Regression in R - Step 1.srt
14.5 kB
31. Artificial Neural Networks/6. Gradient Descent.srt
14.4 kB
16. Naive Bayes/6. Naive Bayes in Python.srt
14.1 kB
39. XGBoost/2. XGBoost in Python - Step 1.srt
14.0 kB
10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.srt
13.6 kB
32. Convolutional Neural Networks/21. CNN in Python - Step 10.srt
13.3 kB
21. K-Means Clustering/2. K-Means Random Initialization Trap.srt
13.3 kB
10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.srt
13.2 kB
29. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.srt
13.2 kB
17. Decision Tree Classification/1. Decision Tree Classification Intuition.srt
13.2 kB
4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.srt
12.6 kB
1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).srt
12.6 kB
31. Artificial Neural Networks/7. Stochastic Gradient Descent.srt
12.4 kB
31. Artificial Neural Networks/3. The Activation Function.srt
12.3 kB
5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.srt
12.1 kB
5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.srt
12.1 kB
34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.srt
12.1 kB
7. Support Vector Regression (SVR)/2. SVR Intuition.srt
11.6 kB
19. Evaluating Classification Models Performance/1. False Positives & False Negatives.srt
11.6 kB
28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.srt
11.4 kB
31. Artificial Neural Networks/19. ANN in Python - Step 8.srt
11.3 kB
5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.srt
11.0 kB
2. -------------------- Part 1 Data Preprocessing --------------------/2. Get the dataset.srt
10.9 kB
29. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 5.srt
10.9 kB
15. Kernel SVM/2. Mapping to a higher dimension.srt
10.8 kB
31. Artificial Neural Networks/21. ANN in Python - Step 10.srt
10.6 kB
9. Random Forest Regression/1. Random Forest Regression Intuition.srt
10.5 kB
29. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.srt
10.4 kB
31. Artificial Neural Networks/23. ANN in R - Step 2.srt
10.4 kB
4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.srt
10.1 kB
29. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 7.srt
10.0 kB
22. Hierarchical Clustering/6. HC in Python - Step 2.srt
9.7 kB
31. Artificial Neural Networks/20. ANN in Python - Step 9.srt
9.7 kB
16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).srt
9.7 kB
19. Evaluating Classification Models Performance/5. CAP Curve Analysis.srt
9.5 kB
1. Welcome to the course!/3. Why Machine Learning is the Future.srt
9.5 kB
32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.srt
9.4 kB
1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).srt
9.4 kB
32. Convolutional Neural Networks/18. CNN in Python - Step 7.srt
9.3 kB
12. Logistic Regression/9. Logistic Regression in R - Step 1.srt
9.1 kB
4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.srt
9.1 kB
12. Logistic Regression/3. Logistic Regression in Python - Step 1.srt
9.0 kB
6. Polynomial Regression/6. Polynomial Regression in Python - Step 4.srt
8.9 kB
29. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.srt
8.6 kB
4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.srt
8.5 kB
5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.srt
8.5 kB
14. Support Vector Machine (SVM)/4.1 SVM.zip.zip
8.5 kB
29. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 9.srt
8.4 kB
22. Hierarchical Clustering/11. HC in R - Step 2.srt
8.3 kB
25. Eclat/1. Eclat Intuition.srt
8.3 kB
2. -------------------- Part 1 Data Preprocessing --------------------/3. Importing the Libraries.srt
8.3 kB
13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.srt
8.2 kB
29. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.srt
8.2 kB
6. Polynomial Regression/1. Polynomial Regression Intuition.srt
8.0 kB
22. Hierarchical Clustering/7. HC in Python - Step 3.srt
7.9 kB
4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.srt
7.9 kB
32. Convolutional Neural Networks/17. CNN in Python - Step 6.srt
7.8 kB
22. Hierarchical Clustering/5. HC in Python - Step 1.srt
7.8 kB
19. Evaluating Classification Models Performance/2. Confusion Matrix.srt
7.7 kB
32. Convolutional Neural Networks/16. CNN in Python - Step 5.srt
7.7 kB
12. Logistic Regression/11. Logistic Regression in R - Step 3.srt
7.6 kB
31. Artificial Neural Networks/10. Business Problem Description.srt
7.5 kB
10. Evaluating Regression Models Performance/1. R-Squared Intuition.srt
7.3 kB
12. Logistic Regression/6. Logistic Regression in Python - Step 4.srt
7.3 kB
31. Artificial Neural Networks/8. Backpropagation.srt
7.3 kB
29. -------------------- Part 7 Natural Language Processing --------------------/2. Natural Language Processing Intuition.srt
7.2 kB
5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.srt
7.2 kB
18. Random Forest Classification/1. Random Forest Classification Intuition.srt
7.2 kB
22. Hierarchical Clustering/9. HC in Python - Step 5.srt
7.0 kB
12. Logistic Regression/14. R Classification Template.srt
6.9 kB
22. Hierarchical Clustering/8. HC in Python - Step 4.srt
6.6 kB
22. Hierarchical Clustering/10. HC in R - Step 1.srt
6.5 kB
12. Logistic Regression/8. Python Classification Template.srt
6.2 kB
32. Convolutional Neural Networks/8. Summary.srt
6.2 kB
28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.srt
5.9 kB
31. Artificial Neural Networks/18. ANN in Python - Step 7.srt
5.8 kB
5. Multiple Linear Regression/2. Dataset + Business Problem Description.srt
5.8 kB
29. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.srt
5.7 kB
4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.srt
5.6 kB
1. Welcome to the course!/1. Applications of Machine Learning.srt
5.4 kB
28. Thompson Sampling/7. Thompson Sampling in R - Step 2.srt
5.4 kB
32. Convolutional Neural Networks/1. Plan of attack.srt
5.4 kB
31. Artificial Neural Networks/14. ANN in Python - Step 3.srt
5.3 kB
35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.srt
5.2 kB
34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.srt
5.2 kB
27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.srt
5.1 kB
15. Kernel SVM/4. Types of Kernel Functions.srt
5.1 kB
12. Logistic Regression/4. Logistic Regression in Python - Step 2.srt
5.0 kB
12. Logistic Regression/2. How to get the dataset.srt
4.9 kB
13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.srt
4.9 kB
14. Support Vector Machine (SVM)/2. How to get the dataset.srt
4.9 kB
15. Kernel SVM/5. How to get the dataset.srt
4.9 kB
16. Naive Bayes/5. How to get the dataset.srt
4.9 kB
17. Decision Tree Classification/2. How to get the dataset.srt
4.9 kB
18. Random Forest Classification/2. How to get the dataset.srt
4.9 kB
21. K-Means Clustering/4. How to get the dataset.srt
4.9 kB
22. Hierarchical Clustering/4. How to get the dataset.srt
4.9 kB
24. Apriori/2. How to get the dataset.srt
4.9 kB
25. Eclat/2. How to get the dataset.srt
4.9 kB
27. Upper Confidence Bound (UCB)/3. How to get the dataset.srt
4.9 kB
28. Thompson Sampling/3. How to get the dataset.srt
4.9 kB
29. -------------------- Part 7 Natural Language Processing --------------------/3. How to get the dataset.srt
4.9 kB
31. Artificial Neural Networks/9. How to get the dataset.srt
4.9 kB
32. Convolutional Neural Networks/10. How to get the dataset.srt
4.9 kB
34. Principal Component Analysis (PCA)/2. How to get the dataset.srt
4.9 kB
35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.srt
4.9 kB
36. Kernel PCA/1. How to get the dataset.srt
4.9 kB
38. Model Selection/1. How to get the dataset.srt
4.9 kB
39. XGBoost/1. How to get the dataset.srt
4.9 kB
4. Simple Linear Regression/1. How to get the dataset.srt
4.9 kB
5. Multiple Linear Regression/1. How to get the dataset.srt
4.9 kB
6. Polynomial Regression/2. How to get the dataset.srt
4.9 kB
7. Support Vector Regression (SVR)/1. How to get the dataset.srt
4.9 kB
8. Decision Tree Regression/2. How to get the dataset.srt
4.9 kB
9. Random Forest Regression/2. How to get the dataset.srt
4.9 kB
22. Hierarchical Clustering/12. HC in R - Step 3.srt
4.8 kB
40. Bonus Lectures/1. YOUR SPECIAL BONUS.html
4.8 kB
32. Convolutional Neural Networks/19. CNN in Python - Step 8.srt
4.7 kB
31. Artificial Neural Networks/17. ANN in Python - Step 6.srt
4.6 kB
32. Convolutional Neural Networks/13. CNN in Python - Step 2.srt
4.6 kB
27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.srt
4.5 kB
15. Kernel SVM/1. Kernel SVM Intuition.srt
4.5 kB
29. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 6.srt
4.5 kB
12. Logistic Regression/10. Logistic Regression in R - Step 2.srt
4.5 kB
4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.srt
4.4 kB
12. Logistic Regression/5. Logistic Regression in Python - Step 3.srt
4.2 kB
4. Simple Linear Regression/2. Dataset + Business Problem Description.srt
4.2 kB
5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.srt
4.2 kB
1. Welcome to the course!/7. Updates on Udemy Reviews.srt
4.1 kB
22. Hierarchical Clustering/14. HC in R - Step 5.srt
4.1 kB
31. Artificial Neural Networks/1. Plan of attack.srt
4.1 kB
12. Logistic Regression/12. Logistic Regression in R - Step 4.srt
4.1 kB
31. Artificial Neural Networks/15. ANN in Python - Step 4.srt
4.0 kB
22. Hierarchical Clustering/13. HC in R - Step 4.srt
3.9 kB
5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.srt
3.6 kB
19. Evaluating Classification Models Performance/6. Conclusion of Part 3 - Classification.html
3.6 kB
29. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.srt
3.3 kB
1. Welcome to the course!/4. Important notes, tips & tricks for this course.html
3.3 kB
10. Evaluating Regression Models Performance/5. Conclusion of Part 2 - Regression.html
3.0 kB
2. -------------------- Part 1 Data Preprocessing --------------------/8. WARNING - Update.html
2.9 kB
29. -------------------- Part 7 Natural Language Processing --------------------/6. Natural Language Processing in Python - Step 3.srt
2.7 kB
32. Convolutional Neural Networks/6. Step 3 - Flattening.srt
2.6 kB
2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.srt
2.6 kB
32. Convolutional Neural Networks/22. CNN in R.html
2.4 kB
1. Welcome to the course!/2. BONUS Learning Paths.html
2.4 kB
39. XGBoost/5. THANK YOU bonus video.srt
2.4 kB
5. Multiple Linear Regression/15. Multiple Linear Regression in Python - Automatic Backward Elimination.html
2.2 kB
1. Welcome to the course!/13. FAQBot!.html
1.8 kB
32. Convolutional Neural Networks/14. CNN in Python - Step 3.srt
1.8 kB
29. -------------------- Part 7 Natural Language Processing --------------------/1. Welcome to Part 7 - Natural Language Processing.html
1.7 kB
2. -------------------- Part 1 Data Preprocessing --------------------/5. For Python learners, summary of Object-oriented programming classes & objects.html
1.6 kB
5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.srt
1.6 kB
1. Welcome to the course!/5. This PDF resource will help you a lot.html
1.5 kB
5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.srt
1.5 kB
31. Artificial Neural Networks/11. Installing Keras.html
1.4 kB
29. -------------------- Part 7 Natural Language Processing --------------------/25. Homework Challenge.html
1.4 kB
29. -------------------- Part 7 Natural Language Processing --------------------/14. Homework Challenge.html
1.4 kB
1. Welcome to the course!/9. Update Recommended Anaconda Version.html
1.4 kB
33. -------------------- Part 9 Dimensionality Reduction --------------------/1. Welcome to Part 9 - Dimensionality Reduction.html
1.3 kB
26. -------------------- Part 6 Reinforcement Learning --------------------/1. Welcome to Part 6 - Reinforcement Learning.html
1.2 kB
1. Welcome to the course!/11. BONUS Meet your instructors.html
1.1 kB
1. Welcome to the course!/6. The whole code folder of the course.html
1.0 kB
32. Convolutional Neural Networks/11. Installing Keras.html
927 Bytes
37. -------------------- Part 10 Model Selection & Boosting --------------------/1. Welcome to Part 10 - Model Selection & Boosting.html
899 Bytes
3. -------------------- Part 2 Regression --------------------/1. Welcome to Part 2 - Regression.html
875 Bytes
30. -------------------- Part 8 Deep Learning --------------------/1. Welcome to Part 8 - Deep Learning.html
870 Bytes
11. -------------------- Part 3 Classification --------------------/1. Welcome to Part 3 - Classification.html
831 Bytes
20. -------------------- Part 4 Clustering --------------------/1. Welcome to Part 4 - Clustering.html
734 Bytes
5. Multiple Linear Regression/21. Multiple Linear Regression in R - Automatic Backward Elimination.html
726 Bytes
5. Multiple Linear Regression/7. Prerequisites What is the P-Value.html
676 Bytes
1. Welcome to the course!/12. Some Additional Resources.html
551 Bytes
22. Hierarchical Clustering/16. Conclusion of Part 4 - Clustering.html
516 Bytes
23. -------------------- Part 5 Association Rule Learning --------------------/1. Welcome to Part 5 - Association Rule Learning.html
425 Bytes
12. Logistic Regression/15. Logistic Regression.html
125 Bytes
13. K-Nearest Neighbors (K-NN)/5. K-Nearest Neighbor.html
125 Bytes
2. -------------------- Part 1 Data Preprocessing --------------------/12. Data Preprocessing.html
125 Bytes
21. K-Means Clustering/7. K-Means Clustering.html
125 Bytes
22. Hierarchical Clustering/15. Hierarchical Clustering.html
125 Bytes
4. Simple Linear Regression/13. Simple Linear Regression.html
125 Bytes
5. Multiple Linear Regression/22. Multiple Linear Regression.html
125 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>