搜索
[Udemy] Natural Language Processing With Transformers in Python (06.2021)
磁力链接/BT种子名称
[Udemy] Natural Language Processing With Transformers in Python (06.2021)
磁力链接/BT种子简介
种子哈希:
15a0a25219359a8870cb3f3844c0e975a3826772
文件大小:
3.29G
已经下载:
6320
次
下载速度:
极快
收录时间:
2022-01-29
最近下载:
2025-02-16
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:15A0A25219359A8870CB3F3844C0E975A3826772
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
甄选 射
程程程
日韩美女
商场女厕全景偷拍多位美女嘘嘘女神
国光女
4k女神《青春、靓丽、无毛b)某房原版4k
红豆妹
离魂
fsdss-022
yuriyuri020202u
artofzoo
幼交
sympathizer
玩迷
桜都字幕组+
裸贷 自
菲菲音的晚餐
小日本的老头儿
fc2-ppv+722191
同人母娘
chhaava 2025
小马日记
jur-126
freemake video converter 2021
1박2일
2025
腾讯乳
前台颜值
anaimiya
宇宙列车
文件列表
7. Long Text Classification With BERT/1. Classification of Long Text Using Windows.mp4
121.8 MB
8. Named Entity Recognition (NER)/9. NER With Sentiment.mp4
104.7 MB
8. Named Entity Recognition (NER)/5. Pulling Data With The Reddit API.mp4
93.3 MB
7. Long Text Classification With BERT/2. Window Method in PyTorch.mp4
89.1 MB
14. Fine-Tuning Transformer Models/5. The Logic of MLM.mp4
83.3 MB
14. Fine-Tuning Transformer Models/10. Fine-tuning with NSP - Data Preparation.mp4
81.8 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/6. Build and Save.mp4
80.8 MB
14. Fine-Tuning Transformer Models/6. Fine-tuning with MLM - Data Preparation.mp4
80.4 MB
11. Reader-Retriever QA With Haystack/13. Retriever-Reader Stack.mp4
78.9 MB
14. Fine-Tuning Transformer Models/7. Fine-tuning with MLM - Training.mp4
73.1 MB
11. Reader-Retriever QA With Haystack/10. FAISS in Haystack.mp4
71.4 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/3. Preprocessing.mp4
65.5 MB
8. Named Entity Recognition (NER)/10. NER With roBERTa.mp4
61.9 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/7. Loading and Prediction.mp4
59.5 MB
12. [Project] Open-Domain QA/3. Building the Haystack Pipeline.mp4
58.5 MB
2. NLP and Transformers/9. Positional Encoding.mp4
58.2 MB
5. Language Classification/4. Tokenization And Special Tokens For BERT.mp4
58.1 MB
8. Named Entity Recognition (NER)/1. Introduction to spaCy.mp4
54.2 MB
4. Attention/2. Alignment With Dot-Product.mp4
51.5 MB
14. Fine-Tuning Transformer Models/3. BERT Pretraining - Masked-Language Modeling (MLM).mp4
49.0 MB
9. Question and Answering/7. Our First Q&A Model.mp4
47.9 MB
14. Fine-Tuning Transformer Models/14. Fine-tuning with MLM and NSP - Data Preparation.mp4
45.7 MB
11. Reader-Retriever QA With Haystack/9. What is FAISS.mp4
45.0 MB
12. [Project] Open-Domain QA/2. Creating the Database.mp4
44.5 MB
14. Fine-Tuning Transformer Models/4. BERT Pretraining - Next Sentence Prediction (NSP).mp4
44.1 MB
2. NLP and Transformers/10. Transformer Heads.mp4
41.8 MB
11. Reader-Retriever QA With Haystack/5. Elasticsearch in Haystack.mp4
40.9 MB
9. Question and Answering/4. Processing SQuAD Training Data.mp4
40.3 MB
5. Language Classification/1. Introduction to Sentiment Analysis.mp4
39.3 MB
1. Introduction/3. Environment Setup.mp4
39.1 MB
8. Named Entity Recognition (NER)/4. Authenticating With The Reddit API.mp4
37.4 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/2. Getting the Data (Kaggle API).mp4
36.7 MB
1. Introduction/2. Course Overview.mp4
36.0 MB
10. Metrics For Language/3. Applying ROUGE to Q&A.mp4
35.6 MB
13. Similarity/4. Using Cosine Similarity.mp4
35.5 MB
4. Attention/6. Multi-head and Scaled Dot-Product Attention.mp4
35.5 MB
8. Named Entity Recognition (NER)/2. Extracting Entities.mp4
35.2 MB
2. NLP and Transformers/2. Pros and Cons of Neural AI.mp4
34.4 MB
13. Similarity/3. Sentence Vectors With Mean Pooling.mp4
33.6 MB
5. Language Classification/2. Prebuilt Flair Models.mp4
32.2 MB
3. Preprocessing for NLP/9. Unicode Normalization - NFKD and NFKC.mp4
31.9 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/5. Dataset Shuffle, Batch, Split, and Save.mp4
31.6 MB
9. Question and Answering/5. (Optional) Processing SQuAD Training Data with Match-Case.mp4
31.6 MB
13. Similarity/2. Extracting The Last Hidden State Tensor.mp4
31.2 MB
11. Reader-Retriever QA With Haystack/11. What is DPR.mp4
31.1 MB
14. Fine-Tuning Transformer Models/2. Introduction to BERT For Pretraining Code.mp4
30.7 MB
4. Attention/3. Dot-Product Attention.mp4
30.4 MB
9. Question and Answering/2. Retrievers, Readers, and Generators.mp4
30.1 MB
14. Fine-Tuning Transformer Models/1. Visual Guide to BERT Pretraining.mp4
30.0 MB
4. Attention/4. Self Attention.mp4
29.8 MB
13. Similarity/1. Introduction to Similarity.mp4
29.6 MB
8. Named Entity Recognition (NER)/6. Extracting ORGs From Reddit Data.mp4
29.5 MB
5. Language Classification/3. Introduction to Sentiment Models With Transformers.mp4
28.2 MB
11. Reader-Retriever QA With Haystack/7. Cleaning the Index.mp4
27.7 MB
14. Fine-Tuning Transformer Models/13. The Logic of MLM and NSP.mp4
27.5 MB
5. Language Classification/5. Making Predictions.mp4
27.2 MB
9. Question and Answering/3. Intro to SQuAD 2.0.mp4
26.6 MB
2. NLP and Transformers/6. Encoder-Decoder Attention.mp4
26.4 MB
3. Preprocessing for NLP/2. Tokens Introduction.mp4
25.2 MB
1. Introduction/4. CUDA Setup.mp4
24.9 MB
11. Reader-Retriever QA With Haystack/2. What is Elasticsearch.mp4
24.7 MB
3. Preprocessing for NLP/1. Stopwords.mp4
24.2 MB
13. Similarity/5. Similarity With Sentence-Transformers.mp4
24.1 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/4. Building a Dataset.mp4
23.7 MB
2. NLP and Transformers/1. The Three Eras of AI.mp4
23.3 MB
2. NLP and Transformers/3. Word Vectors.mp4
22.8 MB
10. Metrics For Language/2. ROUGE in Python.mp4
22.7 MB
10. Metrics For Language/4. Recall, Precision and F1.mp4
22.0 MB
11. Reader-Retriever QA With Haystack/3. Elasticsearch Setup (Windows).mp4
21.9 MB
14. Fine-Tuning Transformer Models/9. The Logic of NSP.mp4
21.9 MB
2. NLP and Transformers/7. Self-Attention.mp4
21.8 MB
11. Reader-Retriever QA With Haystack/6. Sparse Retrievers.mp4
21.4 MB
3. Preprocessing for NLP/7. Unicode Normalization - Composition and Decomposition.mp4
21.2 MB
11. Reader-Retriever QA With Haystack/4. Elasticsearch Setup (Linux).mp4
21.2 MB
8. Named Entity Recognition (NER)/8. Entity Blacklist.mp4
21.1 MB
3. Preprocessing for NLP/8. Unicode Normalization - NFD and NFC.mp4
21.0 MB
14. Fine-Tuning Transformer Models/8. Fine-tuning with MLM - Training with Trainer.mp4
20.8 MB
3. Preprocessing for NLP/3. Model-Specific Special Tokens.mp4
19.8 MB
10. Metrics For Language/6. Q&A Performance With ROUGE.mp4
19.7 MB
8. Named Entity Recognition (NER)/7. Getting Entity Frequency.mp4
19.3 MB
10. Metrics For Language/1. Q&A Performance With Exact Match (EM).mp4
19.0 MB
3. Preprocessing for NLP/4. Stemming.mp4
18.1 MB
2. NLP and Transformers/4. Recurrent Neural Networks.mp4
17.9 MB
3. Preprocessing for NLP/6. Unicode Normalization - Canonical and Compatibility Equivalence.mp4
17.8 MB
9. Question and Answering/1. Open Domain and Reading Comprehension.mp4
16.9 MB
4. Attention/1. Attention Introduction.mp4
16.6 MB
10. Metrics For Language/5. Longest Common Subsequence (LCS).mp4
15.7 MB
11. Reader-Retriever QA With Haystack/12. The DPR Architecture.mp4
15.0 MB
14. Fine-Tuning Transformer Models/11. Fine-tuning with NSP - DataLoader.mp4
15.0 MB
11. Reader-Retriever QA With Haystack/1. Intro to Retriever-Reader and Haystack.mp4
14.6 MB
2. NLP and Transformers/8. Multi-head Attention.mp4
14.0 MB
11. Reader-Retriever QA With Haystack/8. Implementing a BM25 Retriever.mp4
13.2 MB
6. [Project] Sentiment Model With TensorFlow and Transformers/1. Project Overview.mp4
13.1 MB
4. Attention/5. Bidirectional Attention.mp4
11.3 MB
3. Preprocessing for NLP/5. Lemmatization.mp4
11.1 MB
1. Introduction/1. Introduction.mp4
9.6 MB
2. NLP and Transformers/5. Long Short-Term Memory.mp4
6.7 MB
12. [Project] Open-Domain QA/1. ODQA Stack Structure.mp4
6.5 MB
7. Long Text Classification With BERT/1. Classification of Long Text Using Windows.srt
24.8 kB
8. Named Entity Recognition (NER)/9. NER With Sentiment.srt
20.1 kB
7. Long Text Classification With BERT/2. Window Method in PyTorch.srt
16.7 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/3. Preprocessing.srt
15.5 kB
14. Fine-Tuning Transformer Models/10. Fine-tuning with NSP - Data Preparation.srt
15.0 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/6. Build and Save.srt
14.4 kB
4. Attention/2. Alignment With Dot-Product.srt
14.1 kB
14. Fine-Tuning Transformer Models/7. Fine-tuning with MLM - Training.srt
14.0 kB
14. Fine-Tuning Transformer Models/6. Fine-tuning with MLM - Data Preparation.srt
13.8 kB
11. Reader-Retriever QA With Haystack/10. FAISS in Haystack.srt
13.7 kB
14. Fine-Tuning Transformer Models/5. The Logic of MLM.srt
13.6 kB
8. Named Entity Recognition (NER)/5. Pulling Data With The Reddit API.srt
13.2 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/7. Loading and Prediction.srt
12.0 kB
11. Reader-Retriever QA With Haystack/13. Retriever-Reader Stack.srt
11.4 kB
2. NLP and Transformers/10. Transformer Heads.srt
10.9 kB
8. Named Entity Recognition (NER)/10. NER With roBERTa.srt
10.6 kB
5. Language Classification/1. Introduction to Sentiment Analysis.srt
10.3 kB
11. Reader-Retriever QA With Haystack/9. What is FAISS.srt
10.1 kB
14. Fine-Tuning Transformer Models/1. Visual Guide to BERT Pretraining.srt
9.9 kB
2. NLP and Transformers/9. Positional Encoding.srt
9.9 kB
8. Named Entity Recognition (NER)/1. Introduction to spaCy.srt
9.6 kB
5. Language Classification/2. Prebuilt Flair Models.srt
9.6 kB
14. Fine-Tuning Transformer Models/3. BERT Pretraining - Masked-Language Modeling (MLM).srt
9.6 kB
9. Question and Answering/7. Our First Q&A Model.srt
9.2 kB
12. [Project] Open-Domain QA/3. Building the Haystack Pipeline.srt
9.2 kB
14. Fine-Tuning Transformer Models/14. Fine-tuning with MLM and NSP - Data Preparation.srt
9.2 kB
11. Reader-Retriever QA With Haystack/5. Elasticsearch in Haystack.srt
8.9 kB
3. Preprocessing for NLP/9. Unicode Normalization - NFKD and NFKC.srt
8.9 kB
10. Metrics For Language/3. Applying ROUGE to Q&A.srt
8.8 kB
11. Reader-Retriever QA With Haystack/11. What is DPR.srt
8.7 kB
3. Preprocessing for NLP/2. Tokens Introduction.srt
8.6 kB
5. Language Classification/4. Tokenization And Special Tokens For BERT.srt
8.6 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/2. Getting the Data (Kaggle API).srt
8.6 kB
1. Introduction/2. Course Overview.srt
8.3 kB
13. Similarity/3. Sentence Vectors With Mean Pooling.srt
8.2 kB
13. Similarity/1. Introduction to Similarity.srt
8.0 kB
8. Named Entity Recognition (NER)/4. Authenticating With The Reddit API.srt
8.0 kB
12. [Project] Open-Domain QA/2. Creating the Database.srt
7.9 kB
2. NLP and Transformers/1. The Three Eras of AI.srt
7.9 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/5. Dataset Shuffle, Batch, Split, and Save.srt
7.8 kB
1. Introduction/3. Environment Setup.srt
7.5 kB
11. Reader-Retriever QA With Haystack/2. What is Elasticsearch.srt
7.4 kB
4. Attention/6. Multi-head and Scaled Dot-Product Attention.srt
7.3 kB
3. Preprocessing for NLP/3. Model-Specific Special Tokens.srt
7.3 kB
5. Language Classification/3. Introduction to Sentiment Models With Transformers.srt
7.3 kB
9. Question and Answering/2. Retrievers, Readers, and Generators.srt
7.2 kB
9. Question and Answering/4. Processing SQuAD Training Data.srt
7.2 kB
14. Fine-Tuning Transformer Models/4. BERT Pretraining - Next Sentence Prediction (NSP).srt
7.1 kB
5. Language Classification/5. Making Predictions.srt
7.0 kB
8. Named Entity Recognition (NER)/2. Extracting Entities.srt
6.9 kB
8. Named Entity Recognition (NER)/6. Extracting ORGs From Reddit Data.srt
6.9 kB
9. Question and Answering/3. Intro to SQuAD 2.0.srt
6.8 kB
3. Preprocessing for NLP/6. Unicode Normalization - Canonical and Compatibility Equivalence.srt
6.7 kB
3. Preprocessing for NLP/4. Stemming.srt
6.6 kB
3. Preprocessing for NLP/1. Stopwords.srt
6.4 kB
3. Preprocessing for NLP/8. Unicode Normalization - NFD and NFC.srt
6.4 kB
4. Attention/4. Self Attention.srt
6.4 kB
2. NLP and Transformers/6. Encoder-Decoder Attention.srt
6.2 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/4. Building a Dataset.srt
6.2 kB
13. Similarity/4. Using Cosine Similarity.srt
6.0 kB
3. Preprocessing for NLP/7. Unicode Normalization - Composition and Decomposition.srt
5.8 kB
13. Similarity/2. Extracting The Last Hidden State Tensor.srt
5.8 kB
10. Metrics For Language/1. Q&A Performance With Exact Match (EM).srt
5.7 kB
4. Attention/3. Dot-Product Attention.srt
5.6 kB
14. Fine-Tuning Transformer Models/13. The Logic of MLM and NSP.srt
5.6 kB
10. Metrics For Language/4. Recall, Precision and F1.srt
5.6 kB
2. NLP and Transformers/2. Pros and Cons of Neural AI.srt
5.6 kB
11. Reader-Retriever QA With Haystack/7. Cleaning the Index.srt
5.4 kB
14. Fine-Tuning Transformer Models/2. Introduction to BERT For Pretraining Code.srt
5.3 kB
2. NLP and Transformers/3. Word Vectors.srt
5.2 kB
9. Question and Answering/5. (Optional) Processing SQuAD Training Data with Match-Case.srt
5.2 kB
2. NLP and Transformers/7. Self-Attention.srt
4.7 kB
14. Fine-Tuning Transformer Models/9. The Logic of NSP.srt
4.7 kB
10. Metrics For Language/2. ROUGE in Python.srt
4.6 kB
2. NLP and Transformers/4. Recurrent Neural Networks.srt
4.6 kB
3. Preprocessing for NLP/5. Lemmatization.srt
4.3 kB
11. Reader-Retriever QA With Haystack/6. Sparse Retrievers.srt
4.3 kB
10. Metrics For Language/6. Q&A Performance With ROUGE.srt
4.2 kB
13. Similarity/5. Similarity With Sentence-Transformers.srt
4.2 kB
8. Named Entity Recognition (NER)/8. Entity Blacklist.srt
4.1 kB
8. Named Entity Recognition (NER)/7. Getting Entity Frequency.srt
4.0 kB
11. Reader-Retriever QA With Haystack/1. Intro to Retriever-Reader and Haystack.srt
3.9 kB
9. Question and Answering/1. Open Domain and Reading Comprehension.srt
3.6 kB
1. Introduction/4. CUDA Setup.srt
3.6 kB
6. [Project] Sentiment Model With TensorFlow and Transformers/1. Project Overview.srt
3.5 kB
14. Fine-Tuning Transformer Models/8. Fine-tuning with MLM - Training with Trainer.srt
3.4 kB
14. Fine-Tuning Transformer Models/11. Fine-tuning with NSP - DataLoader.srt
3.4 kB
2. NLP and Transformers/8. Multi-head Attention.srt
3.3 kB
1. Introduction/1. Introduction.srt
3.2 kB
10. Metrics For Language/5. Longest Common Subsequence (LCS).srt
3.1 kB
4. Attention/5. Bidirectional Attention.srt
3.0 kB
4. Attention/1. Attention Introduction.srt
2.8 kB
11. Reader-Retriever QA With Haystack/8. Implementing a BM25 Retriever.srt
2.6 kB
11. Reader-Retriever QA With Haystack/12. The DPR Architecture.srt
2.3 kB
2. NLP and Transformers/5. Long Short-Term Memory.srt
2.2 kB
11. Reader-Retriever QA With Haystack/3. Elasticsearch Setup (Windows).srt
2.1 kB
11. Reader-Retriever QA With Haystack/4. Elasticsearch Setup (Linux).srt
2.1 kB
12. [Project] Open-Domain QA/1. ODQA Stack Structure.srt
2.0 kB
11. Reader-Retriever QA With Haystack/2.1 Elasticsearch (Cloud) Introduction Article.html
195 Bytes
11. Reader-Retriever QA With Haystack/11.1 Article.html
189 Bytes
11. Reader-Retriever QA With Haystack/12.1 Article.html
189 Bytes
7. Long Text Classification With BERT/1.1 Article.html
188 Bytes
9. Question and Answering/5.2 Pattern Matching Article.html
184 Bytes
5. Language Classification/3.1 Notebook.html
181 Bytes
5. Language Classification/4.1 Notebook.html
181 Bytes
5. Language Classification/5.1 Notebook.html
181 Bytes
12. [Project] Open-Domain QA/3.1 Notebook.html
180 Bytes
6. [Project] Sentiment Model With TensorFlow and Transformers/7.1 Notebook.html
179 Bytes
5. Language Classification/1.1 Notebook.html
178 Bytes
6. [Project] Sentiment Model With TensorFlow and Transformers/6.1 Notebook.html
178 Bytes
7. Long Text Classification With BERT/2.1 Notebook.html
178 Bytes
6. [Project] Sentiment Model With TensorFlow and Transformers/4.1 Notebook.html
177 Bytes
6. [Project] Sentiment Model With TensorFlow and Transformers/5.1 Notebook.html
177 Bytes
8. Named Entity Recognition (NER)/10.1 Notebook.html
177 Bytes
6. [Project] Sentiment Model With TensorFlow and Transformers/2.1 Notebook.html
176 Bytes
6. [Project] Sentiment Model With TensorFlow and Transformers/3.1 Notebook.html
176 Bytes
8. Named Entity Recognition (NER)/6.2 Notebook.html
176 Bytes
8. Named Entity Recognition (NER)/7.1 Notebook.html
176 Bytes
8. Named Entity Recognition (NER)/8.1 Notebook.html
176 Bytes
9. Question and Answering/4.1 Notebook.html
175 Bytes
12. [Project] Open-Domain QA/2.2 Notebook.html
174 Bytes
5. Language Classification/2.1 Notebook.html
174 Bytes
8. Named Entity Recognition (NER)/4.1 Notebook.html
174 Bytes
8. Named Entity Recognition (NER)/5.1 Notebook.html
174 Bytes
7. Long Text Classification With BERT/1.2 Notebook.html
173 Bytes
8. Named Entity Recognition (NER)/9.1 Notebook.html
172 Bytes
8. Named Entity Recognition (NER)/6.1 Data.html
171 Bytes
11. Reader-Retriever QA With Haystack/9.1 Article.html
170 Bytes
8. Named Entity Recognition (NER)/1.1 Notebook.html
169 Bytes
8. Named Entity Recognition (NER)/2.1 Notebook.html
169 Bytes
11. Reader-Retriever QA With Haystack/5.1 Notebook.html
168 Bytes
11. Reader-Retriever QA With Haystack/6.1 Notebook.html
168 Bytes
11. Reader-Retriever QA With Haystack/7.1 Notebook.html
168 Bytes
11. Reader-Retriever QA With Haystack/8.1 Notebook.html
168 Bytes
9. Question and Answering/5.1 Notebook.html
167 Bytes
11. Reader-Retriever QA With Haystack/10.1 Notebook.html
166 Bytes
2. NLP and Transformers/2.3 Self-Driving Limitations.html
163 Bytes
4. Attention/5.1 Notebook.html
163 Bytes
9. Question and Answering/7.1 Notebook.html
163 Bytes
10. Metrics For Language/3.1 Notebook.html
162 Bytes
11. Reader-Retriever QA With Haystack/9.2 Notebook.html
162 Bytes
9. Question and Answering/3.1 Notebook.html
162 Bytes
4. Attention/2.1 Notebook.html
161 Bytes
4. Attention/3.1 Notebook.html
161 Bytes
10. Metrics For Language/1.1 Notebook.html
160 Bytes
11. Reader-Retriever QA With Haystack/11.2 Notebook.html
160 Bytes
11. Reader-Retriever QA With Haystack/12.2 Notebook.html
160 Bytes
9. Question and Answering/1.1 Notebook.html
160 Bytes
9. Question and Answering/2.1 Notebook.html
160 Bytes
14. Fine-Tuning Transformer Models/14.1 Notebook.html
159 Bytes
14. Fine-Tuning Transformer Models/8.1 Notebook.html
159 Bytes
2. NLP and Transformers/2.1 2010 Flash Crash.html
159 Bytes
4. Attention/6.1 Notebook.html
159 Bytes
11. Reader-Retriever QA With Haystack/1.1 Notebook.html
157 Bytes
3. Preprocessing for NLP/5.1 Notebook.html
157 Bytes
3. Preprocessing for NLP/6.1 Notebook.html
157 Bytes
3. Preprocessing for NLP/7.1 Notebook.html
157 Bytes
3. Preprocessing for NLP/8.1 Notebook.html
157 Bytes
3. Preprocessing for NLP/9.1 Notebook.html
157 Bytes
14. Fine-Tuning Transformer Models/13.1 Notebook.html
156 Bytes
11. Reader-Retriever QA With Haystack/13.1 Notebook.html
155 Bytes
10. Metrics For Language/2.1 Notebook.html
154 Bytes
10. Metrics For Language/4.1 Notebook.html
154 Bytes
10. Metrics For Language/5.1 Notebook.html
154 Bytes
10. Metrics For Language/6.1 Notebook.html
154 Bytes
14. Fine-Tuning Transformer Models/5.1 Notebook.html
154 Bytes
14. Fine-Tuning Transformer Models/9.1 Notebook.html
154 Bytes
4. Attention/4.1 Notebook.html
154 Bytes
3. Preprocessing for NLP/1.1 Notebook.html
153 Bytes
3. Preprocessing for NLP/4.1 Notebook.html
152 Bytes
14. Fine-Tuning Transformer Models/10.1 Notebook.html
151 Bytes
14. Fine-Tuning Transformer Models/11.1 Notebook.html
151 Bytes
14. Fine-Tuning Transformer Models/6.1 Notebook.html
151 Bytes
14. Fine-Tuning Transformer Models/7.1 Notebook.html
151 Bytes
3. Preprocessing for NLP/2.1 Notebook.html
150 Bytes
3. Preprocessing for NLP/3.1 Notebook.html
150 Bytes
4. Attention/1.1 Notebook.html
147 Bytes
12. [Project] Open-Domain QA/2.1 Data.html
145 Bytes
2. NLP and Transformers/2.2 Amazon AI Recruitment Bias.html
144 Bytes
14. Fine-Tuning Transformer Models/2.1 Notebook.html
143 Bytes
14. Fine-Tuning Transformer Models/3.1 Notebook.html
143 Bytes
14. Fine-Tuning Transformer Models/4.1 Notebook.html
143 Bytes
14. Fine-Tuning Transformer Models/12. Setup the NSP Fine-tuning Training Loop.html
136 Bytes
14. Fine-Tuning Transformer Models/15. Setup DataLoader and Model Fine-tuning For MLM and NSP.html
136 Bytes
8. Named Entity Recognition (NER)/3. NER Walkthrough.html
136 Bytes
9. Question and Answering/6. Processing SQuAD Dev Data.html
136 Bytes
1. Introduction/3.1 Installation Instructions.html
129 Bytes
1. Introduction/4.1 Installation Instructions.html
129 Bytes
1. Introduction/2.1 GitHub Repo.html
103 Bytes
8. Named Entity Recognition (NER)/1.2 spaCy Model Docs.html
84 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>