MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - The Complete Neural Networks Bootcamp Theory, Applications (11.2021)

磁力链接/BT种子名称

Udemy - The Complete Neural Networks Bootcamp Theory, Applications (11.2021)

磁力链接/BT种子简介

种子哈希:15b4d062a18983c064a36b9a8f7ac3a7c59709ba
文件大小: 13.38G
已经下载:233次
下载速度:极快
收录时间:2025-07-18
最近下载:2025-09-15

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:15B4D062A18983C064A36B9A8F7AC3A7C59709BA
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

付费字母圈+第三 付费字母圈+第十四 abw-265 前原美都 c罩杯的大 睡觉插 尾巴 bridge of spies 2015 x265-rarbg ssni-326 恋小夜 mimk-231 816+2023 公式 360酒店 npxvip 甜甜御姐 mdyd-639 国产++电影 2858723 艳舞 尤物流出 mh370.the.plane.that.disappeared 热带夜晚 红丽 apns-235 大尺度福利 稀缺 360 群p 短髪控的福利 snowpiercer s04 complete

文件列表

  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/004 Defining the Encoder.mp4 233.4 MB
  • 22 - Autoencoders and Variational Autoencoders/006 Loss Function Derivation for VAE.mp4 229.9 MB
  • 22 - Autoencoders and Variational Autoencoders/005 Probability Distributions Recap.mp4 196.8 MB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/006 Training the Network.mp4 191.6 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/003 Building the CNN.mp4 179.7 MB
  • 01 - How Neural Networks and Backpropagation Works/002 What Can Deep Learning Do.mp4 163.8 MB
  • 08 - Introduction to PyTorch/009 Loss Functions in PyTorch.mp4 162.5 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/006 Designing the Attention Model.mp4 154.6 MB
  • 34 - Build a Chatbot with Transformers/017 Loss with Label Smoothing.mp4 145.3 MB
  • 19 - Transfer Learning in PyTorch - Image Classification/001 Data Augmentation.mp4 126.2 MB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/005 Part 4 Building the Network.mp4 114.9 MB
  • 16 - CNN Architectures/003 Residual Networks Part 2.mp4 112.9 MB
  • 38 - Vision Transformers/003 Vision Transformer Part 3.mp4 111.6 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/010 Train Function.mp4 111.0 MB
  • 35 - Universal Transformers/002 Practical Universal Transformers Modifying the Transformers code.mp4 110.2 MB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/006 Part 5 Training the Network.mp4 109.8 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/008 Designing the Decoder Part 2.mp4 109.4 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/008 Backpropagation.mp4 107.0 MB
  • 16 - CNN Architectures/005 Stochastic Depth.mp4 105.8 MB
  • 28 - Practical Recurrent Networks in PyTorch/007 Generating Text.mp4 103.1 MB
  • 19 - Transfer Learning in PyTorch - Image Classification/002 Loading the Dataset.mp4 101.3 MB
  • 39 - GPT/013 (6) GPT Implementation Part 1.mp4 101.3 MB
  • 39 - GPT/012 (5) GPT Implementation Part 1.mp4 100.4 MB
  • 09 - Data Augmentation/003 2_Data Augmentation Techniques Part 2.mp4 99.8 MB
  • 17 - Practical Residual Networks in PyTorch/004 Practical ResNet Part 4.mp4 97.6 MB
  • 34 - Build a Chatbot with Transformers/003 Dataset Preprocessing Part 2.mp4 94.4 MB
  • 08 - Introduction to PyTorch/004 How PyTorch Works.mp4 93.1 MB
  • 25 - Practical Neural Style Transfer in PyTorch/004 NST Practical Part 4.mp4 92.3 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/004 Constructing the Dataset Part 1.mp4 91.9 MB
  • 37 - BERT/005 Exploring Transformers.mp4 91.3 MB
  • 16 - CNN Architectures/002 Residual Networks Part 1.mp4 91.0 MB
  • 02 - Loss Functions/011 Triplet Ranking Loss.mp4 90.9 MB
  • 38 - Vision Transformers/001 Vision Transformer Part 1.mp4 89.4 MB
  • 26 - Recurrent Neural Networks/007 LSTMs.mp4 89.0 MB
  • 25 - Practical Neural Style Transfer in PyTorch/002 NST Practical Part 2.mp4 88.7 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/007 Designing the Decoder Part 1.mp4 88.5 MB
  • 21 - YOLO Object Detection (Theory)/003 YOLO Theory Part 3.mp4 88.5 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/009 Creating the Decoder Part 3.mp4 88.1 MB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/002 Part 1 Data Preprocessing.mp4 86.6 MB
  • 28 - Practical Recurrent Networks in PyTorch/006 Training the Network.mp4 86.5 MB
  • 34 - Build a Chatbot with Transformers/011 MultiHead Attention Implementation Part 3.mp4 86.4 MB
  • 30 - Sequence Modelling/001 Sequence Modeling.mp4 85.5 MB
  • 21 - YOLO Object Detection (Theory)/006 YOLO Theory Part 6.mp4 85.3 MB
  • 09 - Data Augmentation/002 2_Data Augmentation Techniques Part 1.mp4 85.2 MB
  • 20 - Convolutional Networks Visualization/002 Processing the Model.mp4 84.4 MB
  • 01 - How Neural Networks and Backpropagation Works/005 The Perceptron.mp4 84.3 MB
  • 39 - GPT/010 (3) GPT Implementation Part 1.mp4 84.1 MB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/003 Importing and Defining Parameters.mp4 82.9 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/007 Creating the Decoder Part 1.mp4 82.8 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/006 Training the CNN.mp4 82.0 MB
  • 39 - GPT/009 (2) GPT Implementation Part 1.mp4 81.0 MB
  • 34 - Build a Chatbot with Transformers/015 Transformer.mp4 80.7 MB
  • 09 - Data Augmentation/004 2_Data Augmentation Techniques Part 3.mp4 80.6 MB
  • 20 - Convolutional Networks Visualization/003 Visualizing the Feature Maps.mp4 80.5 MB
  • 29 - Saving and Loading Models/001 Saving and Loading Part 1.mp4 79.9 MB
  • 35 - Universal Transformers/003 Transformers for other tasks.mp4 79.4 MB
  • 34 - Build a Chatbot with Transformers/020 Evaluation Function.mp4 77.6 MB
  • 21 - YOLO Object Detection (Theory)/001 YOLO Theory Part 1.mp4 75.4 MB
  • 23 - Practical Variational Autoencoders in PyTorch/001 Practical VAE Part 1.mp4 74.9 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/011 Defining Hyperparameters.mp4 73.7 MB
  • 21 - YOLO Object Detection (Theory)/005 YOLO Theory Part 5.mp4 73.5 MB
  • 25 - Practical Neural Style Transfer in PyTorch/003 NST Practical Part 3.mp4 73.3 MB
  • 33 - Transformers/004 Positional Encoding.mp4 72.9 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/007 Backpropagation Equations.mp4 72.7 MB
  • 04 - Regularization and Normalization/006 Batch Normalization.mp4 71.9 MB
  • 17 - Practical Residual Networks in PyTorch/003 Practical ResNet Part 3.mp4 71.7 MB
  • 08 - Introduction to PyTorch/006 Torch Tensors - Part 2.mp4 71.2 MB
  • 34 - Build a Chatbot with Transformers/019 Training Function.mp4 70.4 MB
  • 23 - Practical Variational Autoencoders in PyTorch/002 Practical VAE Part 2.mp4 70.0 MB
  • 19 - Transfer Learning in PyTorch - Image Classification/006 Testing and Visualizing the results.mp4 70.0 MB
  • 16 - CNN Architectures/007 Densely Connected Networks.mp4 69.1 MB
  • 14 - Convolutional Neural Networks/014 DropBlock Dropout in CNNs.mp4 68.5 MB
  • 07 - Weight Initialization/003 Xavier Initialization.mp4 68.1 MB
  • 28 - Practical Recurrent Networks in PyTorch/005 Creating the Network.mp4 67.6 MB
  • 23 - Practical Variational Autoencoders in PyTorch/003 Practical VAE Part 3.mp4 66.6 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/008 Creating the Decoder Part 2.mp4 66.2 MB
  • 39 - GPT/001 GPT Part 1.mp4 66.2 MB
  • 34 - Build a Chatbot with Transformers/021 Main Function and User Evaluation.mp4 65.9 MB
  • 28 - Practical Recurrent Networks in PyTorch/003 Processing the Text.mp4 65.8 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/012 Evaluation Function.mp4 64.7 MB
  • 34 - Build a Chatbot with Transformers/006 Dataset Preprocessing Part 5.mp4 64.1 MB
  • 05 - Optimization/013 AMSGrad.mp4 63.9 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/003 Forward Propagation.mp4 63.3 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/006 Creating the Encoder.mp4 62.9 MB
  • 19 - Transfer Learning in PyTorch - Image Classification/004 Understanding the data.mp4 61.7 MB
  • 14 - Convolutional Neural Networks/009 Activation, Pooling and FC.mp4 61.6 MB
  • 17 - Practical Residual Networks in PyTorch/002 Practical ResNet Part 2.mp4 61.3 MB
  • 39 - GPT/014 (7) GPT Implementation Part 1.mp4 59.5 MB
  • 22 - Autoencoders and Variational Autoencoders/007 Deep Fake.mp4 59.3 MB
  • 34 - Build a Chatbot with Transformers/013 Encoder Layer.mp4 58.8 MB
  • 29 - Saving and Loading Models/002 Saving and Loading Part 2.mp4 58.1 MB
  • 34 - Build a Chatbot with Transformers/002 Dataset Preprocessing Part 1.mp4 57.9 MB
  • 34 - Build a Chatbot with Transformers/004 Dataset Preprocessing Part 3.mp4 57.8 MB
  • 08 - Introduction to PyTorch/003 Installing PyTorch and an Introduction.mp4 57.5 MB
  • 05 - Optimization/011 Weight Decay.mp4 56.9 MB
  • 34 - Build a Chatbot with Transformers/007 Data Loading and Masking.mp4 56.6 MB
  • 19 - Transfer Learning in PyTorch - Image Classification/003 Modifying the Network.mp4 56.5 MB
  • 02 - Loss Functions/002 L1 Loss (MAE).mp4 56.3 MB
  • 34 - Build a Chatbot with Transformers/008 Embeddings.mp4 55.7 MB
  • 05 - Optimization/009 Adam Optimization.mp4 55.5 MB
  • 21 - YOLO Object Detection (Theory)/008 YOLO Theory Part 8.mp4 54.6 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/003 Understanding the Encoder.mp4 54.6 MB
  • 21 - YOLO Object Detection (Theory)/002 YOLO Theory Part 2.mp4 54.1 MB
  • 08 - Introduction to PyTorch/005 Torch Tensors - Part 1.mp4 53.8 MB
  • 04 - Regularization and Normalization/003 Dropout.mp4 53.7 MB
  • 33 - Transformers/016 Dropout.mp4 53.7 MB
  • 18 - Transposed Convolutions/002 Convolution Operation as Matrix Multiplication.mp4 53.4 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/003 Accuracy Calculation.mp4 53.3 MB
  • 11 - Visualize the Learning Process/005 Visualize Learning Part 5.mp4 53.2 MB
  • 17 - Practical Residual Networks in PyTorch/001 Practical ResNet Part 1.mp4 53.2 MB
  • 22 - Autoencoders and Variational Autoencoders/004 Variational Autoencoders.mp4 53.0 MB
  • 01 - How Neural Networks and Backpropagation Works/004 The Essence of Neural Networks.mp4 52.4 MB
  • 24 - Neural Style Transfer/003 NST Theory Part 3.mp4 52.2 MB
  • 34 - Build a Chatbot with Transformers/016 AdamWarmup.mp4 51.8 MB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/003 Cyclic Learning Rate.mp4 51.7 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/004 Loss Function.mp4 50.9 MB
  • 02 - Loss Functions/010 Hinge Loss.mp4 50.9 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/001 The Dataset and Hyperparameters.mp4 50.9 MB
  • 21 - YOLO Object Detection (Theory)/007 YOLO Theory Part 7.mp4 50.7 MB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/004 Defining the Network Class.mp4 50.5 MB
  • 26 - Recurrent Neural Networks/006 Vanishing and Exploding Gradient Problem.mp4 49.5 MB
  • 33 - Transformers/003 Input Embeddings.mp4 48.7 MB
  • 08 - Introduction to PyTorch/007 Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4 47.6 MB
  • 25 - Practical Neural Style Transfer in PyTorch/001 NST Practical Part 1.mp4 47.4 MB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/002 Step Learning Rate Decay.mp4 47.4 MB
  • 08 - Introduction to PyTorch/008 Automatic Differentiation.mp4 47.0 MB
  • 16 - CNN Architectures/009 Seperable Convolutions.mp4 46.8 MB
  • 27 - Word Embeddings/001 What are Word Embeddings.mp4 46.4 MB
  • 08 - Introduction to PyTorch/010 Weight Initialization in PyTorch.mp4 46.3 MB
  • 07 - Weight Initialization/002 What happens when all weights are initialized to the same value.mp4 46.0 MB
  • 33 - Transformers/005 MultiHead Attention Part 1.mp4 45.8 MB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/004 Part 3 Creating and Loading the Dataset.mp4 45.4 MB
  • 16 - CNN Architectures/011 Is a 1x1 convolutional filter equivalent to a FC layer.mp4 45.3 MB
  • 02 - Loss Functions/009 Contrastive Loss.mp4 44.9 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/002 Visualizing and Loading the Dataset.mp4 44.3 MB
  • 20 - Convolutional Networks Visualization/001 Data and the Model.mp4 44.0 MB
  • 34 - Build a Chatbot with Transformers/014 Decoder Layer.mp4 43.9 MB
  • 01 - How Neural Networks and Backpropagation Works/003 The Rise of Deep Learning.mp4 43.8 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/002 Introduction.mp4 43.6 MB
  • 08 - Introduction to PyTorch/002 Computation Graphs and Deep Learning Frameworks.mp4 43.5 MB
  • 34 - Build a Chatbot with Transformers/009 MultiHead Attention Implementation Part 1.mp4 43.1 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/005 Constructing the Dataset Part 2.mp4 43.0 MB
  • 36 - Google Colab and Gradient Accumulation/002 Gradient Accumulation.mp4 42.6 MB
  • 28 - Practical Recurrent Networks in PyTorch/004 Defining and Visualizing the Parameters.mp4 42.5 MB
  • 01 - How Neural Networks and Backpropagation Works/007 The Forward Propagation.mp4 42.4 MB
  • 26 - Recurrent Neural Networks/004 Backpropagation Through Time.mp4 41.6 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/009 Initializing the Network.mp4 41.3 MB
  • 11 - Visualize the Learning Process/006 Visualize Learning Part 6.mp4 41.2 MB
  • 21 - YOLO Object Detection (Theory)/012 YOLO Theory Part 12.mp4 41.0 MB
  • 26 - Recurrent Neural Networks/002 Vanilla RNNs.mp4 40.0 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/001 Implementation Details.mp4 39.8 MB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/003 Part 2 Data Normalization.mp4 39.5 MB
  • 39 - GPT/005 Technical Details of GPT.mp4 39.3 MB
  • 21 - YOLO Object Detection (Theory)/011 YOLO Theory Part 11.mp4 38.8 MB
  • 14 - Convolutional Neural Networks/003 Filters and Features.mp4 38.4 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/001 Loading and Normalizing the Dataset.mp4 38.4 MB
  • 14 - Convolutional Neural Networks/001 Prerequisite Filters.mp4 38.2 MB
  • 24 - Neural Style Transfer/001 NST Theory Part 1.mp4 37.7 MB
  • 37 - BERT/004 Fine-tuning BERT.mp4 37.7 MB
  • 38 - Vision Transformers/002 Vision Transformer Part 2.mp4 37.0 MB
  • 05 - Optimization/001 Batch Gradient Descent.mp4 37.0 MB
  • 33 - Transformers/002 Introduction to Transformers.mp4 36.7 MB
  • 05 - Optimization/012 Decoupling Weight Decay.mp4 36.7 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/010 Classifying your own Handwritten images.mp4 36.7 MB
  • 34 - Build a Chatbot with Transformers/010 MultiHead Attention Implementation Part 2.mp4 36.6 MB
  • 33 - Transformers/006 MultiHead Attention Part 2.mp4 36.6 MB
  • 28 - Practical Recurrent Networks in PyTorch/002 Creating the Dictionary.mp4 36.3 MB
  • 29 - Saving and Loading Models/003 Saving and Loading Part 3.mp4 35.9 MB
  • 39 - GPT/003 Zero-Shot Predictions with GPT.mp4 35.1 MB
  • 14 - Convolutional Neural Networks/012 CNN Characteristics.mp4 34.9 MB
  • 04 - Regularization and Normalization/007 Layer Normalization.mp4 34.8 MB
  • 02 - Loss Functions/006 Softmax Function.mp4 34.2 MB
  • 39 - GPT/002 GPT Part 2.mp4 34.0 MB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/005 Creating the network class and the network functions.mp4 33.9 MB
  • 27 - Word Embeddings/005 Word Embeddings in PyTorch.mp4 32.7 MB
  • 16 - CNN Architectures/001 CNN Architectures Part 1.mp4 32.3 MB
  • 22 - Autoencoders and Variational Autoencoders/001 Autoencoders.mp4 32.0 MB
  • 09 - Data Augmentation/001 1_Introduction to Data Augmentation.mp4 31.8 MB
  • 02 - Loss Functions/004 Binary Cross Entropy Loss.mp4 31.4 MB
  • 19 - Transfer Learning in PyTorch - Image Classification/005 Finetuning the Network.mp4 31.0 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/002 Utility Functions.mp4 30.7 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/008 Plotting and Putting into Action.mp4 30.4 MB
  • 34 - Build a Chatbot with Transformers/018 Defining the Model.mp4 30.4 MB
  • 25 - Practical Neural Style Transfer in PyTorch/005 Fast Neural Style Transfer.mp4 30.3 MB
  • 30 - Sequence Modelling/004 How Attention Mechanisms Work.mp4 29.4 MB
  • 03 - Activation Functions/008 Mish Activation.mp4 29.3 MB
  • 01 - How Neural Networks and Backpropagation Works/006 Gradient Descent.mp4 29.0 MB
  • 37 - BERT/003 Next Sentence Prediction.mp4 29.0 MB
  • 34 - Build a Chatbot with Transformers/012 Feed Forward Implementation.mp4 28.9 MB
  • 05 - Optimization/005 Exponentially Weighted Average Implementation.mp4 28.9 MB
  • 16 - CNN Architectures/008 Squeeze-Excite Networks.mp4 28.8 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/010 Training the Model.mp4 28.6 MB
  • 18 - Transposed Convolutions/003 Transposed Convolutions.mp4 28.4 MB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/007 Testing the Network.mp4 28.3 MB
  • 39 - GPT/004 Byte-Pair Encoding.mp4 28.3 MB
  • 39 - GPT/011 (4) GPT Implementation Part 1.mp4 27.3 MB
  • 05 - Optimization/008 RMSProp.mp4 27.3 MB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/004 Cosine Annealing with Warm Restarts.mp4 26.9 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/007 Testing the CNN.mp4 26.1 MB
  • 37 - BERT/001 What is BERT and its structure.mp4 25.5 MB
  • 24 - Neural Style Transfer/002 NST Theory Part 2.mp4 24.9 MB
  • 33 - Transformers/013 Cross Entropy Loss.mp4 24.4 MB
  • 36 - Google Colab and Gradient Accumulation/001 Running your models on Google Colab.mp4 23.9 MB
  • 04 - Regularization and Normalization/002 L1 and L2 Regularization.mp4 23.7 MB
  • 14 - Convolutional Neural Networks/006 More on Convolutions.mp4 23.6 MB
  • 01 - How Neural Networks and Backpropagation Works/009 Backpropagation Part 1.mp4 22.8 MB
  • 18 - Transposed Convolutions/001 Introduction to Transposed Convolutions.mp4 22.6 MB
  • 33 - Transformers/017 Learning Rate Warmup.mp4 22.3 MB
  • 11 - Visualize the Learning Process/007 Neural Networks Playground.mp4 22.0 MB
  • 11 - Visualize the Learning Process/003 Visualize Learning Part 3.mp4 21.8 MB
  • 39 - GPT/006 Playing with HuggingFace models.mp4 21.8 MB
  • 30 - Sequence Modelling/002 Image Captioning.mp4 21.4 MB
  • 16 - CNN Architectures/010 Transfer Learning.mp4 21.3 MB
  • 34 - Build a Chatbot with Transformers/022 Action.mp4 21.3 MB
  • 14 - Convolutional Neural Networks/015 Softmax with Temperature.mp4 21.2 MB
  • 02 - Loss Functions/003 Huber Loss.mp4 21.2 MB
  • 01 - How Neural Networks and Backpropagation Works/010 Backpropagation Part 2.mp4 21.1 MB
  • 26 - Recurrent Neural Networks/009 GRUs.mp4 21.0 MB
  • 14 - Convolutional Neural Networks/008 A Tool for Convolution Visualization.mp4 20.9 MB
  • 22 - Autoencoders and Variational Autoencoders/002 Denoising Autoencoders.mp4 20.8 MB
  • 05 - Optimization/006 Bias Correction in Exponentially Weighted Averages.mp4 20.7 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/005 Understanding Pack Padded Sequence.mp4 20.5 MB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/002 Code Details.mp4 20.2 MB
  • 03 - Activation Functions/006 Gated Linear Units (GLU).mp4 19.9 MB
  • 04 - Regularization and Normalization/008 Group Normalization.mp4 19.9 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/014 Results.mp4 19.7 MB
  • 02 - Loss Functions/008 KL divergence Loss.mp4 19.6 MB
  • 11 - Visualize the Learning Process/001 Visualize Learning Part 1.mp4 19.5 MB
  • 33 - Transformers/008 Residual Learning.mp4 19.4 MB
  • 21 - YOLO Object Detection (Theory)/004 YOLO Theory Part 4.mp4 19.3 MB
  • 05 - Optimization/007 Momentum.mp4 19.3 MB
  • 33 - Transformers/011 Masked MultiHead Attention.mp4 19.2 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/005 Understanding the Propagation.mp4 19.1 MB
  • 33 - Transformers/014 KL Divergence Loss.mp4 18.5 MB
  • 02 - Loss Functions/005 Cross Entropy Loss.mp4 18.1 MB
  • 21 - YOLO Object Detection (Theory)/010 YOLO Theory Part 10.mp4 18.0 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/002 Understanding the Implementation.mp4 18.0 MB
  • 14 - Convolutional Neural Networks/002 Introduction to Convolutional Networks and the need for them.mp4 17.7 MB
  • 12 - Implementing a Neural Network from Scratch with Numpy/005 Prediction.mp4 17.6 MB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/005 Batch Size vs Learning Rate.mp4 17.5 MB
  • 04 - Regularization and Normalization/001 Overfitting.mp4 17.4 MB
  • 03 - Activation Functions/001 Why we need activation functions.mp4 17.4 MB
  • 39 - GPT/008 (1) GPT Implementation Part 1.mp4 16.9 MB
  • 37 - BERT/002 Masked Language Modelling.mp4 16.4 MB
  • 11 - Visualize the Learning Process/004 Visualize Learning Part 4.mp4 15.7 MB
  • 03 - Activation Functions/004 ReLU and PReLU.mp4 15.7 MB
  • 35 - Universal Transformers/001 Universal Transformers.mp4 15.6 MB
  • 03 - Activation Functions/002 Sigmoid Activation.mp4 15.5 MB
  • 33 - Transformers/009 Layer Normalization.mp4 15.3 MB
  • 05 - Optimization/004 Exponentially Weighted Average Intuition.mp4 15.1 MB
  • 26 - Recurrent Neural Networks/010 CNN-LSTM.mp4 15.0 MB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/009 Teacher Forcing.mp4 14.6 MB
  • 02 - Loss Functions/001 Mean Squared Error (MSE).mp4 14.2 MB
  • 34 - Build a Chatbot with Transformers/005 Dataset Preprocessing Part 4.mp4 14.2 MB
  • 14 - Convolutional Neural Networks/013 Regularization and Batch Normalization in CNNs.mp4 14.0 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/004 Defining the Model.mp4 13.6 MB
  • 14 - Convolutional Neural Networks/005 Convolution over Volume Animation.mp4 13.3 MB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/009 Predicting an image.mp4 13.3 MB
  • 07 - Weight Initialization/001 Normal Distribution.mp4 13.2 MB
  • 26 - Recurrent Neural Networks/001 Why do we need RNNs.mp4 12.9 MB
  • 21 - YOLO Object Detection (Theory)/009 YOLO Theory Part 9.mp4 12.8 MB
  • 05 - Optimization/002 Stochastic Gradient Descent.mp4 12.7 MB
  • 30 - Sequence Modelling/003 Attention Mechanisms.mp4 12.6 MB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/001 Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4 12.4 MB
  • 33 - Transformers/010 Feed Forward.mp4 11.7 MB
  • 26 - Recurrent Neural Networks/003 Quiz Solution Discussion.mp4 11.5 MB
  • 03 - Activation Functions/003 Tanh Activation.mp4 11.1 MB
  • 04 - Regularization and Normalization/004 DropConnect.mp4 10.6 MB
  • 14 - Convolutional Neural Networks/011 Important formulas.mp4 10.3 MB
  • 22 - Autoencoders and Variational Autoencoders/003 The Problem in Autoencoders.mp4 10.1 MB
  • 33 - Transformers/015 Label Smoothing.mp4 10.0 MB
  • 26 - Recurrent Neural Networks/008 Bidirectional RNNs.mp4 9.9 MB
  • 04 - Regularization and Normalization/005 Normalization.mp4 9.7 MB
  • 16 - CNN Architectures/006 CNN Architectures Part 2.mp4 9.5 MB
  • 03 - Activation Functions/007 Swish Activation.mp4 9.5 MB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/013 Training.mp4 9.4 MB
  • 14 - Convolutional Neural Networks/010 CNN Visualization.mp4 9.3 MB
  • 07 - Weight Initialization/004 He Norm Initialization.mp4 9.3 MB
  • 27 - Word Embeddings/002 Visualizing Word Embeddings.mp4 9.2 MB
  • 11 - Visualize the Learning Process/002 Visualize Learning Part 2.mp4 8.8 MB
  • 03 - Activation Functions/005 Exponentially Linear Units (ELU).mp4 8.6 MB
  • 33 - Transformers/007 Concat and Linear.mp4 7.7 MB
  • 27 - Word Embeddings/004 Word Embeddings Models.mp4 7.6 MB
  • 33 - Transformers/012 MultiHead Attention in Decoder.mp4 7.5 MB
  • 05 - Optimization/010 SWATS - Switching from Adam to SGD.mp4 6.7 MB
  • 26 - Recurrent Neural Networks/005 Stacked RNNs.mp4 6.0 MB
  • 05 - Optimization/003 Mini-Batch Gradient Descent.mp4 5.2 MB
  • 14 - Convolutional Neural Networks/007 Quiz Solution Discussion.mp4 4.7 MB
  • 27 - Word Embeddings/003 Measuring Word Embeddings.mp4 4.2 MB
  • 08 - Introduction to PyTorch/001 CODE FOR THIS COURSE.mp4 1.2 MB
  • 20 - Convolutional Networks Visualization/19339744-dog.jpg 95.5 kB
  • 22 - Autoencoders and Variational Autoencoders/005 Probability Distributions Recap.vtt 39.4 kB
  • 20 - Convolutional Networks Visualization/13787548-imagenet-class-index.json 35.4 kB
  • 22 - Autoencoders and Variational Autoencoders/006 Loss Function Derivation for VAE.vtt 34.5 kB
  • 08 - Introduction to PyTorch/009 Loss Functions in PyTorch.vtt 33.8 kB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/006 Training the Network.vtt 29.6 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/003 Building the CNN.vtt 29.2 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/004 Defining the Encoder.vtt 28.5 kB
  • 26 - Recurrent Neural Networks/007 LSTMs.vtt 26.1 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/008 Backpropagation.vtt 25.3 kB
  • 23 - Practical Variational Autoencoders in PyTorch/001 Practical VAE Part 1.vtt 23.4 kB
  • 34 - Build a Chatbot with Transformers/017 Loss with Label Smoothing.vtt 22.8 kB
  • 08 - Introduction to PyTorch/004 How PyTorch Works.vtt 21.9 kB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/006 Part 5 Training the Network.vtt 21.2 kB
  • 16 - CNN Architectures/003 Residual Networks Part 2.vtt 21.2 kB
  • 09 - Data Augmentation/003 2_Data Augmentation Techniques Part 2.vtt 21.1 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/006 Creating the Encoder.vtt 20.8 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/008 Designing the Decoder Part 2.vtt 20.8 kB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/005 Part 4 Building the Network.vtt 20.6 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/007 Creating the Decoder Part 1.vtt 20.5 kB
  • 01 - How Neural Networks and Backpropagation Works/005 The Perceptron.vtt 19.6 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/012 Evaluation Function.vtt 19.5 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/004 Loss Function.vtt 19.3 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/006 Training the CNN.vtt 19.2 kB
  • 34 - Build a Chatbot with Transformers/020 Evaluation Function.vtt 19.0 kB
  • 36 - Google Colab and Gradient Accumulation/002 Gradient Accumulation.vtt 18.9 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/006 Designing the Attention Model.vtt 18.8 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/010 Train Function.vtt 18.5 kB
  • 37 - BERT/005 Exploring Transformers.vtt 18.3 kB
  • 34 - Build a Chatbot with Transformers/003 Dataset Preprocessing Part 2.vtt 18.3 kB
  • 29 - Saving and Loading Models/001 Saving and Loading Part 1.vtt 17.8 kB
  • 39 - GPT/013 (6) GPT Implementation Part 1.vtt 17.7 kB
  • 34 - Build a Chatbot with Transformers/008 Embeddings.vtt 17.3 kB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/002 Part 1 Data Preprocessing.vtt 17.1 kB
  • 25 - Practical Neural Style Transfer in PyTorch/004 NST Practical Part 4.vtt 16.9 kB
  • 01 - How Neural Networks and Backpropagation Works/002 What Can Deep Learning Do.vtt 16.9 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/011 Defining Hyperparameters.vtt 16.8 kB
  • 33 - Transformers/004 Positional Encoding.vtt 16.7 kB
  • 16 - CNN Architectures/007 Densely Connected Networks.vtt 16.7 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/007 Designing the Decoder Part 1.vtt 16.7 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/002 Utility Functions.vtt 16.7 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/004 Constructing the Dataset Part 1.vtt 16.6 kB
  • 39 - GPT/014 (7) GPT Implementation Part 1.vtt 16.6 kB
  • 16 - CNN Architectures/005 Stochastic Depth.vtt 16.5 kB
  • 39 - GPT/009 (2) GPT Implementation Part 1.vtt 16.4 kB
  • 39 - GPT/010 (3) GPT Implementation Part 1.vtt 16.4 kB
  • 08 - Introduction to PyTorch/002 Computation Graphs and Deep Learning Frameworks.vtt 16.1 kB
  • 20 - Convolutional Networks Visualization/002 Processing the Model.vtt 16.1 kB
  • 30 - Sequence Modelling/001 Sequence Modeling.vtt 16.0 kB
  • 02 - Loss Functions/004 Binary Cross Entropy Loss.vtt 15.8 kB
  • 38 - Vision Transformers/001 Vision Transformer Part 1.vtt 15.7 kB
  • 14 - Convolutional Neural Networks/009 Activation, Pooling and FC.vtt 15.7 kB
  • 17 - Practical Residual Networks in PyTorch/004 Practical ResNet Part 4.vtt 15.6 kB
  • 35 - Universal Transformers/002 Practical Universal Transformers Modifying the Transformers code.vtt 15.6 kB
  • 34 - Build a Chatbot with Transformers/007 Data Loading and Masking.vtt 15.5 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/009 Creating the Decoder Part 3.vtt 15.5 kB
  • 26 - Recurrent Neural Networks/004 Backpropagation Through Time.vtt 15.4 kB
  • 02 - Loss Functions/010 Hinge Loss.vtt 15.3 kB
  • 02 - Loss Functions/011 Triplet Ranking Loss.vtt 15.2 kB
  • 08 - Introduction to PyTorch/010 Weight Initialization in PyTorch.vtt 15.2 kB
  • 20 - Convolutional Networks Visualization/003 Visualizing the Feature Maps.vtt 15.1 kB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/002 Step Learning Rate Decay.vtt 15.0 kB
  • 33 - Transformers/013 Cross Entropy Loss.vtt 15.0 kB
  • 28 - Practical Recurrent Networks in PyTorch/007 Generating Text.vtt 15.0 kB
  • 34 - Build a Chatbot with Transformers/011 MultiHead Attention Implementation Part 3.vtt 14.9 kB
  • 04 - Regularization and Normalization/006 Batch Normalization.vtt 14.8 kB
  • 21 - YOLO Object Detection (Theory)/002 YOLO Theory Part 2.vtt 14.8 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/007 Backpropagation Equations.vtt 14.8 kB
  • 17 - Practical Residual Networks in PyTorch/001 Practical ResNet Part 1.vtt 14.8 kB
  • 17 - Practical Residual Networks in PyTorch/002 Practical ResNet Part 2.vtt 14.8 kB
  • 02 - Loss Functions/009 Contrastive Loss.vtt 14.8 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/001 Loading and Normalizing the Dataset.vtt 14.7 kB
  • 33 - Transformers/002 Introduction to Transformers.vtt 14.7 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/001 Implementation Details.vtt 14.6 kB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/003 Importing and Defining Parameters.vtt 14.5 kB
  • 39 - GPT/012 (5) GPT Implementation Part 1.vtt 14.5 kB
  • 17 - Practical Residual Networks in PyTorch/003 Practical ResNet Part 3.vtt 14.4 kB
  • 19 - Transfer Learning in PyTorch - Image Classification/001 Data Augmentation.vtt 14.3 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/001 The Dataset and Hyperparameters.vtt 14.3 kB
  • 14 - Convolutional Neural Networks/014 DropBlock Dropout in CNNs.vtt 14.3 kB
  • 38 - Vision Transformers/003 Vision Transformer Part 3.vtt 14.3 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/003 Forward Propagation.vtt 14.2 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/005 Constructing the Dataset Part 2.vtt 14.1 kB
  • 16 - CNN Architectures/001 CNN Architectures Part 1.vtt 14.1 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/010 Classifying your own Handwritten images.vtt 14.1 kB
  • 01 - How Neural Networks and Backpropagation Works/006 Gradient Descent.vtt 14.1 kB
  • 23 - Practical Variational Autoencoders in PyTorch/003 Practical VAE Part 3.vtt 14.1 kB
  • 05 - Optimization/008 RMSProp.vtt 14.0 kB
  • 16 - CNN Architectures/009 Seperable Convolutions.vtt 13.7 kB
  • 30 - Sequence Modelling/004 How Attention Mechanisms Work.vtt 13.7 kB
  • 34 - Build a Chatbot with Transformers/015 Transformer.vtt 13.7 kB
  • 08 - Introduction to PyTorch/005 Torch Tensors - Part 1.vtt 13.6 kB
  • 23 - Practical Variational Autoencoders in PyTorch/002 Practical VAE Part 2.vtt 13.5 kB
  • 19 - Transfer Learning in PyTorch - Image Classification/004 Understanding the data.vtt 13.5 kB
  • 25 - Practical Neural Style Transfer in PyTorch/003 NST Practical Part 3.vtt 13.4 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/008 Creating the Decoder Part 2.vtt 13.4 kB
  • 08 - Introduction to PyTorch/007 Numpy Bridge, Tensor Concatenation and Adding Dimensions.vtt 13.4 kB
  • 01 - How Neural Networks and Backpropagation Works/009 Backpropagation Part 1.vtt 13.1 kB
  • 28 - Practical Recurrent Networks in PyTorch/005 Creating the Network.vtt 13.1 kB
  • 19 - Transfer Learning in PyTorch - Image Classification/002 Loading the Dataset.vtt 13.1 kB
  • 08 - Introduction to PyTorch/003 Installing PyTorch and an Introduction.vtt 13.0 kB
  • 11 - Visualize the Learning Process/005 Visualize Learning Part 5.vtt 13.0 kB
  • 16 - CNN Architectures/002 Residual Networks Part 1.vtt 13.0 kB
  • 22 - Autoencoders and Variational Autoencoders/004 Variational Autoencoders.vtt 12.9 kB
  • 34 - Build a Chatbot with Transformers/019 Training Function.vtt 12.9 kB
  • 34 - Build a Chatbot with Transformers/004 Dataset Preprocessing Part 3.vtt 12.9 kB
  • 01 - How Neural Networks and Backpropagation Works/007 The Forward Propagation.vtt 12.8 kB
  • 25 - Practical Neural Style Transfer in PyTorch/001 NST Practical Part 1.vtt 12.8 kB
  • 39 - GPT/001 GPT Part 1.vtt 12.7 kB
  • 26 - Recurrent Neural Networks/006 Vanishing and Exploding Gradient Problem.vtt 12.6 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/003 Accuracy Calculation.vtt 12.6 kB
  • 24 - Neural Style Transfer/003 NST Theory Part 3.vtt 12.5 kB
  • 28 - Practical Recurrent Networks in PyTorch/003 Processing the Text.vtt 12.4 kB
  • 21 - YOLO Object Detection (Theory)/012 YOLO Theory Part 12.vtt 12.3 kB
  • 34 - Build a Chatbot with Transformers/002 Dataset Preprocessing Part 1.vtt 12.3 kB
  • 16 - CNN Architectures/008 Squeeze-Excite Networks.vtt 12.3 kB
  • 28 - Practical Recurrent Networks in PyTorch/006 Training the Network.vtt 12.2 kB
  • 33 - Transformers/005 MultiHead Attention Part 1.vtt 12.1 kB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/003 Cyclic Learning Rate.vtt 12.1 kB
  • 16 - CNN Architectures/011 Is a 1x1 convolutional filter equivalent to a FC layer.vtt 12.1 kB
  • 19 - Transfer Learning in PyTorch - Image Classification/006 Testing and Visualizing the results.vtt 11.9 kB
  • 08 - Introduction to PyTorch/006 Torch Tensors - Part 2.vtt 11.9 kB
  • 07 - Weight Initialization/002 What happens when all weights are initialized to the same value.vtt 11.8 kB
  • 01 - How Neural Networks and Backpropagation Works/004 The Essence of Neural Networks.vtt 11.8 kB
  • 07 - Weight Initialization/003 Xavier Initialization.vtt 11.7 kB
  • 14 - Convolutional Neural Networks/015 Softmax with Temperature.vtt 11.7 kB
  • 34 - Build a Chatbot with Transformers/006 Dataset Preprocessing Part 5.vtt 11.6 kB
  • 34 - Build a Chatbot with Transformers/021 Main Function and User Evaluation.vtt 11.5 kB
  • 25 - Practical Neural Style Transfer in PyTorch/002 NST Practical Part 2.vtt 11.5 kB
  • 14 - Convolutional Neural Networks/003 Filters and Features.vtt 11.4 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/002 Visualizing and Loading the Dataset.vtt 11.4 kB
  • 21 - YOLO Object Detection (Theory)/003 YOLO Theory Part 3.vtt 11.3 kB
  • 39 - GPT/002 GPT Part 2.vtt 11.2 kB
  • 21 - YOLO Object Detection (Theory)/006 YOLO Theory Part 6.vtt 11.2 kB
  • 01 - How Neural Networks and Backpropagation Works/010 Backpropagation Part 2.vtt 11.2 kB
  • 27 - Word Embeddings/001 What are Word Embeddings.vtt 11.2 kB
  • 39 - GPT/008 (1) GPT Implementation Part 1.vtt 11.2 kB
  • 04 - Regularization and Normalization/003 Dropout.vtt 11.1 kB
  • 33 - Transformers/016 Dropout.vtt 11.1 kB
  • 11 - Visualize the Learning Process/001 Visualize Learning Part 1.vtt 11.0 kB
  • 04 - Regularization and Normalization/002 L1 and L2 Regularization.vtt 11.0 kB
  • 22 - Autoencoders and Variational Autoencoders/001 Autoencoders.vtt 11.0 kB
  • 09 - Data Augmentation/002 2_Data Augmentation Techniques Part 1.vtt 11.0 kB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/004 Defining the Network Class.vtt 10.9 kB
  • 38 - Vision Transformers/002 Vision Transformer Part 2.vtt 10.9 kB
  • 08 - Introduction to PyTorch/008 Automatic Differentiation.vtt 10.9 kB
  • 05 - Optimization/013 AMSGrad.vtt 10.8 kB
  • 16 - CNN Architectures/010 Transfer Learning.vtt 10.7 kB
  • 37 - BERT/003 Next Sentence Prediction.vtt 10.6 kB
  • 05 - Optimization/005 Exponentially Weighted Average Implementation.vtt 10.5 kB
  • 35 - Universal Transformers/003 Transformers for other tasks.vtt 10.4 kB
  • 18 - Transposed Convolutions/002 Convolution Operation as Matrix Multiplication.vtt 10.4 kB
  • 37 - BERT/001 What is BERT and its structure.vtt 10.3 kB
  • 39 - GPT/011 (4) GPT Implementation Part 1.vtt 10.3 kB
  • 02 - Loss Functions/002 L1 Loss (MAE).vtt 10.2 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/002 Understanding the Implementation.vtt 10.1 kB
  • 14 - Convolutional Neural Networks/012 CNN Characteristics.vtt 10.1 kB
  • 19 - Transfer Learning in PyTorch - Image Classification/003 Modifying the Network.vtt 10.1 kB
  • 26 - Recurrent Neural Networks/002 Vanilla RNNs.vtt 10.0 kB
  • 02 - Loss Functions/005 Cross Entropy Loss.vtt 10.0 kB
  • 33 - Transformers/006 MultiHead Attention Part 2.vtt 9.7 kB
  • 39 - GPT/004 Byte-Pair Encoding.vtt 9.7 kB
  • 39 - GPT/003 Zero-Shot Predictions with GPT.vtt 9.6 kB
  • 34 - Build a Chatbot with Transformers/010 MultiHead Attention Implementation Part 2.vtt 9.6 kB
  • 36 - Google Colab and Gradient Accumulation/001 Running your models on Google Colab.vtt 9.5 kB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/003 Part 2 Data Normalization.vtt 9.5 kB
  • 11 - Visualize the Learning Process/003 Visualize Learning Part 3.vtt 9.5 kB
  • 21 - YOLO Object Detection (Theory)/005 YOLO Theory Part 5.vtt 9.5 kB
  • 09 - Data Augmentation/004 2_Data Augmentation Techniques Part 3.vtt 9.4 kB
  • 20 - Convolutional Networks Visualization/001 Data and the Model.vtt 9.4 kB
  • 04 - Regularization and Normalization/007 Layer Normalization.vtt 9.4 kB
  • 22 - Autoencoders and Variational Autoencoders/007 Deep Fake.vtt 9.3 kB
  • 29 - Saving and Loading Models/002 Saving and Loading Part 2.vtt 9.3 kB
  • 02 - Loss Functions/006 Softmax Function.vtt 9.2 kB
  • 34 - Build a Chatbot with Transformers/013 Encoder Layer.vtt 9.1 kB
  • 11 - Visualize the Learning Process/006 Visualize Learning Part 6.vtt 9.1 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/005 Understanding Pack Padded Sequence.vtt 8.9 kB
  • 39 - GPT/006 Playing with HuggingFace models.vtt 8.9 kB
  • 02 - Loss Functions/008 KL divergence Loss.vtt 8.9 kB
  • 28 - Practical Recurrent Networks in PyTorch/004 Defining and Visualizing the Parameters.vtt 8.8 kB
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/004 Part 3 Creating and Loading the Dataset.vtt 8.8 kB
  • 33 - Transformers/009 Layer Normalization.vtt 8.8 kB
  • 22 - Autoencoders and Variational Autoencoders/002 Denoising Autoencoders.vtt 8.6 kB
  • 14 - Convolutional Neural Networks/002 Introduction to Convolutional Networks and the need for them.vtt 8.6 kB
  • 05 - Optimization/011 Weight Decay.vtt 8.6 kB
  • 02 - Loss Functions/001 Mean Squared Error (MSE).vtt 8.6 kB
  • 05 - Optimization/009 Adam Optimization.vtt 8.6 kB
  • 35 - Universal Transformers/001 Universal Transformers.vtt 8.6 kB
  • 03 - Activation Functions/004 ReLU and PReLU.vtt 8.5 kB
  • 24 - Neural Style Transfer/001 NST Theory Part 1.vtt 8.5 kB
  • 37 - BERT/004 Fine-tuning BERT.vtt 8.4 kB
  • 39 - GPT/005 Technical Details of GPT.vtt 8.4 kB
  • 18 - Transposed Convolutions/001 Introduction to Transposed Convolutions.vtt 8.4 kB
  • 26 - Recurrent Neural Networks/009 GRUs.vtt 8.3 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/007 Testing the CNN.vtt 8.2 kB
  • 09 - Data Augmentation/001 1_Introduction to Data Augmentation.vtt 8.2 kB
  • 34 - Build a Chatbot with Transformers/009 MultiHead Attention Implementation Part 1.vtt 8.1 kB
  • 34 - Build a Chatbot with Transformers/016 AdamWarmup.vtt 8.1 kB
  • 21 - YOLO Object Detection (Theory)/007 YOLO Theory Part 7.vtt 8.1 kB
  • 33 - Transformers/011 Masked MultiHead Attention.vtt 8.1 kB
  • 14 - Convolutional Neural Networks/006 More on Convolutions.vtt 8.1 kB
  • 33 - Transformers/017 Learning Rate Warmup.vtt 8.0 kB
  • 07 - Weight Initialization/001 Normal Distribution.vtt 8.0 kB
  • 21 - YOLO Object Detection (Theory)/004 YOLO Theory Part 4.vtt 8.0 kB
  • 33 - Transformers/003 Input Embeddings.vtt 7.9 kB
  • 33 - Transformers/008 Residual Learning.vtt 7.8 kB
  • 34 - Build a Chatbot with Transformers/018 Defining the Model.vtt 7.7 kB
  • 18 - Transposed Convolutions/003 Transposed Convolutions.vtt 7.7 kB
  • 05 - Optimization/001 Batch Gradient Descent.vtt 7.7 kB
  • 03 - Activation Functions/002 Sigmoid Activation.vtt 7.7 kB
  • 02 - Loss Functions/003 Huber Loss.vtt 7.7 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/009 Initializing the Network.vtt 7.7 kB
  • 01 - How Neural Networks and Backpropagation Works/003 The Rise of Deep Learning.vtt 7.6 kB
  • 24 - Neural Style Transfer/002 NST Theory Part 2.vtt 7.4 kB
  • 05 - Optimization/006 Bias Correction in Exponentially Weighted Averages.vtt 7.4 kB
  • 04 - Regularization and Normalization/008 Group Normalization.vtt 7.3 kB
  • 33 - Transformers/014 KL Divergence Loss.vtt 7.2 kB
  • 27 - Word Embeddings/005 Word Embeddings in PyTorch.vtt 7.2 kB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/005 Creating the network class and the network functions.vtt 7.2 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/002 Introduction.vtt 7.2 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/003 Understanding the Encoder.vtt 7.2 kB
  • 05 - Optimization/007 Momentum.vtt 7.2 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/005 Understanding the Propagation.vtt 7.1 kB
  • 03 - Activation Functions/008 Mish Activation.vtt 7.0 kB
  • 29 - Saving and Loading Models/003 Saving and Loading Part 3.vtt 7.0 kB
  • 28 - Practical Recurrent Networks in PyTorch/002 Creating the Dictionary.vtt 7.0 kB
  • 21 - YOLO Object Detection (Theory)/011 YOLO Theory Part 11.vtt 6.9 kB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/004 Cosine Annealing with Warm Restarts.vtt 6.7 kB
  • 37 - BERT/002 Masked Language Modelling.vtt 6.6 kB
  • 30 - Sequence Modelling/003 Attention Mechanisms.vtt 6.6 kB
  • 11 - Visualize the Learning Process/004 Visualize Learning Part 4.vtt 6.5 kB
  • 21 - YOLO Object Detection (Theory)/008 YOLO Theory Part 8.vtt 6.5 kB
  • 05 - Optimization/004 Exponentially Weighted Average Intuition.vtt 6.4 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/005 Prediction.vtt 6.3 kB
  • 14 - Convolutional Neural Networks/011 Important formulas.vtt 6.3 kB
  • 34 - Build a Chatbot with Transformers/014 Decoder Layer.vtt 6.3 kB
  • 11 - Visualize the Learning Process/007 Neural Networks Playground.vtt 6.3 kB
  • 19 - Transfer Learning in PyTorch - Image Classification/005 Finetuning the Network.vtt 6.3 kB
  • 26 - Recurrent Neural Networks/001 Why do we need RNNs.vtt 6.2 kB
  • 21 - YOLO Object Detection (Theory)/001 YOLO Theory Part 1.vtt 6.2 kB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/001 Introduction to Hyperparameter Tuning and Learning Rate Recap.vtt 6.2 kB
  • 30 - Sequence Modelling/002 Image Captioning.vtt 6.2 kB
  • 05 - Optimization/002 Stochastic Gradient Descent.vtt 6.1 kB
  • 22 - Autoencoders and Variational Autoencoders/003 The Problem in Autoencoders.vtt 6.0 kB
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/009 Teacher Forcing.vtt 6.0 kB
  • 04 - Regularization and Normalization/001 Overfitting.vtt 6.0 kB
  • 26 - Recurrent Neural Networks/010 CNN-LSTM.vtt 6.0 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/009 Predicting an image.vtt 5.9 kB
  • 14 - Convolutional Neural Networks/001 Prerequisite Filters.vtt 5.9 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/008 Plotting and Putting into Action.vtt 5.9 kB
  • 04 - Regularization and Normalization/005 Normalization.vtt 5.7 kB
  • 33 - Transformers/015 Label Smoothing.vtt 5.6 kB
  • 14 - Convolutional Neural Networks/008 A Tool for Convolution Visualization.vtt 5.5 kB
  • 05 - Optimization/012 Decoupling Weight Decay.vtt 5.4 kB
  • 34 - Build a Chatbot with Transformers/005 Dataset Preprocessing Part 4.vtt 5.3 kB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/007 Testing the Network.vtt 5.2 kB
  • 15 - Practical Convolutional Networks in PyTorch - Image Classification/004 Defining the Model.vtt 5.2 kB
  • 12 - Implementing a Neural Network from Scratch with Numpy/010 Training the Model.vtt 4.9 kB
  • 21 - YOLO Object Detection (Theory)/009 YOLO Theory Part 9.vtt 4.8 kB
  • 26 - Recurrent Neural Networks/008 Bidirectional RNNs.vtt 4.8 kB
  • 03 - Activation Functions/007 Swish Activation.vtt 4.8 kB
  • 03 - Activation Functions/001 Why we need activation functions.vtt 4.8 kB
  • 26 - Recurrent Neural Networks/003 Quiz Solution Discussion.vtt 4.8 kB
  • 25 - Practical Neural Style Transfer in PyTorch/005 Fast Neural Style Transfer.vtt 4.8 kB
  • 07 - Weight Initialization/004 He Norm Initialization.vtt 4.6 kB
  • 03 - Activation Functions/005 Exponentially Linear Units (ELU).vtt 4.5 kB
  • 14 - Convolutional Neural Networks/013 Regularization and Batch Normalization in CNNs.vtt 4.4 kB
  • 16 - CNN Architectures/006 CNN Architectures Part 2.vtt 4.3 kB
  • 14 - Convolutional Neural Networks/007 Quiz Solution Discussion.vtt 4.2 kB
  • 14 - Convolutional Neural Networks/005 Convolution over Volume Animation.vtt 4.2 kB
  • 34 - Build a Chatbot with Transformers/012 Feed Forward Implementation.vtt 4.1 kB
  • 27 - Word Embeddings/002 Visualizing Word Embeddings.vtt 4.0 kB
  • 33 - Transformers/010 Feed Forward.vtt 4.0 kB
  • 27 - Word Embeddings/004 Word Embeddings Models.vtt 3.9 kB
  • 03 - Activation Functions/003 Tanh Activation.vtt 3.8 kB
  • 06 - Hyperparameter Tuning and Learning Rate Scheduling/005 Batch Size vs Learning Rate.vtt 3.8 kB
  • 33 - Transformers/007 Concat and Linear.vtt 3.7 kB
  • 03 - Activation Functions/006 Gated Linear Units (GLU).vtt 3.7 kB
  • 34 - Build a Chatbot with Transformers/022 Action.vtt 3.7 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/014 Results.vtt 3.3 kB
  • 26 - Recurrent Neural Networks/005 Stacked RNNs.vtt 3.3 kB
  • 33 - Transformers/012 MultiHead Attention in Decoder.vtt 3.2 kB
  • 05 - Optimization/003 Mini-Batch Gradient Descent.vtt 3.2 kB
  • 32 - Practical Sequence Modelling in PyTorch Image Captioning/013 Training.vtt 3.1 kB
  • 21 - YOLO Object Detection (Theory)/010 YOLO Theory Part 10.vtt 2.7 kB
  • 14 - Convolutional Neural Networks/010 CNN Visualization.vtt 2.5 kB
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/002 Code Details.vtt 2.5 kB
  • 27 - Word Embeddings/003 Measuring Word Embeddings.vtt 2.4 kB
  • 11 - Visualize the Learning Process/002 Visualize Learning Part 2.vtt 2.3 kB
  • 04 - Regularization and Normalization/004 DropConnect.vtt 2.1 kB
  • 05 - Optimization/010 SWATS - Switching from Adam to SGD.vtt 1.9 kB
  • 21 - YOLO Object Detection (Theory)/013 YOLO Code Note.html 1.4 kB
  • 08 - Introduction to PyTorch/001 CODE FOR THIS COURSE.vtt 636 Bytes
  • 01 - How Neural Networks and Backpropagation Works/001 BEFORE STARTING...PLEASE READ THIS.html 630 Bytes
  • 12 - Implementing a Neural Network from Scratch with Numpy/006 Notebook for the following Lecture.html 532 Bytes
  • 13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/001 The MNIST Dataset.html 470 Bytes
  • 02 - Loss Functions/007 Softmax with Temperature Controlling your distribution.html 394 Bytes
  • 01 - How Neural Networks and Backpropagation Works/008 Before Proceeding with the Backpropagation.html 341 Bytes
  • 10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/001 Download the Dataset.html 322 Bytes
  • 14 - Convolutional Neural Networks/004 Convolution over Volume Animation Resource.html 321 Bytes
  • 28 - Practical Recurrent Networks in PyTorch/001 Download the Dataset.html 312 Bytes
  • 33 - Transformers/001 SANITY CHECK ON PREVIOUS SECTIONS.html 272 Bytes
  • 34 - Build a Chatbot with Transformers/001 CODE.html 268 Bytes
  • 31 - Practical Sequence Modelling in PyTorch Chatbot Application/001 Download the Dataset.html 252 Bytes
  • 07 - Weight Initialization/005 Practical Weight Initialization Note.html 186 Bytes
  • 02 - Loss Functions/012 Practical Loss Functions Note.html 179 Bytes
  • 39 - GPT/007 Implementation.html 128 Bytes
  • 16 - CNN Architectures/004 Note on Residual Networks Implementation.html 109 Bytes
  • 19 - Transfer Learning in PyTorch - Image Classification/external-assets-links.txt 71 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!