搜索
Udemy - The Complete Neural Networks Bootcamp Theory, Applications (11.2021)
磁力链接/BT种子名称
Udemy - The Complete Neural Networks Bootcamp Theory, Applications (11.2021)
磁力链接/BT种子简介
种子哈希:
15b4d062a18983c064a36b9a8f7ac3a7c59709ba
文件大小:
13.38G
已经下载:
391
次
下载速度:
极快
收录时间:
2025-07-18
最近下载:
2025-12-13
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:15B4D062A18983C064A36B9A8F7AC3A7C59709BA
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
小蓝俱乐部
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
母狗园
51动漫
91短视频
抖音Max
海王TV
TikTok成人版
PornHub
暗网Xvideo
草榴社区
哆哔涩漫
呦乐园
萝莉岛
搜同
91暗网
最近搜索
*舞团
举牌合集
推特裸舞
terminator uhd
周大福
大神约操
苗条大奶妹子
润润私拍
家庭摄像头++老
真实女友2
royd-225
乱伦 黑丝
推特露出菠萝
windows 11 26h2
«تاجاۋۇزچىلارنى_چېكىندۈرۈش»_نامىدىكى_ئۇرۇشتىن_شەرق
自慰套教室+~女子全员妊娠计画
无毛妈妈
港台 三级
fripside+-+late+in+autumn
sadako 2019
팬과의실제섹스논란주희의리얼팬미팅2부.mp4 link
个个都是猛男
国模口爆
adobe+premiere+2020
木下
roe-281
约操 露脸 极品
三上中文
爆乳牛仔裤
嘉宾
文件列表
31 - Practical Sequence Modelling in PyTorch Chatbot Application/004 Defining the Encoder.mp4
233.4 MB
22 - Autoencoders and Variational Autoencoders/006 Loss Function Derivation for VAE.mp4
229.9 MB
22 - Autoencoders and Variational Autoencoders/005 Probability Distributions Recap.mp4
196.8 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/006 Training the Network.mp4
191.6 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/003 Building the CNN.mp4
179.7 MB
01 - How Neural Networks and Backpropagation Works/002 What Can Deep Learning Do.mp4
163.8 MB
08 - Introduction to PyTorch/009 Loss Functions in PyTorch.mp4
162.5 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/006 Designing the Attention Model.mp4
154.6 MB
34 - Build a Chatbot with Transformers/017 Loss with Label Smoothing.mp4
145.3 MB
19 - Transfer Learning in PyTorch - Image Classification/001 Data Augmentation.mp4
126.2 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/005 Part 4 Building the Network.mp4
114.9 MB
16 - CNN Architectures/003 Residual Networks Part 2.mp4
112.9 MB
38 - Vision Transformers/003 Vision Transformer Part 3.mp4
111.6 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/010 Train Function.mp4
111.0 MB
35 - Universal Transformers/002 Practical Universal Transformers Modifying the Transformers code.mp4
110.2 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/006 Part 5 Training the Network.mp4
109.8 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/008 Designing the Decoder Part 2.mp4
109.4 MB
12 - Implementing a Neural Network from Scratch with Numpy/008 Backpropagation.mp4
107.0 MB
16 - CNN Architectures/005 Stochastic Depth.mp4
105.8 MB
28 - Practical Recurrent Networks in PyTorch/007 Generating Text.mp4
103.1 MB
19 - Transfer Learning in PyTorch - Image Classification/002 Loading the Dataset.mp4
101.3 MB
39 - GPT/013 (6) GPT Implementation Part 1.mp4
101.3 MB
39 - GPT/012 (5) GPT Implementation Part 1.mp4
100.4 MB
09 - Data Augmentation/003 2_Data Augmentation Techniques Part 2.mp4
99.8 MB
17 - Practical Residual Networks in PyTorch/004 Practical ResNet Part 4.mp4
97.6 MB
34 - Build a Chatbot with Transformers/003 Dataset Preprocessing Part 2.mp4
94.4 MB
08 - Introduction to PyTorch/004 How PyTorch Works.mp4
93.1 MB
25 - Practical Neural Style Transfer in PyTorch/004 NST Practical Part 4.mp4
92.3 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/004 Constructing the Dataset Part 1.mp4
91.9 MB
37 - BERT/005 Exploring Transformers.mp4
91.3 MB
16 - CNN Architectures/002 Residual Networks Part 1.mp4
91.0 MB
02 - Loss Functions/011 Triplet Ranking Loss.mp4
90.9 MB
38 - Vision Transformers/001 Vision Transformer Part 1.mp4
89.4 MB
26 - Recurrent Neural Networks/007 LSTMs.mp4
89.0 MB
25 - Practical Neural Style Transfer in PyTorch/002 NST Practical Part 2.mp4
88.7 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/007 Designing the Decoder Part 1.mp4
88.5 MB
21 - YOLO Object Detection (Theory)/003 YOLO Theory Part 3.mp4
88.5 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/009 Creating the Decoder Part 3.mp4
88.1 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/002 Part 1 Data Preprocessing.mp4
86.6 MB
28 - Practical Recurrent Networks in PyTorch/006 Training the Network.mp4
86.5 MB
34 - Build a Chatbot with Transformers/011 MultiHead Attention Implementation Part 3.mp4
86.4 MB
30 - Sequence Modelling/001 Sequence Modeling.mp4
85.5 MB
21 - YOLO Object Detection (Theory)/006 YOLO Theory Part 6.mp4
85.3 MB
09 - Data Augmentation/002 2_Data Augmentation Techniques Part 1.mp4
85.2 MB
20 - Convolutional Networks Visualization/002 Processing the Model.mp4
84.4 MB
01 - How Neural Networks and Backpropagation Works/005 The Perceptron.mp4
84.3 MB
39 - GPT/010 (3) GPT Implementation Part 1.mp4
84.1 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/003 Importing and Defining Parameters.mp4
82.9 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/007 Creating the Decoder Part 1.mp4
82.8 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/006 Training the CNN.mp4
82.0 MB
39 - GPT/009 (2) GPT Implementation Part 1.mp4
81.0 MB
34 - Build a Chatbot with Transformers/015 Transformer.mp4
80.7 MB
09 - Data Augmentation/004 2_Data Augmentation Techniques Part 3.mp4
80.6 MB
20 - Convolutional Networks Visualization/003 Visualizing the Feature Maps.mp4
80.5 MB
29 - Saving and Loading Models/001 Saving and Loading Part 1.mp4
79.9 MB
35 - Universal Transformers/003 Transformers for other tasks.mp4
79.4 MB
34 - Build a Chatbot with Transformers/020 Evaluation Function.mp4
77.6 MB
21 - YOLO Object Detection (Theory)/001 YOLO Theory Part 1.mp4
75.4 MB
23 - Practical Variational Autoencoders in PyTorch/001 Practical VAE Part 1.mp4
74.9 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/011 Defining Hyperparameters.mp4
73.7 MB
21 - YOLO Object Detection (Theory)/005 YOLO Theory Part 5.mp4
73.5 MB
25 - Practical Neural Style Transfer in PyTorch/003 NST Practical Part 3.mp4
73.3 MB
33 - Transformers/004 Positional Encoding.mp4
72.9 MB
12 - Implementing a Neural Network from Scratch with Numpy/007 Backpropagation Equations.mp4
72.7 MB
04 - Regularization and Normalization/006 Batch Normalization.mp4
71.9 MB
17 - Practical Residual Networks in PyTorch/003 Practical ResNet Part 3.mp4
71.7 MB
08 - Introduction to PyTorch/006 Torch Tensors - Part 2.mp4
71.2 MB
34 - Build a Chatbot with Transformers/019 Training Function.mp4
70.4 MB
23 - Practical Variational Autoencoders in PyTorch/002 Practical VAE Part 2.mp4
70.0 MB
19 - Transfer Learning in PyTorch - Image Classification/006 Testing and Visualizing the results.mp4
70.0 MB
16 - CNN Architectures/007 Densely Connected Networks.mp4
69.1 MB
14 - Convolutional Neural Networks/014 DropBlock Dropout in CNNs.mp4
68.5 MB
07 - Weight Initialization/003 Xavier Initialization.mp4
68.1 MB
28 - Practical Recurrent Networks in PyTorch/005 Creating the Network.mp4
67.6 MB
23 - Practical Variational Autoencoders in PyTorch/003 Practical VAE Part 3.mp4
66.6 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/008 Creating the Decoder Part 2.mp4
66.2 MB
39 - GPT/001 GPT Part 1.mp4
66.2 MB
34 - Build a Chatbot with Transformers/021 Main Function and User Evaluation.mp4
65.9 MB
28 - Practical Recurrent Networks in PyTorch/003 Processing the Text.mp4
65.8 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/012 Evaluation Function.mp4
64.7 MB
34 - Build a Chatbot with Transformers/006 Dataset Preprocessing Part 5.mp4
64.1 MB
05 - Optimization/013 AMSGrad.mp4
63.9 MB
12 - Implementing a Neural Network from Scratch with Numpy/003 Forward Propagation.mp4
63.3 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/006 Creating the Encoder.mp4
62.9 MB
19 - Transfer Learning in PyTorch - Image Classification/004 Understanding the data.mp4
61.7 MB
14 - Convolutional Neural Networks/009 Activation, Pooling and FC.mp4
61.6 MB
17 - Practical Residual Networks in PyTorch/002 Practical ResNet Part 2.mp4
61.3 MB
39 - GPT/014 (7) GPT Implementation Part 1.mp4
59.5 MB
22 - Autoencoders and Variational Autoencoders/007 Deep Fake.mp4
59.3 MB
34 - Build a Chatbot with Transformers/013 Encoder Layer.mp4
58.8 MB
29 - Saving and Loading Models/002 Saving and Loading Part 2.mp4
58.1 MB
34 - Build a Chatbot with Transformers/002 Dataset Preprocessing Part 1.mp4
57.9 MB
34 - Build a Chatbot with Transformers/004 Dataset Preprocessing Part 3.mp4
57.8 MB
08 - Introduction to PyTorch/003 Installing PyTorch and an Introduction.mp4
57.5 MB
05 - Optimization/011 Weight Decay.mp4
56.9 MB
34 - Build a Chatbot with Transformers/007 Data Loading and Masking.mp4
56.6 MB
19 - Transfer Learning in PyTorch - Image Classification/003 Modifying the Network.mp4
56.5 MB
02 - Loss Functions/002 L1 Loss (MAE).mp4
56.3 MB
34 - Build a Chatbot with Transformers/008 Embeddings.mp4
55.7 MB
05 - Optimization/009 Adam Optimization.mp4
55.5 MB
21 - YOLO Object Detection (Theory)/008 YOLO Theory Part 8.mp4
54.6 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/003 Understanding the Encoder.mp4
54.6 MB
21 - YOLO Object Detection (Theory)/002 YOLO Theory Part 2.mp4
54.1 MB
08 - Introduction to PyTorch/005 Torch Tensors - Part 1.mp4
53.8 MB
04 - Regularization and Normalization/003 Dropout.mp4
53.7 MB
33 - Transformers/016 Dropout.mp4
53.7 MB
18 - Transposed Convolutions/002 Convolution Operation as Matrix Multiplication.mp4
53.4 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/003 Accuracy Calculation.mp4
53.3 MB
11 - Visualize the Learning Process/005 Visualize Learning Part 5.mp4
53.2 MB
17 - Practical Residual Networks in PyTorch/001 Practical ResNet Part 1.mp4
53.2 MB
22 - Autoencoders and Variational Autoencoders/004 Variational Autoencoders.mp4
53.0 MB
01 - How Neural Networks and Backpropagation Works/004 The Essence of Neural Networks.mp4
52.4 MB
24 - Neural Style Transfer/003 NST Theory Part 3.mp4
52.2 MB
34 - Build a Chatbot with Transformers/016 AdamWarmup.mp4
51.8 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/003 Cyclic Learning Rate.mp4
51.7 MB
12 - Implementing a Neural Network from Scratch with Numpy/004 Loss Function.mp4
50.9 MB
02 - Loss Functions/010 Hinge Loss.mp4
50.9 MB
12 - Implementing a Neural Network from Scratch with Numpy/001 The Dataset and Hyperparameters.mp4
50.9 MB
21 - YOLO Object Detection (Theory)/007 YOLO Theory Part 7.mp4
50.7 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/004 Defining the Network Class.mp4
50.5 MB
26 - Recurrent Neural Networks/006 Vanishing and Exploding Gradient Problem.mp4
49.5 MB
33 - Transformers/003 Input Embeddings.mp4
48.7 MB
08 - Introduction to PyTorch/007 Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4
47.6 MB
25 - Practical Neural Style Transfer in PyTorch/001 NST Practical Part 1.mp4
47.4 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/002 Step Learning Rate Decay.mp4
47.4 MB
08 - Introduction to PyTorch/008 Automatic Differentiation.mp4
47.0 MB
16 - CNN Architectures/009 Seperable Convolutions.mp4
46.8 MB
27 - Word Embeddings/001 What are Word Embeddings.mp4
46.4 MB
08 - Introduction to PyTorch/010 Weight Initialization in PyTorch.mp4
46.3 MB
07 - Weight Initialization/002 What happens when all weights are initialized to the same value.mp4
46.0 MB
33 - Transformers/005 MultiHead Attention Part 1.mp4
45.8 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/004 Part 3 Creating and Loading the Dataset.mp4
45.4 MB
16 - CNN Architectures/011 Is a 1x1 convolutional filter equivalent to a FC layer.mp4
45.3 MB
02 - Loss Functions/009 Contrastive Loss.mp4
44.9 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/002 Visualizing and Loading the Dataset.mp4
44.3 MB
20 - Convolutional Networks Visualization/001 Data and the Model.mp4
44.0 MB
34 - Build a Chatbot with Transformers/014 Decoder Layer.mp4
43.9 MB
01 - How Neural Networks and Backpropagation Works/003 The Rise of Deep Learning.mp4
43.8 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/002 Introduction.mp4
43.6 MB
08 - Introduction to PyTorch/002 Computation Graphs and Deep Learning Frameworks.mp4
43.5 MB
34 - Build a Chatbot with Transformers/009 MultiHead Attention Implementation Part 1.mp4
43.1 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/005 Constructing the Dataset Part 2.mp4
43.0 MB
36 - Google Colab and Gradient Accumulation/002 Gradient Accumulation.mp4
42.6 MB
28 - Practical Recurrent Networks in PyTorch/004 Defining and Visualizing the Parameters.mp4
42.5 MB
01 - How Neural Networks and Backpropagation Works/007 The Forward Propagation.mp4
42.4 MB
26 - Recurrent Neural Networks/004 Backpropagation Through Time.mp4
41.6 MB
12 - Implementing a Neural Network from Scratch with Numpy/009 Initializing the Network.mp4
41.3 MB
11 - Visualize the Learning Process/006 Visualize Learning Part 6.mp4
41.2 MB
21 - YOLO Object Detection (Theory)/012 YOLO Theory Part 12.mp4
41.0 MB
26 - Recurrent Neural Networks/002 Vanilla RNNs.mp4
40.0 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/001 Implementation Details.mp4
39.8 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/003 Part 2 Data Normalization.mp4
39.5 MB
39 - GPT/005 Technical Details of GPT.mp4
39.3 MB
21 - YOLO Object Detection (Theory)/011 YOLO Theory Part 11.mp4
38.8 MB
14 - Convolutional Neural Networks/003 Filters and Features.mp4
38.4 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/001 Loading and Normalizing the Dataset.mp4
38.4 MB
14 - Convolutional Neural Networks/001 Prerequisite Filters.mp4
38.2 MB
24 - Neural Style Transfer/001 NST Theory Part 1.mp4
37.7 MB
37 - BERT/004 Fine-tuning BERT.mp4
37.7 MB
38 - Vision Transformers/002 Vision Transformer Part 2.mp4
37.0 MB
05 - Optimization/001 Batch Gradient Descent.mp4
37.0 MB
33 - Transformers/002 Introduction to Transformers.mp4
36.7 MB
05 - Optimization/012 Decoupling Weight Decay.mp4
36.7 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/010 Classifying your own Handwritten images.mp4
36.7 MB
34 - Build a Chatbot with Transformers/010 MultiHead Attention Implementation Part 2.mp4
36.6 MB
33 - Transformers/006 MultiHead Attention Part 2.mp4
36.6 MB
28 - Practical Recurrent Networks in PyTorch/002 Creating the Dictionary.mp4
36.3 MB
29 - Saving and Loading Models/003 Saving and Loading Part 3.mp4
35.9 MB
39 - GPT/003 Zero-Shot Predictions with GPT.mp4
35.1 MB
14 - Convolutional Neural Networks/012 CNN Characteristics.mp4
34.9 MB
04 - Regularization and Normalization/007 Layer Normalization.mp4
34.8 MB
02 - Loss Functions/006 Softmax Function.mp4
34.2 MB
39 - GPT/002 GPT Part 2.mp4
34.0 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/005 Creating the network class and the network functions.mp4
33.9 MB
27 - Word Embeddings/005 Word Embeddings in PyTorch.mp4
32.7 MB
16 - CNN Architectures/001 CNN Architectures Part 1.mp4
32.3 MB
22 - Autoencoders and Variational Autoencoders/001 Autoencoders.mp4
32.0 MB
09 - Data Augmentation/001 1_Introduction to Data Augmentation.mp4
31.8 MB
02 - Loss Functions/004 Binary Cross Entropy Loss.mp4
31.4 MB
19 - Transfer Learning in PyTorch - Image Classification/005 Finetuning the Network.mp4
31.0 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/002 Utility Functions.mp4
30.7 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/008 Plotting and Putting into Action.mp4
30.4 MB
34 - Build a Chatbot with Transformers/018 Defining the Model.mp4
30.4 MB
25 - Practical Neural Style Transfer in PyTorch/005 Fast Neural Style Transfer.mp4
30.3 MB
30 - Sequence Modelling/004 How Attention Mechanisms Work.mp4
29.4 MB
03 - Activation Functions/008 Mish Activation.mp4
29.3 MB
01 - How Neural Networks and Backpropagation Works/006 Gradient Descent.mp4
29.0 MB
37 - BERT/003 Next Sentence Prediction.mp4
29.0 MB
34 - Build a Chatbot with Transformers/012 Feed Forward Implementation.mp4
28.9 MB
05 - Optimization/005 Exponentially Weighted Average Implementation.mp4
28.9 MB
16 - CNN Architectures/008 Squeeze-Excite Networks.mp4
28.8 MB
12 - Implementing a Neural Network from Scratch with Numpy/010 Training the Model.mp4
28.6 MB
18 - Transposed Convolutions/003 Transposed Convolutions.mp4
28.4 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/007 Testing the Network.mp4
28.3 MB
39 - GPT/004 Byte-Pair Encoding.mp4
28.3 MB
39 - GPT/011 (4) GPT Implementation Part 1.mp4
27.3 MB
05 - Optimization/008 RMSProp.mp4
27.3 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/004 Cosine Annealing with Warm Restarts.mp4
26.9 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/007 Testing the CNN.mp4
26.1 MB
37 - BERT/001 What is BERT and its structure.mp4
25.5 MB
24 - Neural Style Transfer/002 NST Theory Part 2.mp4
24.9 MB
33 - Transformers/013 Cross Entropy Loss.mp4
24.4 MB
36 - Google Colab and Gradient Accumulation/001 Running your models on Google Colab.mp4
23.9 MB
04 - Regularization and Normalization/002 L1 and L2 Regularization.mp4
23.7 MB
14 - Convolutional Neural Networks/006 More on Convolutions.mp4
23.6 MB
01 - How Neural Networks and Backpropagation Works/009 Backpropagation Part 1.mp4
22.8 MB
18 - Transposed Convolutions/001 Introduction to Transposed Convolutions.mp4
22.6 MB
33 - Transformers/017 Learning Rate Warmup.mp4
22.3 MB
11 - Visualize the Learning Process/007 Neural Networks Playground.mp4
22.0 MB
11 - Visualize the Learning Process/003 Visualize Learning Part 3.mp4
21.8 MB
39 - GPT/006 Playing with HuggingFace models.mp4
21.8 MB
30 - Sequence Modelling/002 Image Captioning.mp4
21.4 MB
16 - CNN Architectures/010 Transfer Learning.mp4
21.3 MB
34 - Build a Chatbot with Transformers/022 Action.mp4
21.3 MB
14 - Convolutional Neural Networks/015 Softmax with Temperature.mp4
21.2 MB
02 - Loss Functions/003 Huber Loss.mp4
21.2 MB
01 - How Neural Networks and Backpropagation Works/010 Backpropagation Part 2.mp4
21.1 MB
26 - Recurrent Neural Networks/009 GRUs.mp4
21.0 MB
14 - Convolutional Neural Networks/008 A Tool for Convolution Visualization.mp4
20.9 MB
22 - Autoencoders and Variational Autoencoders/002 Denoising Autoencoders.mp4
20.8 MB
05 - Optimization/006 Bias Correction in Exponentially Weighted Averages.mp4
20.7 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/005 Understanding Pack Padded Sequence.mp4
20.5 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/002 Code Details.mp4
20.2 MB
03 - Activation Functions/006 Gated Linear Units (GLU).mp4
19.9 MB
04 - Regularization and Normalization/008 Group Normalization.mp4
19.9 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/014 Results.mp4
19.7 MB
02 - Loss Functions/008 KL divergence Loss.mp4
19.6 MB
11 - Visualize the Learning Process/001 Visualize Learning Part 1.mp4
19.5 MB
33 - Transformers/008 Residual Learning.mp4
19.4 MB
21 - YOLO Object Detection (Theory)/004 YOLO Theory Part 4.mp4
19.3 MB
05 - Optimization/007 Momentum.mp4
19.3 MB
33 - Transformers/011 Masked MultiHead Attention.mp4
19.2 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/005 Understanding the Propagation.mp4
19.1 MB
33 - Transformers/014 KL Divergence Loss.mp4
18.5 MB
02 - Loss Functions/005 Cross Entropy Loss.mp4
18.1 MB
21 - YOLO Object Detection (Theory)/010 YOLO Theory Part 10.mp4
18.0 MB
12 - Implementing a Neural Network from Scratch with Numpy/002 Understanding the Implementation.mp4
18.0 MB
14 - Convolutional Neural Networks/002 Introduction to Convolutional Networks and the need for them.mp4
17.7 MB
12 - Implementing a Neural Network from Scratch with Numpy/005 Prediction.mp4
17.6 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/005 Batch Size vs Learning Rate.mp4
17.5 MB
04 - Regularization and Normalization/001 Overfitting.mp4
17.4 MB
03 - Activation Functions/001 Why we need activation functions.mp4
17.4 MB
39 - GPT/008 (1) GPT Implementation Part 1.mp4
16.9 MB
37 - BERT/002 Masked Language Modelling.mp4
16.4 MB
11 - Visualize the Learning Process/004 Visualize Learning Part 4.mp4
15.7 MB
03 - Activation Functions/004 ReLU and PReLU.mp4
15.7 MB
35 - Universal Transformers/001 Universal Transformers.mp4
15.6 MB
03 - Activation Functions/002 Sigmoid Activation.mp4
15.5 MB
33 - Transformers/009 Layer Normalization.mp4
15.3 MB
05 - Optimization/004 Exponentially Weighted Average Intuition.mp4
15.1 MB
26 - Recurrent Neural Networks/010 CNN-LSTM.mp4
15.0 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/009 Teacher Forcing.mp4
14.6 MB
02 - Loss Functions/001 Mean Squared Error (MSE).mp4
14.2 MB
34 - Build a Chatbot with Transformers/005 Dataset Preprocessing Part 4.mp4
14.2 MB
14 - Convolutional Neural Networks/013 Regularization and Batch Normalization in CNNs.mp4
14.0 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/004 Defining the Model.mp4
13.6 MB
14 - Convolutional Neural Networks/005 Convolution over Volume Animation.mp4
13.3 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/009 Predicting an image.mp4
13.3 MB
07 - Weight Initialization/001 Normal Distribution.mp4
13.2 MB
26 - Recurrent Neural Networks/001 Why do we need RNNs.mp4
12.9 MB
21 - YOLO Object Detection (Theory)/009 YOLO Theory Part 9.mp4
12.8 MB
05 - Optimization/002 Stochastic Gradient Descent.mp4
12.7 MB
30 - Sequence Modelling/003 Attention Mechanisms.mp4
12.6 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/001 Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4
12.4 MB
33 - Transformers/010 Feed Forward.mp4
11.7 MB
26 - Recurrent Neural Networks/003 Quiz Solution Discussion.mp4
11.5 MB
03 - Activation Functions/003 Tanh Activation.mp4
11.1 MB
04 - Regularization and Normalization/004 DropConnect.mp4
10.6 MB
14 - Convolutional Neural Networks/011 Important formulas.mp4
10.3 MB
22 - Autoencoders and Variational Autoencoders/003 The Problem in Autoencoders.mp4
10.1 MB
33 - Transformers/015 Label Smoothing.mp4
10.0 MB
26 - Recurrent Neural Networks/008 Bidirectional RNNs.mp4
9.9 MB
04 - Regularization and Normalization/005 Normalization.mp4
9.7 MB
16 - CNN Architectures/006 CNN Architectures Part 2.mp4
9.5 MB
03 - Activation Functions/007 Swish Activation.mp4
9.5 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/013 Training.mp4
9.4 MB
14 - Convolutional Neural Networks/010 CNN Visualization.mp4
9.3 MB
07 - Weight Initialization/004 He Norm Initialization.mp4
9.3 MB
27 - Word Embeddings/002 Visualizing Word Embeddings.mp4
9.2 MB
11 - Visualize the Learning Process/002 Visualize Learning Part 2.mp4
8.8 MB
03 - Activation Functions/005 Exponentially Linear Units (ELU).mp4
8.6 MB
33 - Transformers/007 Concat and Linear.mp4
7.7 MB
27 - Word Embeddings/004 Word Embeddings Models.mp4
7.6 MB
33 - Transformers/012 MultiHead Attention in Decoder.mp4
7.5 MB
05 - Optimization/010 SWATS - Switching from Adam to SGD.mp4
6.7 MB
26 - Recurrent Neural Networks/005 Stacked RNNs.mp4
6.0 MB
05 - Optimization/003 Mini-Batch Gradient Descent.mp4
5.2 MB
14 - Convolutional Neural Networks/007 Quiz Solution Discussion.mp4
4.7 MB
27 - Word Embeddings/003 Measuring Word Embeddings.mp4
4.2 MB
08 - Introduction to PyTorch/001 CODE FOR THIS COURSE.mp4
1.2 MB
20 - Convolutional Networks Visualization/19339744-dog.jpg
95.5 kB
22 - Autoencoders and Variational Autoencoders/005 Probability Distributions Recap.vtt
39.4 kB
20 - Convolutional Networks Visualization/13787548-imagenet-class-index.json
35.4 kB
22 - Autoencoders and Variational Autoencoders/006 Loss Function Derivation for VAE.vtt
34.5 kB
08 - Introduction to PyTorch/009 Loss Functions in PyTorch.vtt
33.8 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/006 Training the Network.vtt
29.6 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/003 Building the CNN.vtt
29.2 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/004 Defining the Encoder.vtt
28.5 kB
26 - Recurrent Neural Networks/007 LSTMs.vtt
26.1 kB
12 - Implementing a Neural Network from Scratch with Numpy/008 Backpropagation.vtt
25.3 kB
23 - Practical Variational Autoencoders in PyTorch/001 Practical VAE Part 1.vtt
23.4 kB
34 - Build a Chatbot with Transformers/017 Loss with Label Smoothing.vtt
22.8 kB
08 - Introduction to PyTorch/004 How PyTorch Works.vtt
21.9 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/006 Part 5 Training the Network.vtt
21.2 kB
16 - CNN Architectures/003 Residual Networks Part 2.vtt
21.2 kB
09 - Data Augmentation/003 2_Data Augmentation Techniques Part 2.vtt
21.1 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/006 Creating the Encoder.vtt
20.8 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/008 Designing the Decoder Part 2.vtt
20.8 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/005 Part 4 Building the Network.vtt
20.6 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/007 Creating the Decoder Part 1.vtt
20.5 kB
01 - How Neural Networks and Backpropagation Works/005 The Perceptron.vtt
19.6 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/012 Evaluation Function.vtt
19.5 kB
12 - Implementing a Neural Network from Scratch with Numpy/004 Loss Function.vtt
19.3 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/006 Training the CNN.vtt
19.2 kB
34 - Build a Chatbot with Transformers/020 Evaluation Function.vtt
19.0 kB
36 - Google Colab and Gradient Accumulation/002 Gradient Accumulation.vtt
18.9 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/006 Designing the Attention Model.vtt
18.8 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/010 Train Function.vtt
18.5 kB
37 - BERT/005 Exploring Transformers.vtt
18.3 kB
34 - Build a Chatbot with Transformers/003 Dataset Preprocessing Part 2.vtt
18.3 kB
29 - Saving and Loading Models/001 Saving and Loading Part 1.vtt
17.8 kB
39 - GPT/013 (6) GPT Implementation Part 1.vtt
17.7 kB
34 - Build a Chatbot with Transformers/008 Embeddings.vtt
17.3 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/002 Part 1 Data Preprocessing.vtt
17.1 kB
25 - Practical Neural Style Transfer in PyTorch/004 NST Practical Part 4.vtt
16.9 kB
01 - How Neural Networks and Backpropagation Works/002 What Can Deep Learning Do.vtt
16.9 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/011 Defining Hyperparameters.vtt
16.8 kB
33 - Transformers/004 Positional Encoding.vtt
16.7 kB
16 - CNN Architectures/007 Densely Connected Networks.vtt
16.7 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/007 Designing the Decoder Part 1.vtt
16.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/002 Utility Functions.vtt
16.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/004 Constructing the Dataset Part 1.vtt
16.6 kB
39 - GPT/014 (7) GPT Implementation Part 1.vtt
16.6 kB
16 - CNN Architectures/005 Stochastic Depth.vtt
16.5 kB
39 - GPT/009 (2) GPT Implementation Part 1.vtt
16.4 kB
39 - GPT/010 (3) GPT Implementation Part 1.vtt
16.4 kB
08 - Introduction to PyTorch/002 Computation Graphs and Deep Learning Frameworks.vtt
16.1 kB
20 - Convolutional Networks Visualization/002 Processing the Model.vtt
16.1 kB
30 - Sequence Modelling/001 Sequence Modeling.vtt
16.0 kB
02 - Loss Functions/004 Binary Cross Entropy Loss.vtt
15.8 kB
38 - Vision Transformers/001 Vision Transformer Part 1.vtt
15.7 kB
14 - Convolutional Neural Networks/009 Activation, Pooling and FC.vtt
15.7 kB
17 - Practical Residual Networks in PyTorch/004 Practical ResNet Part 4.vtt
15.6 kB
35 - Universal Transformers/002 Practical Universal Transformers Modifying the Transformers code.vtt
15.6 kB
34 - Build a Chatbot with Transformers/007 Data Loading and Masking.vtt
15.5 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/009 Creating the Decoder Part 3.vtt
15.5 kB
26 - Recurrent Neural Networks/004 Backpropagation Through Time.vtt
15.4 kB
02 - Loss Functions/010 Hinge Loss.vtt
15.3 kB
02 - Loss Functions/011 Triplet Ranking Loss.vtt
15.2 kB
08 - Introduction to PyTorch/010 Weight Initialization in PyTorch.vtt
15.2 kB
20 - Convolutional Networks Visualization/003 Visualizing the Feature Maps.vtt
15.1 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/002 Step Learning Rate Decay.vtt
15.0 kB
33 - Transformers/013 Cross Entropy Loss.vtt
15.0 kB
28 - Practical Recurrent Networks in PyTorch/007 Generating Text.vtt
15.0 kB
34 - Build a Chatbot with Transformers/011 MultiHead Attention Implementation Part 3.vtt
14.9 kB
04 - Regularization and Normalization/006 Batch Normalization.vtt
14.8 kB
21 - YOLO Object Detection (Theory)/002 YOLO Theory Part 2.vtt
14.8 kB
12 - Implementing a Neural Network from Scratch with Numpy/007 Backpropagation Equations.vtt
14.8 kB
17 - Practical Residual Networks in PyTorch/001 Practical ResNet Part 1.vtt
14.8 kB
17 - Practical Residual Networks in PyTorch/002 Practical ResNet Part 2.vtt
14.8 kB
02 - Loss Functions/009 Contrastive Loss.vtt
14.8 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/001 Loading and Normalizing the Dataset.vtt
14.7 kB
33 - Transformers/002 Introduction to Transformers.vtt
14.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/001 Implementation Details.vtt
14.6 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/003 Importing and Defining Parameters.vtt
14.5 kB
39 - GPT/012 (5) GPT Implementation Part 1.vtt
14.5 kB
17 - Practical Residual Networks in PyTorch/003 Practical ResNet Part 3.vtt
14.4 kB
19 - Transfer Learning in PyTorch - Image Classification/001 Data Augmentation.vtt
14.3 kB
12 - Implementing a Neural Network from Scratch with Numpy/001 The Dataset and Hyperparameters.vtt
14.3 kB
14 - Convolutional Neural Networks/014 DropBlock Dropout in CNNs.vtt
14.3 kB
38 - Vision Transformers/003 Vision Transformer Part 3.vtt
14.3 kB
12 - Implementing a Neural Network from Scratch with Numpy/003 Forward Propagation.vtt
14.2 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/005 Constructing the Dataset Part 2.vtt
14.1 kB
16 - CNN Architectures/001 CNN Architectures Part 1.vtt
14.1 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/010 Classifying your own Handwritten images.vtt
14.1 kB
01 - How Neural Networks and Backpropagation Works/006 Gradient Descent.vtt
14.1 kB
23 - Practical Variational Autoencoders in PyTorch/003 Practical VAE Part 3.vtt
14.1 kB
05 - Optimization/008 RMSProp.vtt
14.0 kB
16 - CNN Architectures/009 Seperable Convolutions.vtt
13.7 kB
30 - Sequence Modelling/004 How Attention Mechanisms Work.vtt
13.7 kB
34 - Build a Chatbot with Transformers/015 Transformer.vtt
13.7 kB
08 - Introduction to PyTorch/005 Torch Tensors - Part 1.vtt
13.6 kB
23 - Practical Variational Autoencoders in PyTorch/002 Practical VAE Part 2.vtt
13.5 kB
19 - Transfer Learning in PyTorch - Image Classification/004 Understanding the data.vtt
13.5 kB
25 - Practical Neural Style Transfer in PyTorch/003 NST Practical Part 3.vtt
13.4 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/008 Creating the Decoder Part 2.vtt
13.4 kB
08 - Introduction to PyTorch/007 Numpy Bridge, Tensor Concatenation and Adding Dimensions.vtt
13.4 kB
01 - How Neural Networks and Backpropagation Works/009 Backpropagation Part 1.vtt
13.1 kB
28 - Practical Recurrent Networks in PyTorch/005 Creating the Network.vtt
13.1 kB
19 - Transfer Learning in PyTorch - Image Classification/002 Loading the Dataset.vtt
13.1 kB
08 - Introduction to PyTorch/003 Installing PyTorch and an Introduction.vtt
13.0 kB
11 - Visualize the Learning Process/005 Visualize Learning Part 5.vtt
13.0 kB
16 - CNN Architectures/002 Residual Networks Part 1.vtt
13.0 kB
22 - Autoencoders and Variational Autoencoders/004 Variational Autoencoders.vtt
12.9 kB
34 - Build a Chatbot with Transformers/019 Training Function.vtt
12.9 kB
34 - Build a Chatbot with Transformers/004 Dataset Preprocessing Part 3.vtt
12.9 kB
01 - How Neural Networks and Backpropagation Works/007 The Forward Propagation.vtt
12.8 kB
25 - Practical Neural Style Transfer in PyTorch/001 NST Practical Part 1.vtt
12.8 kB
39 - GPT/001 GPT Part 1.vtt
12.7 kB
26 - Recurrent Neural Networks/006 Vanishing and Exploding Gradient Problem.vtt
12.6 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/003 Accuracy Calculation.vtt
12.6 kB
24 - Neural Style Transfer/003 NST Theory Part 3.vtt
12.5 kB
28 - Practical Recurrent Networks in PyTorch/003 Processing the Text.vtt
12.4 kB
21 - YOLO Object Detection (Theory)/012 YOLO Theory Part 12.vtt
12.3 kB
34 - Build a Chatbot with Transformers/002 Dataset Preprocessing Part 1.vtt
12.3 kB
16 - CNN Architectures/008 Squeeze-Excite Networks.vtt
12.3 kB
28 - Practical Recurrent Networks in PyTorch/006 Training the Network.vtt
12.2 kB
33 - Transformers/005 MultiHead Attention Part 1.vtt
12.1 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/003 Cyclic Learning Rate.vtt
12.1 kB
16 - CNN Architectures/011 Is a 1x1 convolutional filter equivalent to a FC layer.vtt
12.1 kB
19 - Transfer Learning in PyTorch - Image Classification/006 Testing and Visualizing the results.vtt
11.9 kB
08 - Introduction to PyTorch/006 Torch Tensors - Part 2.vtt
11.9 kB
07 - Weight Initialization/002 What happens when all weights are initialized to the same value.vtt
11.8 kB
01 - How Neural Networks and Backpropagation Works/004 The Essence of Neural Networks.vtt
11.8 kB
07 - Weight Initialization/003 Xavier Initialization.vtt
11.7 kB
14 - Convolutional Neural Networks/015 Softmax with Temperature.vtt
11.7 kB
34 - Build a Chatbot with Transformers/006 Dataset Preprocessing Part 5.vtt
11.6 kB
34 - Build a Chatbot with Transformers/021 Main Function and User Evaluation.vtt
11.5 kB
25 - Practical Neural Style Transfer in PyTorch/002 NST Practical Part 2.vtt
11.5 kB
14 - Convolutional Neural Networks/003 Filters and Features.vtt
11.4 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/002 Visualizing and Loading the Dataset.vtt
11.4 kB
21 - YOLO Object Detection (Theory)/003 YOLO Theory Part 3.vtt
11.3 kB
39 - GPT/002 GPT Part 2.vtt
11.2 kB
21 - YOLO Object Detection (Theory)/006 YOLO Theory Part 6.vtt
11.2 kB
01 - How Neural Networks and Backpropagation Works/010 Backpropagation Part 2.vtt
11.2 kB
27 - Word Embeddings/001 What are Word Embeddings.vtt
11.2 kB
39 - GPT/008 (1) GPT Implementation Part 1.vtt
11.2 kB
04 - Regularization and Normalization/003 Dropout.vtt
11.1 kB
33 - Transformers/016 Dropout.vtt
11.1 kB
11 - Visualize the Learning Process/001 Visualize Learning Part 1.vtt
11.0 kB
04 - Regularization and Normalization/002 L1 and L2 Regularization.vtt
11.0 kB
22 - Autoencoders and Variational Autoencoders/001 Autoencoders.vtt
11.0 kB
09 - Data Augmentation/002 2_Data Augmentation Techniques Part 1.vtt
11.0 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/004 Defining the Network Class.vtt
10.9 kB
38 - Vision Transformers/002 Vision Transformer Part 2.vtt
10.9 kB
08 - Introduction to PyTorch/008 Automatic Differentiation.vtt
10.9 kB
05 - Optimization/013 AMSGrad.vtt
10.8 kB
16 - CNN Architectures/010 Transfer Learning.vtt
10.7 kB
37 - BERT/003 Next Sentence Prediction.vtt
10.6 kB
05 - Optimization/005 Exponentially Weighted Average Implementation.vtt
10.5 kB
35 - Universal Transformers/003 Transformers for other tasks.vtt
10.4 kB
18 - Transposed Convolutions/002 Convolution Operation as Matrix Multiplication.vtt
10.4 kB
37 - BERT/001 What is BERT and its structure.vtt
10.3 kB
39 - GPT/011 (4) GPT Implementation Part 1.vtt
10.3 kB
02 - Loss Functions/002 L1 Loss (MAE).vtt
10.2 kB
12 - Implementing a Neural Network from Scratch with Numpy/002 Understanding the Implementation.vtt
10.1 kB
14 - Convolutional Neural Networks/012 CNN Characteristics.vtt
10.1 kB
19 - Transfer Learning in PyTorch - Image Classification/003 Modifying the Network.vtt
10.1 kB
26 - Recurrent Neural Networks/002 Vanilla RNNs.vtt
10.0 kB
02 - Loss Functions/005 Cross Entropy Loss.vtt
10.0 kB
33 - Transformers/006 MultiHead Attention Part 2.vtt
9.7 kB
39 - GPT/004 Byte-Pair Encoding.vtt
9.7 kB
39 - GPT/003 Zero-Shot Predictions with GPT.vtt
9.6 kB
34 - Build a Chatbot with Transformers/010 MultiHead Attention Implementation Part 2.vtt
9.6 kB
36 - Google Colab and Gradient Accumulation/001 Running your models on Google Colab.vtt
9.5 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/003 Part 2 Data Normalization.vtt
9.5 kB
11 - Visualize the Learning Process/003 Visualize Learning Part 3.vtt
9.5 kB
21 - YOLO Object Detection (Theory)/005 YOLO Theory Part 5.vtt
9.5 kB
09 - Data Augmentation/004 2_Data Augmentation Techniques Part 3.vtt
9.4 kB
20 - Convolutional Networks Visualization/001 Data and the Model.vtt
9.4 kB
04 - Regularization and Normalization/007 Layer Normalization.vtt
9.4 kB
22 - Autoencoders and Variational Autoencoders/007 Deep Fake.vtt
9.3 kB
29 - Saving and Loading Models/002 Saving and Loading Part 2.vtt
9.3 kB
02 - Loss Functions/006 Softmax Function.vtt
9.2 kB
34 - Build a Chatbot with Transformers/013 Encoder Layer.vtt
9.1 kB
11 - Visualize the Learning Process/006 Visualize Learning Part 6.vtt
9.1 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/005 Understanding Pack Padded Sequence.vtt
8.9 kB
39 - GPT/006 Playing with HuggingFace models.vtt
8.9 kB
02 - Loss Functions/008 KL divergence Loss.vtt
8.9 kB
28 - Practical Recurrent Networks in PyTorch/004 Defining and Visualizing the Parameters.vtt
8.8 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/004 Part 3 Creating and Loading the Dataset.vtt
8.8 kB
33 - Transformers/009 Layer Normalization.vtt
8.8 kB
22 - Autoencoders and Variational Autoencoders/002 Denoising Autoencoders.vtt
8.6 kB
14 - Convolutional Neural Networks/002 Introduction to Convolutional Networks and the need for them.vtt
8.6 kB
05 - Optimization/011 Weight Decay.vtt
8.6 kB
02 - Loss Functions/001 Mean Squared Error (MSE).vtt
8.6 kB
05 - Optimization/009 Adam Optimization.vtt
8.6 kB
35 - Universal Transformers/001 Universal Transformers.vtt
8.6 kB
03 - Activation Functions/004 ReLU and PReLU.vtt
8.5 kB
24 - Neural Style Transfer/001 NST Theory Part 1.vtt
8.5 kB
37 - BERT/004 Fine-tuning BERT.vtt
8.4 kB
39 - GPT/005 Technical Details of GPT.vtt
8.4 kB
18 - Transposed Convolutions/001 Introduction to Transposed Convolutions.vtt
8.4 kB
26 - Recurrent Neural Networks/009 GRUs.vtt
8.3 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/007 Testing the CNN.vtt
8.2 kB
09 - Data Augmentation/001 1_Introduction to Data Augmentation.vtt
8.2 kB
34 - Build a Chatbot with Transformers/009 MultiHead Attention Implementation Part 1.vtt
8.1 kB
34 - Build a Chatbot with Transformers/016 AdamWarmup.vtt
8.1 kB
21 - YOLO Object Detection (Theory)/007 YOLO Theory Part 7.vtt
8.1 kB
33 - Transformers/011 Masked MultiHead Attention.vtt
8.1 kB
14 - Convolutional Neural Networks/006 More on Convolutions.vtt
8.1 kB
33 - Transformers/017 Learning Rate Warmup.vtt
8.0 kB
07 - Weight Initialization/001 Normal Distribution.vtt
8.0 kB
21 - YOLO Object Detection (Theory)/004 YOLO Theory Part 4.vtt
8.0 kB
33 - Transformers/003 Input Embeddings.vtt
7.9 kB
33 - Transformers/008 Residual Learning.vtt
7.8 kB
34 - Build a Chatbot with Transformers/018 Defining the Model.vtt
7.7 kB
18 - Transposed Convolutions/003 Transposed Convolutions.vtt
7.7 kB
05 - Optimization/001 Batch Gradient Descent.vtt
7.7 kB
03 - Activation Functions/002 Sigmoid Activation.vtt
7.7 kB
02 - Loss Functions/003 Huber Loss.vtt
7.7 kB
12 - Implementing a Neural Network from Scratch with Numpy/009 Initializing the Network.vtt
7.7 kB
01 - How Neural Networks and Backpropagation Works/003 The Rise of Deep Learning.vtt
7.6 kB
24 - Neural Style Transfer/002 NST Theory Part 2.vtt
7.4 kB
05 - Optimization/006 Bias Correction in Exponentially Weighted Averages.vtt
7.4 kB
04 - Regularization and Normalization/008 Group Normalization.vtt
7.3 kB
33 - Transformers/014 KL Divergence Loss.vtt
7.2 kB
27 - Word Embeddings/005 Word Embeddings in PyTorch.vtt
7.2 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/005 Creating the network class and the network functions.vtt
7.2 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/002 Introduction.vtt
7.2 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/003 Understanding the Encoder.vtt
7.2 kB
05 - Optimization/007 Momentum.vtt
7.2 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/005 Understanding the Propagation.vtt
7.1 kB
03 - Activation Functions/008 Mish Activation.vtt
7.0 kB
29 - Saving and Loading Models/003 Saving and Loading Part 3.vtt
7.0 kB
28 - Practical Recurrent Networks in PyTorch/002 Creating the Dictionary.vtt
7.0 kB
21 - YOLO Object Detection (Theory)/011 YOLO Theory Part 11.vtt
6.9 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/004 Cosine Annealing with Warm Restarts.vtt
6.7 kB
37 - BERT/002 Masked Language Modelling.vtt
6.6 kB
30 - Sequence Modelling/003 Attention Mechanisms.vtt
6.6 kB
11 - Visualize the Learning Process/004 Visualize Learning Part 4.vtt
6.5 kB
21 - YOLO Object Detection (Theory)/008 YOLO Theory Part 8.vtt
6.5 kB
05 - Optimization/004 Exponentially Weighted Average Intuition.vtt
6.4 kB
12 - Implementing a Neural Network from Scratch with Numpy/005 Prediction.vtt
6.3 kB
14 - Convolutional Neural Networks/011 Important formulas.vtt
6.3 kB
34 - Build a Chatbot with Transformers/014 Decoder Layer.vtt
6.3 kB
11 - Visualize the Learning Process/007 Neural Networks Playground.vtt
6.3 kB
19 - Transfer Learning in PyTorch - Image Classification/005 Finetuning the Network.vtt
6.3 kB
26 - Recurrent Neural Networks/001 Why do we need RNNs.vtt
6.2 kB
21 - YOLO Object Detection (Theory)/001 YOLO Theory Part 1.vtt
6.2 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/001 Introduction to Hyperparameter Tuning and Learning Rate Recap.vtt
6.2 kB
30 - Sequence Modelling/002 Image Captioning.vtt
6.2 kB
05 - Optimization/002 Stochastic Gradient Descent.vtt
6.1 kB
22 - Autoencoders and Variational Autoencoders/003 The Problem in Autoencoders.vtt
6.0 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/009 Teacher Forcing.vtt
6.0 kB
04 - Regularization and Normalization/001 Overfitting.vtt
6.0 kB
26 - Recurrent Neural Networks/010 CNN-LSTM.vtt
6.0 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/009 Predicting an image.vtt
5.9 kB
14 - Convolutional Neural Networks/001 Prerequisite Filters.vtt
5.9 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/008 Plotting and Putting into Action.vtt
5.9 kB
04 - Regularization and Normalization/005 Normalization.vtt
5.7 kB
33 - Transformers/015 Label Smoothing.vtt
5.6 kB
14 - Convolutional Neural Networks/008 A Tool for Convolution Visualization.vtt
5.5 kB
05 - Optimization/012 Decoupling Weight Decay.vtt
5.4 kB
34 - Build a Chatbot with Transformers/005 Dataset Preprocessing Part 4.vtt
5.3 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/007 Testing the Network.vtt
5.2 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/004 Defining the Model.vtt
5.2 kB
12 - Implementing a Neural Network from Scratch with Numpy/010 Training the Model.vtt
4.9 kB
21 - YOLO Object Detection (Theory)/009 YOLO Theory Part 9.vtt
4.8 kB
26 - Recurrent Neural Networks/008 Bidirectional RNNs.vtt
4.8 kB
03 - Activation Functions/007 Swish Activation.vtt
4.8 kB
03 - Activation Functions/001 Why we need activation functions.vtt
4.8 kB
26 - Recurrent Neural Networks/003 Quiz Solution Discussion.vtt
4.8 kB
25 - Practical Neural Style Transfer in PyTorch/005 Fast Neural Style Transfer.vtt
4.8 kB
07 - Weight Initialization/004 He Norm Initialization.vtt
4.6 kB
03 - Activation Functions/005 Exponentially Linear Units (ELU).vtt
4.5 kB
14 - Convolutional Neural Networks/013 Regularization and Batch Normalization in CNNs.vtt
4.4 kB
16 - CNN Architectures/006 CNN Architectures Part 2.vtt
4.3 kB
14 - Convolutional Neural Networks/007 Quiz Solution Discussion.vtt
4.2 kB
14 - Convolutional Neural Networks/005 Convolution over Volume Animation.vtt
4.2 kB
34 - Build a Chatbot with Transformers/012 Feed Forward Implementation.vtt
4.1 kB
27 - Word Embeddings/002 Visualizing Word Embeddings.vtt
4.0 kB
33 - Transformers/010 Feed Forward.vtt
4.0 kB
27 - Word Embeddings/004 Word Embeddings Models.vtt
3.9 kB
03 - Activation Functions/003 Tanh Activation.vtt
3.8 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/005 Batch Size vs Learning Rate.vtt
3.8 kB
33 - Transformers/007 Concat and Linear.vtt
3.7 kB
03 - Activation Functions/006 Gated Linear Units (GLU).vtt
3.7 kB
34 - Build a Chatbot with Transformers/022 Action.vtt
3.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/014 Results.vtt
3.3 kB
26 - Recurrent Neural Networks/005 Stacked RNNs.vtt
3.3 kB
33 - Transformers/012 MultiHead Attention in Decoder.vtt
3.2 kB
05 - Optimization/003 Mini-Batch Gradient Descent.vtt
3.2 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/013 Training.vtt
3.1 kB
21 - YOLO Object Detection (Theory)/010 YOLO Theory Part 10.vtt
2.7 kB
14 - Convolutional Neural Networks/010 CNN Visualization.vtt
2.5 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/002 Code Details.vtt
2.5 kB
27 - Word Embeddings/003 Measuring Word Embeddings.vtt
2.4 kB
11 - Visualize the Learning Process/002 Visualize Learning Part 2.vtt
2.3 kB
04 - Regularization and Normalization/004 DropConnect.vtt
2.1 kB
05 - Optimization/010 SWATS - Switching from Adam to SGD.vtt
1.9 kB
21 - YOLO Object Detection (Theory)/013 YOLO Code Note.html
1.4 kB
08 - Introduction to PyTorch/001 CODE FOR THIS COURSE.vtt
636 Bytes
01 - How Neural Networks and Backpropagation Works/001 BEFORE STARTING...PLEASE READ THIS.html
630 Bytes
12 - Implementing a Neural Network from Scratch with Numpy/006 Notebook for the following Lecture.html
532 Bytes
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/001 The MNIST Dataset.html
470 Bytes
02 - Loss Functions/007 Softmax with Temperature Controlling your distribution.html
394 Bytes
01 - How Neural Networks and Backpropagation Works/008 Before Proceeding with the Backpropagation.html
341 Bytes
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/001 Download the Dataset.html
322 Bytes
14 - Convolutional Neural Networks/004 Convolution over Volume Animation Resource.html
321 Bytes
28 - Practical Recurrent Networks in PyTorch/001 Download the Dataset.html
312 Bytes
33 - Transformers/001 SANITY CHECK ON PREVIOUS SECTIONS.html
272 Bytes
34 - Build a Chatbot with Transformers/001 CODE.html
268 Bytes
31 - Practical Sequence Modelling in PyTorch Chatbot Application/001 Download the Dataset.html
252 Bytes
07 - Weight Initialization/005 Practical Weight Initialization Note.html
186 Bytes
02 - Loss Functions/012 Practical Loss Functions Note.html
179 Bytes
39 - GPT/007 Implementation.html
128 Bytes
16 - CNN Architectures/004 Note on Residual Networks Implementation.html
109 Bytes
19 - Transfer Learning in PyTorch - Image Classification/external-assets-links.txt
71 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!