搜索
Udemy - The Complete Neural Networks Bootcamp Theory, Applications (11.2021)
磁力链接/BT种子名称
Udemy - The Complete Neural Networks Bootcamp Theory, Applications (11.2021)
磁力链接/BT种子简介
种子哈希:
15b4d062a18983c064a36b9a8f7ac3a7c59709ba
文件大小:
13.38G
已经下载:
233
次
下载速度:
极快
收录时间:
2025-07-18
最近下载:
2025-09-15
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:15B4D062A18983C064A36B9A8F7AC3A7C59709BA
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
暗网Xvideo
TikTok成人版
PornHub
听泉鉴鲍
少女日记
草榴社区
哆哔涩漫
呦乐园
萝莉岛
悠悠禁区
悠悠禁区
拔萝卜
疯马秀
最近搜索
付费字母圈+第三
付费字母圈+第十四
abw-265
前原美都
c罩杯的大
睡觉插
尾巴
bridge of spies 2015 x265-rarbg
ssni-326
恋小夜
mimk-231
816+2023
公式
360酒店
npxvip
甜甜御姐
mdyd-639
国产++电影
2858723
艳舞
尤物流出
mh370.the.plane.that.disappeared
热带夜晚
红丽
apns-235
大尺度福利
稀缺 360
群p
短髪控的福利
snowpiercer s04 complete
文件列表
31 - Practical Sequence Modelling in PyTorch Chatbot Application/004 Defining the Encoder.mp4
233.4 MB
22 - Autoencoders and Variational Autoencoders/006 Loss Function Derivation for VAE.mp4
229.9 MB
22 - Autoencoders and Variational Autoencoders/005 Probability Distributions Recap.mp4
196.8 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/006 Training the Network.mp4
191.6 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/003 Building the CNN.mp4
179.7 MB
01 - How Neural Networks and Backpropagation Works/002 What Can Deep Learning Do.mp4
163.8 MB
08 - Introduction to PyTorch/009 Loss Functions in PyTorch.mp4
162.5 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/006 Designing the Attention Model.mp4
154.6 MB
34 - Build a Chatbot with Transformers/017 Loss with Label Smoothing.mp4
145.3 MB
19 - Transfer Learning in PyTorch - Image Classification/001 Data Augmentation.mp4
126.2 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/005 Part 4 Building the Network.mp4
114.9 MB
16 - CNN Architectures/003 Residual Networks Part 2.mp4
112.9 MB
38 - Vision Transformers/003 Vision Transformer Part 3.mp4
111.6 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/010 Train Function.mp4
111.0 MB
35 - Universal Transformers/002 Practical Universal Transformers Modifying the Transformers code.mp4
110.2 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/006 Part 5 Training the Network.mp4
109.8 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/008 Designing the Decoder Part 2.mp4
109.4 MB
12 - Implementing a Neural Network from Scratch with Numpy/008 Backpropagation.mp4
107.0 MB
16 - CNN Architectures/005 Stochastic Depth.mp4
105.8 MB
28 - Practical Recurrent Networks in PyTorch/007 Generating Text.mp4
103.1 MB
19 - Transfer Learning in PyTorch - Image Classification/002 Loading the Dataset.mp4
101.3 MB
39 - GPT/013 (6) GPT Implementation Part 1.mp4
101.3 MB
39 - GPT/012 (5) GPT Implementation Part 1.mp4
100.4 MB
09 - Data Augmentation/003 2_Data Augmentation Techniques Part 2.mp4
99.8 MB
17 - Practical Residual Networks in PyTorch/004 Practical ResNet Part 4.mp4
97.6 MB
34 - Build a Chatbot with Transformers/003 Dataset Preprocessing Part 2.mp4
94.4 MB
08 - Introduction to PyTorch/004 How PyTorch Works.mp4
93.1 MB
25 - Practical Neural Style Transfer in PyTorch/004 NST Practical Part 4.mp4
92.3 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/004 Constructing the Dataset Part 1.mp4
91.9 MB
37 - BERT/005 Exploring Transformers.mp4
91.3 MB
16 - CNN Architectures/002 Residual Networks Part 1.mp4
91.0 MB
02 - Loss Functions/011 Triplet Ranking Loss.mp4
90.9 MB
38 - Vision Transformers/001 Vision Transformer Part 1.mp4
89.4 MB
26 - Recurrent Neural Networks/007 LSTMs.mp4
89.0 MB
25 - Practical Neural Style Transfer in PyTorch/002 NST Practical Part 2.mp4
88.7 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/007 Designing the Decoder Part 1.mp4
88.5 MB
21 - YOLO Object Detection (Theory)/003 YOLO Theory Part 3.mp4
88.5 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/009 Creating the Decoder Part 3.mp4
88.1 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/002 Part 1 Data Preprocessing.mp4
86.6 MB
28 - Practical Recurrent Networks in PyTorch/006 Training the Network.mp4
86.5 MB
34 - Build a Chatbot with Transformers/011 MultiHead Attention Implementation Part 3.mp4
86.4 MB
30 - Sequence Modelling/001 Sequence Modeling.mp4
85.5 MB
21 - YOLO Object Detection (Theory)/006 YOLO Theory Part 6.mp4
85.3 MB
09 - Data Augmentation/002 2_Data Augmentation Techniques Part 1.mp4
85.2 MB
20 - Convolutional Networks Visualization/002 Processing the Model.mp4
84.4 MB
01 - How Neural Networks and Backpropagation Works/005 The Perceptron.mp4
84.3 MB
39 - GPT/010 (3) GPT Implementation Part 1.mp4
84.1 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/003 Importing and Defining Parameters.mp4
82.9 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/007 Creating the Decoder Part 1.mp4
82.8 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/006 Training the CNN.mp4
82.0 MB
39 - GPT/009 (2) GPT Implementation Part 1.mp4
81.0 MB
34 - Build a Chatbot with Transformers/015 Transformer.mp4
80.7 MB
09 - Data Augmentation/004 2_Data Augmentation Techniques Part 3.mp4
80.6 MB
20 - Convolutional Networks Visualization/003 Visualizing the Feature Maps.mp4
80.5 MB
29 - Saving and Loading Models/001 Saving and Loading Part 1.mp4
79.9 MB
35 - Universal Transformers/003 Transformers for other tasks.mp4
79.4 MB
34 - Build a Chatbot with Transformers/020 Evaluation Function.mp4
77.6 MB
21 - YOLO Object Detection (Theory)/001 YOLO Theory Part 1.mp4
75.4 MB
23 - Practical Variational Autoencoders in PyTorch/001 Practical VAE Part 1.mp4
74.9 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/011 Defining Hyperparameters.mp4
73.7 MB
21 - YOLO Object Detection (Theory)/005 YOLO Theory Part 5.mp4
73.5 MB
25 - Practical Neural Style Transfer in PyTorch/003 NST Practical Part 3.mp4
73.3 MB
33 - Transformers/004 Positional Encoding.mp4
72.9 MB
12 - Implementing a Neural Network from Scratch with Numpy/007 Backpropagation Equations.mp4
72.7 MB
04 - Regularization and Normalization/006 Batch Normalization.mp4
71.9 MB
17 - Practical Residual Networks in PyTorch/003 Practical ResNet Part 3.mp4
71.7 MB
08 - Introduction to PyTorch/006 Torch Tensors - Part 2.mp4
71.2 MB
34 - Build a Chatbot with Transformers/019 Training Function.mp4
70.4 MB
23 - Practical Variational Autoencoders in PyTorch/002 Practical VAE Part 2.mp4
70.0 MB
19 - Transfer Learning in PyTorch - Image Classification/006 Testing and Visualizing the results.mp4
70.0 MB
16 - CNN Architectures/007 Densely Connected Networks.mp4
69.1 MB
14 - Convolutional Neural Networks/014 DropBlock Dropout in CNNs.mp4
68.5 MB
07 - Weight Initialization/003 Xavier Initialization.mp4
68.1 MB
28 - Practical Recurrent Networks in PyTorch/005 Creating the Network.mp4
67.6 MB
23 - Practical Variational Autoencoders in PyTorch/003 Practical VAE Part 3.mp4
66.6 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/008 Creating the Decoder Part 2.mp4
66.2 MB
39 - GPT/001 GPT Part 1.mp4
66.2 MB
34 - Build a Chatbot with Transformers/021 Main Function and User Evaluation.mp4
65.9 MB
28 - Practical Recurrent Networks in PyTorch/003 Processing the Text.mp4
65.8 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/012 Evaluation Function.mp4
64.7 MB
34 - Build a Chatbot with Transformers/006 Dataset Preprocessing Part 5.mp4
64.1 MB
05 - Optimization/013 AMSGrad.mp4
63.9 MB
12 - Implementing a Neural Network from Scratch with Numpy/003 Forward Propagation.mp4
63.3 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/006 Creating the Encoder.mp4
62.9 MB
19 - Transfer Learning in PyTorch - Image Classification/004 Understanding the data.mp4
61.7 MB
14 - Convolutional Neural Networks/009 Activation, Pooling and FC.mp4
61.6 MB
17 - Practical Residual Networks in PyTorch/002 Practical ResNet Part 2.mp4
61.3 MB
39 - GPT/014 (7) GPT Implementation Part 1.mp4
59.5 MB
22 - Autoencoders and Variational Autoencoders/007 Deep Fake.mp4
59.3 MB
34 - Build a Chatbot with Transformers/013 Encoder Layer.mp4
58.8 MB
29 - Saving and Loading Models/002 Saving and Loading Part 2.mp4
58.1 MB
34 - Build a Chatbot with Transformers/002 Dataset Preprocessing Part 1.mp4
57.9 MB
34 - Build a Chatbot with Transformers/004 Dataset Preprocessing Part 3.mp4
57.8 MB
08 - Introduction to PyTorch/003 Installing PyTorch and an Introduction.mp4
57.5 MB
05 - Optimization/011 Weight Decay.mp4
56.9 MB
34 - Build a Chatbot with Transformers/007 Data Loading and Masking.mp4
56.6 MB
19 - Transfer Learning in PyTorch - Image Classification/003 Modifying the Network.mp4
56.5 MB
02 - Loss Functions/002 L1 Loss (MAE).mp4
56.3 MB
34 - Build a Chatbot with Transformers/008 Embeddings.mp4
55.7 MB
05 - Optimization/009 Adam Optimization.mp4
55.5 MB
21 - YOLO Object Detection (Theory)/008 YOLO Theory Part 8.mp4
54.6 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/003 Understanding the Encoder.mp4
54.6 MB
21 - YOLO Object Detection (Theory)/002 YOLO Theory Part 2.mp4
54.1 MB
08 - Introduction to PyTorch/005 Torch Tensors - Part 1.mp4
53.8 MB
04 - Regularization and Normalization/003 Dropout.mp4
53.7 MB
33 - Transformers/016 Dropout.mp4
53.7 MB
18 - Transposed Convolutions/002 Convolution Operation as Matrix Multiplication.mp4
53.4 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/003 Accuracy Calculation.mp4
53.3 MB
11 - Visualize the Learning Process/005 Visualize Learning Part 5.mp4
53.2 MB
17 - Practical Residual Networks in PyTorch/001 Practical ResNet Part 1.mp4
53.2 MB
22 - Autoencoders and Variational Autoencoders/004 Variational Autoencoders.mp4
53.0 MB
01 - How Neural Networks and Backpropagation Works/004 The Essence of Neural Networks.mp4
52.4 MB
24 - Neural Style Transfer/003 NST Theory Part 3.mp4
52.2 MB
34 - Build a Chatbot with Transformers/016 AdamWarmup.mp4
51.8 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/003 Cyclic Learning Rate.mp4
51.7 MB
12 - Implementing a Neural Network from Scratch with Numpy/004 Loss Function.mp4
50.9 MB
02 - Loss Functions/010 Hinge Loss.mp4
50.9 MB
12 - Implementing a Neural Network from Scratch with Numpy/001 The Dataset and Hyperparameters.mp4
50.9 MB
21 - YOLO Object Detection (Theory)/007 YOLO Theory Part 7.mp4
50.7 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/004 Defining the Network Class.mp4
50.5 MB
26 - Recurrent Neural Networks/006 Vanishing and Exploding Gradient Problem.mp4
49.5 MB
33 - Transformers/003 Input Embeddings.mp4
48.7 MB
08 - Introduction to PyTorch/007 Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4
47.6 MB
25 - Practical Neural Style Transfer in PyTorch/001 NST Practical Part 1.mp4
47.4 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/002 Step Learning Rate Decay.mp4
47.4 MB
08 - Introduction to PyTorch/008 Automatic Differentiation.mp4
47.0 MB
16 - CNN Architectures/009 Seperable Convolutions.mp4
46.8 MB
27 - Word Embeddings/001 What are Word Embeddings.mp4
46.4 MB
08 - Introduction to PyTorch/010 Weight Initialization in PyTorch.mp4
46.3 MB
07 - Weight Initialization/002 What happens when all weights are initialized to the same value.mp4
46.0 MB
33 - Transformers/005 MultiHead Attention Part 1.mp4
45.8 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/004 Part 3 Creating and Loading the Dataset.mp4
45.4 MB
16 - CNN Architectures/011 Is a 1x1 convolutional filter equivalent to a FC layer.mp4
45.3 MB
02 - Loss Functions/009 Contrastive Loss.mp4
44.9 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/002 Visualizing and Loading the Dataset.mp4
44.3 MB
20 - Convolutional Networks Visualization/001 Data and the Model.mp4
44.0 MB
34 - Build a Chatbot with Transformers/014 Decoder Layer.mp4
43.9 MB
01 - How Neural Networks and Backpropagation Works/003 The Rise of Deep Learning.mp4
43.8 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/002 Introduction.mp4
43.6 MB
08 - Introduction to PyTorch/002 Computation Graphs and Deep Learning Frameworks.mp4
43.5 MB
34 - Build a Chatbot with Transformers/009 MultiHead Attention Implementation Part 1.mp4
43.1 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/005 Constructing the Dataset Part 2.mp4
43.0 MB
36 - Google Colab and Gradient Accumulation/002 Gradient Accumulation.mp4
42.6 MB
28 - Practical Recurrent Networks in PyTorch/004 Defining and Visualizing the Parameters.mp4
42.5 MB
01 - How Neural Networks and Backpropagation Works/007 The Forward Propagation.mp4
42.4 MB
26 - Recurrent Neural Networks/004 Backpropagation Through Time.mp4
41.6 MB
12 - Implementing a Neural Network from Scratch with Numpy/009 Initializing the Network.mp4
41.3 MB
11 - Visualize the Learning Process/006 Visualize Learning Part 6.mp4
41.2 MB
21 - YOLO Object Detection (Theory)/012 YOLO Theory Part 12.mp4
41.0 MB
26 - Recurrent Neural Networks/002 Vanilla RNNs.mp4
40.0 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/001 Implementation Details.mp4
39.8 MB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/003 Part 2 Data Normalization.mp4
39.5 MB
39 - GPT/005 Technical Details of GPT.mp4
39.3 MB
21 - YOLO Object Detection (Theory)/011 YOLO Theory Part 11.mp4
38.8 MB
14 - Convolutional Neural Networks/003 Filters and Features.mp4
38.4 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/001 Loading and Normalizing the Dataset.mp4
38.4 MB
14 - Convolutional Neural Networks/001 Prerequisite Filters.mp4
38.2 MB
24 - Neural Style Transfer/001 NST Theory Part 1.mp4
37.7 MB
37 - BERT/004 Fine-tuning BERT.mp4
37.7 MB
38 - Vision Transformers/002 Vision Transformer Part 2.mp4
37.0 MB
05 - Optimization/001 Batch Gradient Descent.mp4
37.0 MB
33 - Transformers/002 Introduction to Transformers.mp4
36.7 MB
05 - Optimization/012 Decoupling Weight Decay.mp4
36.7 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/010 Classifying your own Handwritten images.mp4
36.7 MB
34 - Build a Chatbot with Transformers/010 MultiHead Attention Implementation Part 2.mp4
36.6 MB
33 - Transformers/006 MultiHead Attention Part 2.mp4
36.6 MB
28 - Practical Recurrent Networks in PyTorch/002 Creating the Dictionary.mp4
36.3 MB
29 - Saving and Loading Models/003 Saving and Loading Part 3.mp4
35.9 MB
39 - GPT/003 Zero-Shot Predictions with GPT.mp4
35.1 MB
14 - Convolutional Neural Networks/012 CNN Characteristics.mp4
34.9 MB
04 - Regularization and Normalization/007 Layer Normalization.mp4
34.8 MB
02 - Loss Functions/006 Softmax Function.mp4
34.2 MB
39 - GPT/002 GPT Part 2.mp4
34.0 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/005 Creating the network class and the network functions.mp4
33.9 MB
27 - Word Embeddings/005 Word Embeddings in PyTorch.mp4
32.7 MB
16 - CNN Architectures/001 CNN Architectures Part 1.mp4
32.3 MB
22 - Autoencoders and Variational Autoencoders/001 Autoencoders.mp4
32.0 MB
09 - Data Augmentation/001 1_Introduction to Data Augmentation.mp4
31.8 MB
02 - Loss Functions/004 Binary Cross Entropy Loss.mp4
31.4 MB
19 - Transfer Learning in PyTorch - Image Classification/005 Finetuning the Network.mp4
31.0 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/002 Utility Functions.mp4
30.7 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/008 Plotting and Putting into Action.mp4
30.4 MB
34 - Build a Chatbot with Transformers/018 Defining the Model.mp4
30.4 MB
25 - Practical Neural Style Transfer in PyTorch/005 Fast Neural Style Transfer.mp4
30.3 MB
30 - Sequence Modelling/004 How Attention Mechanisms Work.mp4
29.4 MB
03 - Activation Functions/008 Mish Activation.mp4
29.3 MB
01 - How Neural Networks and Backpropagation Works/006 Gradient Descent.mp4
29.0 MB
37 - BERT/003 Next Sentence Prediction.mp4
29.0 MB
34 - Build a Chatbot with Transformers/012 Feed Forward Implementation.mp4
28.9 MB
05 - Optimization/005 Exponentially Weighted Average Implementation.mp4
28.9 MB
16 - CNN Architectures/008 Squeeze-Excite Networks.mp4
28.8 MB
12 - Implementing a Neural Network from Scratch with Numpy/010 Training the Model.mp4
28.6 MB
18 - Transposed Convolutions/003 Transposed Convolutions.mp4
28.4 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/007 Testing the Network.mp4
28.3 MB
39 - GPT/004 Byte-Pair Encoding.mp4
28.3 MB
39 - GPT/011 (4) GPT Implementation Part 1.mp4
27.3 MB
05 - Optimization/008 RMSProp.mp4
27.3 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/004 Cosine Annealing with Warm Restarts.mp4
26.9 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/007 Testing the CNN.mp4
26.1 MB
37 - BERT/001 What is BERT and its structure.mp4
25.5 MB
24 - Neural Style Transfer/002 NST Theory Part 2.mp4
24.9 MB
33 - Transformers/013 Cross Entropy Loss.mp4
24.4 MB
36 - Google Colab and Gradient Accumulation/001 Running your models on Google Colab.mp4
23.9 MB
04 - Regularization and Normalization/002 L1 and L2 Regularization.mp4
23.7 MB
14 - Convolutional Neural Networks/006 More on Convolutions.mp4
23.6 MB
01 - How Neural Networks and Backpropagation Works/009 Backpropagation Part 1.mp4
22.8 MB
18 - Transposed Convolutions/001 Introduction to Transposed Convolutions.mp4
22.6 MB
33 - Transformers/017 Learning Rate Warmup.mp4
22.3 MB
11 - Visualize the Learning Process/007 Neural Networks Playground.mp4
22.0 MB
11 - Visualize the Learning Process/003 Visualize Learning Part 3.mp4
21.8 MB
39 - GPT/006 Playing with HuggingFace models.mp4
21.8 MB
30 - Sequence Modelling/002 Image Captioning.mp4
21.4 MB
16 - CNN Architectures/010 Transfer Learning.mp4
21.3 MB
34 - Build a Chatbot with Transformers/022 Action.mp4
21.3 MB
14 - Convolutional Neural Networks/015 Softmax with Temperature.mp4
21.2 MB
02 - Loss Functions/003 Huber Loss.mp4
21.2 MB
01 - How Neural Networks and Backpropagation Works/010 Backpropagation Part 2.mp4
21.1 MB
26 - Recurrent Neural Networks/009 GRUs.mp4
21.0 MB
14 - Convolutional Neural Networks/008 A Tool for Convolution Visualization.mp4
20.9 MB
22 - Autoencoders and Variational Autoencoders/002 Denoising Autoencoders.mp4
20.8 MB
05 - Optimization/006 Bias Correction in Exponentially Weighted Averages.mp4
20.7 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/005 Understanding Pack Padded Sequence.mp4
20.5 MB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/002 Code Details.mp4
20.2 MB
03 - Activation Functions/006 Gated Linear Units (GLU).mp4
19.9 MB
04 - Regularization and Normalization/008 Group Normalization.mp4
19.9 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/014 Results.mp4
19.7 MB
02 - Loss Functions/008 KL divergence Loss.mp4
19.6 MB
11 - Visualize the Learning Process/001 Visualize Learning Part 1.mp4
19.5 MB
33 - Transformers/008 Residual Learning.mp4
19.4 MB
21 - YOLO Object Detection (Theory)/004 YOLO Theory Part 4.mp4
19.3 MB
05 - Optimization/007 Momentum.mp4
19.3 MB
33 - Transformers/011 Masked MultiHead Attention.mp4
19.2 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/005 Understanding the Propagation.mp4
19.1 MB
33 - Transformers/014 KL Divergence Loss.mp4
18.5 MB
02 - Loss Functions/005 Cross Entropy Loss.mp4
18.1 MB
21 - YOLO Object Detection (Theory)/010 YOLO Theory Part 10.mp4
18.0 MB
12 - Implementing a Neural Network from Scratch with Numpy/002 Understanding the Implementation.mp4
18.0 MB
14 - Convolutional Neural Networks/002 Introduction to Convolutional Networks and the need for them.mp4
17.7 MB
12 - Implementing a Neural Network from Scratch with Numpy/005 Prediction.mp4
17.6 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/005 Batch Size vs Learning Rate.mp4
17.5 MB
04 - Regularization and Normalization/001 Overfitting.mp4
17.4 MB
03 - Activation Functions/001 Why we need activation functions.mp4
17.4 MB
39 - GPT/008 (1) GPT Implementation Part 1.mp4
16.9 MB
37 - BERT/002 Masked Language Modelling.mp4
16.4 MB
11 - Visualize the Learning Process/004 Visualize Learning Part 4.mp4
15.7 MB
03 - Activation Functions/004 ReLU and PReLU.mp4
15.7 MB
35 - Universal Transformers/001 Universal Transformers.mp4
15.6 MB
03 - Activation Functions/002 Sigmoid Activation.mp4
15.5 MB
33 - Transformers/009 Layer Normalization.mp4
15.3 MB
05 - Optimization/004 Exponentially Weighted Average Intuition.mp4
15.1 MB
26 - Recurrent Neural Networks/010 CNN-LSTM.mp4
15.0 MB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/009 Teacher Forcing.mp4
14.6 MB
02 - Loss Functions/001 Mean Squared Error (MSE).mp4
14.2 MB
34 - Build a Chatbot with Transformers/005 Dataset Preprocessing Part 4.mp4
14.2 MB
14 - Convolutional Neural Networks/013 Regularization and Batch Normalization in CNNs.mp4
14.0 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/004 Defining the Model.mp4
13.6 MB
14 - Convolutional Neural Networks/005 Convolution over Volume Animation.mp4
13.3 MB
15 - Practical Convolutional Networks in PyTorch - Image Classification/009 Predicting an image.mp4
13.3 MB
07 - Weight Initialization/001 Normal Distribution.mp4
13.2 MB
26 - Recurrent Neural Networks/001 Why do we need RNNs.mp4
12.9 MB
21 - YOLO Object Detection (Theory)/009 YOLO Theory Part 9.mp4
12.8 MB
05 - Optimization/002 Stochastic Gradient Descent.mp4
12.7 MB
30 - Sequence Modelling/003 Attention Mechanisms.mp4
12.6 MB
06 - Hyperparameter Tuning and Learning Rate Scheduling/001 Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4
12.4 MB
33 - Transformers/010 Feed Forward.mp4
11.7 MB
26 - Recurrent Neural Networks/003 Quiz Solution Discussion.mp4
11.5 MB
03 - Activation Functions/003 Tanh Activation.mp4
11.1 MB
04 - Regularization and Normalization/004 DropConnect.mp4
10.6 MB
14 - Convolutional Neural Networks/011 Important formulas.mp4
10.3 MB
22 - Autoencoders and Variational Autoencoders/003 The Problem in Autoencoders.mp4
10.1 MB
33 - Transformers/015 Label Smoothing.mp4
10.0 MB
26 - Recurrent Neural Networks/008 Bidirectional RNNs.mp4
9.9 MB
04 - Regularization and Normalization/005 Normalization.mp4
9.7 MB
16 - CNN Architectures/006 CNN Architectures Part 2.mp4
9.5 MB
03 - Activation Functions/007 Swish Activation.mp4
9.5 MB
32 - Practical Sequence Modelling in PyTorch Image Captioning/013 Training.mp4
9.4 MB
14 - Convolutional Neural Networks/010 CNN Visualization.mp4
9.3 MB
07 - Weight Initialization/004 He Norm Initialization.mp4
9.3 MB
27 - Word Embeddings/002 Visualizing Word Embeddings.mp4
9.2 MB
11 - Visualize the Learning Process/002 Visualize Learning Part 2.mp4
8.8 MB
03 - Activation Functions/005 Exponentially Linear Units (ELU).mp4
8.6 MB
33 - Transformers/007 Concat and Linear.mp4
7.7 MB
27 - Word Embeddings/004 Word Embeddings Models.mp4
7.6 MB
33 - Transformers/012 MultiHead Attention in Decoder.mp4
7.5 MB
05 - Optimization/010 SWATS - Switching from Adam to SGD.mp4
6.7 MB
26 - Recurrent Neural Networks/005 Stacked RNNs.mp4
6.0 MB
05 - Optimization/003 Mini-Batch Gradient Descent.mp4
5.2 MB
14 - Convolutional Neural Networks/007 Quiz Solution Discussion.mp4
4.7 MB
27 - Word Embeddings/003 Measuring Word Embeddings.mp4
4.2 MB
08 - Introduction to PyTorch/001 CODE FOR THIS COURSE.mp4
1.2 MB
20 - Convolutional Networks Visualization/19339744-dog.jpg
95.5 kB
22 - Autoencoders and Variational Autoencoders/005 Probability Distributions Recap.vtt
39.4 kB
20 - Convolutional Networks Visualization/13787548-imagenet-class-index.json
35.4 kB
22 - Autoencoders and Variational Autoencoders/006 Loss Function Derivation for VAE.vtt
34.5 kB
08 - Introduction to PyTorch/009 Loss Functions in PyTorch.vtt
33.8 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/006 Training the Network.vtt
29.6 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/003 Building the CNN.vtt
29.2 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/004 Defining the Encoder.vtt
28.5 kB
26 - Recurrent Neural Networks/007 LSTMs.vtt
26.1 kB
12 - Implementing a Neural Network from Scratch with Numpy/008 Backpropagation.vtt
25.3 kB
23 - Practical Variational Autoencoders in PyTorch/001 Practical VAE Part 1.vtt
23.4 kB
34 - Build a Chatbot with Transformers/017 Loss with Label Smoothing.vtt
22.8 kB
08 - Introduction to PyTorch/004 How PyTorch Works.vtt
21.9 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/006 Part 5 Training the Network.vtt
21.2 kB
16 - CNN Architectures/003 Residual Networks Part 2.vtt
21.2 kB
09 - Data Augmentation/003 2_Data Augmentation Techniques Part 2.vtt
21.1 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/006 Creating the Encoder.vtt
20.8 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/008 Designing the Decoder Part 2.vtt
20.8 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/005 Part 4 Building the Network.vtt
20.6 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/007 Creating the Decoder Part 1.vtt
20.5 kB
01 - How Neural Networks and Backpropagation Works/005 The Perceptron.vtt
19.6 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/012 Evaluation Function.vtt
19.5 kB
12 - Implementing a Neural Network from Scratch with Numpy/004 Loss Function.vtt
19.3 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/006 Training the CNN.vtt
19.2 kB
34 - Build a Chatbot with Transformers/020 Evaluation Function.vtt
19.0 kB
36 - Google Colab and Gradient Accumulation/002 Gradient Accumulation.vtt
18.9 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/006 Designing the Attention Model.vtt
18.8 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/010 Train Function.vtt
18.5 kB
37 - BERT/005 Exploring Transformers.vtt
18.3 kB
34 - Build a Chatbot with Transformers/003 Dataset Preprocessing Part 2.vtt
18.3 kB
29 - Saving and Loading Models/001 Saving and Loading Part 1.vtt
17.8 kB
39 - GPT/013 (6) GPT Implementation Part 1.vtt
17.7 kB
34 - Build a Chatbot with Transformers/008 Embeddings.vtt
17.3 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/002 Part 1 Data Preprocessing.vtt
17.1 kB
25 - Practical Neural Style Transfer in PyTorch/004 NST Practical Part 4.vtt
16.9 kB
01 - How Neural Networks and Backpropagation Works/002 What Can Deep Learning Do.vtt
16.9 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/011 Defining Hyperparameters.vtt
16.8 kB
33 - Transformers/004 Positional Encoding.vtt
16.7 kB
16 - CNN Architectures/007 Densely Connected Networks.vtt
16.7 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/007 Designing the Decoder Part 1.vtt
16.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/002 Utility Functions.vtt
16.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/004 Constructing the Dataset Part 1.vtt
16.6 kB
39 - GPT/014 (7) GPT Implementation Part 1.vtt
16.6 kB
16 - CNN Architectures/005 Stochastic Depth.vtt
16.5 kB
39 - GPT/009 (2) GPT Implementation Part 1.vtt
16.4 kB
39 - GPT/010 (3) GPT Implementation Part 1.vtt
16.4 kB
08 - Introduction to PyTorch/002 Computation Graphs and Deep Learning Frameworks.vtt
16.1 kB
20 - Convolutional Networks Visualization/002 Processing the Model.vtt
16.1 kB
30 - Sequence Modelling/001 Sequence Modeling.vtt
16.0 kB
02 - Loss Functions/004 Binary Cross Entropy Loss.vtt
15.8 kB
38 - Vision Transformers/001 Vision Transformer Part 1.vtt
15.7 kB
14 - Convolutional Neural Networks/009 Activation, Pooling and FC.vtt
15.7 kB
17 - Practical Residual Networks in PyTorch/004 Practical ResNet Part 4.vtt
15.6 kB
35 - Universal Transformers/002 Practical Universal Transformers Modifying the Transformers code.vtt
15.6 kB
34 - Build a Chatbot with Transformers/007 Data Loading and Masking.vtt
15.5 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/009 Creating the Decoder Part 3.vtt
15.5 kB
26 - Recurrent Neural Networks/004 Backpropagation Through Time.vtt
15.4 kB
02 - Loss Functions/010 Hinge Loss.vtt
15.3 kB
02 - Loss Functions/011 Triplet Ranking Loss.vtt
15.2 kB
08 - Introduction to PyTorch/010 Weight Initialization in PyTorch.vtt
15.2 kB
20 - Convolutional Networks Visualization/003 Visualizing the Feature Maps.vtt
15.1 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/002 Step Learning Rate Decay.vtt
15.0 kB
33 - Transformers/013 Cross Entropy Loss.vtt
15.0 kB
28 - Practical Recurrent Networks in PyTorch/007 Generating Text.vtt
15.0 kB
34 - Build a Chatbot with Transformers/011 MultiHead Attention Implementation Part 3.vtt
14.9 kB
04 - Regularization and Normalization/006 Batch Normalization.vtt
14.8 kB
21 - YOLO Object Detection (Theory)/002 YOLO Theory Part 2.vtt
14.8 kB
12 - Implementing a Neural Network from Scratch with Numpy/007 Backpropagation Equations.vtt
14.8 kB
17 - Practical Residual Networks in PyTorch/001 Practical ResNet Part 1.vtt
14.8 kB
17 - Practical Residual Networks in PyTorch/002 Practical ResNet Part 2.vtt
14.8 kB
02 - Loss Functions/009 Contrastive Loss.vtt
14.8 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/001 Loading and Normalizing the Dataset.vtt
14.7 kB
33 - Transformers/002 Introduction to Transformers.vtt
14.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/001 Implementation Details.vtt
14.6 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/003 Importing and Defining Parameters.vtt
14.5 kB
39 - GPT/012 (5) GPT Implementation Part 1.vtt
14.5 kB
17 - Practical Residual Networks in PyTorch/003 Practical ResNet Part 3.vtt
14.4 kB
19 - Transfer Learning in PyTorch - Image Classification/001 Data Augmentation.vtt
14.3 kB
12 - Implementing a Neural Network from Scratch with Numpy/001 The Dataset and Hyperparameters.vtt
14.3 kB
14 - Convolutional Neural Networks/014 DropBlock Dropout in CNNs.vtt
14.3 kB
38 - Vision Transformers/003 Vision Transformer Part 3.vtt
14.3 kB
12 - Implementing a Neural Network from Scratch with Numpy/003 Forward Propagation.vtt
14.2 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/005 Constructing the Dataset Part 2.vtt
14.1 kB
16 - CNN Architectures/001 CNN Architectures Part 1.vtt
14.1 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/010 Classifying your own Handwritten images.vtt
14.1 kB
01 - How Neural Networks and Backpropagation Works/006 Gradient Descent.vtt
14.1 kB
23 - Practical Variational Autoencoders in PyTorch/003 Practical VAE Part 3.vtt
14.1 kB
05 - Optimization/008 RMSProp.vtt
14.0 kB
16 - CNN Architectures/009 Seperable Convolutions.vtt
13.7 kB
30 - Sequence Modelling/004 How Attention Mechanisms Work.vtt
13.7 kB
34 - Build a Chatbot with Transformers/015 Transformer.vtt
13.7 kB
08 - Introduction to PyTorch/005 Torch Tensors - Part 1.vtt
13.6 kB
23 - Practical Variational Autoencoders in PyTorch/002 Practical VAE Part 2.vtt
13.5 kB
19 - Transfer Learning in PyTorch - Image Classification/004 Understanding the data.vtt
13.5 kB
25 - Practical Neural Style Transfer in PyTorch/003 NST Practical Part 3.vtt
13.4 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/008 Creating the Decoder Part 2.vtt
13.4 kB
08 - Introduction to PyTorch/007 Numpy Bridge, Tensor Concatenation and Adding Dimensions.vtt
13.4 kB
01 - How Neural Networks and Backpropagation Works/009 Backpropagation Part 1.vtt
13.1 kB
28 - Practical Recurrent Networks in PyTorch/005 Creating the Network.vtt
13.1 kB
19 - Transfer Learning in PyTorch - Image Classification/002 Loading the Dataset.vtt
13.1 kB
08 - Introduction to PyTorch/003 Installing PyTorch and an Introduction.vtt
13.0 kB
11 - Visualize the Learning Process/005 Visualize Learning Part 5.vtt
13.0 kB
16 - CNN Architectures/002 Residual Networks Part 1.vtt
13.0 kB
22 - Autoencoders and Variational Autoencoders/004 Variational Autoencoders.vtt
12.9 kB
34 - Build a Chatbot with Transformers/019 Training Function.vtt
12.9 kB
34 - Build a Chatbot with Transformers/004 Dataset Preprocessing Part 3.vtt
12.9 kB
01 - How Neural Networks and Backpropagation Works/007 The Forward Propagation.vtt
12.8 kB
25 - Practical Neural Style Transfer in PyTorch/001 NST Practical Part 1.vtt
12.8 kB
39 - GPT/001 GPT Part 1.vtt
12.7 kB
26 - Recurrent Neural Networks/006 Vanishing and Exploding Gradient Problem.vtt
12.6 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/003 Accuracy Calculation.vtt
12.6 kB
24 - Neural Style Transfer/003 NST Theory Part 3.vtt
12.5 kB
28 - Practical Recurrent Networks in PyTorch/003 Processing the Text.vtt
12.4 kB
21 - YOLO Object Detection (Theory)/012 YOLO Theory Part 12.vtt
12.3 kB
34 - Build a Chatbot with Transformers/002 Dataset Preprocessing Part 1.vtt
12.3 kB
16 - CNN Architectures/008 Squeeze-Excite Networks.vtt
12.3 kB
28 - Practical Recurrent Networks in PyTorch/006 Training the Network.vtt
12.2 kB
33 - Transformers/005 MultiHead Attention Part 1.vtt
12.1 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/003 Cyclic Learning Rate.vtt
12.1 kB
16 - CNN Architectures/011 Is a 1x1 convolutional filter equivalent to a FC layer.vtt
12.1 kB
19 - Transfer Learning in PyTorch - Image Classification/006 Testing and Visualizing the results.vtt
11.9 kB
08 - Introduction to PyTorch/006 Torch Tensors - Part 2.vtt
11.9 kB
07 - Weight Initialization/002 What happens when all weights are initialized to the same value.vtt
11.8 kB
01 - How Neural Networks and Backpropagation Works/004 The Essence of Neural Networks.vtt
11.8 kB
07 - Weight Initialization/003 Xavier Initialization.vtt
11.7 kB
14 - Convolutional Neural Networks/015 Softmax with Temperature.vtt
11.7 kB
34 - Build a Chatbot with Transformers/006 Dataset Preprocessing Part 5.vtt
11.6 kB
34 - Build a Chatbot with Transformers/021 Main Function and User Evaluation.vtt
11.5 kB
25 - Practical Neural Style Transfer in PyTorch/002 NST Practical Part 2.vtt
11.5 kB
14 - Convolutional Neural Networks/003 Filters and Features.vtt
11.4 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/002 Visualizing and Loading the Dataset.vtt
11.4 kB
21 - YOLO Object Detection (Theory)/003 YOLO Theory Part 3.vtt
11.3 kB
39 - GPT/002 GPT Part 2.vtt
11.2 kB
21 - YOLO Object Detection (Theory)/006 YOLO Theory Part 6.vtt
11.2 kB
01 - How Neural Networks and Backpropagation Works/010 Backpropagation Part 2.vtt
11.2 kB
27 - Word Embeddings/001 What are Word Embeddings.vtt
11.2 kB
39 - GPT/008 (1) GPT Implementation Part 1.vtt
11.2 kB
04 - Regularization and Normalization/003 Dropout.vtt
11.1 kB
33 - Transformers/016 Dropout.vtt
11.1 kB
11 - Visualize the Learning Process/001 Visualize Learning Part 1.vtt
11.0 kB
04 - Regularization and Normalization/002 L1 and L2 Regularization.vtt
11.0 kB
22 - Autoencoders and Variational Autoencoders/001 Autoencoders.vtt
11.0 kB
09 - Data Augmentation/002 2_Data Augmentation Techniques Part 1.vtt
11.0 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/004 Defining the Network Class.vtt
10.9 kB
38 - Vision Transformers/002 Vision Transformer Part 2.vtt
10.9 kB
08 - Introduction to PyTorch/008 Automatic Differentiation.vtt
10.9 kB
05 - Optimization/013 AMSGrad.vtt
10.8 kB
16 - CNN Architectures/010 Transfer Learning.vtt
10.7 kB
37 - BERT/003 Next Sentence Prediction.vtt
10.6 kB
05 - Optimization/005 Exponentially Weighted Average Implementation.vtt
10.5 kB
35 - Universal Transformers/003 Transformers for other tasks.vtt
10.4 kB
18 - Transposed Convolutions/002 Convolution Operation as Matrix Multiplication.vtt
10.4 kB
37 - BERT/001 What is BERT and its structure.vtt
10.3 kB
39 - GPT/011 (4) GPT Implementation Part 1.vtt
10.3 kB
02 - Loss Functions/002 L1 Loss (MAE).vtt
10.2 kB
12 - Implementing a Neural Network from Scratch with Numpy/002 Understanding the Implementation.vtt
10.1 kB
14 - Convolutional Neural Networks/012 CNN Characteristics.vtt
10.1 kB
19 - Transfer Learning in PyTorch - Image Classification/003 Modifying the Network.vtt
10.1 kB
26 - Recurrent Neural Networks/002 Vanilla RNNs.vtt
10.0 kB
02 - Loss Functions/005 Cross Entropy Loss.vtt
10.0 kB
33 - Transformers/006 MultiHead Attention Part 2.vtt
9.7 kB
39 - GPT/004 Byte-Pair Encoding.vtt
9.7 kB
39 - GPT/003 Zero-Shot Predictions with GPT.vtt
9.6 kB
34 - Build a Chatbot with Transformers/010 MultiHead Attention Implementation Part 2.vtt
9.6 kB
36 - Google Colab and Gradient Accumulation/001 Running your models on Google Colab.vtt
9.5 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/003 Part 2 Data Normalization.vtt
9.5 kB
11 - Visualize the Learning Process/003 Visualize Learning Part 3.vtt
9.5 kB
21 - YOLO Object Detection (Theory)/005 YOLO Theory Part 5.vtt
9.5 kB
09 - Data Augmentation/004 2_Data Augmentation Techniques Part 3.vtt
9.4 kB
20 - Convolutional Networks Visualization/001 Data and the Model.vtt
9.4 kB
04 - Regularization and Normalization/007 Layer Normalization.vtt
9.4 kB
22 - Autoencoders and Variational Autoencoders/007 Deep Fake.vtt
9.3 kB
29 - Saving and Loading Models/002 Saving and Loading Part 2.vtt
9.3 kB
02 - Loss Functions/006 Softmax Function.vtt
9.2 kB
34 - Build a Chatbot with Transformers/013 Encoder Layer.vtt
9.1 kB
11 - Visualize the Learning Process/006 Visualize Learning Part 6.vtt
9.1 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/005 Understanding Pack Padded Sequence.vtt
8.9 kB
39 - GPT/006 Playing with HuggingFace models.vtt
8.9 kB
02 - Loss Functions/008 KL divergence Loss.vtt
8.9 kB
28 - Practical Recurrent Networks in PyTorch/004 Defining and Visualizing the Parameters.vtt
8.8 kB
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/004 Part 3 Creating and Loading the Dataset.vtt
8.8 kB
33 - Transformers/009 Layer Normalization.vtt
8.8 kB
22 - Autoencoders and Variational Autoencoders/002 Denoising Autoencoders.vtt
8.6 kB
14 - Convolutional Neural Networks/002 Introduction to Convolutional Networks and the need for them.vtt
8.6 kB
05 - Optimization/011 Weight Decay.vtt
8.6 kB
02 - Loss Functions/001 Mean Squared Error (MSE).vtt
8.6 kB
05 - Optimization/009 Adam Optimization.vtt
8.6 kB
35 - Universal Transformers/001 Universal Transformers.vtt
8.6 kB
03 - Activation Functions/004 ReLU and PReLU.vtt
8.5 kB
24 - Neural Style Transfer/001 NST Theory Part 1.vtt
8.5 kB
37 - BERT/004 Fine-tuning BERT.vtt
8.4 kB
39 - GPT/005 Technical Details of GPT.vtt
8.4 kB
18 - Transposed Convolutions/001 Introduction to Transposed Convolutions.vtt
8.4 kB
26 - Recurrent Neural Networks/009 GRUs.vtt
8.3 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/007 Testing the CNN.vtt
8.2 kB
09 - Data Augmentation/001 1_Introduction to Data Augmentation.vtt
8.2 kB
34 - Build a Chatbot with Transformers/009 MultiHead Attention Implementation Part 1.vtt
8.1 kB
34 - Build a Chatbot with Transformers/016 AdamWarmup.vtt
8.1 kB
21 - YOLO Object Detection (Theory)/007 YOLO Theory Part 7.vtt
8.1 kB
33 - Transformers/011 Masked MultiHead Attention.vtt
8.1 kB
14 - Convolutional Neural Networks/006 More on Convolutions.vtt
8.1 kB
33 - Transformers/017 Learning Rate Warmup.vtt
8.0 kB
07 - Weight Initialization/001 Normal Distribution.vtt
8.0 kB
21 - YOLO Object Detection (Theory)/004 YOLO Theory Part 4.vtt
8.0 kB
33 - Transformers/003 Input Embeddings.vtt
7.9 kB
33 - Transformers/008 Residual Learning.vtt
7.8 kB
34 - Build a Chatbot with Transformers/018 Defining the Model.vtt
7.7 kB
18 - Transposed Convolutions/003 Transposed Convolutions.vtt
7.7 kB
05 - Optimization/001 Batch Gradient Descent.vtt
7.7 kB
03 - Activation Functions/002 Sigmoid Activation.vtt
7.7 kB
02 - Loss Functions/003 Huber Loss.vtt
7.7 kB
12 - Implementing a Neural Network from Scratch with Numpy/009 Initializing the Network.vtt
7.7 kB
01 - How Neural Networks and Backpropagation Works/003 The Rise of Deep Learning.vtt
7.6 kB
24 - Neural Style Transfer/002 NST Theory Part 2.vtt
7.4 kB
05 - Optimization/006 Bias Correction in Exponentially Weighted Averages.vtt
7.4 kB
04 - Regularization and Normalization/008 Group Normalization.vtt
7.3 kB
33 - Transformers/014 KL Divergence Loss.vtt
7.2 kB
27 - Word Embeddings/005 Word Embeddings in PyTorch.vtt
7.2 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/005 Creating the network class and the network functions.vtt
7.2 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/002 Introduction.vtt
7.2 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/003 Understanding the Encoder.vtt
7.2 kB
05 - Optimization/007 Momentum.vtt
7.2 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/005 Understanding the Propagation.vtt
7.1 kB
03 - Activation Functions/008 Mish Activation.vtt
7.0 kB
29 - Saving and Loading Models/003 Saving and Loading Part 3.vtt
7.0 kB
28 - Practical Recurrent Networks in PyTorch/002 Creating the Dictionary.vtt
7.0 kB
21 - YOLO Object Detection (Theory)/011 YOLO Theory Part 11.vtt
6.9 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/004 Cosine Annealing with Warm Restarts.vtt
6.7 kB
37 - BERT/002 Masked Language Modelling.vtt
6.6 kB
30 - Sequence Modelling/003 Attention Mechanisms.vtt
6.6 kB
11 - Visualize the Learning Process/004 Visualize Learning Part 4.vtt
6.5 kB
21 - YOLO Object Detection (Theory)/008 YOLO Theory Part 8.vtt
6.5 kB
05 - Optimization/004 Exponentially Weighted Average Intuition.vtt
6.4 kB
12 - Implementing a Neural Network from Scratch with Numpy/005 Prediction.vtt
6.3 kB
14 - Convolutional Neural Networks/011 Important formulas.vtt
6.3 kB
34 - Build a Chatbot with Transformers/014 Decoder Layer.vtt
6.3 kB
11 - Visualize the Learning Process/007 Neural Networks Playground.vtt
6.3 kB
19 - Transfer Learning in PyTorch - Image Classification/005 Finetuning the Network.vtt
6.3 kB
26 - Recurrent Neural Networks/001 Why do we need RNNs.vtt
6.2 kB
21 - YOLO Object Detection (Theory)/001 YOLO Theory Part 1.vtt
6.2 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/001 Introduction to Hyperparameter Tuning and Learning Rate Recap.vtt
6.2 kB
30 - Sequence Modelling/002 Image Captioning.vtt
6.2 kB
05 - Optimization/002 Stochastic Gradient Descent.vtt
6.1 kB
22 - Autoencoders and Variational Autoencoders/003 The Problem in Autoencoders.vtt
6.0 kB
31 - Practical Sequence Modelling in PyTorch Chatbot Application/009 Teacher Forcing.vtt
6.0 kB
04 - Regularization and Normalization/001 Overfitting.vtt
6.0 kB
26 - Recurrent Neural Networks/010 CNN-LSTM.vtt
6.0 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/009 Predicting an image.vtt
5.9 kB
14 - Convolutional Neural Networks/001 Prerequisite Filters.vtt
5.9 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/008 Plotting and Putting into Action.vtt
5.9 kB
04 - Regularization and Normalization/005 Normalization.vtt
5.7 kB
33 - Transformers/015 Label Smoothing.vtt
5.6 kB
14 - Convolutional Neural Networks/008 A Tool for Convolution Visualization.vtt
5.5 kB
05 - Optimization/012 Decoupling Weight Decay.vtt
5.4 kB
34 - Build a Chatbot with Transformers/005 Dataset Preprocessing Part 4.vtt
5.3 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/007 Testing the Network.vtt
5.2 kB
15 - Practical Convolutional Networks in PyTorch - Image Classification/004 Defining the Model.vtt
5.2 kB
12 - Implementing a Neural Network from Scratch with Numpy/010 Training the Model.vtt
4.9 kB
21 - YOLO Object Detection (Theory)/009 YOLO Theory Part 9.vtt
4.8 kB
26 - Recurrent Neural Networks/008 Bidirectional RNNs.vtt
4.8 kB
03 - Activation Functions/007 Swish Activation.vtt
4.8 kB
03 - Activation Functions/001 Why we need activation functions.vtt
4.8 kB
26 - Recurrent Neural Networks/003 Quiz Solution Discussion.vtt
4.8 kB
25 - Practical Neural Style Transfer in PyTorch/005 Fast Neural Style Transfer.vtt
4.8 kB
07 - Weight Initialization/004 He Norm Initialization.vtt
4.6 kB
03 - Activation Functions/005 Exponentially Linear Units (ELU).vtt
4.5 kB
14 - Convolutional Neural Networks/013 Regularization and Batch Normalization in CNNs.vtt
4.4 kB
16 - CNN Architectures/006 CNN Architectures Part 2.vtt
4.3 kB
14 - Convolutional Neural Networks/007 Quiz Solution Discussion.vtt
4.2 kB
14 - Convolutional Neural Networks/005 Convolution over Volume Animation.vtt
4.2 kB
34 - Build a Chatbot with Transformers/012 Feed Forward Implementation.vtt
4.1 kB
27 - Word Embeddings/002 Visualizing Word Embeddings.vtt
4.0 kB
33 - Transformers/010 Feed Forward.vtt
4.0 kB
27 - Word Embeddings/004 Word Embeddings Models.vtt
3.9 kB
03 - Activation Functions/003 Tanh Activation.vtt
3.8 kB
06 - Hyperparameter Tuning and Learning Rate Scheduling/005 Batch Size vs Learning Rate.vtt
3.8 kB
33 - Transformers/007 Concat and Linear.vtt
3.7 kB
03 - Activation Functions/006 Gated Linear Units (GLU).vtt
3.7 kB
34 - Build a Chatbot with Transformers/022 Action.vtt
3.7 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/014 Results.vtt
3.3 kB
26 - Recurrent Neural Networks/005 Stacked RNNs.vtt
3.3 kB
33 - Transformers/012 MultiHead Attention in Decoder.vtt
3.2 kB
05 - Optimization/003 Mini-Batch Gradient Descent.vtt
3.2 kB
32 - Practical Sequence Modelling in PyTorch Image Captioning/013 Training.vtt
3.1 kB
21 - YOLO Object Detection (Theory)/010 YOLO Theory Part 10.vtt
2.7 kB
14 - Convolutional Neural Networks/010 CNN Visualization.vtt
2.5 kB
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/002 Code Details.vtt
2.5 kB
27 - Word Embeddings/003 Measuring Word Embeddings.vtt
2.4 kB
11 - Visualize the Learning Process/002 Visualize Learning Part 2.vtt
2.3 kB
04 - Regularization and Normalization/004 DropConnect.vtt
2.1 kB
05 - Optimization/010 SWATS - Switching from Adam to SGD.vtt
1.9 kB
21 - YOLO Object Detection (Theory)/013 YOLO Code Note.html
1.4 kB
08 - Introduction to PyTorch/001 CODE FOR THIS COURSE.vtt
636 Bytes
01 - How Neural Networks and Backpropagation Works/001 BEFORE STARTING...PLEASE READ THIS.html
630 Bytes
12 - Implementing a Neural Network from Scratch with Numpy/006 Notebook for the following Lecture.html
532 Bytes
13 - Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/001 The MNIST Dataset.html
470 Bytes
02 - Loss Functions/007 Softmax with Temperature Controlling your distribution.html
394 Bytes
01 - How Neural Networks and Backpropagation Works/008 Before Proceeding with the Backpropagation.html
341 Bytes
10 - Practical Neural Networks in PyTorch - Application 1 Diabetes/001 Download the Dataset.html
322 Bytes
14 - Convolutional Neural Networks/004 Convolution over Volume Animation Resource.html
321 Bytes
28 - Practical Recurrent Networks in PyTorch/001 Download the Dataset.html
312 Bytes
33 - Transformers/001 SANITY CHECK ON PREVIOUS SECTIONS.html
272 Bytes
34 - Build a Chatbot with Transformers/001 CODE.html
268 Bytes
31 - Practical Sequence Modelling in PyTorch Chatbot Application/001 Download the Dataset.html
252 Bytes
07 - Weight Initialization/005 Practical Weight Initialization Note.html
186 Bytes
02 - Loss Functions/012 Practical Loss Functions Note.html
179 Bytes
39 - GPT/007 Implementation.html
128 Bytes
16 - CNN Architectures/004 Note on Residual Networks Implementation.html
109 Bytes
19 - Transfer Learning in PyTorch - Image Classification/external-assets-links.txt
71 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!