搜索
Coursera - Machine Learning Specialization
磁力链接/BT种子名称
Coursera - Machine Learning Specialization
磁力链接/BT种子简介
种子哈希:
19503d96351b60f974a1a848c7618d7fb9366359
文件大小:
3.46G
已经下载:
7158
次
下载速度:
极快
收录时间:
2024-04-05
最近下载:
2024-11-11
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:19503D96351B60F974A1A848C7618D7FB9366359
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
mfk-0061
娜美
dvaj-655
manami cyojyo
2019最新泄密视频版
和风性感按摩店
火药奶昔
易阳
365.days
titi钛合金
良家 交换
sofia nana
港台中文
莲花楼
grendizer u
ts强
fkk+
[sivr-++三上悠亞
清纯白嫩邻家乖乖女初恋般的感觉
vrtm-288
妈妈第一视角
opfansmaplesnow 1086
大学宿舍做爱
极品反差女神『卡特琳』爆
幼猫
牛仔裤里塞跳蛋
91大神xiaobaba
ryanconner
尴尬又刺激
性记录
文件列表
advanced-learning-algorithms/04_decision-trees/05_conversations-with-andrew-optional/01_andrew-ng-and-chris-manning-on-natural-language-processing.mp4
247.6 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/06_conversations-with-andrew-optional/01_andrew-ng-and-chelsea-finn-on-ai-and-robotics.mp4
241.9 MB
machine-learning/03_week-3-classification/06_conversations-with-andrew-optional/01_andrew-ng-and-fei-fei-li-on-human-centered-ai.mp4
225.1 MB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/01_what-is-a-derivative-optional.mp4
40.2 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/02_tensorflow-implementation-of-collaborative-filtering.mp4
37.6 MB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/02_applications-of-machine-learning.mp4
35.1 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/03_adding-data.mp4
34.5 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/03_learning-the-state-value-function.mp4
32.7 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/03_collaborative-filtering-algorithm.mp4
32.5 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/01_what-is-reinforcement-learning.mp4
32.5 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/06_choosing-what-features-to-use.mp4
32.4 MB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/02_computation-graph-optional.mp4
31.4 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/03_model-selection-and-training-cross-validation-test-sets.mp4
31.1 MB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/04_cost-function-intuition.mp4
31.0 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/04_optimization-objective.mp4
30.9 MB
advanced-learning-algorithms/04_decision-trees/01_decision-trees/02_learning-process.mp4
30.4 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/03_the-return-in-reinforcement-learning.mp4
30.4 MB
advanced-learning-algorithms/01_neural-networks/05_speculations-on-artificial-general-intelligence-agi/01_is-there-a-path-to-agi.mp4
29.5 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/05_deciding-what-to-try-next-revisited.mp4
29.4 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/02_pca-algorithm-optional.mp4
29.4 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/01_example-of-continuous-state-space-applications.mp4
28.4 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/06_bias-variance-and-neural-networks.mp4
28.2 MB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/02_neurons-and-the-brain.mp4
28.2 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/01_reducing-the-number-of-features-optional.mp4
28.0 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/03_bellman-equation.mp4
28.0 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/01_finding-unusual-events.mp4
27.6 MB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/03_larger-neural-network-example-optional.mp4
27.4 MB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/01_what-is-machine-learning.mp4
27.2 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/06_algorithm-refinement-mini-batch-and-soft-updates-optional.mp4
26.8 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/06_fairness-bias-and-ethics.mp4
26.6 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/05_algorithm-refinement-greedy-policy.mp4
26.5 MB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/02_data-in-tensorflow.mp4
26.0 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/04_ethical-use-of-recommender-systems.mp4
26.0 MB
machine-learning/03_week-3-classification/02_cost-function-for-logistic-regression/01_cost-function-for-logistic-regression.mp4
25.8 MB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/03_building-a-neural-network.mp4
25.6 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/02_deep-learning-for-content-based-filtering.mp4
25.5 MB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/03_demand-prediction.mp4
25.4 MB
advanced-learning-algorithms/02_neural-network-training/01_neural-network-training/02_training-details.mp4
25.3 MB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/01_the-problem-of-overfitting.mp4
25.1 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/04_developing-and-evaluating-an-anomaly-detection-system.mp4
25.1 MB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/02_choosing-a-split-information-gain.mp4
24.9 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/02_using-per-item-features.mp4
24.6 MB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/02_choosing-activation-functions.mp4
24.5 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/04_learning-curves.mp4
24.4 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/06_polynomial-regression.mp4
23.9 MB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/01_gradient-descent.mp4
23.6 MB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/01_welcome-to-machine-learning.mp4
23.3 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/02_trading-off-precision-and-recall.mp4
23.2 MB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/02_logistic-regression.mp4
22.5 MB
advanced-learning-algorithms/01_neural-networks/04_neural-network-implementation-in-python/02_general-implementation-of-forward-propagation.mp4
22.4 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/02_regularization-and-bias-variance.mp4
22.1 MB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/04_xgboost.mp4
22.1 MB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/01_motivations.mp4
22.0 MB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/02_implementing-gradient-descent.mp4
21.9 MB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/05_regularized-logistic-regression.mp4
21.9 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/02_gaussian-normal-distribution.mp4
21.9 MB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/02_softmax.mp4
21.7 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/01_making-recommendations.mp4
21.4 MB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/01_neural-network-layer.mp4
21.4 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/03_anomaly-detection-algorithm.mp4
21.3 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/05_anomaly-detection-vs-supervised-learning.mp4
21.3 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/01_diagnosing-bias-and-variance.mp4
21.3 MB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/01_linear-regression-model-part-1.mp4
21.2 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/01_collaborative-filtering-vs-content-based-filtering.mp4
20.9 MB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/06_jupyter-notebooks.mp4
20.9 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/01_state-action-value-function-definition.mp4
20.8 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/04_binary-labels-favs-likes-and-clicks.mp4
20.8 MB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/04_regularized-linear-regression.mp4
20.8 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/03_k-means-algorithm.mp4
20.7 MB
advanced-learning-algorithms/02_neural-network-training/04_additional-neural-network-concepts/02_additional-layer-types.mp4
20.5 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/02_evaluating-a-model.mp4
20.4 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/03_establishing-a-baseline-level-of-performance.mp4
20.3 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/04_gradient-descent-for-multiple-linear-regression.mp4
20.3 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/04_random-stochastic-environment-optional.mp4
20.2 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/04_transfer-learning-using-data-from-a-different-task.mp4
19.9 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/01_error-metrics-for-skewed-datasets.mp4
19.9 MB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/03_decision-boundary.mp4
19.9 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/01_mean-normalization.mp4
19.8 MB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/06_regression-trees-optional.mp4
19.8 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/01_multiple-features.mp4
19.8 MB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/04_unsupervised-learning-part-1.mp4
19.6 MB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/03_putting-it-together.mp4
19.3 MB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/06_running-gradient-descent.mp4
19.3 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/03_recommending-from-a-large-catalogue.mp4
18.9 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/05_initializing-k-means.mp4
18.7 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/03_pca-in-code-optional.mp4
18.7 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/02_error-analysis.mp4
18.4 MB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/05_when-to-use-decision-trees.mp4
18.3 MB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/05_visualizing-the-cost-function.mp4
18.2 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/02_vectorization-part-1.mp4
18.1 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/03_vectorization-part-2.mp4
18.1 MB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/06_visualization-examples.mp4
18.0 MB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/03_cost-function-with-regularization.mp4
17.9 MB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/02_more-complex-neural-networks.mp4
17.9 MB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/04_learning-rate.mp4
17.8 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/06_choosing-the-number-of-clusters.mp4
17.7 MB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/01_inference-in-code.mp4
17.6 MB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/03_cost-function-formula.mp4
17.5 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/03_finding-related-items.mp4
17.4 MB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/05_gradient-descent-for-linear-regression.mp4
17.2 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/05_full-cycle-of-a-machine-learning-project.mp4
17.1 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/04_choosing-the-learning-rate.mp4
17.1 MB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/02_linear-regression-model-part-2.mp4
17.0 MB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/03_matrix-multiplication-rules.mp4
16.9 MB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/01_measuring-purity.mp4
16.7 MB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/02_matrix-multiplication.mp4
16.7 MB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/05_continuous-valued-features.mp4
16.7 MB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/02_addressing-overfitting.mp4
16.5 MB
advanced-learning-algorithms/02_neural-network-training/04_additional-neural-network-concepts/01_advanced-optimization.mp4
16.3 MB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/04_improved-implementation-of-softmax.mp4
15.8 MB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/03_neural-network-with-softmax-output.mp4
15.8 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/01_iterative-loop-of-ml-development.mp4
15.5 MB
advanced-learning-algorithms/04_decision-trees/01_decision-trees/01_decision-tree-model.mp4
15.5 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/02_state-action-value-function-example.mp4
15.3 MB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/04_example-recognizing-images.mp4
15.3 MB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/03_supervised-learning-part-2.mp4
15.1 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/02_feature-scaling-part-2.mp4
15.1 MB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/02_sampling-with-replacement.mp4
15.0 MB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/04_using-one-hot-encoding-of-categorical-features.mp4
14.9 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/05_summary-and-thank-you/01_summary-and-thank-you.mp4
14.6 MB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/02_supervised-learning-part-1.mp4
14.5 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/01_feature-scaling-part-1.mp4
14.3 MB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/04_matrix-multiplication-code.mp4
14.0 MB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/03_gradient-descent-intuition.mp4
13.8 MB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/05_tensorflow-implementation-of-content-based-filtering.mp4
13.6 MB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/03_why-do-we-need-activation-functions.mp4
13.6 MB
machine-learning/03_week-3-classification/03_gradient-descent-for-logistic-regression/01_gradient-descent-implementation.mp4
13.4 MB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/03_random-forest-algorithm.mp4
13.3 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/02_mars-rover-example.mp4
13.3 MB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/03_inference-making-predictions-forward-propagation.mp4
13.2 MB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/01_using-multiple-decision-trees.mp4
13.1 MB
advanced-learning-algorithms/01_neural-networks/04_neural-network-implementation-in-python/01_forward-prop-in-a-single-layer.mp4
13.0 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/02_k-means-intuition.mp4
13.0 MB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/01_how-neural-networks-are-implemented-efficiently.mp4
12.8 MB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/01_alternatives-to-the-sigmoid-activation.mp4
12.5 MB
machine-learning/03_week-3-classification/02_cost-function-for-logistic-regression/02_simplified-cost-function-for-logistic-regression.mp4
12.3 MB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/01_deciding-what-to-try-next.mp4
12.0 MB
advanced-learning-algorithms/02_neural-network-training/01_neural-network-training/01_tensorflow-implementation.mp4
11.9 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/05_review-of-key-concepts.mp4
11.9 MB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/05_classification-with-multiple-outputs-optional.mp4
11.9 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/03_checking-gradient-descent-for-convergence.mp4
11.5 MB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/01_welcome.mp4
11.2 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/02_lunar-lander.mp4
10.9 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/01_what-is-clustering.mp4
9.2 MB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/01_multiclass.mp4
8.8 MB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/01_welcome-to-the-course/01_welcome.mp4
8.7 MB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/05_unsupervised-learning-part-2.mp4
8.6 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/07_the-state-of-reinforcement-learning.mp4
8.2 MB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/05_feature-engineering.mp4
8.2 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/04_algorithm-refinement-improved-neural-network-architecture.mp4
8.2 MB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/04_making-decisions-policies-in-reinforcement-learning.mp4
6.1 MB
advanced-learning-algorithms/04_decision-trees/05_conversations-with-andrew-optional/01_andrew-ng-and-chris-manning-on-natural-language-processing.en.srt
65.5 kB
machine-learning/03_week-3-classification/06_conversations-with-andrew-optional/01_andrew-ng-and-fei-fei-li-on-human-centered-ai.en.srt
61.1 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/06_conversations-with-andrew-optional/01_andrew-ng-and-chelsea-finn-on-ai-and-robotics.en.srt
51.8 kB
advanced-learning-algorithms/04_decision-trees/05_conversations-with-andrew-optional/01_andrew-ng-and-chris-manning-on-natural-language-processing.en.txt
40.8 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/06_conversations-with-andrew-optional/01_andrew-ng-and-chelsea-finn-on-ai-and-robotics.en.txt
32.5 kB
machine-learning/03_week-3-classification/06_conversations-with-andrew-optional/01_andrew-ng-and-fei-fei-li-on-human-centered-ai.en.txt
31.4 kB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/01_what-is-a-derivative-optional.en.srt
30.4 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/03_demand-prediction.en.srt
27.2 kB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/02_computation-graph-optional.en.srt
27.0 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/03_learning-the-state-value-function.en.srt
25.8 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/02_pca-algorithm-optional.en.srt
25.0 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/03_model-selection-and-training-cross-validation-test-sets.en.srt
21.8 kB
advanced-learning-algorithms/02_neural-network-training/01_neural-network-training/02_training-details.en.srt
21.4 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/04_cost-function-intuition.en.srt
20.7 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/04_transfer-learning-using-data-from-a-different-task.en.srt
20.7 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/04_learning-curves.en.srt
20.5 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/03_adding-data.en.srt
19.4 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/03_collaborative-filtering-algorithm.en.srt
19.2 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/06_choosing-what-features-to-use.en.srt
19.1 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/01_the-problem-of-overfitting.en.srt
18.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/02_trading-off-precision-and-recall.en.srt
18.7 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/02_neurons-and-the-brain.en.srt
18.7 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/01_reducing-the-number-of-features-optional.en.srt
18.5 kB
advanced-learning-algorithms/04_decision-trees/01_decision-trees/02_learning-process.en.srt
18.5 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/01_diagnosing-bias-and-variance.en.srt
18.2 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/03_bellman-equation.en.srt
18.2 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/06_algorithm-refinement-mini-batch-and-soft-updates-optional.en.srt
18.1 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/04_developing-and-evaluating-an-anomaly-detection-system.en.srt
17.9 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/02_choosing-a-split-information-gain.en.srt
17.8 kB
machine-learning/03_week-3-classification/02_cost-function-for-logistic-regression/01_cost-function-for-logistic-regression.en.srt
17.5 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/01_error-metrics-for-skewed-datasets.en.srt
17.4 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/04_ethical-use-of-recommender-systems.en.srt
17.3 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/03_pca-in-code-optional.en.srt
17.1 kB
advanced-learning-algorithms/01_neural-networks/05_speculations-on-artificial-general-intelligence-agi/01_is-there-a-path-to-agi.en.srt
16.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/02_regularization-and-bias-variance.en.srt
16.7 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/03_establishing-a-baseline-level-of-performance.en.srt
16.2 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/03_the-return-in-reinforcement-learning.en.srt
16.0 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/02_tensorflow-implementation-of-collaborative-filtering.en.srt
15.8 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/02_softmax.en.srt
15.7 kB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/01_what-is-a-derivative-optional.en.txt
15.6 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/02_gaussian-normal-distribution.en.srt
15.3 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/01_linear-regression-model-part-1.en.srt
15.1 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/03_putting-it-together.en.srt
15.0 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/06_bias-variance-and-neural-networks.en.srt
14.9 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/01_finding-unusual-events.en.srt
14.9 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/05_full-cycle-of-a-machine-learning-project.en.srt
14.9 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/05_deciding-what-to-try-next-revisited.en.srt
14.9 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/01_collaborative-filtering-vs-content-based-filtering.en.srt
14.7 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/03_k-means-algorithm.en.srt
14.6 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/02_implementing-gradient-descent.en.srt
14.6 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/05_algorithm-refinement-greedy-policy.en.srt
14.6 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/02_deep-learning-for-content-based-filtering.en.srt
14.5 kB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/03_decision-boundary.en.srt
14.5 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/03_demand-prediction.en.txt
14.3 kB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/02_choosing-activation-functions.en.srt
14.1 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/04_optimization-objective.en.srt
14.0 kB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/02_computation-graph-optional.en.txt
13.9 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/01_state-action-value-function-definition.en.srt
13.9 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/01_multiple-features.en.srt
13.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/06_fairness-bias-and-ethics.en.srt
13.7 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/04_improved-implementation-of-softmax.en.srt
13.7 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/03_anomaly-detection-algorithm.en.srt
13.7 kB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/02_logistic-regression.en.srt
13.7 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/02_error-analysis.en.srt
13.6 kB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/02_data-in-tensorflow.en.srt
13.5 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/04_random-stochastic-environment-optional.en.srt
13.4 kB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/01_neural-network-layer.en.srt
13.3 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/03_learning-the-state-value-function.en.txt
13.2 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/02_addressing-overfitting.en.srt
13.2 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/02_evaluating-a-model.en.srt
13.1 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/02_pca-algorithm-optional.en.txt
13.1 kB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/01_motivations.en.srt
13.0 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/02_using-per-item-features.en.srt
13.0 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/01_what-is-reinforcement-learning.en.srt
12.8 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/02_matrix-multiplication.en.srt
12.6 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/05_visualizing-the-cost-function.en.srt
12.6 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/01_gradient-descent.en.srt
12.5 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/06_regression-trees-optional.en.srt
12.5 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/01_iterative-loop-of-ml-development.en.srt
12.4 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/03_adding-data.en.txt
12.3 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/04_regularized-linear-regression.en.srt
12.3 kB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/03_larger-neural-network-example-optional.en.srt
12.2 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/03_cost-function-formula.en.srt
12.2 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/06_choosing-what-features-to-use.en.txt
12.2 kB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/02_more-complex-neural-networks.en.srt
12.0 kB
advanced-learning-algorithms/01_neural-networks/04_neural-network-implementation-in-python/02_general-implementation-of-forward-propagation.en.srt
11.9 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/04_unsupervised-learning-part-1.en.srt
11.9 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/03_matrix-multiplication-rules.en.srt
11.7 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/03_cost-function-with-regularization.en.srt
11.6 kB
advanced-learning-algorithms/02_neural-network-training/04_additional-neural-network-concepts/02_additional-layer-types.en.srt
11.6 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/03_model-selection-and-training-cross-validation-test-sets.en.txt
11.5 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/04_learning-rate.en.srt
11.5 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/05_anomaly-detection-vs-supervised-learning.en.srt
11.4 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/06_choosing-the-number-of-clusters.en.srt
11.4 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/04_gradient-descent-for-multiple-linear-regression.en.srt
11.4 kB
advanced-learning-algorithms/02_neural-network-training/01_neural-network-training/02_training-details.en.txt
11.2 kB
advanced-learning-algorithms/04_decision-trees/01_decision-trees/01_decision-tree-model.en.srt
11.1 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/02_feature-scaling-part-2.en.srt
11.1 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/02_supervised-learning-part-1.en.srt
11.0 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/01_mean-normalization.en.srt
11.0 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/05_initializing-k-means.en.srt
11.0 kB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/03_building-a-neural-network.en.srt
11.0 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/04_binary-labels-favs-likes-and-clicks.en.srt
10.9 kB
advanced-learning-algorithms/02_neural-network-training/04_additional-neural-network-concepts/01_advanced-optimization.en.srt
10.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/04_transfer-learning-using-data-from-a-different-task.en.txt
10.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/04_learning-curves.en.txt
10.7 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/05_when-to-use-decision-trees.en.srt
10.7 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/02_mars-rover-example.en.srt
10.6 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/03_finding-related-items.en.srt
10.5 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/03_recommending-from-a-large-catalogue.en.srt
10.4 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/04_example-recognizing-images.en.srt
10.4 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/01_measuring-purity.en.srt
10.4 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/04_cost-function-intuition.en.txt
10.4 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/03_vectorization-part-2.en.srt
10.3 kB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/01_inference-in-code.en.srt
10.3 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/03_collaborative-filtering-algorithm.en.txt
10.2 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/03_gradient-descent-intuition.en.srt
10.2 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/02_vectorization-part-1.en.srt
9.9 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/01_example-of-continuous-state-space-applications.en.srt
9.9 kB
machine-learning/03_week-3-classification/03_gradient-descent-for-logistic-regression/01_gradient-descent-implementation.en.srt
9.8 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/04_choosing-the-learning-rate.en.srt
9.8 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/02_tensorflow-implementation-of-collaborative-filtering.en.txt
9.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/02_trading-off-precision-and-recall.en.txt
9.8 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/01_the-problem-of-overfitting.en.txt
9.8 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/02_linear-regression-model-part-2.en.srt
9.8 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/02_neurons-and-the-brain.en.txt
9.7 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/06_bias-variance-and-neural-networks.en.txt
9.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/01_what-is-machine-learning.en.srt
9.7 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/06_algorithm-refinement-mini-batch-and-soft-updates-optional.en.txt
9.7 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/06_polynomial-regression.en.srt
9.7 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/04_xgboost.en.srt
9.7 kB
advanced-learning-algorithms/04_decision-trees/01_decision-trees/02_learning-process.en.txt
9.6 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/01_finding-unusual-events.en.txt
9.6 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/01_reducing-the-number-of-features-optional.en.txt
9.6 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/01_diagnosing-bias-and-variance.en.txt
9.5 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/04_developing-and-evaluating-an-anomaly-detection-system.en.txt
9.5 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/03_bellman-equation.en.txt
9.4 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/03_neural-network-with-softmax-output.en.srt
9.3 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/05_gradient-descent-for-linear-regression.en.srt
9.3 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/02_k-means-intuition.en.srt
9.2 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/04_ethical-use-of-recommender-systems.en.txt
9.2 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/02_choosing-a-split-information-gain.en.txt
9.2 kB
machine-learning/03_week-3-classification/02_cost-function-for-logistic-regression/01_cost-function-for-logistic-regression.en.txt
9.1 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/01_error-metrics-for-skewed-datasets.en.txt
9.1 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/03_supervised-learning-part-2.en.srt
9.1 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/04_matrix-multiplication-code.en.srt
9.0 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/03_random-forest-algorithm.en.srt
9.0 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/06_visualization-examples.en.srt
8.9 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/05_regularized-logistic-regression.en.srt
8.9 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/04_optimization-objective.en.txt
8.9 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/04_principal-component-analysis/03_pca-in-code-optional.en.txt
8.8 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/06_fairness-bias-and-ethics.en.txt
8.8 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/05_continuous-valued-features.en.srt
8.8 kB
advanced-learning-algorithms/01_neural-networks/05_speculations-on-artificial-general-intelligence-agi/01_is-there-a-path-to-agi.en.txt
8.8 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/05_review-of-key-concepts.en.srt
8.7 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/03_anomaly-detection-algorithm.en.txt
8.6 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/01_state-action-value-function-definition.en.txt
8.5 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/03_checking-gradient-descent-for-convergence.en.srt
8.5 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/02_regularization-and-bias-variance.en.txt
8.5 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/03_establishing-a-baseline-level-of-performance.en.txt
8.5 kB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/02_data-in-tensorflow.en.txt
8.4 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/03_the-return-in-reinforcement-learning.en.txt
8.4 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/02_evaluating-a-model.en.txt
8.4 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/01_what-is-reinforcement-learning.en.txt
8.2 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/02_softmax.en.txt
8.1 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/02_gaussian-normal-distribution.en.txt
8.0 kB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/01_motivations.en.txt
8.0 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/03_putting-it-together.en.txt
8.0 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/02_using-per-item-features.en.txt
8.0 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/02_lunar-lander.en.srt
7.9 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/02_bias-and-variance/05_deciding-what-to-try-next-revisited.en.txt
7.9 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/06_regression-trees-optional.en.txt
7.9 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/05_full-cycle-of-a-machine-learning-project.en.txt
7.9 kB
machine-learning/03_week-3-classification/02_cost-function-for-logistic-regression/02_simplified-cost-function-for-logistic-regression.en.srt
7.8 kB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/03_why-do-we-need-activation-functions.en.srt
7.8 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/01_linear-regression-model-part-1.en.txt
7.8 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/01_feature-scaling-part-1.en.srt
7.7 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/05_algorithm-refinement-greedy-policy.en.txt
7.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/02_implementing-gradient-descent.en.txt
7.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/02_applications-of-machine-learning.en.srt
7.7 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/01_collaborative-filtering-vs-content-based-filtering.en.txt
7.6 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/02_deep-learning-for-content-based-filtering.en.txt
7.6 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/03_k-means-algorithm.en.txt
7.6 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/04_unsupervised-learning-part-1.en.txt
7.5 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/06_jupyter-notebooks.en.srt
7.5 kB
advanced-learning-algorithms/02_neural-network-training/05_back-propagation-optional/03_larger-neural-network-example-optional.en.txt
7.5 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/06_running-gradient-descent.en.srt
7.5 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/05_tensorflow-implementation-of-content-based-filtering.en.srt
7.5 kB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/03_decision-boundary.en.txt
7.5 kB
advanced-learning-algorithms/02_neural-network-training/04_additional-neural-network-concepts/02_additional-layer-types.en.txt
7.4 kB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/02_choosing-activation-functions.en.txt
7.4 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/01_making-recommendations.en.srt
7.4 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/03_cost-function-with-regularization.en.txt
7.3 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/03_anomaly-detection/05_anomaly-detection-vs-supervised-learning.en.txt
7.3 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/03_matrix-multiplication-rules.en.txt
7.2 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/04_improved-implementation-of-softmax.en.txt
7.2 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/02_error-analysis.en.txt
7.2 kB
machine-learning/03_week-3-classification/01_classification-with-logistic-regression/02_logistic-regression.en.txt
7.2 kB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/03_inference-making-predictions-forward-propagation.en.srt
7.1 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/05_initializing-k-means.en.txt
7.1 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/01_multiple-features.en.txt
7.1 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/04_random-stochastic-environment-optional.en.txt
7.1 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/04_learning-rate.en.txt
7.0 kB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/03_building-a-neural-network.en.txt
7.0 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/02_addressing-overfitting.en.txt
7.0 kB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/01_neural-network-layer.en.txt
7.0 kB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/01_alternatives-to-the-sigmoid-activation.en.srt
7.0 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/02_state-action-value-function-example.en.srt
6.9 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/01_deciding-what-to-try-next.en.srt
6.9 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/05_classification-with-multiple-outputs-optional.en.srt
6.9 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/01_mean-normalization.en.txt
6.9 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/04_binary-labels-favs-likes-and-clicks.en.txt
6.8 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/04_using-one-hot-encoding-of-categorical-features.en.srt
6.8 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/02_sampling-with-replacement.en.srt
6.7 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/01_using-multiple-decision-trees.en.srt
6.6 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/03_machine-learning-development-process/01_iterative-loop-of-ml-development.en.txt
6.6 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/01_gradient-descent.en.txt
6.6 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/02_matrix-multiplication.en.txt
6.5 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/03_recommending-from-a-large-catalogue.en.txt
6.5 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/04_regularized-linear-regression.en.txt
6.5 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/05_visualizing-the-cost-function.en.txt
6.5 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/03_cost-function-formula.en.txt
6.4 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/01_how-neural-networks-are-implemented-efficiently.en.srt
6.3 kB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/02_more-complex-neural-networks.en.txt
6.2 kB
advanced-learning-algorithms/01_neural-networks/04_neural-network-implementation-in-python/01_forward-prop-in-a-single-layer.en.srt
6.2 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/04_xgboost.en.txt
6.2 kB
advanced-learning-algorithms/01_neural-networks/04_neural-network-implementation-in-python/02_general-implementation-of-forward-propagation.en.txt
6.2 kB
advanced-learning-algorithms/02_neural-network-training/01_neural-network-training/01_tensorflow-implementation.en.srt
6.1 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/04_gradient-descent-for-multiple-linear-regression.en.txt
6.0 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/01_what-is-clustering.en.srt
6.0 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/06_choosing-the-number-of-clusters.en.txt
6.0 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/05_unsupervised-learning-part-2.en.srt
5.9 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/03_neural-network-with-softmax-output.en.txt
5.9 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/02_k-means-intuition.en.txt
5.8 kB
advanced-learning-algorithms/04_decision-trees/01_decision-trees/01_decision-tree-model.en.txt
5.8 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/02_supervised-learning-part-1.en.txt
5.8 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/02_feature-scaling-part-2.en.txt
5.7 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/03_random-forest-algorithm.en.txt
5.7 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/05_when-to-use-decision-trees.en.txt
5.7 kB
advanced-learning-algorithms/02_neural-network-training/04_additional-neural-network-concepts/01_advanced-optimization.en.txt
5.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/03_supervised-learning-part-2.en.txt
5.6 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/05_continuous-valued-features.en.txt
5.6 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/01_welcome-to-the-course/01_welcome.en.srt
5.6 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/02_recommender-systems-implementation-detail/03_finding-related-items.en.txt
5.5 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/01_measuring-purity.en.txt
5.5 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/01_welcome.en.srt
5.5 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/02_mars-rover-example.en.txt
5.5 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/04_example-recognizing-images.en.txt
5.5 kB
advanced-learning-algorithms/04_decision-trees/06_acknowledgments/01_acknowledgements_instructions.html
5.4 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/07_acknowledgments/01_acknowledgments_instructions.html
5.4 kB
machine-learning/03_week-3-classification/07_acknowledgments/01_acknowledgments_instructions.html
5.4 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/03_gradient-descent-intuition.en.txt
5.4 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/05_summary-and-thank-you/01_summary-and-thank-you.en.srt
5.4 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/03_vectorization-part-2.en.txt
5.4 kB
advanced-learning-algorithms/01_neural-networks/03_tensorflow-implementation/01_inference-in-code.en.txt
5.4 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/02_vectorization-part-1.en.txt
5.2 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/04_choosing-the-learning-rate.en.txt
5.2 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/01_example-of-continuous-state-space-applications.en.txt
5.2 kB
machine-learning/03_week-3-classification/03_gradient-descent-for-logistic-regression/01_gradient-descent-implementation.en.txt
5.2 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/02_linear-regression-model-part-2.en.txt
5.2 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/06_polynomial-regression.en.txt
5.1 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/01_what-is-machine-learning.en.txt
5.1 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/02_lunar-lander.en.txt
5.0 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/05_gradient-descent-for-linear-regression.en.txt
5.0 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/05_feature-engineering.en.srt
5.0 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/01_feature-scaling-part-1.en.txt
4.9 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/04_algorithm-refinement-improved-neural-network-architecture.en.srt
4.8 kB
machine-learning/03_week-3-classification/04_the-problem-of-overfitting/05_regularized-logistic-regression.en.txt
4.8 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/01_collaborative-filtering/01_making-recommendations.en.txt
4.7 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/04_matrix-multiplication-code.en.txt
4.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/03_regression-model/06_visualization-examples.en.txt
4.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/06_running-gradient-descent.en.txt
4.7 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/05_review-of-key-concepts.en.txt
4.6 kB
advanced-learning-algorithms/01_neural-networks/02_neural-network-model/03_inference-making-predictions-forward-propagation.en.txt
4.4 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/03_checking-gradient-descent-for-convergence.en.txt
4.4 kB
advanced-learning-algorithms/04_decision-trees/02_decision-tree-learning/04_using-one-hot-encoding-of-categorical-features.en.txt
4.4 kB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/01_alternatives-to-the-sigmoid-activation.en.txt
4.4 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/01_multiclass.en.srt
4.4 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/02_state-action-value-function/02_state-action-value-function-example.en.txt
4.4 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/07_the-state-of-reinforcement-learning.en.srt
4.1 kB
advanced-learning-algorithms/02_neural-network-training/02_activation-functions/03_why-do-we-need-activation-functions.en.txt
4.1 kB
machine-learning/03_week-3-classification/02_cost-function-for-logistic-regression/02_simplified-cost-function-for-logistic-regression.en.txt
4.0 kB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/02_applications-of-machine-learning.en.txt
4.0 kB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/01_welcome-to-machine-learning.en.srt
4.0 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/06_jupyter-notebooks.en.txt
4.0 kB
unsupervised-learning-recommenders-reinforcement-learning/02_recommender-systems/03_content-based-filtering/05_tensorflow-implementation-of-content-based-filtering.en.txt
4.0 kB
advanced-learning-algorithms/01_neural-networks/04_neural-network-implementation-in-python/01_forward-prop-in-a-single-layer.en.txt
3.9 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/04_making-decisions-policies-in-reinforcement-learning.en.srt
3.8 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/05_classification-with-multiple-outputs-optional.en.txt
3.7 kB
advanced-learning-algorithms/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/01_deciding-what-to-try-next.en.txt
3.6 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/02_sampling-with-replacement.en.txt
3.5 kB
advanced-learning-algorithms/04_decision-trees/03_tree-ensembles/01_using-multiple-decision-trees.en.txt
3.5 kB
advanced-learning-algorithms/01_neural-networks/06_vectorization-optional/01_how-neural-networks-are-implemented-efficiently.en.txt
3.2 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/02_clustering/01_what-is-clustering.en.txt
3.2 kB
machine-learning/01_week-1-introduction-to-machine-learning/02_supervised-vs-unsupervised-machine-learning/05_unsupervised-learning-part-2.en.txt
3.2 kB
advanced-learning-algorithms/02_neural-network-training/01_neural-network-training/01_tensorflow-implementation.en.txt
3.2 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/01_welcome-to-the-course/01_welcome.en.txt
3.0 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/01_welcome.en.txt
2.9 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/05_summary-and-thank-you/01_summary-and-thank-you.en.txt
2.9 kB
advanced-learning-algorithms/02_neural-network-training/03_multiclass-classification/01_multiclass.en.txt
2.8 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/07_the-state-of-reinforcement-learning.en.txt
2.7 kB
machine-learning/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/05_feature-engineering.en.txt
2.6 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/03_continuous-state-spaces/04_algorithm-refinement-improved-neural-network-architecture.en.txt
2.5 kB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/01_welcome-to-machine-learning.en.txt
2.5 kB
advanced-learning-algorithms/04_decision-trees/04_end-of-access-to-lab-notebooks/01_important-reminder-about-end-of-access-to-lab-notebooks_instructions.html
2.3 kB
machine-learning/03_week-3-classification/05_end-of-access-to-lab-notebooks/01_important-reminder-about-end-of-access-to-lab-notebooks_instructions.html
2.3 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/04_end-of-access-to-lab-notebooks/01_important-reminder-about-end-of-access-to-lab-notebooks_instructions.html
2.3 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/01_reinforcement-learning-introduction/04_making-decisions-policies-in-reinforcement-learning.en.txt
2.0 kB
unsupervised-learning-recommenders-reinforcement-learning/03_reinforcement-learning/07_acknowledgments/02_optional-opportunity-to-mentor-other-learners_instructions.html
1.7 kB
advanced-learning-algorithms/01_neural-networks/01_neural-networks-intuition/05_important-have-questions-issues-or-ideas-join-our-forum_instructions.html
1.7 kB
machine-learning/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/03_important-have-questions-issues-or-ideas-join-our-forum_instructions.html
1.7 kB
unsupervised-learning-recommenders-reinforcement-learning/01_unsupervised-learning/01_welcome-to-the-course/02_important-have-questions-issues-or-ideas-join-our-forum_instructions.html
1.7 kB
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>