搜索
[FCO] AppliedAICourse - Applied Machine Learning Course
磁力链接/BT种子名称
[FCO] AppliedAICourse - Applied Machine Learning Course
磁力链接/BT种子简介
种子哈希:
1a41f588be1a679642b4850b7a19ee02ad4efaa1
文件大小:
25.37G
已经下载:
6399
次
下载速度:
极快
收录时间:
2021-05-25
最近下载:
2025-01-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:1A41F588BE1A679642B4850B7A19EE02AD4EFAA1
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
深圳校服
唯美美穴
martin 1978
ogy-017b
ghosts s03
tell me im here audiobook
the haunting in connecticut bluray
juvr080
abp-906-u
onlyfans魔鬼
可可密
教官
xxn系列
인플
高跟定制
www.the witch revenge 2024
【反差表系列】人前女神背后精盆+那些极度反差母狗女神们精选合集
sancion
rocco french
粗口
金庸武侠世界杜比视界版本
dasd
masha babko blowjob
字幕游轮
捡个女帝
推特字母圈上海萝莉风残忍调教女大神【千曲酱】花样百出
桥本香菜 4k 合集
上班跳蛋
台湾新蓝
【罪与罚】
文件列表
1.1 - How to Learn from Appliedaicourse/1.1 - How to Learn from Appliedaicourse.mp4
465.1 MB
34.2 - Productionization and deployment of Machine Learning Models/34.2 - Productionization and deployment of Machine Learning Models.mp4.mkv
280.3 MB
1.2 - How the Job Guarantee program works/1.2 - How the Job Guarantee program works.mp4
255.7 MB
5.1 - Numpy Introduction/5.1 - Numpy Introduction.mp4
164.7 MB
5.2 - Numerical operations on Numpy/5.2 - Numerical operations on Numpy.mp4
163.6 MB
45.9 - Univariate AnalysisGene feature/45.9 - Univariate AnalysisGene feature.mp4
151.2 MB
3.1 - Lists/3.1 - Lists.mp4
148.1 MB
49.6 - Softmax Classifier on MNIST dataset/49.6 - Softmax Classifier on MNIST dataset..mp4
146.9 MB
57.26 - Data Control Language GRANT, REVOKE/57.26 - Data Control Language GRANT, REVOKE.mp4
145.4 MB
51.6 - LSTM/51.6 - LSTM..mp4
143.8 MB
54.4 - Char-RNN with abc-notation Data preparation/54.4 - Char-RNN with abc-notation Data preparation..mp4
138.1 MB
41.9 - EDA Advanced Feature Extraction/41.9 - EDA Advanced Feature Extraction.mp4
137.7 MB
51.10 - Code example IMDB Sentiment classification/51.10 - Code example IMDB Sentiment classification.mp4
128.7 MB
23.5 - Naive Bayes algorithm/23.5 - Naive Bayes algorithm.mp4
122.4 MB
42.13 - Code for bag of words based product similarity/42.13 - Code for bag of words based product similarity.mp4
122.0 MB
50.2 - ConvolutionEdge Detection on images/50.2 - ConvolutionEdge Detection on images..mp4
121.6 MB
23.6 - Toy example Train and test stages/23.6 - Toy example Train and test stages.mp4
121.5 MB
45.13 - Baseline Model Naive Bayes/45.13 - Baseline Model Naive Bayes.mp4
121.0 MB
53.12 - Test and visualize the output/53.12 - Test and visualize the output..mp4
119.3 MB
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/17.1 - Dataset overview Amazon Fine Food reviews(EDA).mp4
116.4 MB
50.14 - Residual Network/50.14 - Residual Network..mp4
113.8 MB
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV.mp4
112.1 MB
51.2 - Recurrent Neural Network/51.2 - Recurrent Neural Network..mp4
110.3 MB
53.10 - NVIDIA’s end to end CNN model/53.10 - NVIDIA’s end to end CNN model..mp4
108.6 MB
47.8 - Training an MLP Chain Rule/47.8 - Training an MLP Chain Rule.mp4
107.0 MB
48.3 - Rectified Linear Units (ReLU)/48.3 - Rectified Linear Units (ReLU)..mp4
107.0 MB
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/11.9 - Q-Q plotHow to test if a random variable is normally distributed or not.mp4
106.6 MB
48.18 - Auto Encoders/48.18 - Auto Encoders..mp4
102.3 MB
4.2 - Types of functions/4.2 - Types of functions.mp4
100.7 MB
18.27 - LSH for cosine similarity/18.27 - LSH for cosine similarity.mp4
100.7 MB
18.30 - Code SampleDecision boundary/18.30 - Code SampleDecision boundary ..mp4
100.2 MB
20.17 - curse of dimensionality/20.17 - curse of dimensionality.mp4
99.6 MB
49.8 - Model 1 Sigmoid activation/49.8 - Model 1 Sigmoid activation.mp4
99.6 MB
42.6 - Data cleaning and understandingMissing data in various features/42.6 - Data cleaning and understandingMissing data in various features.mp4
99.4 MB
4.8 - File Handling/4.8 - File Handling.mp4
97.4 MB
32.16 - Stacking models/32.16 - Stacking models.mp4
97.4 MB
36.3 - Proximity methods Advantages and Limitations/36.3 - Proximity methods Advantages and Limitations..mp4
96.3 MB
57.20 - Sub QueriesNested QueriesInner Queries/57.20 - Sub QueriesNested QueriesInner Queries.mp4
94.9 MB
7.3 - Key Operations on Data Frames/7.3 - Key Operations on Data Frames.mp4
94.8 MB
24.2 - Sigmoid function Squashing/24.2 - Sigmoid function Squashing.mp4
94.5 MB
57.13 - Logical Operators/57.13 - Logical Operators.mp4
92.6 MB
17.5 - Text Preprocessing Stemming/Stop-word removal, Tokenization, Lemmatization (Featurizations - convert text to numeric vectors).mp4
92.5 MB
54.3 - Char-RNN with abc-notation Char-RNN model/54.3 - Char-RNN with abc-notation Char-RNN model.mp4
91.1 MB
20.11 - Local outlier Factor(A)/20.11 - Local outlier Factor(A).mp4
91.0 MB
49.12 - MNIST classification in Keras/49.12 - MNIST classification in Keras..mp4
90.9 MB
48.16 - Softmax and Cross-entropy for multi-class classification/48.16 - Softmax and Cross-entropy for multi-class classification..mp4
90.1 MB
14.9 - PCA Code example/14.9 - PCA Code example.mp4
89.6 MB
48.9 - Batch SGD with momentum/48.9 - Batch SGD with momentum..mp4
89.2 MB
20.18 - Bias-Variance tradeoff/20.18 - Bias-Variance tradeoff.mp4
88.2 MB
38.1 - Problem formulation Movie reviews/38.1 - Problem formulation Movie reviews.mp4
88.1 MB
57.19 - Inner, Left, Right and Outer joins/57.19 - Inner, Left, Right and Outer joins..mp4
87.6 MB
47.12 - Vanishing Gradient problem/47.12 - Vanishing Gradient problem..mp4
86.3 MB
55.2 - Dataset understanding/55.2 - Dataset understanding.mp4
85.7 MB
28.2 - Mathematical derivation/28.2 - Mathematical derivation.mp4
85.3 MB
48.2 - Dropout layers & Regularization/48.2 - Dropout layers & Regularization..mp4
85.0 MB
50.16 - What is Transfer learning/50.16 - What is Transfer learning..mp4
84.5 MB
50.17 - Code example Cats vs Dogs/50.17 - Code example Cats vs Dogs..mp4
84.4 MB
40.10 - Data Modeling Multi label Classification/40.10 - Data Modeling Multi label Classification.mp4
83.9 MB
46.14 - Data PreparationClusteringSegmentation/46.14 - Data PreparationClusteringSegmentation.mp4
83.3 MB
11.18 - Applications of non-gaussian distributions/11.18 - Applications of non-gaussian distributions.mp4
82.9 MB
45.8 - Exploratory Data Analysis “Random” Model/45.8 - Exploratory Data Analysis “Random” Model.mp4
82.2 MB
45.10 - Univariate AnalysisVariation Feature/45.10 - Univariate AnalysisVariation Feature.mp4
81.0 MB
50.15 - Inception Network/50.15 - Inception Network..mp4
80.2 MB
24.1 - Geometric intuition of Logistic Regression/24.1 - Geometric intuition of Logistic Regression.mp4
79.6 MB
49.1 - Tensorflow and Keras overview/49.1 - Tensorflow and Keras overview.mp4
79.4 MB
23.3 - Bayes Theorem with examples/23.3 - Bayes Theorem with examples.mp4
78.8 MB
40.5 - Mapping to an ML problemPerformance metrics/40.5 - Mapping to an ML problemPerformance metrics..mp4
78.6 MB
50.3 - ConvolutionPadding and strides/50.3 - ConvolutionPadding and strides.mp4
77.0 MB
50.12 - AlexNet/50.12 - AlexNet.mp4
77.0 MB
47.10 - Backpropagation/47.10 - Backpropagation..mp4
76.6 MB
50.11 - Convolution Layers in Keras/50.11 - Convolution Layers in Keras.mp4
76.5 MB
2.5 - Variables and data types in Python/2.5 - Variables and data types in Python.mp4.mkv
75.3 MB
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/24.7 - Probabilistic Interpretation Gaussian Naive Bayes.mp4
75.0 MB
42.18 - Code for Average Word2Vec product similarity/42.18 - Code for Average Word2Vec product similarity.mp4
74.8 MB
17.4 - Bag of Words (BoW)/17.4 - Bag of Words (BoW).mp4
74.8 MB
48.7 - OptimizersHill descent in 3D and contours/48.7 - OptimizersHill descent in 3D and contours..mp4
74.7 MB
45.11 - Univariate AnalysisText feature/45.11 - Univariate AnalysisText feature.mp4
73.1 MB
26.1 - Differentiation/26.1 - Differentiation.mp4
72.5 MB
47.6 - Notation/47.6 - Notation.mp4
72.4 MB
17.11 - Bag of Words( Code Sample)/17.11 - Bag of Words( Code Sample).mp4
72.3 MB
34.12 - VC dimension/34.12 - VC dimension.mp4
71.9 MB
17.2 - Data Cleaning Deduplication/17.2 - Data Cleaning Deduplication.mp4
71.7 MB
47.7 - Training a single-neuron model/47.7 - Training a single-neuron model..mp4
71.6 MB
9.1 - Introduction to IRIS dataset and 2D scatter plot/9.1 - Introduction to IRIS dataset and 2D scatter plot.mp4.mkv
71.4 MB
44.11 - Computing Similarity matricesUser-User similarity matrix/44.11 - Computing Similarity matricesUser-User similarity matrix.mp4
71.2 MB
24.15 - Non-linearly separable data & feature engineering/24.15 - Non-linearly separable data & feature engineering.mp4
70.7 MB
15.5 - How to apply t-SNE and interpret its output/15.5 - How to apply t-SNE and interpret its output.mp4
70.6 MB
44.23 - Surprise KNN predictors/44.23 - Surprise KNN predictors.mp4
69.4 MB
45.4 - ML problem formulation Mapping real world to ML problem#/45.4 - ML problem formulation Mapping real world to ML problem..mp4
69.3 MB
48.19 - Word2Vec CBOW/48.19 - Word2Vec CBOW.mp4
68.9 MB
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer.mp4
68.3 MB
11.29 - Hypothesis Testing Intution with coin toss example/11.29 - Hypothesis Testing Intution with coin toss example.mp4
67.3 MB
28.14 - Code Sample/28.14 - Code Sample.mp4
66.8 MB
51.3 - Training RNNs Backprop/51.3 - Training RNNs Backprop..mp4
66.6 MB
32.14 - XGBoost Boosting + Randomization/32.14 - XGBoost Boosting + Randomization.mp4
65.7 MB
57.1 - Introduction to Databases/57.1 - Introduction to Databases.mp4
65.7 MB
24.5 - L2 Regularization Overfitting and Underfitting/24.5 - L2 Regularization Overfitting and Underfitting.mp4
65.2 MB
35.8 - How to initialize K-Means++/35.8 - How to initialize K-Means++.mp4
65.0 MB
3.5 - Dictionary/3.5 - Dictionary.mp4
65.0 MB
42.9 - Remove duplicates Part 2/42.9 - Remove duplicates Part 2.mp4
64.6 MB
53.11 - Train the model/53.11 - Train the model..mp4
64.2 MB
4.9 - Exception Handling/4.9 - Exception Handling.mp4
63.7 MB
34.11 - Data Science Life cycle/34.11 - Data Science Life cycle.mp4.mkv
63.3 MB
50.5 - Convolutional layer/50.5 - Convolutional layer..mp4
63.1 MB
35.3 - Applications/35.3 - Applications.mp4
63.0 MB
11.31 - K-S Test for similarity of two distributions/11.31 - K-S Test for similarity of two distributions.mp4
62.8 MB
47.1 - History of Neural networks and Deep Learning/47.1 - History of Neural networks and Deep Learning..mp4
62.6 MB
11.35 - How to use hypothesis testing/11.35 - How to use hypothesis testing.mp4
62.5 MB
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/21.2 - Confusion matrix, TPR, FPR, FNR, TNR.mp4
62.3 MB
33.2 - Moving window for Time Series Data/33.2 - Moving window for Time Series Data.mp4
61.7 MB
49.2 - GPU vs CPU for Deep Learning/49.2 - GPU vs CPU for Deep Learning..mp4
61.7 MB
47.14 - Decision surfaces Playground/47.14 - Decision surfaces Playground.mp4
61.2 MB
20.15 - Handling categorical and numerical features/20.15 - Handling categorical and numerical features.mp4
61.0 MB
57.8 - SELECT/57.8 - SELECT.mp4
60.9 MB
11.16 - Power law distribution/11.16 - Power law distribution.mp4
60.8 MB
4.10 - Debugging Python/4.10 - Debugging Python.mp4
60.8 MB
23.8 - LaplaceAdditive Smoothing/23.8 - LaplaceAdditive Smoothing.mp4
60.6 MB
17.12 - Text Preprocessing( Code Sample)/17.12 - Text Preprocessing( Code Sample).mp4
60.4 MB
30.6 - Building a decision Tree Constructing a DT/30.6 - Building a decision Tree Constructing a DT.mp4
60.2 MB
24.3 - Mathematical formulation of Objective function/24.3 - Mathematical formulation of Objective function.mp4
59.8 MB
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/11.3 - GaussianNormal Distribution and its PDF(Probability Density Function).mp4.mkv
59.7 MB
47.5 - Multi-Layered Perceptron (MLP)/47.5 - Multi-Layered Perceptron (MLP)..mp4
59.1 MB
48.5 - Batch Normalization/48.5 - Batch Normalization..mp4
59.0 MB
18.31 - Code SampleCross Validation/18.31 - Code SampleCross Validation.mp4
58.5 MB
20.2 - Imbalanced vs balanced dataset/20.2 - Imbalanced vs balanced dataset.mp4
58.4 MB
38.14 - Code example/38.14 - Code example..mp4
58.1 MB
38.6 - Matrix Factorization for Collaborative filtering/38.6 - Matrix Factorization for Collaborative filtering.mp4
57.6 MB
38.4 - Matrix Factorization PCA, SVD/38.4 - Matrix Factorization PCA, SVD.mp4
57.4 MB
6.1 - Getting started with Matplotlib/6.1 - Getting started with Matplotlib.mp4
57.3 MB
18.11 - Decision surface for K-NN as K changes/18.11 - Decision surface for K-NN as K changes.mp4
57.2 MB
56.11 - PageRank/56.11 - PageRank.mp4
57.2 MB
18.12 - Overfitting and Underfitting/18.12 - Overfitting and Underfitting.mp4
57.1 MB
34.10 - AB testing/34.10 - AB testing..mp4
57.1 MB
48.4 - Weight initialization/48.4 - Weight initialization..mp4
56.9 MB
17.15 - Word2Vec (Code Sample)/17.15 - Word2Vec (Code Sample).mp4
56.6 MB
33.3 - Fourier decomposition/33.3 - Fourier decomposition.mp4
56.3 MB
25.4 - Code sample for Linear Regression/25.4 - Code sample for Linear Regression.mp4
56.0 MB
51.1 - Why RNNs/51.1 - Why RNNs.mp4
55.6 MB
17.7 - tf-idf (term frequency- inverse document frequency)/17.7 - tf-idf (term frequency- inverse document frequency).mp4
55.4 MB
24.9 - hyperparameters and random search/24.9 - hyperparameters and random search.mp4
55.4 MB
38.12 - Word vectors as MF/38.12 - Word vectors as MF.mp4
55.4 MB
20.14 - Feature Importance and Forward Feature selection/20.14 - Feature Importance and Forward Feature selection.mp4
55.4 MB
11.11 - Chebyshev’s inequality/11.11 - Chebyshev’s inequality.mp4
55.2 MB
20.16 - Handling missing values by imputation/20.16 - Handling missing values by imputation.mp4
55.0 MB
18.13 - Need for Cross validation/18.13 - Need for Cross validation.mp4
54.9 MB
28.8 - RBF-Kernel/28.8 - RBF-Kernel.mp4
54.5 MB
48.20 - Word2Vec Skip-gram/48.20 - Word2Vec Skip-gram.mp4
54.5 MB
20.5 - Train and test set differences/20.5 - Train and test set differences.mp4
54.4 MB
54.2 - Music representation/54.2 - Music representation.mp4
54.2 MB
11.20 - Pearson Correlation Coefficient/11.20 - Pearson Correlation Coefficient.mp4
54.2 MB
49.7 - MLP Initialization/49.7 - MLP Initialization.mp4
53.5 MB
54.7 - Char-RNN with abc-notation Model architecture,Model training/54.7 - Char-RNN with abc-notation Model architecture,Model training..mp4
53.1 MB
38.13 - Eigen-Faces/38.13 - Eigen-Faces.mp4
52.9 MB
38.8 - Clustering as MF/38.8 - Clustering as MF.mp4
52.1 MB
4.1 - Introduction/4.1 - Introduction.mp4
52.0 MB
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/56.10 - Feature engineering on GraphsJaccard & Cosine Similarities.mp4
51.9 MB
21.6 - R-SquaredCoefficient of determination/21.6 - R-SquaredCoefficient of determination.mp4
51.9 MB
51.4 - Types of RNNs/51.4 - Types of RNNs..mp4
51.8 MB
42.8 - Remove duplicates Part 1/42.8 - Remove duplicates Part 1.mp4
51.7 MB
26.2 - Online differentiation tools/26.2 - Online differentiation tools.mp4
51.5 MB
11.15 - Log Normal Distribution/11.15 - Log Normal Distribution.mp4
51.3 MB
42.15 - Code for TF-IDF based product similarity/42.15 - Code for TF-IDF based product similarity.mp4
50.6 MB
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC.mp4
50.6 MB
3.4 - Sets/3.4 - Sets.mp4
50.6 MB
42.10 - Text Pre-Processing Tokenization and Stop-word removal/42.10 - Text Pre-Processing Tokenization and Stop-word removal.mp4
50.5 MB
40.1 - BusinessReal world problem/40.1 - BusinessReal world problem.mp4
50.4 MB
4.4 - Recursive functions/4.4 - Recursive functions.mp4
50.3 MB
8.1 - Space and Time Complexity Find largest number in a list/8.1 - Space and Time Complexity Find largest number in a list.mp4
50.3 MB
56.8 - EDABinary Classification Task/56.8 - EDABinary Classification Task.mp4
50.1 MB
43.3 - Machine Learning problem mapping Data overview/43.3 - Machine Learning problem mapping Data overview..mp4
49.8 MB
48.8 - SGD Recap/48.8 - SGD Recap.mp4
49.6 MB
50.13 - VGGNet/50.13 - VGGNet.mp4
49.4 MB
34.7 - Modeling in the presence of outliers RANSAC/34.7 - Modeling in the presence of outliers RANSAC.mp4
49.4 MB
28.1 - Geometric Intution/28.1 - Geometric Intution.mp4
49.4 MB
11.14 - Bernoulli and Binomial Distribution/11.14 - Bernoulli and Binomial Distribution.mp4
49.3 MB
46.1 - BusinessReal world problem Overview/46.1 - BusinessReal world problem Overview.mp4
49.2 MB
2.9 - Control flow while loop/2.9 - Control flow while loop.mp4
49.1 MB
48.21 - Word2Vec Algorithmic Optimizations/48.21 - Word2Vec Algorithmic Optimizations..mp4
49.0 MB
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming.mp4
49.0 MB
24.8 - Loss minimization interpretation/24.8 - Loss minimization interpretation.mp4
48.8 MB
11.34 - Resampling and Permutation test another example/11.34 - Resampling and Permutation test another example.mp4
48.7 MB
40.8 - EDAAnalysis of tags/40.8 - EDAAnalysis of tags.mp4
48.6 MB
34.8 - Productionizing models/34.8 - Productionizing models.mp4
48.4 MB
45.15 - Logistic Regression with class balancing/45.15 - Logistic Regression with class balancing.mp4
48.4 MB
50.1 - Biological inspiration Visual Cortex/50.1 - Biological inspiration Visual Cortex.mp4
48.4 MB
3.6 - Strings/3.6 - Strings.mp4
48.3 MB
18.16 - How to determine overfitting and underfitting/18.16 - How to determine overfitting and underfitting.mp4
48.3 MB
47.3 - Growth of biological neural networks/47.3 - Growth of biological neural networks.mp4
48.2 MB
48.6 - OptimizersHill-descent analogy in 2D/48.6 - OptimizersHill-descent analogy in 2D.mp4
48.2 MB
42.5 - Overview of the data and Terminology/42.5 - Overview of the data and Terminology.mp4
48.1 MB
56.13 - Connected-components/56.13 - Connected-components.mp4
47.8 MB
33.18 - Kaggle Winners solutions/33.18 - Kaggle Winners solutions.mp4
47.8 MB
35.10 - K-Medoids/35.10 - K-Medoids.mp4
47.5 MB
40.9 - EDAData Preprocessing/40.9 - EDAData Preprocessing.mp4
47.3 MB
11.27 - Confidence interval using bootstrapping/11.27 - Confidence interval using bootstrapping.mp4
47.2 MB
55.7 - Deep-learning Model/55.7 - Deep-learning Model..mp4
47.0 MB
57.12 - WHERE, Comparison operators, NULL/57.12 - WHERE, Comparison operators, NULL.mp4
47.0 MB
57.16 - HAVING/57.16 - HAVING.mp4
47.0 MB
43.14 - ASM Files Feature extraction & Multiprocessing/43.14 - ASM Files Feature extraction & Multiprocessing..mp4
46.9 MB
55.6 - Classical ML models/55.6 - Classical ML models..mp4
46.8 MB
18.17 - Time based splitting/18.17 - Time based splitting.mp4
46.6 MB
18.7 - Cosine Distance & Cosine Similarity/18.7 - Cosine Distance & Cosine Similarity.mp4
46.6 MB
11.36 - Proportional Sampling/11.36 - Proportional Sampling.mp4
46.6 MB
26.5 - Gradient descent geometric intuition/26.5 - Gradient descent geometric intuition.mp4
46.6 MB
18.22 - How to build a kd-tree/18.22 - How to build a kd-tree.mp4
46.6 MB
30.3 - Building a decision TreeEntropy/30.3 - Building a decision TreeEntropy.mp4
46.5 MB
28.4 - Loss function (Hinge Loss) based interpretation/28.4 - Loss function (Hinge Loss) based interpretation.mp4
46.4 MB
18.14 - K-fold cross validation/18.14 - K-fold cross validation.mp4
46.4 MB
45.1 - BusinessReal world problem Overview/45.1 - BusinessReal world problem Overview.mp4
46.3 MB
57.23 - DDLCREATE TABLE/57.23 - DDLCREATE TABLE.mp4
46.3 MB
11.33 - Hypothesis testing another example/11.33 - Hypothesis testing another example.mp4
46.2 MB
18.23 - Find nearest neighbours using kd-tree/18.23 - Find nearest neighbours using kd-tree.mp4
46.2 MB
35.9 - Failure casesLimitations/35.9 - Failure casesLimitations.mp4
46.1 MB
41.15 - ML Models Logistic Regression and Linear SVM/41.15 - ML Models Logistic Regression and Linear SVM.mp4
45.8 MB
47.11 - Activation functions/47.11 - Activation functions.mp4
45.6 MB
26.11 - Why L1 regularization creates sparsity/26.11 - Why L1 regularization creates sparsity.mp4
45.4 MB
37.7 - Advantages and Limitations of DBSCAN/37.7 - Advantages and Limitations of DBSCAN.mp4
44.7 MB
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes.mp4
44.6 MB
8.2 - Binary search/8.2 - Binary search.mp4
44.6 MB
48.1 - Deep Multi-layer perceptrons1980s to 2010s/48.1 - Deep Multi-layer perceptrons1980s to 2010s.mp4
44.5 MB
57.15 - GROUP BY/57.15 - GROUP BY.mp4
44.3 MB
32.2 - Bootstrapped Aggregation (Bagging) Intuition/32.2 - Bootstrapped Aggregation (Bagging) Intuition.mp4
44.0 MB
45.14 - K-Nearest Neighbors Classification/45.14 - K-Nearest Neighbors Classification.mp4
43.7 MB
54.1 - Real-world problem/54.1 - Real-world problem.mp4
43.6 MB
50.4 - Convolution over RGB images/50.4 - Convolution over RGB images..mp4
43.6 MB
42.14 - TF-IDF featurizing text based on word-importance/42.14 - TF-IDF featurizing text based on word-importance.mp4
43.0 MB
47.4 - Diagrammatic representation Logistic Regression and Perceptron/47.4 - Diagrammatic representation Logistic Regression and Perceptron.mp4
42.8 MB
30.14 - Code Samples/30.14 - Code Samples.mp4
42.8 MB
45.12 - Machine Learning ModelsData preparation/45.12 - Machine Learning ModelsData preparation.mp4
42.5 MB
41.10 - EDA Feature analysis/41.10 - EDA Feature analysis..mp4
42.3 MB
11.10 - How distributions are used/11.10 - How distributions are used.mp4
42.2 MB
18.21 - Binary search tree/18.21 - Binary search tree.mp4
42.1 MB
28.5 - Dual form of SVM formulation/28.5 - Dual form of SVM formulation.mp4
42.1 MB
54.6 - Char-RNN with abc-notation State full RNN/54.6 - Char-RNN with abc-notation State full RNN.mp4
42.1 MB
17.9 - Word2Vec/17.9 - Word2Vec..mp4
41.8 MB
2.1 - Python, Anaconda and relevant packages installations/2.1 - Python, Anaconda and relevant packages installations.mp4.mkv
41.7 MB
32.9 - Boosting Intuition/32.9 - Boosting Intuition.mp4
41.6 MB
42.16 - Code for IDF based product similarity/42.16 - Code for IDF based product similarity.mp4
41.5 MB
41.7 - EDA Basic Feature Extraction/41.7 - EDA Basic Feature Extraction.mp4
41.4 MB
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/38.10 - Matrix Factorization for recommender systems Netflix Prize Solution.mp4
41.4 MB
43.10 - ML models – using byte files only Random Model/43.10 - ML models – using byte files only Random Model.mp4
41.3 MB
57.18 - Join and Natural Join/57.18 - Join and Natural Join.mp4
41.3 MB
56.19 - Modeling/56.19 - Modeling.mp4
41.1 MB
34.3 - Calibration Plots/34.3 - Calibration Plots..mp4
41.0 MB
56.6 - EDABasic Stats/56.6 - EDABasic Stats.mp4
40.8 MB
18.8 - How to measure the effectiveness of k-NN/18.8 - How to measure the effectiveness of k-NN.mp4
40.7 MB
57.7 - USE, DESCRIBE, SHOW TABLES/57.7 - USE, DESCRIBE, SHOW TABLES.mp4
40.7 MB
49.10 - Model 3 Batch Normalization/49.10 - Model 3 Batch Normalization..mp4
40.6 MB
23.20 - Code example/23.20 - Code example.mp4
40.5 MB
18.15 - Visualizing train, validation and test datasets/18.15 - Visualizing train, validation and test datasets.mp4
40.5 MB
46.2 - Objectives and Constraints/46.2 - Objectives and Constraints.mp4
40.4 MB
43.18 - ML models on ASM file features/43.18 - ML models on ASM file features.mp4
40.3 MB
33.6 - Keypoints SIFT/33.6 - Keypoints SIFT..mp4
40.2 MB
45.20 - Stacking Classifier/45.20 - Stacking Classifier.mp4
40.1 MB
38.3 - Similarity based Algorithms/38.3 - Similarity based Algorithms.mp4
40.0 MB
53.2 - Datasets#/53.2 - Datasets..mp4
40.0 MB
44.18 - Featurizations for regression/44.18 - Featurizations for regression..mp4
39.9 MB
4.3 - Function arguments/4.3 - Function arguments.mp4
39.9 MB
57.4 - IMDB dataset/57.4 - IMDB dataset.mp4
39.7 MB
47.9 - Training an MLPMemoization/47.9 - Training an MLPMemoization.mp4
39.2 MB
57.5 - Installing MySQL/57.5 - Installing MySQL.mp4
39.0 MB
23.7 - Naive Bayes on Text data/23.7 - Naive Bayes on Text data.mp4
38.8 MB
50.8 - Example CNN LeNet [1998]/50.8 - Example CNN LeNet [1998].mp4
38.6 MB
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/20.7 - Local outlier Factor (Simple solution Mean distance to Knn).mp4
38.6 MB
33.5 - Image histogram/33.5 - Image histogram.mp4
38.6 MB
56.9 - EDATrain and test split/56.9 - EDATrain and test split..mp4
38.5 MB
44.7 - Exploratory Data AnalysisPreliminary data analysis/44.7 - Exploratory Data AnalysisPreliminary data analysis..mp4
38.4 MB
13.7 - Data Preprocessing Column Standardization/13.7 - Data Preprocessing Column Standardization.mp4
38.3 MB
53.1 - Self Driving Car Problem definition/53.1 - Self Driving Car Problem definition..mp4
38.1 MB
46.3 - Mapping to ML problem Data/46.3 - Mapping to ML problem Data.mp4
37.7 MB
54.8 - Char-RNN with abc-notation Music generation/54.8 - Char-RNN with abc-notation Music generation..mp4
37.3 MB
11.26 - C.I for mean of a normal random variable/11.26 - C.I for mean of a normal random variable.mp4
37.3 MB
57.27 - Learning resources/57.27 - Learning resources.mp4
37.2 MB
56.16 - HITS Score/56.16 - HITS Score.mp4
37.1 MB
36.1 - Agglomerative & Divisive, Dendrograms/36.1 - Agglomerative & Divisive, Dendrograms.mp4
37.0 MB
33.1 - Introduction/33.1 - Introduction.mp4
37.0 MB
47.13 - Bias-Variance tradeoff/47.13 - Bias-Variance tradeoff..mp4
36.9 MB
46.4 - Mapping to ML problem dask dataframes/46.4 - Mapping to ML problem dask dataframes.mp4
36.8 MB
23.15 - Handling Numerical features (Gaussian NB)/23.15 - Handling Numerical features (Gaussian NB).mp4
36.7 MB
32.3 - Random Forest and their construction/32.3 - Random Forest and their construction.mp4
36.7 MB
13.9 - MNIST dataset (784 dimensional)/13.9 - MNIST dataset (784 dimensional).mp4
36.5 MB
21.1 - Accuracy/21.1 - Accuracy.mp4
36.5 MB
45.18 - Random-Forest with one-hot encoded features/45.18 - Random-Forest with one-hot encoded features.mp4
36.3 MB
32.17 - Cascading classifiers/32.17 - Cascading classifiers.mp4
36.3 MB
48.11 - OptimizersAdaGrad/48.11 - OptimizersAdaGrad.mp4
36.2 MB
23.12 - Imbalanced data/23.12 - Imbalanced data.mp4
36.2 MB
42.22 - Code for weighted similarity/42.22 - Code for weighted similarity.mp4
36.0 MB
56.14 - Adar Index/56.14 - Adar Index.mp4
35.8 MB
56.7 - EDAFollower and following stats/56.7 - EDAFollower and following stats..mp4
35.7 MB
57.2 - Why SQL/57.2 - Why SQL.mp4
35.7 MB
26.9 - Constrained Optimization & PCA/26.9 - Constrained Optimization & PCA.mp4
35.7 MB
17.6 - uni-gram, bi-gram, n-grams/17.6 - uni-gram, bi-gram, n-grams..mp4
35.6 MB
13.10 - Code to Load MNIST Data Set/13.10 - Code to Load MNIST Data Set.mp4
35.6 MB
23.1 - Conditional probability/23.1 - Conditional probability.mp4
35.6 MB
46.24 - Regression models Train-Test split & Features/46.24 - Regression models Train-Test split & Features.mp4
35.6 MB
33.11 - Feature binning/33.11 - Feature binning.mp4
35.5 MB
23.10 - Bias and Variance tradeoff/23.10 - Bias and Variance tradeoff.mp4
35.4 MB
24.11 - Feature importance and Model interpretability/24.11 - Feature importance and Model interpretability.mp4
35.2 MB
24.12 - Collinearity of features/24.12 - Collinearity of features.mp4
35.2 MB
25.2 - Mathematical formulation/25.2 - Mathematical formulation.mp4
35.1 MB
45.6 - Exploratory Data AnalysisReading data & preprocessing/45.6 - Exploratory Data AnalysisReading data & preprocessing.mp4
35.1 MB
36.2 - Agglomerative Clustering/36.2 - Agglomerative Clustering.mp4
35.0 MB
13.8 - Co-variance of a Data Matrix/13.8 - Co-variance of a Data Matrix.mp4
34.9 MB
50.9 - ImageNet dataset/50.9 - ImageNet dataset..mp4
34.9 MB
42.25 - Using Keras + Tensorflow to extract features/42.25 - Using Keras + Tensorflow to extract features.mp4
34.7 MB
17.8 - Why use log in IDF/17.8 - Why use log in IDF.mp4
34.6 MB
17.3 - Why convert text to a vector/17.3 - Why convert text to a vector.mp4
34.1 MB
14.10 - PCA for dimensionality reduction (not-visualization)/14.10 - PCA for dimensionality reduction (not-visualization).mp4
33.9 MB
40.14 - Logistic regression One VS Rest/40.14 - Logistic regression One VS Rest.mp4
33.8 MB
21.5 - Log-loss/21.5 - Log-loss.mp4
33.7 MB
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction.mp4
33.7 MB
46.20 - Simple moving average/46.20 - Simple moving average.mp4
33.7 MB
7.1 - Getting started with pandas/7.1 - Getting started with pandas.mp4
33.1 MB
25.1 - Geometric intuition of Linear Regression/25.1 - Geometric intuition of Linear Regression.mp4
33.1 MB
56.17 - SVD/56.17 - SVD.mp4
33.0 MB
11.30 - Resampling and permutation test/11.30 - Resampling and permutation test.mp4
33.0 MB
11.17 - Box cox transform/11.17 - Box cox transform.mp4
32.7 MB
49.13 - Hyperparameter tuning in Keras/49.13 - Hyperparameter tuning in Keras..mp4
32.6 MB
43.7 - Exploratory Data Analysis Feature extraction from byte files/43.7 - Exploratory Data Analysis Feature extraction from byte files.mp4
32.4 MB
44.15 - Overview of the modelling strategy/44.15 - Overview of the modelling strategy..mp4
32.3 MB
20.12 - Impact of Scale & Column standardization/20.12 - Impact of Scale & Column standardization.mp4
32.3 MB
35.12 - Code Samples/35.12 - Code Samples.mp4
32.3 MB
45.17 - Linear-SVM/45.17 - Linear-SVM..mp4
32.0 MB
51.5 - Need for LSTMGRU/51.5 - Need for LSTMGRU..mp4
31.9 MB
32.10 - Residuals, Loss functions and gradients/32.10 - Residuals, Loss functions and gradients.mp4
31.8 MB
18.28 - LSH for euclidean distance/18.28 - LSH for euclidean distance.mp4
31.8 MB
35.4 - Metrics for Clustering/35.4 - Metrics for Clustering.mp4
31.7 MB
8.4 - Find elements common in two lists using a HashtableDict/8.4 - Find elements common in two lists using a HashtableDict.mp4
31.5 MB
43.13 - Random Forest and Xgboost/43.13 - Random Forest and Xgboost.mp4
31.5 MB
37.5 - DBSCAN Algorithm/37.5 - DBSCAN Algorithm.mp4
31.5 MB
33.9 - Graph data/33.9 - Graph data.mp4
31.4 MB
45.7 - Exploratory Data AnalysisDistribution of Class-labels/45.7 - Exploratory Data AnalysisDistribution of Class-labels.mp4
31.3 MB
44.8 - Exploratory Data AnalysisSparse matrix representation/44.8 - Exploratory Data AnalysisSparse matrix representation.mp4
31.2 MB
30.13 - Cases/30.13 - Cases.mp4
31.1 MB
46.18 - Data Preparation Time series and Fourier transforms/46.18 - Data Preparation Time series and Fourier transforms..mp4
31.1 MB
2.10 - Control flow for loop/2.10 - Control flow for loop.mp4.mkv
30.9 MB
11.23 - How to use correlations/11.23 - How to use correlations.mp4
30.9 MB
18.9 - TestEvaluation time and space complexity/18.9 - TestEvaluation time and space complexity.mp4
30.8 MB
49.4 - Install TensorFlow/49.4 - Install TensorFlow.mp4
30.6 MB
45.2 - Business objectives and constraints/45.2 - Business objectives and constraints..mp4
30.5 MB
20.13 - Interpretability/20.13 - Interpretability.mp4
30.4 MB
32.11 - Gradient Boosting/32.11 - Gradient Boosting.mp4
30.1 MB
11.19 - Co-variance/11.19 - Co-variance.mp4
30.0 MB
43.4 - Machine Learning problem mapping ML problem/43.4 - Machine Learning problem mapping ML problem.mp4
30.0 MB
49.9 - Model 2 ReLU activation/49.9 - Model 2 ReLU activation..mp4
29.9 MB
26.3 - Maxima and Minima/26.3 - Maxima and Minima.mp4
29.8 MB
20.3 - Multi-class classification/20.3 - Multi-class classification.mp4
29.6 MB
57.11 - DISTINCT/57.11 - DISTINCT.mp4
29.5 MB
51.9 - Bidirectional RNN/51.9 - Bidirectional RNN..mp4
29.1 MB
15.7 - Code example of t-SNE/15.7 - Code example of t-SNE.mp4
29.1 MB
56.3 - Data format & Limitations/56.3 - Data format & Limitations..mp4
29.0 MB
44.1 - BusinessReal world problemProblem definition/44.1 - BusinessReal world problemProblem definition.mp4
28.9 MB
28.7 - Polynomial Kernel/28.7 - Polynomial Kernel.mp4
28.8 MB
44.5 - Exploratory Data AnalysisData preprocessing/44.5 - Exploratory Data AnalysisData preprocessing.mp4
28.6 MB
9.8 - Mean, Variance and Standard Deviation/9.8 - Mean, Variance and Standard Deviation.mp4
28.6 MB
14.3 - Mathematical objective function of PCA/14.3 - Mathematical objective function of PCA.mp4
28.6 MB
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/18.4 - K-Nearest Neighbours Geometric intuition with a toy example.mp4
28.6 MB
33.15 - Feature orthogonality/33.15 - Feature orthogonality.mp4
28.5 MB
48.13 - Adam/48.13 - Adam.mp4
28.4 MB
50.6 - Max-pooling/50.6 - Max-pooling..mp4
28.3 MB
23.9 - Log-probabilities for numerical stability/23.9 - Log-probabilities for numerical stability.mp4
28.3 MB
38.2 - Content based vs Collaborative Filtering/38.2 - Content based vs Collaborative Filtering.mp4
28.2 MB
44.14 - ML ModelsSurprise library/44.14 - ML ModelsSurprise library.mp4
28.2 MB
44.25 - SVD ++ with implicit feedback/44.25 - SVD ++ with implicit feedback.mp4
28.1 MB
49.5 - Online documentation and tutorials/49.5 - Online documentation and tutorials.mp4
28.1 MB
53.4 - Dash-cam images and steering angles/53.4 - Dash-cam images and steering angles..mp4
28.0 MB
33.8 - Relational data/33.8 - Relational data.mp4
28.0 MB
34.4 - Platt’s CalibrationScaling/34.4 - Platt’s CalibrationScaling..mp4
28.0 MB
57.9 - LIMIT, OFFSET/57.9 - LIMIT, OFFSET.mp4
27.9 MB
9.9 - Median/9.9 - Median.mp4
27.9 MB
42.26 - Visual similarity based product similarity/42.26 - Visual similarity based product similarity.mp4
27.6 MB
45.19 - Random-Forest with response-coded features/45.19 - Random-Forest with response-coded features.mp4
27.5 MB
3.2 - Tuples part 1/3.2 - Tuples part 1.mp4
27.4 MB
11.13 - How to randomly sample data points (Uniform Distribution)/11.13 - How to randomly sample data points (Uniform Distribution).mp4
27.4 MB
21.3 - Precision and recall, F1-score/21.3 - Precision and recall, F1-score.mp4
27.3 MB
51.7 - GRUs/51.7 - GRUs..mp4
27.3 MB
44.21 - Surprise Baseline model/44.21 - Surprise Baseline model..mp4
27.2 MB
11.25 - Computing confidence interval given the underlying distribution/11.25 - Computing confidence interval given the underlying distribution.mp4
27.2 MB
35.6 - K-Means Mathematical formulation Objective function/35.6 - K-Means Mathematical formulation Objective function.mp4
27.2 MB
24.6 - L1 regularization and sparsity/24.6 - L1 regularization and sparsity.mp4
27.1 MB
24.14 - Real world cases/24.14 - Real world cases.mp4
27.0 MB
7.2 - Data Frame Basics/7.2 - Data Frame Basics.mp4
27.0 MB
46.7 - Mapping to ML problem Performance metrics/46.7 - Mapping to ML problem Performance metrics.mp4
26.9 MB
42.2 - Plan of action/42.2 - Plan of action.mp4
26.9 MB
11.8 - Sampling distribution & Central Limit theorem/11.8 - Sampling distribution & Central Limit theorem.mp4
26.8 MB
44.13 - Computing Similarity matricesDoes movie-movie similarity work/44.13 - Computing Similarity matricesDoes movie-movie similarity work.mp4
26.8 MB
24.18 - Extensions to Generalized linear models/24.18 - Extensions to Generalized linear models.mp4
26.7 MB
35.7 - K-Means Algorithm/35.7 - K-Means Algorithm..mp4
26.7 MB
53.9 - Batch load the dataset/53.9 - Batch load the dataset..mp4
26.6 MB
24.13 - TestRun time space and time complexity/24.13 - TestRun time space and time complexity.mp4
26.5 MB
50.18 - Code Example MNIST dataset/50.18 - Code Example MNIST dataset..mp4
26.4 MB
41.1 - BusinessReal world problem Problem definition/41.1 - BusinessReal world problem Problem definition.mp4
26.4 MB
41.13 - ML Models Loading Data/41.13 - ML Models Loading Data.mp4
26.3 MB
24.4 - Weight vector/24.4 - Weight vector.mp4
26.3 MB
30.4 - Building a decision TreeInformation Gain/30.4 - Building a decision TreeInformation Gain.mp4
26.2 MB
26.8 - SGD algorithm/26.8 - SGD algorithm.mp4
26.1 MB
34.5 - Isotonic Regression/34.5 - Isotonic Regression.mp4
25.9 MB
42.7 - Understand duplicate rows/42.7 - Understand duplicate rows.mp4
25.9 MB
9.7 - CDF(Cumulative Distribution Function)/9.7 - CDF(Cumulative Distribution Function).mp4
25.8 MB
18.1 - How “Classification” works/18.1 - How “Classification” works.mp4
25.7 MB
46.22 - Exponential weighted moving average/46.22 - Exponential weighted moving average.mp4
25.7 MB
13.5 - Data Preprocessing Feature Normalisation/13.5 - Data Preprocessing Feature Normalisation.mkv
25.7 MB
23.11 - Feature importance and interpretability/23.11 - Feature importance and interpretability.mp4
25.7 MB
41.12 - EDA TF-IDF weighted Word2Vec featurization/41.12 - EDA TF-IDF weighted Word2Vec featurization..mp4
25.6 MB
48.15 - Gradient Checking and clipping/48.15 - Gradient Checking and clipping.mp4
25.6 MB
46.15 - Data PreparationTime binning/46.15 - Data PreparationTime binning.mp4
25.5 MB
57.21 - DMLINSERT/57.21 - DMLINSERT.mp4
25.4 MB
49.11 - Model 4 Dropout/49.11 - Model 4 Dropout..mp4
25.4 MB
35.1 - What is Clustering/35.1 - What is Clustering.mp4
25.2 MB
18.26 - Hashing vs LSH/18.26 - Hashing vs LSH.mp4
25.1 MB
38.9 - Hyperparameter tuning/38.9 - Hyperparameter tuning.mp4
25.1 MB
26.4 - Vector calculus Grad/26.4 - Vector calculus Grad.mp4
25.0 MB
11.21 - Spearman Rank Correlation Coefficient/11.21 - Spearman Rank Correlation Coefficient.mp4
24.9 MB
28.6 - kernel trick/28.6 - kernel trick.mp4
24.9 MB
45.3 - ML problem formulation Data/45.3 - ML problem formulation Data.mp4
24.9 MB
41.8 - EDA Text Preprocessing/41.8 - EDA Text Preprocessing.mp4
24.9 MB
11.7 - Kernel density estimation/11.7 - Kernel density estimation.mp4
24.7 MB
44.2 - Objectives and constraints/44.2 - Objectives and constraints.mp4
24.7 MB
54.11 - Survey blog/54.11 - Survey blog.mp4
24.6 MB
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path..mp4
24.6 MB
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN.mp4
24.6 MB
17.13 - Bi-Grams and n-grams (Code Sample)/17.13 - Bi-Grams and n-grams (Code Sample).mp4
24.5 MB
32.18 - Kaggle competitions vs Real world/32.18 - Kaggle competitions vs Real world.mp4
24.4 MB
11.12 - Discrete and Continuous Uniform distributions/11.12 - Discrete and Continuous Uniform distributions.mp4
24.3 MB
9.3 - Pair plots/9.3 - Pair plots.mp4
24.2 MB
44.20 - Xgboost with 13 features/44.20 - Xgboost with 13 features.mp4
24.1 MB
46.9 - Data Cleaning Trip Duration/46.9 - Data Cleaning Trip Duration..mp4
24.1 MB
41.16 - ML Models XGBoost/41.16 - ML Models XGBoost.mp4
24.0 MB
46.5 - Mapping to ML problem FieldsFeatures/46.5 - Mapping to ML problem FieldsFeatures..mp4
24.0 MB
14.4 - Alternative formulation of PCA Distance minimization/14.4 - Alternative formulation of PCA Distance minimization.mp4
24.0 MB
14.6 - PCA for Dimensionality Reduction and Visualization/14.6 - PCA for Dimensionality Reduction and Visualization.mp4
23.9 MB
18.10 - KNN Limitations/18.10 - KNN Limitations.mp4
23.8 MB
37.6 - Hyper Parameters MinPts and Eps/37.6 - Hyper Parameters MinPts and Eps.mp4
23.7 MB
54.10 - MIDI music generation/54.10 - MIDI music generation..mp4
23.6 MB
43.1 - Businessreal world problem Problem definition/43.1 - Businessreal world problem Problem definition.mp4
23.6 MB
33.17 - Feature slicing/33.17 - Feature slicing.mp4
23.5 MB
42.20 - Code for IDF weighted Word2Vec product similarity/42.20 - Code for IDF weighted Word2Vec product similarity.mp4
23.5 MB
20.9 - Reachability-Distance(A,B)/20.9 - Reachability-Distance(A,B).mp4
23.5 MB
46.19 - Ratios and previous-time-bin values/46.19 - Ratios and previous-time-bin values.mp4
23.4 MB
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM.mp4
23.3 MB
50.7 - CNN Training Optimization/50.7 - CNN Training Optimization.mp4
23.3 MB
9.5 - Histogram and Introduction to PDF(Probability Density Function)/9.5 - Histogram and Introduction to PDF(Probability Density Function).mkv
23.3 MB
32.12 - Regularization by Shrinkage/32.12 - Regularization by Shrinkage.mp4
23.1 MB
9.15 - Multivariate Probability Density, Contour Plot/9.15 - Multivariate Probability Density, Contour Plot.mp4
23.1 MB
30.12 - Regression using Decision Trees/30.12 - Regression using Decision Trees.mp4
23.0 MB
42.21 - Weighted similarity using brand and color/42.21 - Weighted similarity using brand and color.mp4
22.9 MB
11.1 - Introduction to Probability and Statistics/11.1 - Introduction to Probability and Statistics.mp4
22.9 MB
32.7 - Extremely randomized trees/32.7 - Extremely randomized trees.mp4
22.9 MB
49.3 - Google Colaboratory/49.3 - Google Colaboratory..mp4
22.7 MB
55.1 - Human Activity Recognition Problem definition/55.1 - Human Activity Recognition Problem definition.mp4
22.7 MB
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution.mp4
22.6 MB
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec.mp4
22.5 MB
15.6 - t-SNE on MNIST/15.6 - t-SNE on MNIST.mp4
22.5 MB
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/11.28 - Hypothesis testing methodology, Null-hypothesis, p-value.mp4
22.5 MB
40.15 - Sampling data and tags+Weighted models/40.15 - Sampling data and tags+Weighted models..mp4
22.5 MB
56.4 - Mapping to a supervised classification problem/56.4 - Mapping to a supervised classification problem..mp4
22.5 MB
43.11 - k-NN/43.11 - k-NN.mp4
22.4 MB
46.8 - Data Cleaning Latitude and Longitude data/46.8 - Data Cleaning Latitude and Longitude data.mp4
22.3 MB
30.2 - Sample Decision tree/30.2 - Sample Decision tree.mp4
22.3 MB
48.14 - Which algorithm to choose when/48.14 - Which algorithm to choose when.mp4
22.3 MB
4.5 - Lambda functions/4.5 - Lambda functions.mp4
22.2 MB
20.10 - Local reachability-density(A)/20.10 - Local reachability-density(A).mp4
22.2 MB
35.5 - K-Means Geometric intuition, Centroids/35.5 - K-Means Geometric intuition, Centroids.mp4
22.1 MB
28.13 - Cases/28.13 - Cases.mp4
22.1 MB
43.12 - Logistic regression/43.12 - Logistic regression.mp4
22.1 MB
9.10 - Percentiles and Quantiles/9.10 - Percentiles and Quantiles.mp4
22.0 MB
50.10 - Data Augmentation/50.10 - Data Augmentation..mp4
22.0 MB
33.14 - Model specific featurizations/33.14 - Model specific featurizations.mp4
22.0 MB
45.22 - Assignments/45.22 - Assignments..mp4
21.9 MB
40.13 - Featurization/40.13 - Featurization.mp4
21.9 MB
45.21 - Majority Voting classifier/45.21 - Majority Voting classifier.mp4
21.7 MB
9.12 - Box-plot with Whiskers/9.12 - Box-plot with Whiskers.mp4
21.7 MB
48.12 - Optimizers Adadelta andRMSProp/48.12 - Optimizers Adadelta andRMSProp.mp4
21.7 MB
2.7 - Operators/2.7 - Operators.mp4
21.6 MB
41.6 - EDA Basic Statistics/41.6 - EDA Basic Statistics..mp4
21.5 MB
46.29 - Assignment/46.29 - Assignment..mp4
21.5 MB
30.9 - Building a decision TreeCategorical features with many possible values/30.9 - Building a decision TreeCategorical features with many possible values.mp4
21.4 MB
32.5 - Train and run time complexity/32.5 - Train and run time complexity.mp4
21.4 MB
34.6 - Code Samples/34.6 - Code Samples.mp4
21.4 MB
14.2 - Geometric intuition of PCA/14.2 - Geometric intuition of PCA.mp4
21.3 MB
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces.mp4
21.2 MB
55.5 - EDAData visualization using t-SNE/55.5 - EDAData visualization using t-SNE.mp4
21.2 MB
38.7 - Matrix Factorization for feature engineering/38.7 - Matrix Factorization for feature engineering.mp4
21.1 MB
20.4 - k-NN, given a distance or similarity matrix/20.4 - k-NN, given a distance or similarity matrix.mp4
21.1 MB
15.3 - Geometric intuition of t-SNE/15.3 - Geometric intuition of t-SNE.mp4
21.0 MB
28.3 - Why we take values +1 and and -1 for Support vector planes/28.3 - Why we take values +1 and and -1 for Support vector planes.mp4
20.9 MB
33.12 - Interaction variables/33.12 - Interaction variables.mp4
20.9 MB
34.9 - Retraining models periodically/34.9 - Retraining models periodically..mp4
20.8 MB
18.24 - Limitations of Kd tree/18.24 - Limitations of Kd tree.mp4
20.7 MB
42.19 - TF-IDF weighted Word2Vec/42.19 - TF-IDF weighted Word2Vec.mp4
20.7 MB
57.10 - ORDER BY/57.10 - ORDER BY.mp4
20.7 MB
56.5 - Business constraints & Metrics/56.5 - Business constraints & Metrics..mp4
20.6 MB
46.28 - Model comparison/46.28 - Model comparison.mp4
20.6 MB
47.2 - How Biological Neurons work/47.2 - How Biological Neurons work.mp4
20.6 MB
48.10 - Nesterov Accelerated Gradient (NAG)/48.10 - Nesterov Accelerated Gradient (NAG).mp4
20.5 MB
25.3 - Real world Cases/25.3 - Real world Cases.mp4
20.3 MB
56.15 - Kartz Centrality/56.15 - Kartz Centrality.mp4
20.2 MB
15.4 - Crowding Problem/15.4 - Crowding Problem.mp4
20.1 MB
57.22 - DMLUPDATE , DELETE/57.22 - DMLUPDATE , DELETE.mp4
20.1 MB
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis.mp4
20.0 MB
2.6 - Standard Input and Output/2.6 - Standard Input and Output.mp4
20.0 MB
55.4 - EDAUnivariate analysis/55.4 - EDAUnivariate analysis..mp4
19.9 MB
32.6 - BaggingCode Sample/32.6 - BaggingCode Sample.mp4
19.9 MB
46.10 - Data Cleaning Speed/46.10 - Data Cleaning Speed..mp4
19.8 MB
40.11 - Data preparation/40.11 - Data preparation..mp4
19.7 MB
18.5 - Failure cases of KNN/18.5 - Failure cases of KNN.mp4
19.6 MB
48.17 - How to train a Deep MLP/48.17 - How to train a Deep MLP.mp4
19.6 MB
40.4 - Mapping to an ML problemML problem formulation/40.4 - Mapping to an ML problemML problem formulation..mp4
19.6 MB
18.29 - Probabilistic class label/18.29 - Probabilistic class label.mp4
19.6 MB
28.12 - SVM Regression/28.12 - SVM Regression.mp4
19.5 MB
44.28 - Assignments/44.28 - Assignments..mp4
19.5 MB
18.25 - Extensions/18.25 - Extensions.mp4
19.5 MB
11.24 - Confidence interval (C.I) Introduction/11.24 - Confidence interval (C.I) Introduction.mp4
19.5 MB
28.10 - Train and run time complexities/28.10 - Train and run time complexities.mp4
19.4 MB
10.3 - Dot Product and Angle between 2 Vectors/10.3 - Dot Product and Angle between 2 Vectors.mp4
19.4 MB
2.3 - Keywords and identifiers/2.3 - Keywords and identifiers.mp4
19.3 MB
33.4 - Deep learning features LSTM/33.4 - Deep learning features LSTM.mp4
19.3 MB
26.7 - Gradient descent for linear regression/26.7 - Gradient descent for linear regression.mp4
19.2 MB
46.6 - Mapping to ML problem Time series forecastingRegression/46.6 - Mapping to ML problem Time series forecastingRegression.mp4
19.0 MB
30.7 - Building a decision Tree Splitting numerical features/30.7 - Building a decision Tree Splitting numerical features.mp4
18.9 MB
23.19 - Best and worst cases/23.19 - Best and worst cases.mp4
18.9 MB
46.26 - Random Forest regression/46.26 - Random Forest regression.mp4
18.9 MB
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector.mp4
18.8 MB
30.10 - Overfitting and Underfitting/30.10 - Overfitting and Underfitting.mp4
18.6 MB
17.14 - TF-IDF (Code Sample)/17.14 - TF-IDF (Code Sample).mp4
18.5 MB
37.3 - Core, Border and Noise points/37.3 - Core, Border and Noise points.mp4
18.5 MB
18.19 - Weighted k-NN/18.19 - Weighted k-NN.mp4
18.5 MB
45.16 - Logistic Regression without class balancing/45.16 - Logistic Regression without class balancing.mp4
18.4 MB
26.6 - Learning rate/26.6 - Learning rate.mp4
18.3 MB
56.1 - Problem definition/56.1 - Problem definition..mp4
18.2 MB
4.6 - Modules/4.6 - Modules.mp4
18.2 MB
11.2 - Population and Sample/11.2 - Population and Sample.mp4
18.2 MB
56.18 - Weight features/56.18 - Weight features.mp4
18.0 MB
50.19 - Assignment Try various CNN networks on MNIST dataset#/50.19 - Assignment Try various CNN networks on MNIST dataset..mp4
18.0 MB
57.3 - Execution of an SQL statement/57.3 - Execution of an SQL statement..mp4
17.8 MB
40.6 - Hamming loss/40.6 - Hamming loss.mp4
17.6 MB
20.6 - Impact of outliers/20.6 - Impact of outliers.mp4
17.6 MB
30.5 - Building a decision Tree Gini Impurity/30.5 - Building a decision Tree Gini Impurity.mp4
17.6 MB
32.15 - AdaBoost geometric intuition/32.15 - AdaBoost geometric intuition.mp4
17.6 MB
34.1 - Calibration of ModelsNeed for calibration/34.1 - Calibration of ModelsNeed for calibration.mp4
17.4 MB
46.12 - Data Cleaning Fare/46.12 - Data Cleaning Fare.mp4
17.4 MB
13.4 - How to represent a dataset as a Matrix/13.4 - How to represent a dataset as a Matrix..mp4
17.4 MB
32.4 - Bias-Variance tradeoff/32.4 - Bias-Variance tradeoff.mp4
17.4 MB
28.9 - Domain specific Kernels/28.9 - Domain specific Kernels.mp4
17.3 MB
43.20 - Models on all features RandomForest and Xgboost/43.20 - Models on all features RandomForest and Xgboost.mp4
17.2 MB
42.27 - Measuring goodness of our solution AB testing/42.27 - Measuring goodness of our solution AB testing.mp4
17.2 MB
21.8 - Distribution of errors/21.8 - Distribution of errors.mp4
17.2 MB
40.16 - Logistic regression revisited/40.16 - Logistic regression revisited.mp4
17.0 MB
28.11 - nu-SVM control errors and support vectors/28.11 - nu-SVM control errors and support vectors.mp4
17.0 MB
33.10 - Indicator variables/33.10 - Indicator variables.mp4
16.9 MB
41.14 - ML Models Random Model/41.14 - ML Models Random Model.mp4
16.9 MB
43.2 - Businessreal world problem Objectives and constraints/43.2 - Businessreal world problem Objectives and constraints.mp4
16.8 MB
30.11 - Train and Run time complexity/30.11 - Train and Run time complexity.mp4
16.8 MB
53.13 - Extensions/53.13 - Extensions..mp4
16.7 MB
15.1 - What is t-SNE/15.1 - What is t-SNE.mp4
16.7 MB
23.2 - Independent vs Mutually exclusive events/23.2 - Independent vs Mutually exclusive events.mp4
16.7 MB
4.7 - Packages/4.7 - Packages.mp4
16.6 MB
44.9 - Exploratory Data AnalysisAverage ratings for various slices/44.9 - Exploratory Data AnalysisAverage ratings for various slices.mp4
16.5 MB
42.4 - Data folders and paths/42.4 - Data folders and paths.mp4
16.5 MB
18.2 - Data matrix notation/18.2 - Data matrix notation.mp4
16.5 MB
11.5 - Symmetric distribution, Skewness and Kurtosis/11.5 - Symmetric distribution, Skewness and Kurtosis.mp4
16.4 MB
49.14 - Exercise Try different MLP architectures on MNIST dataset/49.14 - Exercise Try different MLP architectures on MNIST dataset..mp4
16.4 MB
2.11 - Control flow break and continue/2.11 - Control flow break and continue.mp4
16.1 MB
53.6 - EDA Steering angles/53.6 - EDA Steering angles.mp4
16.1 MB
51.8 - Deep RNN/51.8 - Deep RNN..mp4
16.1 MB
14.7 - Visualize MNIST dataset/14.7 - Visualize MNIST dataset.mp4
16.0 MB
44.26 - Final models with all features and predictors/44.26 - Final models with all features and predictors..mp4
16.0 MB
20.19 - Intuitive understanding of bias-variance/20.19 - Intuitive understanding of bias-variance..mp4
16.0 MB
57.17 - Order of keywords#/57.17 - Order of keywords..mp4
15.9 MB
44.24 - Matrix Factorization models using Surprise/44.24 - Matrix Factorization models using Surprise.mp4
15.7 MB
40.18 - Assignments/40.18 - Assignments..mp4
15.6 MB
46.23 - Results/46.23 - Results..mp4
15.6 MB
46.21 - Weighted Moving average/46.21 - Weighted Moving average..mp4
15.5 MB
15.2 - Neighborhood of a point, Embedding/15.2 - Neighborhood of a point, Embedding.mp4
15.4 MB
20.21 - best and wrost case of algorithm/20.21 - best and wrost case of algorithm.mp4
15.3 MB
9.16 - Exercise Perform EDA on Haberman dataset/9.16 - Exercise Perform EDA on Haberman dataset.mp4
15.2 MB
26.12 - Assignment 6 Implement SGD for linear regression/26.12 - Assignment 6 Implement SGD for linear regression.mp4
15.1 MB
9.6 - Univariate Analysis using PDF/9.6 - Univariate Analysis using PDF.mp4
15.1 MB
2.8 - Control flow if else/2.8 - Control flow if else.mp4
15.0 MB
32.13 - Train and Run time complexity/32.13 - Train and Run time complexity.mp4
14.9 MB
18.3 - Classification vs Regression (examples)/18.3 - Classification vs Regression (examples).mp4
14.8 MB
11.32 - Code Snippet K-S Test/11.32 - Code Snippet K-S Test.mp4
14.7 MB
8.3 - Find elements common in two lists/8.3 - Find elements common in two lists.mp4
14.6 MB
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation).mp4
14.5 MB
32.8 - Random Tree Cases/32.8 - Random Tree Cases.mp4
14.5 MB
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D).mp4
14.5 MB
38.11 - Cold Start problem/38.11 - Cold Start problem.mp4
14.4 MB
9.2 - 3D scatter plot/9.2 - 3D scatter plot.mp4
14.4 MB
32.1 - What are ensembles/32.1 - What are ensembles.mp4
14.3 MB
57.24 - DDLALTER ADD, MODIFY, DROP/57.24 - DDLALTER ADD, MODIFY, DROP.mp4
14.3 MB
44.12 - Computing Similarity matricesMovie-Movie similarity/44.12 - Computing Similarity matricesMovie-Movie similarity.mp4
14.3 MB
26.10 - Logistic regression formulation revisited/26.10 - Logistic regression formulation revisited.mp4
14.1 MB
42.3 - Amazon product advertising API/42.3 - Amazon product advertising API.mp4
13.9 MB
18.20 - Voronoi diagram/18.20 - Voronoi diagram.mp4
13.9 MB
42.23 - Building a real world solution/42.23 - Building a real world solution.mp4
13.8 MB
54.9 - Char-RNN with abc-notation Generate tabla music/54.9 - Char-RNN with abc-notation Generate tabla music.mp4
13.6 MB
18.18 - k-NN for regression/18.18 - k-NN for regression.mp4
13.5 MB
40.3 - Mapping to an ML problem Data overview/40.3 - Mapping to an ML problem Data overview.mp4
13.5 MB
23.13 - Outliers/23.13 - Outliers.mp4
13.5 MB
11.22 - Correlation vs Causation/11.22 - Correlation vs Causation.mp4
13.5 MB
44.6 - Exploratory Data AnalysisTemporal Train-Test split/44.6 - Exploratory Data AnalysisTemporal Train-Test split..mp4
13.3 MB
2.4 - comments, indentation and statements/2.4 - comments, indentation and statements.mp4
13.2 MB
41.3 - Mapping to an ML problem Data overview/41.3 - Mapping to an ML problem Data overview.mp4
13.2 MB
37.2 - MinPts and Eps Density/37.2 - MinPts and Eps Density.mp4
13.2 MB
37.4 - Density edge and Density connected points/37.4 - Density edge and Density connected points..mp4
13.1 MB
44.4 - Mapping to an ML problemML problem formulation/44.4 - Mapping to an ML problemML problem formulation.mp4
13.0 MB
51.11 - Exercise Amazon Fine Food reviews LSTM model/51.11 - Exercise Amazon Fine Food reviews LSTM model..mp4
12.9 MB
13.6 - Mean of a data matrix/13.6 - Mean of a data matrix.mp4
12.7 MB
21.7 - Median absolute deviation (MAD)/21.7 - Median absolute deviation (MAD).mp4
12.7 MB
36.5 - Limitations of Hierarchical Clustering/36.5 - Limitations of Hierarchical Clustering.mp4
12.5 MB
37.9 - Code samples/37.9 - Code samples..mp4
12.5 MB
44.27 - Comparison between various models/44.27 - Comparison between various models..mp4
12.2 MB
41.2 - Business objectives and constraints/41.2 - Business objectives and constraints..mp4
12.1 MB
37.1 - Density based clustering/37.1 - Density based clustering.mp4
12.1 MB
53.3 - Data understanding & Analysis Files and folders/53.3 - Data understanding & Analysis Files and folders..mp4
12.0 MB
46.13 - Data Cleaning Remove all outlierserroneous points/46.13 - Data Cleaning Remove all outlierserroneous points.mp4
11.9 MB
36.6 - Code sample/36.6 - Code sample.mp4
11.9 MB
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/57.25 - DDLDROP TABLE, TRUNCATE, DELETE.mp4
11.8 MB
46.17 - Data PreparationSmoothing time-series data cont/46.17 - Data PreparationSmoothing time-series data cont...mp4
11.6 MB
11.6 - Standard normal variate (Z) and standardization/11.6 - Standard normal variate (Z) and standardization.mp4
11.6 MB
10.9 - Square ,Rectangle/10.9 - Square ,Rectangle.mp4
11.5 MB
41.5 - Mapping to an ML problem Train-test split/41.5 - Mapping to an ML problem Train-test split.mp4
11.5 MB
43.5 - Machine Learning problem mapping Train and test splitting/43.5 - Machine Learning problem mapping Train and test splitting.mp4
11.4 MB
55.3 - Data cleaning & preprocessing/55.3 - Data cleaning & preprocessing.mp4
11.4 MB
24.10 - Column Standardization/24.10 - Column Standardization.mp4
11.4 MB
53.7 - Mean Baseline model simple/53.7 - Mean Baseline model simple.mp4
11.4 MB
20.1 - Introduction/20.1 - Introduction.mp4
11.4 MB
3.3 - Tuples part-2/3.3 - Tuples part-2.mp4
11.2 MB
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D).mp4
11.2 MB
45.5 - ML problem formulation Train, CV and Test data construction/45.5 - ML problem formulation Train, CV and Test data construction.mp4
11.1 MB
35.11 - Determining the right K/35.11 - Determining the right K.mp4
11.0 MB
44.16 - Data Sampling/44.16 - Data Sampling..mp4
11.0 MB
46.16 - Data PreparationSmoothing time-series data/46.16 - Data PreparationSmoothing time-series data..mp4
10.9 MB
41.17 - Assignments/41.17 - Assignments.mp4
10.9 MB
40.2 - Business objectives and constraints/40.2 - Business objectives and constraints.mp4
10.9 MB
44.10 - Exploratory Data AnalysisCold start problem/44.10 - Exploratory Data AnalysisCold start problem.mp4
10.7 MB
56.12 - Shortest Path/56.12 - Shortest Path.mp4
10.7 MB
46.25 - Linear regression/46.25 - Linear regression..mp4
10.5 MB
30.8 - Feature standardization/30.8 - Feature standardization.mp4
10.3 MB
33.13 - Mathematical transforms/33.13 - Mathematical transforms.mp4
10.2 MB
44.22 - Xgboost + 13 features +Surprise baseline model/44.22 - Xgboost + 13 features +Surprise baseline model.mp4
10.1 MB
44.3 - Mapping to an ML problemData overview/44.3 - Mapping to an ML problemData overview..mp4
10.1 MB
43.17 - t-SNE analysis/43.17 - t-SNE analysis..mp4
10.1 MB
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample).mp4
10.0 MB
41.4 - Mapping to an ML problem ML problem and performance metric/41.4 - Mapping to an ML problem ML problem and performance metric..mp4
10.0 MB
14.8 - Limitations of PCA/14.8 - Limitations of PCA.mp4.mkv
9.9 MB
33.7 - Deep learning features CNN/33.7 - Deep learning features CNN.mp4
9.8 MB
43.21 - Assignments/43.21 - Assignments..mp4
9.8 MB
14.1 - Why learn PCA/14.1 - Why learn PCA.mp4
9.8 MB
36.4 - Time and Space Complexity/36.4 - Time and Space Complexity.mp4
9.6 MB
33.16 - Domain specific featurizations/33.16 - Domain specific featurizations.mp4
9.1 MB
41.11 - EDA Data Visualization T-SNE/41.11 - EDA Data Visualization T-SNE..mp4
9.1 MB
42.11 - Stemming/42.11 - Stemming.mp4
9.1 MB
43.16 - Univariate analysis/43.16 - Univariate analysis.mp4
9.0 MB
43.19 - Models on all features t-SNE/43.19 - Models on all features t-SNE.mp4
9.0 MB
20.8 - k distance/20.8 - k distance.mp4
8.9 MB
13.2 - Row Vector and Column Vector/13.2 - Row Vector and Column Vector.mp4
8.7 MB
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/55.8 - Exercise Build deeper LSTM models and hyper-param tune them.mp4
8.7 MB
43.6 - Exploratory Data Analysis Class distribution/43.6 - Exploratory Data Analysis Class distribution..mp4
8.6 MB
10.4 - Projection and Unit Vector/10.4 - Projection and Unit Vector.mp4
8.6 MB
46.27 - Xgboost Regression/46.27 - Xgboost Regression.mp4
8.5 MB
35.2 - Unsupervised learning/35.2 - Unsupervised learning.mp4
8.5 MB
9.13 - Violin Plots/9.13 - Violin Plots.mp4
8.3 MB
35.13 - Time and space complexity/35.13 - Time and space complexity.mp4
8.2 MB
37.8 - Time and Space Complexity/37.8 - Time and Space Complexity.mp4
8.1 MB
53.14 - Assignment/53.14 - Assignment..mp4
7.9 MB
23.14 - Missing values/23.14 - Missing values.mp4
7.6 MB
38.5 - Matrix Factorization NMF/38.5 - Matrix Factorization NMF.mp4
7.4 MB
46.11 - Data Cleaning Distance/46.11 - Data Cleaning Distance..mp4
7.2 MB
40.12 - Train-Test Split/40.12 - Train-Test Split.mp4
7.1 MB
40.17 - Why not use advanced techniques/40.17 - Why not use advanced techniques.mp4
7.0 MB
57.6 - Load IMDB data/57.6 - Load IMDB data..mp4
6.9 MB
44.19 - Data transformation for Surprise/44.19 - Data transformation for Surprise..mp4
6.8 MB
23.17 - Similarity or Distance matrix/23.17 - Similarity or Distance matrix.mp4
6.7 MB
43.9 - Exploratory Data Analysis Train-Test class distribution/43.9 - Exploratory Data Analysis Train-Test class distribution.mp4
6.4 MB
10.1 - Why learn it/10.1 - Why learn it .mp4
6.3 MB
10.10 - Hyper Cube,Hyper Cuboid/10.10 - Hyper Cube,Hyper Cuboid.mp4
6.2 MB
13.3 - How to represent a data set/13.3 - How to represent a data set.mp4
5.6 MB
53.5 - Split the dataset Train vs Test/53.5 - Split the dataset Train vs Test.mp4
5.6 MB
23.18 - Large dimensionality/23.18 - Large dimensionality.mp4
5.5 MB
2.2 - Why learn Python/2.2 - Why learn Python.mp4
5.4 MB
13.1 - What is Dimensionality reduction/13.1 - What is Dimensionality reduction.mp4
4.8 MB
43.15 - File-size feature/43.15 - File-size feature.mp4
4.7 MB
44.17 - Google drive with intermediate files/44.17 - Google drive with intermediate files.mp4
4.7 MB
23.16 - Multiclass classification/23.16 - Multiclass classification.mp4
4.6 MB
9.4 - Limitations of Pair Plots/9.4 - Limitations of Pair Plots.mp4.webm
3.9 MB
58.1 - AD-Click Predicition/out_files/A.style.css.pagespeed.cf.2TMGnQDExI.css
924.9 kB
58.1 - AD-Click Predicition/out.html
806.5 kB
58.1 - AD-Click Predicition/out_files/main.min.js.pagespeed.jm.O-LzTnDPzd.js.download
328.6 kB
58.1 - AD-Click Predicition/out_files/recaptcha__en.js.download
263.6 kB
58.1 - AD-Click Predicition/out_files/286970511789757
185.5 kB
17.17 - Assignment-2 Apply t-SNE/out.pdf
183.2 kB
21.9 - Assignment-3 Apply k-Nearest Neighbor/out.pdf
143.3 kB
58.1 - AD-Click Predicition/out_files/styles__ltr.css
139.9 kB
32.19 - Assignment-9 Apply Random Forests & GBDT/out.pdf
132.0 kB
24.17 - Assignment-5 Apply Logistic Regression/out.pdf
129.2 kB
28.15 - Assignment-7 Apply SVM/out.pdf
128.1 kB
30.15 - Assignment-8 Apply Decision Trees/out.pdf
126.3 kB
23.21 - Assignment-4 Apply Naive Bayes/out.pdf
119.4 kB
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/out.pdf
118.7 kB
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/out.pdf
118.7 kB
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/out.pdf
118.0 kB
38.15 - Assignment-11 Apply Truncated SVD/out.pdf
115.0 kB
58.1 - AD-Click Predicition/out_files/gtm.js.download
109.4 kB
59.1 - Revision Questions/out.pdf
99.1 kB
58.1 - AD-Click Predicition/out_files/jquery.js.pagespeed.jm.pPCPAKkkss.js.download
97.1 kB
58.1 - AD-Click Predicition/out_files/A.eduma.1539063072.css.pagespeed.cf.YI_OezikIu.css
72.2 kB
58.1 - AD-Click Predicition/out_files/A.animate.css.pagespeed.cf.DpYNIfRuT1.css
71.9 kB
59.2 - Questions/out.pdf
70.4 kB
58.1 - AD-Click Predicition/out_files/custom-script-v2.js.pagespeed.jm.ixuIZPaNLR.js.download
59.6 kB
58.1 - AD-Click Predicition/out_files/fbevents.js.download
52.0 kB
58.1 - AD-Click Predicition/out_files/wp-includes.download
44.7 kB
58.1 - AD-Click Predicition/out_files/wp-includes,_js,_jquery,_jquery-migrate..download
44.2 kB
58.1 - AD-Click Predicition/out_files/analytics.js.download
44.1 kB
52.1 - Questions and Answers/out.pdf
39.5 kB
1.1 - How to Learn from Appliedaicourse/out.pdf
36.7 kB
9.7 - CDF(Cumulative Distribution Function)/out.pdf
31.2 kB
11.37 - Revision Questions/out.pdf
29.8 kB
58.1 - AD-Click Predicition/out_files/anchor.html
28.8 kB
58.1 - AD-Click Predicition/out_files/contact-form-7.js.download
28.2 kB
2.9 - Control flow while loop/out.pdf
28.2 kB
20.20 - Revision Questions/out.pdf
27.5 kB
3.1 - Lists/out.pdf
27.0 kB
23.22 - Revision Questions/out.pdf
26.8 kB
18.32 - Revision Questions/out.pdf
26.4 kB
58.1 - AD-Click Predicition/out_files/css
25.9 kB
27.1 - Questions & Answers/out.pdf
25.7 kB
29.1 - Questions & Answers/out.pdf
24.8 kB
10.11 - Revision Questions/out.pdf
24.6 kB
26.13 - Revision questions/out.pdf
24.6 kB
58.1 - AD-Click Predicition/out_files/A.bootstrap-social.css.pagespeed.cf.ZSRyzM_sut.css
24.3 kB
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/out.pdf
24.1 kB
59.3 - External resources for Interview Questions/out.pdf
23.8 kB
37.11 - Revision Questions/out.pdf
23.7 kB
58.1 - AD-Click Predicition/out_files/f.txt
23.6 kB
32.20 - Revision Questions/out.pdf
23.5 kB
58.1 - AD-Click Predicition/out_files/A.lsow-frontend.css.pagespeed.cf.V5z-mTvcVs.css
23.2 kB
21.10 - Revision Questions/out.pdf
23.1 kB
17.4 - Bag of Words (BoW)/out.pdf
23.0 kB
38.16 - Revision Questions/out.pdf
23.0 kB
28.16 - Revision Questions/out.pdf
22.8 kB
30.16 - Revision Questions/out.pdf
22.8 kB
2.1 - Python, Anaconda and relevant packages installations/out.pdf
22.7 kB
32.10 - Residuals, Loss functions and gradients/out.pdf
22.6 kB
19.1 - Questions & Answers/out.pdf
22.5 kB
9.16 - Exercise Perform EDA on Haberman dataset/out.pdf
22.3 kB
31.1 - Questions & Answers/out.pdf
22.0 kB
17.8 - Why use log in IDF/out.pdf
21.9 kB
45.14 - K-Nearest Neighbors Classification/out.pdf
21.6 kB
17.11 - Bag of Words( Code Sample)/out.pdf
21.5 kB
39.1 - Questions & Answers/out.pdf
21.4 kB
16.1 - Questions & Answers/out.pdf
21.3 kB
51.10 - Code example IMDB Sentiment classification/out.pdf
21.1 kB
48.2 - Dropout layers & Regularization/out.pdf
21.1 kB
17.14 - TF-IDF (Code Sample)/out.pdf
21.0 kB
58.1 - AD-Click Predicition/out_files/www-widgetapi.js.download
20.7 kB
28.5 - Dual form of SVM formulation/out.pdf
20.6 kB
15.8 - Revision Questions/out.pdf
20.6 kB
48.13 - Adam/out.pdf
20.5 kB
22.1 - Questions & Answers/out.pdf
20.3 kB
14.9 - PCA Code example/out.pdf
19.7 kB
5.2 - Numerical operations on Numpy/out.pdf
19.6 kB
35.11 - Determining the right K/out.pdf
19.5 kB
4.6 - Modules/out.pdf
18.8 kB
42.19 - TF-IDF weighted Word2Vec/out.pdf
18.6 kB
18.31 - Code SampleCross Validation/out.pdf
18.4 kB
48.11 - OptimizersAdaGrad/out.pdf
18.4 kB
11.5 - Symmetric distribution, Skewness and Kurtosis/out.pdf
18.2 kB
46.18 - Data Preparation Time series and Fourier transforms/out.pdf
18.2 kB
11.24 - Confidence interval (C.I) Introduction/out.pdf
18.0 kB
28.4 - Loss function (Hinge Loss) based interpretation/out.pdf
17.9 kB
5.1 - Numpy Introduction/out.pdf
17.8 kB
2.8 - Control flow if else/out.pdf
17.6 kB
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/out.pdf
17.5 kB
11.11 - Chebyshev’s inequality/out.pdf
17.3 kB
18.22 - How to build a kd-tree/out.pdf
17.2 kB
7.3 - Key Operations on Data Frames/out.pdf
17.0 kB
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/out.pdf
16.8 kB
17.12 - Text Preprocessing( Code Sample)/out.pdf
16.8 kB
17.13 - Bi-Grams and n-grams (Code Sample)/out.pdf
16.8 kB
17.15 - Word2Vec (Code Sample)/out.pdf
16.8 kB
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/out.pdf
16.8 kB
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/out.pdf
16.8 kB
17.2 - Data Cleaning Deduplication/out.pdf
16.8 kB
17.3 - Why convert text to a vector/out.pdf
16.8 kB
17.5 - Text Preprocessing Stemming/out.pdf
16.8 kB
17.6 - uni-gram, bi-gram, n-grams/out.pdf
16.8 kB
17.7 - tf-idf (term frequency- inverse document frequency)/out.pdf
16.8 kB
17.9 - Word2Vec/out.pdf
16.8 kB
30.4 - Building a decision TreeInformation Gain/out.pdf
16.6 kB
58.1 - AD-Click Predicition/out_files/underscore.min.js.pagespeed.jm.mGiwqwtvc5.js.download
16.2 kB
12.1 - Questions & Answers/out.pdf
16.1 kB
58.1 - AD-Click Predicition/out_files/frontend.download
15.0 kB
4.7 - Packages/out.pdf
14.8 kB
11.34 - Resampling and Permutation test another example/out.pdf
14.6 kB
6.1 - Getting started with Matplotlib/out.pdf
14.6 kB
2.10 - Control flow for loop/out.pdf
14.6 kB
2.11 - Control flow break and continue/out.pdf
14.6 kB
15.7 - Code example of t-SNE/out.pdf
14.5 kB
57.6 - Load IMDB data/out.pdf
13.7 kB
54.4 - Char-RNN with abc-notation Data preparation/out.pdf
13.5 kB
58.1 - AD-Click Predicition/out_files/webfont.js.download
13.2 kB
46.23 - Results/out.pdf
13.2 kB
50.1 - Biological inspiration Visual Cortex/out.pdf
13.2 kB
11.31 - K-S Test for similarity of two distributions/out.pdf
13.1 kB
13.8 - Co-variance of a Data Matrix/out.pdf
12.7 kB
14.3 - Mathematical objective function of PCA/out.pdf
12.6 kB
50.5 - Convolutional layer/out.pdf
12.5 kB
28.12 - SVM Regression/out.pdf
12.4 kB
54.2 - Music representation/out.pdf
12.3 kB
57.5 - Installing MySQL/out.pdf
12.3 kB
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/out.pdf
12.1 kB
11.30 - Resampling and permutation test/out.pdf
12.1 kB
50.12 - AlexNet/out.pdf
12.0 kB
37.7 - Advantages and Limitations of DBSCAN/out.pdf
11.9 kB
58.1 - AD-Click Predicition/out_files/u01meJHOm6aDdkm65zsgPs06YC1LmxK3T-HIHDDIdgw.js.download
11.9 kB
50.15 - Inception Network/out.pdf
11.9 kB
25.2 - Mathematical formulation/out.pdf
11.7 kB
53.2 - Datasets/out.pdf
11.7 kB
41.9 - EDA Advanced Feature Extraction/out.pdf
11.7 kB
23.10 - Bias and Variance tradeoff/out.pdf
11.7 kB
48.10 - Nesterov Accelerated Gradient (NAG)/out.pdf
11.7 kB
38.14 - Code example/out.pdf
11.6 kB
34.10 - AB testing/out.pdf
11.6 kB
50.18 - Code Example MNIST dataset/out.pdf
11.6 kB
47.7 - Training a single-neuron model/out.pdf
11.5 kB
11.17 - Box cox transform/out.pdf
11.4 kB
14.4 - Alternative formulation of PCA Distance minimization/out.pdf
11.4 kB
38.13 - Eigen-Faces/out.pdf
11.4 kB
48.9 - Batch SGD with momentum/out.pdf
11.3 kB
37.9 - Code samples/out.pdf
11.2 kB
44.14 - ML ModelsSurprise library/out.pdf
11.2 kB
34.2 - Productionization and deployment of Machine Learning Models/out.pdf
11.2 kB
37.8 - Time and Space Complexity/out.pdf
11.2 kB
51.7 - GRUs/out.pdf
11.1 kB
49.1 - Tensorflow and Keras overview/out.pdf
11.0 kB
51.4 - Types of RNNs/out.pdf
11.0 kB
38.6 - Matrix Factorization for Collaborative filtering/out.pdf
11.0 kB
50.8 - Example CNN LeNet [1998]/out.pdf
11.0 kB
44.21 - Surprise Baseline model/out.pdf
11.0 kB
50.2 - ConvolutionEdge Detection on images/out.pdf
11.0 kB
50.14 - Residual Network/out.pdf
11.0 kB
54.10 - MIDI music generation/out.pdf
11.0 kB
51.5 - Need for LSTMGRU/out.pdf
10.9 kB
36.6 - Code sample/out.pdf
10.9 kB
9.3 - Pair plots/out.pdf
10.7 kB
48.12 - Optimizers Adadelta andRMSProp/out.pdf
10.7 kB
34.6 - Code Samples/out.pdf
10.7 kB
50.16 - What is Transfer learning/out.pdf
10.7 kB
50.11 - Convolution Layers in Keras/out.pdf
10.7 kB
44.8 - Exploratory Data AnalysisSparse matrix representation/out.pdf
10.6 kB
50.4 - Convolution over RGB images/out.pdf
10.6 kB
45.10 - Univariate AnalysisVariation Feature/out.pdf
10.5 kB
26.9 - Constrained Optimization & PCA/out.pdf
10.5 kB
35.8 - How to initialize K-Means++/out.pdf
10.5 kB
37.3 - Core, Border and Noise points/out.pdf
10.5 kB
36.1 - Agglomerative & Divisive, Dendrograms/out.pdf
10.5 kB
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/out.pdf
10.5 kB
41.17 - Assignments/out.pdf
10.5 kB
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/out.pdf
10.4 kB
40.18 - Assignments/out.pdf
10.4 kB
48.14 - Which algorithm to choose when/out.pdf
10.4 kB
9.2 - 3D scatter plot/out.pdf
10.4 kB
9.4 - Limitations of Pair Plots/out.pdf
10.4 kB
9.5 - Histogram and Introduction to PDF(Probability Density Function)/out.pdf
10.4 kB
9.6 - Univariate Analysis using PDF/out.pdf
10.4 kB
9.8 - Mean, Variance and Standard Deviation/out.pdf
10.4 kB
53.10 - NVIDIA’s end to end CNN model/out.pdf
10.4 kB
24.14 - Real world cases/out.pdf
10.4 kB
30.2 - Sample Decision tree/out.pdf
10.4 kB
49.14 - Exercise Try different MLP architectures on MNIST dataset/out.pdf
10.4 kB
47.12 - Vanishing Gradient problem/out.pdf
10.4 kB
51.6 - LSTM/out.pdf
10.3 kB
36.3 - Proximity methods Advantages and Limitations/out.pdf
10.3 kB
36.4 - Time and Space Complexity/out.pdf
10.3 kB
14.2 - Geometric intuition of PCA/out.pdf
10.3 kB
4.1 - Introduction/out.pdf
10.3 kB
36.2 - Agglomerative Clustering/out.pdf
10.3 kB
54.11 - Survey blog/out.pdf
10.3 kB
47.11 - Activation functions/out.pdf
10.3 kB
48.21 - Word2Vec Algorithmic Optimizations/out.pdf
10.2 kB
55.2 - Dataset understanding/out.pdf
10.2 kB
8.1 - Space and Time Complexity Find largest number in a list/out.pdf
10.2 kB
8.2 - Binary search/out.pdf
10.2 kB
8.3 - Find elements common in two lists/out.pdf
10.2 kB
8.4 - Find elements common in two lists using a HashtableDict/out.pdf
10.2 kB
35.4 - Metrics for Clustering/out.pdf
10.2 kB
54.1 - Real-world problem/out.pdf
10.1 kB
50.9 - ImageNet dataset/out.pdf
10.1 kB
50.7 - CNN Training Optimization/out.pdf
10.1 kB
32.9 - Boosting Intuition/out.pdf
10.0 kB
2.3 - Keywords and identifiers/out.pdf
10.0 kB
42.10 - Text Pre-Processing Tokenization and Stop-word removal/out.pdf
10.0 kB
42.11 - Stemming/out.pdf
10.0 kB
42.12 - Text based product similarity Converting text to an n-D vector bag of words/out.pdf
10.0 kB
42.13 - Code for bag of words based product similarity/out.pdf
10.0 kB
42.14 - TF-IDF featurizing text based on word-importance/out.pdf
10.0 kB
42.15 - Code for TF-IDF based product similarity/out.pdf
10.0 kB
42.16 - Code for IDF based product similarity/out.pdf
10.0 kB
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/out.pdf
10.0 kB
42.18 - Code for Average Word2Vec product similarity/out.pdf
10.0 kB
42.20 - Code for IDF weighted Word2Vec product similarity/out.pdf
10.0 kB
42.21 - Weighted similarity using brand and color/out.pdf
10.0 kB
42.22 - Code for weighted similarity/out.pdf
10.0 kB
42.23 - Building a real world solution/out.pdf
10.0 kB
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/out.pdf
10.0 kB
42.25 - Using Keras + Tensorflow to extract features/out.pdf
10.0 kB
42.26 - Visual similarity based product similarity/out.pdf
10.0 kB
42.27 - Measuring goodness of our solution AB testing/out.pdf
10.0 kB
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/out.pdf
10.0 kB
42.2 - Plan of action/out.pdf
10.0 kB
42.3 - Amazon product advertising API/out.pdf
10.0 kB
42.4 - Data folders and paths/out.pdf
10.0 kB
42.5 - Overview of the data and Terminology/out.pdf
10.0 kB
42.6 - Data cleaning and understandingMissing data in various features/out.pdf
10.0 kB
42.7 - Understand duplicate rows/out.pdf
10.0 kB
42.8 - Remove duplicates Part 1/out.pdf
10.0 kB
42.9 - Remove duplicates Part 2/out.pdf
10.0 kB
25.4 - Code sample for Linear Regression/out.pdf
10.0 kB
7.1 - Getting started with pandas/out.pdf
10.0 kB
7.2 - Data Frame Basics/out.pdf
10.0 kB
11.13 - How to randomly sample data points (Uniform Distribution)/out.pdf
10.0 kB
11.27 - Confidence interval using bootstrapping/out.pdf
10.0 kB
11.32 - Code Snippet K-S Test/out.pdf
10.0 kB
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/out.pdf
10.0 kB
13.10 - Code to Load MNIST Data Set/out.pdf
10.0 kB
13.1 - What is Dimensionality reduction/out.pdf
10.0 kB
13.3 - How to represent a data set/out.pdf
10.0 kB
14.10 - PCA for dimensionality reduction (not-visualization)/out.pdf
10.0 kB
2.4 - comments, indentation and statements/out.pdf
10.0 kB
2.5 - Variables and data types in Python/out.pdf
10.0 kB
2.6 - Standard Input and Output/out.pdf
10.0 kB
2.7 - Operators/out.pdf
10.0 kB
3.2 - Tuples part 1/out.pdf
10.0 kB
3.3 - Tuples part-2/out.pdf
10.0 kB
3.4 - Sets/out.pdf
10.0 kB
3.5 - Dictionary/out.pdf
10.0 kB
3.6 - Strings/out.pdf
10.0 kB
4.10 - Debugging Python/out.pdf
10.0 kB
4.2 - Types of functions/out.pdf
10.0 kB
4.3 - Function arguments/out.pdf
10.0 kB
4.4 - Recursive functions/out.pdf
10.0 kB
4.5 - Lambda functions/out.pdf
10.0 kB
4.8 - File Handling/out.pdf
10.0 kB
4.9 - Exception Handling/out.pdf
10.0 kB
9.10 - Percentiles and Quantiles/out.pdf
10.0 kB
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/out.pdf
10.0 kB
9.12 - Box-plot with Whiskers/out.pdf
10.0 kB
9.13 - Violin Plots/out.pdf
10.0 kB
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/out.pdf
10.0 kB
9.15 - Multivariate Probability Density, Contour Plot/out.pdf
10.0 kB
9.1 - Introduction to IRIS dataset and 2D scatter plot/out.pdf
10.0 kB
9.9 - Median/out.pdf
10.0 kB
49.5 - Online documentation and tutorials/out.pdf
10.0 kB
46.29 - Assignment/out.pdf
10.0 kB
50.17 - Code example Cats vs Dogs/out.pdf
10.0 kB
10.3 - Dot Product and Angle between 2 Vectors/out.pdf
10.0 kB
44.28 - Assignments/out.pdf
9.9 kB
43.21 - Assignments/out.pdf
9.9 kB
56.1 - Problem definition/out.pdf
9.9 kB
43.14 - ASM Files Feature extraction & Multiprocessing/out.pdf
9.9 kB
13.9 - MNIST dataset (784 dimensional)/out.pdf
9.9 kB
54.9 - Char-RNN with abc-notation Generate tabla music/out.pdf
9.9 kB
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/out.pdf
9.8 kB
48.18 - Auto Encoders/out.pdf
9.8 kB
54.3 - Char-RNN with abc-notation Char-RNN model/out.pdf
9.8 kB
34.9 - Retraining models periodically/out.pdf
9.7 kB
48.3 - Rectified Linear Units (ReLU)/out.pdf
9.7 kB
57.20 - Sub QueriesNested QueriesInner Queries/out.pdf
9.7 kB
28.7 - Polynomial Kernel/out.pdf
9.7 kB
57.27 - Learning resources/out.pdf
9.7 kB
38.8 - Clustering as MF/out.pdf
9.7 kB
50.10 - Data Augmentation/out.pdf
9.5 kB
34.8 - Productionizing models/out.pdf
9.5 kB
48.5 - Batch Normalization/out.pdf
9.5 kB
34.7 - Modeling in the presence of outliers RANSAC/out.pdf
9.5 kB
25.3 - Real world Cases/out.pdf
9.5 kB
34.3 - Calibration Plots/out.pdf
9.4 kB
23.4 - Exercise problems on Bayes Theorem/out.pdf
9.4 kB
34.5 - Isotonic Regression/out.pdf
9.4 kB
34.12 - VC dimension/out.pdf
9.4 kB
15.5 - How to apply t-SNE and interpret its output/out.pdf
9.4 kB
49.3 - Google Colaboratory/out.pdf
9.3 kB
20.19 - Intuitive understanding of bias-variance/out.pdf
9.3 kB
34.4 - Platt’s CalibrationScaling/out.pdf
9.2 kB
58.1 - AD-Click Predicition/out_files/css(1)
9.2 kB
41.10 - EDA Feature analysis/out.pdf
8.9 kB
41.11 - EDA Data Visualization T-SNE/out.pdf
8.9 kB
41.12 - EDA TF-IDF weighted Word2Vec featurization/out.pdf
8.9 kB
41.13 - ML Models Loading Data/out.pdf
8.9 kB
41.14 - ML Models Random Model/out.pdf
8.9 kB
41.15 - ML Models Logistic Regression and Linear SVM/out.pdf
8.9 kB
41.16 - ML Models XGBoost/out.pdf
8.9 kB
41.1 - BusinessReal world problem Problem definition/out.pdf
8.9 kB
41.2 - Business objectives and constraints/out.pdf
8.9 kB
41.3 - Mapping to an ML problem Data overview/out.pdf
8.9 kB
41.4 - Mapping to an ML problem ML problem and performance metric/out.pdf
8.9 kB
41.5 - Mapping to an ML problem Train-test split/out.pdf
8.9 kB
41.6 - EDA Basic Statistics/out.pdf
8.9 kB
41.7 - EDA Basic Feature Extraction/out.pdf
8.9 kB
41.8 - EDA Text Preprocessing/out.pdf
8.9 kB
54.8 - Char-RNN with abc-notation Music generation/out.pdf
8.9 kB
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/out.pdf
8.9 kB
53.3 - Data understanding & Analysis Files and folders/out.pdf
8.9 kB
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/out.pdf
8.9 kB
48.7 - OptimizersHill descent in 3D and contours/out.pdf
8.9 kB
56.6 - EDABasic Stats/out.pdf
8.8 kB
24.18 - Extensions to Generalized linear models/out.pdf
8.8 kB
38.1 - Problem formulation Movie reviews/out.pdf
8.7 kB
55.1 - Human Activity Recognition Problem definition/out.pdf
8.7 kB
44.17 - Google drive with intermediate files/out.pdf
8.6 kB
46.14 - Data PreparationClusteringSegmentation/out.pdf
8.6 kB
46.1 - BusinessReal world problem Overview/out.pdf
8.6 kB
46.2 - Objectives and Constraints/out.pdf
8.6 kB
46.10 - Data Cleaning Speed/out.pdf
8.6 kB
46.11 - Data Cleaning Distance/out.pdf
8.6 kB
46.12 - Data Cleaning Fare/out.pdf
8.6 kB
46.13 - Data Cleaning Remove all outlierserroneous points/out.pdf
8.6 kB
46.15 - Data PreparationTime binning/out.pdf
8.6 kB
46.16 - Data PreparationSmoothing time-series data/out.pdf
8.6 kB
46.19 - Ratios and previous-time-bin values/out.pdf
8.6 kB
46.20 - Simple moving average/out.pdf
8.6 kB
46.21 - Weighted Moving average/out.pdf
8.6 kB
46.22 - Exponential weighted moving average/out.pdf
8.6 kB
46.24 - Regression models Train-Test split & Features/out.pdf
8.6 kB
46.25 - Linear regression/out.pdf
8.6 kB
46.26 - Random Forest regression/out.pdf
8.6 kB
46.27 - Xgboost Regression/out.pdf
8.6 kB
46.28 - Model comparison/out.pdf
8.6 kB
46.5 - Mapping to ML problem FieldsFeatures/out.pdf
8.6 kB
46.6 - Mapping to ML problem Time series forecastingRegression/out.pdf
8.6 kB
46.7 - Mapping to ML problem Performance metrics/out.pdf
8.6 kB
46.8 - Data Cleaning Latitude and Longitude data/out.pdf
8.6 kB
46.9 - Data Cleaning Trip Duration/out.pdf
8.6 kB
49.6 - Softmax Classifier on MNIST dataset/out.pdf
8.6 kB
46.4 - Mapping to ML problem dask dataframes/out.pdf
8.6 kB
40.10 - Data Modeling Multi label Classification/out.pdf
8.6 kB
40.11 - Data preparation/out.pdf
8.6 kB
40.12 - Train-Test Split/out.pdf
8.6 kB
40.13 - Featurization/out.pdf
8.6 kB
40.14 - Logistic regression One VS Rest/out.pdf
8.6 kB
40.15 - Sampling data and tags+Weighted models/out.pdf
8.6 kB
40.16 - Logistic regression revisited/out.pdf
8.6 kB
40.17 - Why not use advanced techniques/out.pdf
8.6 kB
40.1 - BusinessReal world problem/out.pdf
8.6 kB
40.2 - Business objectives and constraints/out.pdf
8.6 kB
40.3 - Mapping to an ML problem Data overview/out.pdf
8.6 kB
40.4 - Mapping to an ML problemML problem formulation/out.pdf
8.6 kB
40.5 - Mapping to an ML problemPerformance metrics/out.pdf
8.6 kB
40.6 - Hamming loss/out.pdf
8.6 kB
40.7 - EDAData Loading/out.pdf
8.6 kB
40.8 - EDAAnalysis of tags/out.pdf
8.6 kB
40.9 - EDAData Preprocessing/out.pdf
8.6 kB
44.10 - Exploratory Data AnalysisCold start problem/out.pdf
8.6 kB
44.11 - Computing Similarity matricesUser-User similarity matrix/out.pdf
8.6 kB
44.12 - Computing Similarity matricesMovie-Movie similarity/out.pdf
8.6 kB
44.13 - Computing Similarity matricesDoes movie-movie similarity work/out.pdf
8.6 kB
44.15 - Overview of the modelling strategy/out.pdf
8.6 kB
44.18 - Featurizations for regression/out.pdf
8.6 kB
44.19 - Data transformation for Surprise/out.pdf
8.6 kB
44.1 - BusinessReal world problemProblem definition/out.pdf
8.6 kB
44.20 - Xgboost with 13 features/out.pdf
8.6 kB
44.22 - Xgboost + 13 features +Surprise baseline model/out.pdf
8.6 kB
44.23 - Surprise KNN predictors/out.pdf
8.6 kB
44.24 - Matrix Factorization models using Surprise/out.pdf
8.6 kB
44.25 - SVD ++ with implicit feedback/out.pdf
8.6 kB
44.26 - Final models with all features and predictors/out.pdf
8.6 kB
44.27 - Comparison between various models/out.pdf
8.6 kB
44.2 - Objectives and constraints/out.pdf
8.6 kB
44.3 - Mapping to an ML problemData overview/out.pdf
8.6 kB
44.4 - Mapping to an ML problemML problem formulation/out.pdf
8.6 kB
44.5 - Exploratory Data AnalysisData preprocessing/out.pdf
8.6 kB
44.6 - Exploratory Data AnalysisTemporal Train-Test split/out.pdf
8.6 kB
44.7 - Exploratory Data AnalysisPreliminary data analysis/out.pdf
8.6 kB
44.9 - Exploratory Data AnalysisAverage ratings for various slices/out.pdf
8.6 kB
44.16 - Data Sampling/out.pdf
8.6 kB
49.12 - MNIST classification in Keras/out.pdf
8.6 kB
49.13 - Hyperparameter tuning in Keras/out.pdf
8.6 kB
49.7 - MLP Initialization/out.pdf
8.6 kB
45.11 - Univariate AnalysisText feature/out.pdf
8.6 kB
45.12 - Machine Learning ModelsData preparation/out.pdf
8.6 kB
45.13 - Baseline Model Naive Bayes/out.pdf
8.6 kB
45.15 - Logistic Regression with class balancing/out.pdf
8.6 kB
45.16 - Logistic Regression without class balancing/out.pdf
8.6 kB
45.17 - Linear-SVM/out.pdf
8.6 kB
45.18 - Random-Forest with one-hot encoded features/out.pdf
8.6 kB
45.19 - Random-Forest with response-coded features/out.pdf
8.6 kB
45.1 - BusinessReal world problem Overview/out.pdf
8.6 kB
45.20 - Stacking Classifier/out.pdf
8.6 kB
45.21 - Majority Voting classifier/out.pdf
8.6 kB
45.22 - Assignments/out.pdf
8.6 kB
45.2 - Business objectives and constraints/out.pdf
8.6 kB
45.3 - ML problem formulation Data/out.pdf
8.6 kB
45.4 - ML problem formulation Mapping real world to ML problem/out.pdf
8.6 kB
45.5 - ML problem formulation Train, CV and Test data construction/out.pdf
8.6 kB
45.6 - Exploratory Data AnalysisReading data & preprocessing/out.pdf
8.6 kB
45.7 - Exploratory Data AnalysisDistribution of Class-labels/out.pdf
8.6 kB
45.8 - Exploratory Data Analysis “Random” Model/out.pdf
8.6 kB
45.9 - Univariate AnalysisGene feature/out.pdf
8.6 kB
46.3 - Mapping to ML problem Data/out.pdf
8.6 kB
43.10 - ML models – using byte files only Random Model/out.pdf
8.6 kB
43.11 - k-NN/out.pdf
8.6 kB
43.12 - Logistic regression/out.pdf
8.6 kB
43.13 - Random Forest and Xgboost/out.pdf
8.6 kB
43.15 - File-size feature/out.pdf
8.6 kB
43.16 - Univariate analysis/out.pdf
8.6 kB
43.17 - t-SNE analysis/out.pdf
8.6 kB
43.18 - ML models on ASM file features/out.pdf
8.6 kB
43.19 - Models on all features t-SNE/out.pdf
8.6 kB
43.1 - Businessreal world problem Problem definition/out.pdf
8.6 kB
43.20 - Models on all features RandomForest and Xgboost/out.pdf
8.6 kB
43.2 - Businessreal world problem Objectives and constraints/out.pdf
8.6 kB
43.3 - Machine Learning problem mapping Data overview/out.pdf
8.6 kB
43.4 - Machine Learning problem mapping ML problem/out.pdf
8.6 kB
43.5 - Machine Learning problem mapping Train and test splitting/out.pdf
8.6 kB
43.6 - Exploratory Data Analysis Class distribution/out.pdf
8.6 kB
43.7 - Exploratory Data Analysis Feature extraction from byte files/out.pdf
8.6 kB
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/out.pdf
8.6 kB
43.9 - Exploratory Data Analysis Train-Test class distribution/out.pdf
8.6 kB
53.13 - Extensions/out.pdf
8.6 kB
49.4 - Install TensorFlow/out.pdf
8.5 kB
53.11 - Train the model/out.pdf
8.5 kB
47.14 - Decision surfaces Playground/out.pdf
8.5 kB
53.12 - Test and visualize the output/out.pdf
8.3 kB
24.5 - L2 Regularization Overfitting and Underfitting/out.pdf
6.9 kB
58.1 - AD-Click Predicition/out_files/smooth_scroll.min.js.pagespeed.jm.F46b1fzWC9.js.download
6.7 kB
58.1 - AD-Click Predicition/out_files/wp-content,_plugins,_livemesh-siteorigin-widgets.download
6.5 kB
58.1 - AD-Click Predicition/out_files/191x70xai-logo2.png.pagespeed.ic.tQcj-DGwlZ.webp
5.4 kB
58.1 - AD-Click Predicition/out_files/A.jquery.scrollbar.css.pagespeed.cf.cKaYxTj1_t.css
5.0 kB
58.1 - AD-Click Predicition/out_files/css(2)
4.9 kB
58.1 - AD-Click Predicition/out_files/xai-logo-ver1.png.pagespeed.ic.0rMXiYwP6X.webp
4.9 kB
58.1 - AD-Click Predicition/out_files/ec.js.download
2.8 kB
58.1 - AD-Click Predicition/out_files/A.flaticon.css.pagespeed.cf.t5uny6oKrs.css
2.8 kB
58.1 - AD-Click Predicition/out_files/f(1).txt
1.8 kB
10.10 - Hyper Cube,Hyper Cuboid/[FTU Forum].url
1.4 kB
10.11 - Revision Questions/[FTU Forum].url
1.4 kB
10.1 - Why learn it/[FTU Forum].url
1.4 kB
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/[FTU Forum].url
1.4 kB
10.3 - Dot Product and Angle between 2 Vectors/[FTU Forum].url
1.4 kB
10.4 - Projection and Unit Vector/[FTU Forum].url
1.4 kB
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/[FTU Forum].url
1.4 kB
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/[FTU Forum].url
1.4 kB
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/[FTU Forum].url
1.4 kB
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/[FTU Forum].url
1.4 kB
10.9 - Square ,Rectangle/[FTU Forum].url
1.4 kB
11.10 - How distributions are used/[FTU Forum].url
1.4 kB
11.11 - Chebyshev’s inequality/[FTU Forum].url
1.4 kB
11.12 - Discrete and Continuous Uniform distributions/[FTU Forum].url
1.4 kB
11.13 - How to randomly sample data points (Uniform Distribution)/[FTU Forum].url
1.4 kB
11.14 - Bernoulli and Binomial Distribution/[FTU Forum].url
1.4 kB
11.15 - Log Normal Distribution/[FTU Forum].url
1.4 kB
11.16 - Power law distribution/[FTU Forum].url
1.4 kB
11.17 - Box cox transform/[FTU Forum].url
1.4 kB
11.18 - Applications of non-gaussian distributions/[FTU Forum].url
1.4 kB
11.19 - Co-variance/[FTU Forum].url
1.4 kB
11.1 - Introduction to Probability and Statistics/[FTU Forum].url
1.4 kB
11.20 - Pearson Correlation Coefficient/[FTU Forum].url
1.4 kB
11.21 - Spearman Rank Correlation Coefficient/[FTU Forum].url
1.4 kB
11.22 - Correlation vs Causation/[FTU Forum].url
1.4 kB
11.23 - How to use correlations/[FTU Forum].url
1.4 kB
11.24 - Confidence interval (C.I) Introduction/[FTU Forum].url
1.4 kB
11.25 - Computing confidence interval given the underlying distribution/[FTU Forum].url
1.4 kB
11.26 - C.I for mean of a normal random variable/[FTU Forum].url
1.4 kB
11.27 - Confidence interval using bootstrapping/[FTU Forum].url
1.4 kB
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/[FTU Forum].url
1.4 kB
11.29 - Hypothesis Testing Intution with coin toss example/[FTU Forum].url
1.4 kB
11.2 - Population and Sample/[FTU Forum].url
1.4 kB
11.30 - Resampling and permutation test/[FTU Forum].url
1.4 kB
11.31 - K-S Test for similarity of two distributions/[FTU Forum].url
1.4 kB
11.32 - Code Snippet K-S Test/[FTU Forum].url
1.4 kB
11.33 - Hypothesis testing another example/[FTU Forum].url
1.4 kB
11.34 - Resampling and Permutation test another example/[FTU Forum].url
1.4 kB
11.35 - How to use hypothesis testing/[FTU Forum].url
1.4 kB
11.36 - Proportional Sampling/[FTU Forum].url
1.4 kB
11.37 - Revision Questions/[FTU Forum].url
1.4 kB
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/[FTU Forum].url
1.4 kB
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/[FTU Forum].url
1.4 kB
11.5 - Symmetric distribution, Skewness and Kurtosis/[FTU Forum].url
1.4 kB
11.6 - Standard normal variate (Z) and standardization/[FTU Forum].url
1.4 kB
11.7 - Kernel density estimation/[FTU Forum].url
1.4 kB
11.8 - Sampling distribution & Central Limit theorem/[FTU Forum].url
1.4 kB
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/[FTU Forum].url
1.4 kB
1.1 - How to Learn from Appliedaicourse/[FTU Forum].url
1.4 kB
12.1 - Questions & Answers/[FTU Forum].url
1.4 kB
1.2 - How the Job Guarantee program works/[FTU Forum].url
1.4 kB
13.10 - Code to Load MNIST Data Set/[FTU Forum].url
1.4 kB
13.1 - What is Dimensionality reduction/[FTU Forum].url
1.4 kB
13.2 - Row Vector and Column Vector/[FTU Forum].url
1.4 kB
13.3 - How to represent a data set/[FTU Forum].url
1.4 kB
13.4 - How to represent a dataset as a Matrix/[FTU Forum].url
1.4 kB
13.5 - Data Preprocessing Feature Normalisation/[FTU Forum].url
1.4 kB
13.6 - Mean of a data matrix/[FTU Forum].url
1.4 kB
13.7 - Data Preprocessing Column Standardization/[FTU Forum].url
1.4 kB
13.8 - Co-variance of a Data Matrix/[FTU Forum].url
1.4 kB
13.9 - MNIST dataset (784 dimensional)/[FTU Forum].url
1.4 kB
14.10 - PCA for dimensionality reduction (not-visualization)/[FTU Forum].url
1.4 kB
14.1 - Why learn PCA/[FTU Forum].url
1.4 kB
14.2 - Geometric intuition of PCA/[FTU Forum].url
1.4 kB
14.3 - Mathematical objective function of PCA/[FTU Forum].url
1.4 kB
14.4 - Alternative formulation of PCA Distance minimization/[FTU Forum].url
1.4 kB
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/[FTU Forum].url
1.4 kB
14.6 - PCA for Dimensionality Reduction and Visualization/[FTU Forum].url
1.4 kB
14.7 - Visualize MNIST dataset/[FTU Forum].url
1.4 kB
14.8 - Limitations of PCA/[FTU Forum].url
1.4 kB
14.9 - PCA Code example/[FTU Forum].url
1.4 kB
15.1 - What is t-SNE/[FTU Forum].url
1.4 kB
15.2 - Neighborhood of a point, Embedding/[FTU Forum].url
1.4 kB
15.3 - Geometric intuition of t-SNE/[FTU Forum].url
1.4 kB
15.4 - Crowding Problem/[FTU Forum].url
1.4 kB
15.5 - How to apply t-SNE and interpret its output/[FTU Forum].url
1.4 kB
15.6 - t-SNE on MNIST/[FTU Forum].url
1.4 kB
15.7 - Code example of t-SNE/[FTU Forum].url
1.4 kB
15.8 - Revision Questions/[FTU Forum].url
1.4 kB
16.1 - Questions & Answers/[FTU Forum].url
1.4 kB
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/[FTU Forum].url
1.4 kB
17.11 - Bag of Words( Code Sample)/[FTU Forum].url
1.4 kB
17.12 - Text Preprocessing( Code Sample)/[FTU Forum].url
1.4 kB
17.13 - Bi-Grams and n-grams (Code Sample)/[FTU Forum].url
1.4 kB
17.14 - TF-IDF (Code Sample)/[FTU Forum].url
1.4 kB
17.15 - Word2Vec (Code Sample)/[FTU Forum].url
1.4 kB
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/[FTU Forum].url
1.4 kB
17.17 - Assignment-2 Apply t-SNE/[FTU Forum].url
1.4 kB
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/[FTU Forum].url
1.4 kB
17.2 - Data Cleaning Deduplication/[FTU Forum].url
1.4 kB
17.3 - Why convert text to a vector/[FTU Forum].url
1.4 kB
17.4 - Bag of Words (BoW)/[FTU Forum].url
1.4 kB
17.5 - Text Preprocessing Stemming/[FTU Forum].url
1.4 kB
17.6 - uni-gram, bi-gram, n-grams/[FTU Forum].url
1.4 kB
17.7 - tf-idf (term frequency- inverse document frequency)/[FTU Forum].url
1.4 kB
17.8 - Why use log in IDF/[FTU Forum].url
1.4 kB
17.9 - Word2Vec/[FTU Forum].url
1.4 kB
18.10 - KNN Limitations/[FTU Forum].url
1.4 kB
18.11 - Decision surface for K-NN as K changes/[FTU Forum].url
1.4 kB
18.12 - Overfitting and Underfitting/[FTU Forum].url
1.4 kB
18.13 - Need for Cross validation/[FTU Forum].url
1.4 kB
18.14 - K-fold cross validation/[FTU Forum].url
1.4 kB
18.15 - Visualizing train, validation and test datasets/[FTU Forum].url
1.4 kB
18.16 - How to determine overfitting and underfitting/[FTU Forum].url
1.4 kB
18.17 - Time based splitting/[FTU Forum].url
1.4 kB
18.18 - k-NN for regression/[FTU Forum].url
1.4 kB
18.19 - Weighted k-NN/[FTU Forum].url
1.4 kB
18.1 - How “Classification” works/[FTU Forum].url
1.4 kB
18.20 - Voronoi diagram/[FTU Forum].url
1.4 kB
18.21 - Binary search tree/[FTU Forum].url
1.4 kB
18.22 - How to build a kd-tree/[FTU Forum].url
1.4 kB
18.23 - Find nearest neighbours using kd-tree/[FTU Forum].url
1.4 kB
18.24 - Limitations of Kd tree/[FTU Forum].url
1.4 kB
18.25 - Extensions/[FTU Forum].url
1.4 kB
18.26 - Hashing vs LSH/[FTU Forum].url
1.4 kB
18.27 - LSH for cosine similarity/[FTU Forum].url
1.4 kB
18.28 - LSH for euclidean distance/[FTU Forum].url
1.4 kB
18.29 - Probabilistic class label/[FTU Forum].url
1.4 kB
18.2 - Data matrix notation/[FTU Forum].url
1.4 kB
18.30 - Code SampleDecision boundary/[FTU Forum].url
1.4 kB
18.31 - Code SampleCross Validation/[FTU Forum].url
1.4 kB
18.32 - Revision Questions/[FTU Forum].url
1.4 kB
18.3 - Classification vs Regression (examples)/[FTU Forum].url
1.4 kB
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/[FTU Forum].url
1.4 kB
18.5 - Failure cases of KNN/[FTU Forum].url
1.4 kB
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/[FTU Forum].url
1.4 kB
18.7 - Cosine Distance & Cosine Similarity/[FTU Forum].url
1.4 kB
18.8 - How to measure the effectiveness of k-NN/[FTU Forum].url
1.4 kB
18.9 - TestEvaluation time and space complexity/[FTU Forum].url
1.4 kB
19.1 - Questions & Answers/[FTU Forum].url
1.4 kB
20.10 - Local reachability-density(A)/[FTU Forum].url
1.4 kB
20.11 - Local outlier Factor(A)/[FTU Forum].url
1.4 kB
20.12 - Impact of Scale & Column standardization/[FTU Forum].url
1.4 kB
20.13 - Interpretability/[FTU Forum].url
1.4 kB
20.14 - Feature Importance and Forward Feature selection/[FTU Forum].url
1.4 kB
20.15 - Handling categorical and numerical features/[FTU Forum].url
1.4 kB
20.16 - Handling missing values by imputation/[FTU Forum].url
1.4 kB
20.17 - curse of dimensionality/[FTU Forum].url
1.4 kB
20.18 - Bias-Variance tradeoff/[FTU Forum].url
1.4 kB
20.19 - Intuitive understanding of bias-variance/[FTU Forum].url
1.4 kB
20.1 - Introduction/[FTU Forum].url
1.4 kB
20.20 - Revision Questions/[FTU Forum].url
1.4 kB
20.21 - best and wrost case of algorithm/[FTU Forum].url
1.4 kB
20.2 - Imbalanced vs balanced dataset/[FTU Forum].url
1.4 kB
20.3 - Multi-class classification/[FTU Forum].url
1.4 kB
20.4 - k-NN, given a distance or similarity matrix/[FTU Forum].url
1.4 kB
20.5 - Train and test set differences/[FTU Forum].url
1.4 kB
20.6 - Impact of outliers/[FTU Forum].url
1.4 kB
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/[FTU Forum].url
1.4 kB
20.8 - k distance/[FTU Forum].url
1.4 kB
20.9 - Reachability-Distance(A,B)/[FTU Forum].url
1.4 kB
2.10 - Control flow for loop/[FTU Forum].url
1.4 kB
21.10 - Revision Questions/[FTU Forum].url
1.4 kB
21.1 - Accuracy/[FTU Forum].url
1.4 kB
2.11 - Control flow break and continue/[FTU Forum].url
1.4 kB
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/[FTU Forum].url
1.4 kB
21.3 - Precision and recall, F1-score/[FTU Forum].url
1.4 kB
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/[FTU Forum].url
1.4 kB
21.5 - Log-loss/[FTU Forum].url
1.4 kB
21.6 - R-SquaredCoefficient of determination/[FTU Forum].url
1.4 kB
21.7 - Median absolute deviation (MAD)/[FTU Forum].url
1.4 kB
21.8 - Distribution of errors/[FTU Forum].url
1.4 kB
21.9 - Assignment-3 Apply k-Nearest Neighbor/[FTU Forum].url
1.4 kB
2.1 - Python, Anaconda and relevant packages installations/[FTU Forum].url
1.4 kB
22.1 - Questions & Answers/[FTU Forum].url
1.4 kB
2.2 - Why learn Python/[FTU Forum].url
1.4 kB
23.10 - Bias and Variance tradeoff/[FTU Forum].url
1.4 kB
23.11 - Feature importance and interpretability/[FTU Forum].url
1.4 kB
23.12 - Imbalanced data/[FTU Forum].url
1.4 kB
23.13 - Outliers/[FTU Forum].url
1.4 kB
23.14 - Missing values/[FTU Forum].url
1.4 kB
23.15 - Handling Numerical features (Gaussian NB)/[FTU Forum].url
1.4 kB
23.16 - Multiclass classification/[FTU Forum].url
1.4 kB
23.17 - Similarity or Distance matrix/[FTU Forum].url
1.4 kB
23.18 - Large dimensionality/[FTU Forum].url
1.4 kB
23.19 - Best and worst cases/[FTU Forum].url
1.4 kB
23.1 - Conditional probability/[FTU Forum].url
1.4 kB
23.20 - Code example/[FTU Forum].url
1.4 kB
23.21 - Assignment-4 Apply Naive Bayes/[FTU Forum].url
1.4 kB
23.22 - Revision Questions/[FTU Forum].url
1.4 kB
23.2 - Independent vs Mutually exclusive events/[FTU Forum].url
1.4 kB
23.3 - Bayes Theorem with examples/[FTU Forum].url
1.4 kB
23.4 - Exercise problems on Bayes Theorem/[FTU Forum].url
1.4 kB
23.5 - Naive Bayes algorithm/[FTU Forum].url
1.4 kB
23.6 - Toy example Train and test stages/[FTU Forum].url
1.4 kB
23.7 - Naive Bayes on Text data/[FTU Forum].url
1.4 kB
23.8 - LaplaceAdditive Smoothing/[FTU Forum].url
1.4 kB
23.9 - Log-probabilities for numerical stability/[FTU Forum].url
1.4 kB
2.3 - Keywords and identifiers/[FTU Forum].url
1.4 kB
24.10 - Column Standardization/[FTU Forum].url
1.4 kB
24.11 - Feature importance and Model interpretability/[FTU Forum].url
1.4 kB
24.12 - Collinearity of features/[FTU Forum].url
1.4 kB
24.13 - TestRun time space and time complexity/[FTU Forum].url
1.4 kB
24.14 - Real world cases/[FTU Forum].url
1.4 kB
24.15 - Non-linearly separable data & feature engineering/[FTU Forum].url
1.4 kB
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/[FTU Forum].url
1.4 kB
24.17 - Assignment-5 Apply Logistic Regression/[FTU Forum].url
1.4 kB
24.18 - Extensions to Generalized linear models/[FTU Forum].url
1.4 kB
24.1 - Geometric intuition of Logistic Regression/[FTU Forum].url
1.4 kB
24.2 - Sigmoid function Squashing/[FTU Forum].url
1.4 kB
24.3 - Mathematical formulation of Objective function/[FTU Forum].url
1.4 kB
24.4 - Weight vector/[FTU Forum].url
1.4 kB
24.5 - L2 Regularization Overfitting and Underfitting/[FTU Forum].url
1.4 kB
24.6 - L1 regularization and sparsity/[FTU Forum].url
1.4 kB
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/[FTU Forum].url
1.4 kB
24.8 - Loss minimization interpretation/[FTU Forum].url
1.4 kB
24.9 - hyperparameters and random search/[FTU Forum].url
1.4 kB
2.4 - comments, indentation and statements/[FTU Forum].url
1.4 kB
25.1 - Geometric intuition of Linear Regression/[FTU Forum].url
1.4 kB
25.2 - Mathematical formulation/[FTU Forum].url
1.4 kB
25.3 - Real world Cases/[FTU Forum].url
1.4 kB
25.4 - Code sample for Linear Regression/[FTU Forum].url
1.4 kB
2.5 - Variables and data types in Python/[FTU Forum].url
1.4 kB
26.10 - Logistic regression formulation revisited/[FTU Forum].url
1.4 kB
26.11 - Why L1 regularization creates sparsity/[FTU Forum].url
1.4 kB
26.12 - Assignment 6 Implement SGD for linear regression/[FTU Forum].url
1.4 kB
26.13 - Revision questions/[FTU Forum].url
1.4 kB
26.1 - Differentiation/[FTU Forum].url
1.4 kB
26.2 - Online differentiation tools/[FTU Forum].url
1.4 kB
26.3 - Maxima and Minima/[FTU Forum].url
1.4 kB
26.4 - Vector calculus Grad/[FTU Forum].url
1.4 kB
26.5 - Gradient descent geometric intuition/[FTU Forum].url
1.4 kB
26.6 - Learning rate/[FTU Forum].url
1.4 kB
26.7 - Gradient descent for linear regression/[FTU Forum].url
1.4 kB
26.8 - SGD algorithm/[FTU Forum].url
1.4 kB
26.9 - Constrained Optimization & PCA/[FTU Forum].url
1.4 kB
2.6 - Standard Input and Output/[FTU Forum].url
1.4 kB
27.1 - Questions & Answers/[FTU Forum].url
1.4 kB
2.7 - Operators/[FTU Forum].url
1.4 kB
28.10 - Train and run time complexities/[FTU Forum].url
1.4 kB
28.11 - nu-SVM control errors and support vectors/[FTU Forum].url
1.4 kB
28.12 - SVM Regression/[FTU Forum].url
1.4 kB
28.13 - Cases/[FTU Forum].url
1.4 kB
28.14 - Code Sample/[FTU Forum].url
1.4 kB
28.15 - Assignment-7 Apply SVM/[FTU Forum].url
1.4 kB
28.16 - Revision Questions/[FTU Forum].url
1.4 kB
28.1 - Geometric Intution/[FTU Forum].url
1.4 kB
28.2 - Mathematical derivation/[FTU Forum].url
1.4 kB
28.3 - Why we take values +1 and and -1 for Support vector planes/[FTU Forum].url
1.4 kB
28.4 - Loss function (Hinge Loss) based interpretation/[FTU Forum].url
1.4 kB
28.5 - Dual form of SVM formulation/[FTU Forum].url
1.4 kB
28.6 - kernel trick/[FTU Forum].url
1.4 kB
28.7 - Polynomial Kernel/[FTU Forum].url
1.4 kB
28.8 - RBF-Kernel/[FTU Forum].url
1.4 kB
28.9 - Domain specific Kernels/[FTU Forum].url
1.4 kB
2.8 - Control flow if else/[FTU Forum].url
1.4 kB
29.1 - Questions & Answers/[FTU Forum].url
1.4 kB
2.9 - Control flow while loop/[FTU Forum].url
1.4 kB
30.10 - Overfitting and Underfitting/[FTU Forum].url
1.4 kB
30.11 - Train and Run time complexity/[FTU Forum].url
1.4 kB
30.12 - Regression using Decision Trees/[FTU Forum].url
1.4 kB
30.13 - Cases/[FTU Forum].url
1.4 kB
30.14 - Code Samples/[FTU Forum].url
1.4 kB
30.15 - Assignment-8 Apply Decision Trees/[FTU Forum].url
1.4 kB
30.16 - Revision Questions/[FTU Forum].url
1.4 kB
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/[FTU Forum].url
1.4 kB
30.2 - Sample Decision tree/[FTU Forum].url
1.4 kB
30.3 - Building a decision TreeEntropy/[FTU Forum].url
1.4 kB
30.4 - Building a decision TreeInformation Gain/[FTU Forum].url
1.4 kB
30.5 - Building a decision Tree Gini Impurity/[FTU Forum].url
1.4 kB
30.6 - Building a decision Tree Constructing a DT/[FTU Forum].url
1.4 kB
30.7 - Building a decision Tree Splitting numerical features/[FTU Forum].url
1.4 kB
30.8 - Feature standardization/[FTU Forum].url
1.4 kB
30.9 - Building a decision TreeCategorical features with many possible values/[FTU Forum].url
1.4 kB
31.1 - Questions & Answers/[FTU Forum].url
1.4 kB
3.1 - Lists/[FTU Forum].url
1.4 kB
32.10 - Residuals, Loss functions and gradients/[FTU Forum].url
1.4 kB
32.11 - Gradient Boosting/[FTU Forum].url
1.4 kB
32.12 - Regularization by Shrinkage/[FTU Forum].url
1.4 kB
32.13 - Train and Run time complexity/[FTU Forum].url
1.4 kB
32.14 - XGBoost Boosting + Randomization/[FTU Forum].url
1.4 kB
32.15 - AdaBoost geometric intuition/[FTU Forum].url
1.4 kB
32.16 - Stacking models/[FTU Forum].url
1.4 kB
32.17 - Cascading classifiers/[FTU Forum].url
1.4 kB
32.18 - Kaggle competitions vs Real world/[FTU Forum].url
1.4 kB
32.19 - Assignment-9 Apply Random Forests & GBDT/[FTU Forum].url
1.4 kB
32.1 - What are ensembles/[FTU Forum].url
1.4 kB
32.20 - Revision Questions/[FTU Forum].url
1.4 kB
32.2 - Bootstrapped Aggregation (Bagging) Intuition/[FTU Forum].url
1.4 kB
32.3 - Random Forest and their construction/[FTU Forum].url
1.4 kB
32.4 - Bias-Variance tradeoff/[FTU Forum].url
1.4 kB
32.5 - Train and run time complexity/[FTU Forum].url
1.4 kB
32.6 - BaggingCode Sample/[FTU Forum].url
1.4 kB
32.7 - Extremely randomized trees/[FTU Forum].url
1.4 kB
32.8 - Random Tree Cases/[FTU Forum].url
1.4 kB
32.9 - Boosting Intuition/[FTU Forum].url
1.4 kB
3.2 - Tuples part 1/[FTU Forum].url
1.4 kB
33.10 - Indicator variables/[FTU Forum].url
1.4 kB
33.11 - Feature binning/[FTU Forum].url
1.4 kB
33.12 - Interaction variables/[FTU Forum].url
1.4 kB
33.13 - Mathematical transforms/[FTU Forum].url
1.4 kB
33.14 - Model specific featurizations/[FTU Forum].url
1.4 kB
33.15 - Feature orthogonality/[FTU Forum].url
1.4 kB
33.16 - Domain specific featurizations/[FTU Forum].url
1.4 kB
33.17 - Feature slicing/[FTU Forum].url
1.4 kB
33.18 - Kaggle Winners solutions/[FTU Forum].url
1.4 kB
33.1 - Introduction/[FTU Forum].url
1.4 kB
33.2 - Moving window for Time Series Data/[FTU Forum].url
1.4 kB
33.3 - Fourier decomposition/[FTU Forum].url
1.4 kB
33.4 - Deep learning features LSTM/[FTU Forum].url
1.4 kB
33.5 - Image histogram/[FTU Forum].url
1.4 kB
33.6 - Keypoints SIFT/[FTU Forum].url
1.4 kB
33.7 - Deep learning features CNN/[FTU Forum].url
1.4 kB
33.8 - Relational data/[FTU Forum].url
1.4 kB
33.9 - Graph data/[FTU Forum].url
1.4 kB
3.3 - Tuples part-2/[FTU Forum].url
1.4 kB
34.10 - AB testing/[FTU Forum].url
1.4 kB
34.11 - Data Science Life cycle/[FTU Forum].url
1.4 kB
34.12 - VC dimension/[FTU Forum].url
1.4 kB
34.1 - Calibration of ModelsNeed for calibration/[FTU Forum].url
1.4 kB
34.2 - Productionization and deployment of Machine Learning Models/[FTU Forum].url
1.4 kB
34.3 - Calibration Plots/[FTU Forum].url
1.4 kB
34.4 - Platt’s CalibrationScaling/[FTU Forum].url
1.4 kB
34.5 - Isotonic Regression/[FTU Forum].url
1.4 kB
34.6 - Code Samples/[FTU Forum].url
1.4 kB
34.7 - Modeling in the presence of outliers RANSAC/[FTU Forum].url
1.4 kB
34.8 - Productionizing models/[FTU Forum].url
1.4 kB
34.9 - Retraining models periodically/[FTU Forum].url
1.4 kB
3.4 - Sets/[FTU Forum].url
1.4 kB
35.10 - K-Medoids/[FTU Forum].url
1.4 kB
35.11 - Determining the right K/[FTU Forum].url
1.4 kB
35.12 - Code Samples/[FTU Forum].url
1.4 kB
35.13 - Time and space complexity/[FTU Forum].url
1.4 kB
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FTU Forum].url
1.4 kB
35.1 - What is Clustering/[FTU Forum].url
1.4 kB
35.2 - Unsupervised learning/[FTU Forum].url
1.4 kB
35.3 - Applications/[FTU Forum].url
1.4 kB
35.4 - Metrics for Clustering/[FTU Forum].url
1.4 kB
35.5 - K-Means Geometric intuition, Centroids/[FTU Forum].url
1.4 kB
35.6 - K-Means Mathematical formulation Objective function/[FTU Forum].url
1.4 kB
35.7 - K-Means Algorithm/[FTU Forum].url
1.4 kB
35.8 - How to initialize K-Means++/[FTU Forum].url
1.4 kB
35.9 - Failure casesLimitations/[FTU Forum].url
1.4 kB
3.5 - Dictionary/[FTU Forum].url
1.4 kB
36.1 - Agglomerative & Divisive, Dendrograms/[FTU Forum].url
1.4 kB
36.2 - Agglomerative Clustering/[FTU Forum].url
1.4 kB
36.3 - Proximity methods Advantages and Limitations/[FTU Forum].url
1.4 kB
36.4 - Time and Space Complexity/[FTU Forum].url
1.4 kB
36.5 - Limitations of Hierarchical Clustering/[FTU Forum].url
1.4 kB
36.6 - Code sample/[FTU Forum].url
1.4 kB
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FTU Forum].url
1.4 kB
3.6 - Strings/[FTU Forum].url
1.4 kB
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FTU Forum].url
1.4 kB
37.11 - Revision Questions/[FTU Forum].url
1.4 kB
37.1 - Density based clustering/[FTU Forum].url
1.4 kB
37.2 - MinPts and Eps Density/[FTU Forum].url
1.4 kB
37.3 - Core, Border and Noise points/[FTU Forum].url
1.4 kB
37.4 - Density edge and Density connected points/[FTU Forum].url
1.4 kB
37.5 - DBSCAN Algorithm/[FTU Forum].url
1.4 kB
37.6 - Hyper Parameters MinPts and Eps/[FTU Forum].url
1.4 kB
37.7 - Advantages and Limitations of DBSCAN/[FTU Forum].url
1.4 kB
37.8 - Time and Space Complexity/[FTU Forum].url
1.4 kB
37.9 - Code samples/[FTU Forum].url
1.4 kB
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/[FTU Forum].url
1.4 kB
38.11 - Cold Start problem/[FTU Forum].url
1.4 kB
38.12 - Word vectors as MF/[FTU Forum].url
1.4 kB
38.13 - Eigen-Faces/[FTU Forum].url
1.4 kB
38.14 - Code example/[FTU Forum].url
1.4 kB
38.15 - Assignment-11 Apply Truncated SVD/[FTU Forum].url
1.4 kB
38.16 - Revision Questions/[FTU Forum].url
1.4 kB
38.1 - Problem formulation Movie reviews/[FTU Forum].url
1.4 kB
38.2 - Content based vs Collaborative Filtering/[FTU Forum].url
1.4 kB
38.3 - Similarity based Algorithms/[FTU Forum].url
1.4 kB
38.4 - Matrix Factorization PCA, SVD/[FTU Forum].url
1.4 kB
38.5 - Matrix Factorization NMF/[FTU Forum].url
1.4 kB
38.6 - Matrix Factorization for Collaborative filtering/[FTU Forum].url
1.4 kB
38.7 - Matrix Factorization for feature engineering/[FTU Forum].url
1.4 kB
38.8 - Clustering as MF/[FTU Forum].url
1.4 kB
38.9 - Hyperparameter tuning/[FTU Forum].url
1.4 kB
39.1 - Questions & Answers/[FTU Forum].url
1.4 kB
40.10 - Data Modeling Multi label Classification/[FTU Forum].url
1.4 kB
40.11 - Data preparation/[FTU Forum].url
1.4 kB
40.12 - Train-Test Split/[FTU Forum].url
1.4 kB
40.13 - Featurization/[FTU Forum].url
1.4 kB
40.14 - Logistic regression One VS Rest/[FTU Forum].url
1.4 kB
40.15 - Sampling data and tags+Weighted models/[FTU Forum].url
1.4 kB
40.16 - Logistic regression revisited/[FTU Forum].url
1.4 kB
40.17 - Why not use advanced techniques/[FTU Forum].url
1.4 kB
40.18 - Assignments/[FTU Forum].url
1.4 kB
40.1 - BusinessReal world problem/[FTU Forum].url
1.4 kB
40.2 - Business objectives and constraints/[FTU Forum].url
1.4 kB
40.3 - Mapping to an ML problem Data overview/[FTU Forum].url
1.4 kB
40.4 - Mapping to an ML problemML problem formulation/[FTU Forum].url
1.4 kB
40.5 - Mapping to an ML problemPerformance metrics/[FTU Forum].url
1.4 kB
40.6 - Hamming loss/[FTU Forum].url
1.4 kB
40.7 - EDAData Loading/[FTU Forum].url
1.4 kB
40.8 - EDAAnalysis of tags/[FTU Forum].url
1.4 kB
40.9 - EDAData Preprocessing/[FTU Forum].url
1.4 kB
4.10 - Debugging Python/[FTU Forum].url
1.4 kB
41.10 - EDA Feature analysis/[FTU Forum].url
1.4 kB
41.11 - EDA Data Visualization T-SNE/[FTU Forum].url
1.4 kB
41.12 - EDA TF-IDF weighted Word2Vec featurization/[FTU Forum].url
1.4 kB
41.13 - ML Models Loading Data/[FTU Forum].url
1.4 kB
41.14 - ML Models Random Model/[FTU Forum].url
1.4 kB
41.15 - ML Models Logistic Regression and Linear SVM/[FTU Forum].url
1.4 kB
41.16 - ML Models XGBoost/[FTU Forum].url
1.4 kB
41.17 - Assignments/[FTU Forum].url
1.4 kB
41.1 - BusinessReal world problem Problem definition/[FTU Forum].url
1.4 kB
41.2 - Business objectives and constraints/[FTU Forum].url
1.4 kB
41.3 - Mapping to an ML problem Data overview/[FTU Forum].url
1.4 kB
41.4 - Mapping to an ML problem ML problem and performance metric/[FTU Forum].url
1.4 kB
41.5 - Mapping to an ML problem Train-test split/[FTU Forum].url
1.4 kB
41.6 - EDA Basic Statistics/[FTU Forum].url
1.4 kB
41.7 - EDA Basic Feature Extraction/[FTU Forum].url
1.4 kB
41.8 - EDA Text Preprocessing/[FTU Forum].url
1.4 kB
41.9 - EDA Advanced Feature Extraction/[FTU Forum].url
1.4 kB
4.1 - Introduction/[FTU Forum].url
1.4 kB
42.10 - Text Pre-Processing Tokenization and Stop-word removal/[FTU Forum].url
1.4 kB
42.11 - Stemming/[FTU Forum].url
1.4 kB
42.12 - Text based product similarity Converting text to an n-D vector bag of words/[FTU Forum].url
1.4 kB
42.13 - Code for bag of words based product similarity/[FTU Forum].url
1.4 kB
42.14 - TF-IDF featurizing text based on word-importance/[FTU Forum].url
1.4 kB
42.15 - Code for TF-IDF based product similarity/[FTU Forum].url
1.4 kB
42.16 - Code for IDF based product similarity/[FTU Forum].url
1.4 kB
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/[FTU Forum].url
1.4 kB
42.18 - Code for Average Word2Vec product similarity/[FTU Forum].url
1.4 kB
42.19 - TF-IDF weighted Word2Vec/[FTU Forum].url
1.4 kB
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/[FTU Forum].url
1.4 kB
42.20 - Code for IDF weighted Word2Vec product similarity/[FTU Forum].url
1.4 kB
42.21 - Weighted similarity using brand and color/[FTU Forum].url
1.4 kB
42.22 - Code for weighted similarity/[FTU Forum].url
1.4 kB
42.23 - Building a real world solution/[FTU Forum].url
1.4 kB
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/[FTU Forum].url
1.4 kB
42.25 - Using Keras + Tensorflow to extract features/[FTU Forum].url
1.4 kB
42.26 - Visual similarity based product similarity/[FTU Forum].url
1.4 kB
42.27 - Measuring goodness of our solution AB testing/[FTU Forum].url
1.4 kB
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/[FTU Forum].url
1.4 kB
42.2 - Plan of action/[FTU Forum].url
1.4 kB
42.3 - Amazon product advertising API/[FTU Forum].url
1.4 kB
42.4 - Data folders and paths/[FTU Forum].url
1.4 kB
42.5 - Overview of the data and Terminology/[FTU Forum].url
1.4 kB
42.6 - Data cleaning and understandingMissing data in various features/[FTU Forum].url
1.4 kB
42.7 - Understand duplicate rows/[FTU Forum].url
1.4 kB
42.8 - Remove duplicates Part 1/[FTU Forum].url
1.4 kB
42.9 - Remove duplicates Part 2/[FTU Forum].url
1.4 kB
4.2 - Types of functions/[FTU Forum].url
1.4 kB
43.10 - ML models – using byte files only Random Model/[FTU Forum].url
1.4 kB
43.11 - k-NN/[FTU Forum].url
1.4 kB
43.12 - Logistic regression/[FTU Forum].url
1.4 kB
43.13 - Random Forest and Xgboost/[FTU Forum].url
1.4 kB
43.14 - ASM Files Feature extraction & Multiprocessing/[FTU Forum].url
1.4 kB
43.15 - File-size feature/[FTU Forum].url
1.4 kB
43.16 - Univariate analysis/[FTU Forum].url
1.4 kB
43.17 - t-SNE analysis/[FTU Forum].url
1.4 kB
43.18 - ML models on ASM file features/[FTU Forum].url
1.4 kB
43.19 - Models on all features t-SNE/[FTU Forum].url
1.4 kB
43.1 - Businessreal world problem Problem definition/[FTU Forum].url
1.4 kB
43.20 - Models on all features RandomForest and Xgboost/[FTU Forum].url
1.4 kB
43.21 - Assignments/[FTU Forum].url
1.4 kB
43.2 - Businessreal world problem Objectives and constraints/[FTU Forum].url
1.4 kB
43.3 - Machine Learning problem mapping Data overview/[FTU Forum].url
1.4 kB
43.4 - Machine Learning problem mapping ML problem/[FTU Forum].url
1.4 kB
43.5 - Machine Learning problem mapping Train and test splitting/[FTU Forum].url
1.4 kB
43.6 - Exploratory Data Analysis Class distribution/[FTU Forum].url
1.4 kB
43.7 - Exploratory Data Analysis Feature extraction from byte files/[FTU Forum].url
1.4 kB
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/[FTU Forum].url
1.4 kB
43.9 - Exploratory Data Analysis Train-Test class distribution/[FTU Forum].url
1.4 kB
4.3 - Function arguments/[FTU Forum].url
1.4 kB
44.10 - Exploratory Data AnalysisCold start problem/[FTU Forum].url
1.4 kB
44.11 - Computing Similarity matricesUser-User similarity matrix/[FTU Forum].url
1.4 kB
44.12 - Computing Similarity matricesMovie-Movie similarity/[FTU Forum].url
1.4 kB
44.13 - Computing Similarity matricesDoes movie-movie similarity work/[FTU Forum].url
1.4 kB
44.14 - ML ModelsSurprise library/[FTU Forum].url
1.4 kB
44.15 - Overview of the modelling strategy/[FTU Forum].url
1.4 kB
44.16 - Data Sampling/[FTU Forum].url
1.4 kB
44.17 - Google drive with intermediate files/[FTU Forum].url
1.4 kB
44.18 - Featurizations for regression/[FTU Forum].url
1.4 kB
44.19 - Data transformation for Surprise/[FTU Forum].url
1.4 kB
44.1 - BusinessReal world problemProblem definition/[FTU Forum].url
1.4 kB
44.20 - Xgboost with 13 features/[FTU Forum].url
1.4 kB
44.21 - Surprise Baseline model/[FTU Forum].url
1.4 kB
44.22 - Xgboost + 13 features +Surprise baseline model/[FTU Forum].url
1.4 kB
44.23 - Surprise KNN predictors/[FTU Forum].url
1.4 kB
44.24 - Matrix Factorization models using Surprise/[FTU Forum].url
1.4 kB
44.25 - SVD ++ with implicit feedback/[FTU Forum].url
1.4 kB
44.26 - Final models with all features and predictors/[FTU Forum].url
1.4 kB
44.27 - Comparison between various models/[FTU Forum].url
1.4 kB
44.28 - Assignments/[FTU Forum].url
1.4 kB
44.2 - Objectives and constraints/[FTU Forum].url
1.4 kB
44.3 - Mapping to an ML problemData overview/[FTU Forum].url
1.4 kB
44.4 - Mapping to an ML problemML problem formulation/[FTU Forum].url
1.4 kB
44.5 - Exploratory Data AnalysisData preprocessing/[FTU Forum].url
1.4 kB
44.6 - Exploratory Data AnalysisTemporal Train-Test split/[FTU Forum].url
1.4 kB
44.7 - Exploratory Data AnalysisPreliminary data analysis/[FTU Forum].url
1.4 kB
44.8 - Exploratory Data AnalysisSparse matrix representation/[FTU Forum].url
1.4 kB
44.9 - Exploratory Data AnalysisAverage ratings for various slices/[FTU Forum].url
1.4 kB
4.4 - Recursive functions/[FTU Forum].url
1.4 kB
45.10 - Univariate AnalysisVariation Feature/[FTU Forum].url
1.4 kB
45.11 - Univariate AnalysisText feature/[FTU Forum].url
1.4 kB
45.12 - Machine Learning ModelsData preparation/[FTU Forum].url
1.4 kB
45.13 - Baseline Model Naive Bayes/[FTU Forum].url
1.4 kB
45.14 - K-Nearest Neighbors Classification/[FTU Forum].url
1.4 kB
45.15 - Logistic Regression with class balancing/[FTU Forum].url
1.4 kB
45.16 - Logistic Regression without class balancing/[FTU Forum].url
1.4 kB
45.17 - Linear-SVM/[FTU Forum].url
1.4 kB
45.18 - Random-Forest with one-hot encoded features/[FTU Forum].url
1.4 kB
45.19 - Random-Forest with response-coded features/[FTU Forum].url
1.4 kB
45.1 - BusinessReal world problem Overview/[FTU Forum].url
1.4 kB
45.20 - Stacking Classifier/[FTU Forum].url
1.4 kB
45.21 - Majority Voting classifier/[FTU Forum].url
1.4 kB
45.22 - Assignments/[FTU Forum].url
1.4 kB
45.2 - Business objectives and constraints/[FTU Forum].url
1.4 kB
45.3 - ML problem formulation Data/[FTU Forum].url
1.4 kB
45.4 - ML problem formulation Mapping real world to ML problem/[FTU Forum].url
1.4 kB
45.4 - ML problem formulation Mapping real world to ML problem#/[FTU Forum].url
1.4 kB
45.5 - ML problem formulation Train, CV and Test data construction/[FTU Forum].url
1.4 kB
45.6 - Exploratory Data AnalysisReading data & preprocessing/[FTU Forum].url
1.4 kB
45.7 - Exploratory Data AnalysisDistribution of Class-labels/[FTU Forum].url
1.4 kB
45.8 - Exploratory Data Analysis “Random” Model/[FTU Forum].url
1.4 kB
45.9 - Univariate AnalysisGene feature/[FTU Forum].url
1.4 kB
4.5 - Lambda functions/[FTU Forum].url
1.4 kB
46.10 - Data Cleaning Speed/[FTU Forum].url
1.4 kB
46.11 - Data Cleaning Distance/[FTU Forum].url
1.4 kB
46.12 - Data Cleaning Fare/[FTU Forum].url
1.4 kB
46.13 - Data Cleaning Remove all outlierserroneous points/[FTU Forum].url
1.4 kB
46.14 - Data PreparationClusteringSegmentation/[FTU Forum].url
1.4 kB
46.15 - Data PreparationTime binning/[FTU Forum].url
1.4 kB
46.16 - Data PreparationSmoothing time-series data/[FTU Forum].url
1.4 kB
46.17 - Data PreparationSmoothing time-series data cont/[FTU Forum].url
1.4 kB
46.18 - Data Preparation Time series and Fourier transforms/[FTU Forum].url
1.4 kB
46.19 - Ratios and previous-time-bin values/[FTU Forum].url
1.4 kB
46.1 - BusinessReal world problem Overview/[FTU Forum].url
1.4 kB
46.20 - Simple moving average/[FTU Forum].url
1.4 kB
46.21 - Weighted Moving average/[FTU Forum].url
1.4 kB
46.22 - Exponential weighted moving average/[FTU Forum].url
1.4 kB
46.23 - Results/[FTU Forum].url
1.4 kB
46.24 - Regression models Train-Test split & Features/[FTU Forum].url
1.4 kB
46.25 - Linear regression/[FTU Forum].url
1.4 kB
46.26 - Random Forest regression/[FTU Forum].url
1.4 kB
46.27 - Xgboost Regression/[FTU Forum].url
1.4 kB
46.28 - Model comparison/[FTU Forum].url
1.4 kB
46.29 - Assignment/[FTU Forum].url
1.4 kB
46.2 - Objectives and Constraints/[FTU Forum].url
1.4 kB
46.3 - Mapping to ML problem Data/[FTU Forum].url
1.4 kB
46.4 - Mapping to ML problem dask dataframes/[FTU Forum].url
1.4 kB
46.5 - Mapping to ML problem FieldsFeatures/[FTU Forum].url
1.4 kB
46.6 - Mapping to ML problem Time series forecastingRegression/[FTU Forum].url
1.4 kB
46.7 - Mapping to ML problem Performance metrics/[FTU Forum].url
1.4 kB
46.8 - Data Cleaning Latitude and Longitude data/[FTU Forum].url
1.4 kB
46.9 - Data Cleaning Trip Duration/[FTU Forum].url
1.4 kB
4.6 - Modules/[FTU Forum].url
1.4 kB
47.10 - Backpropagation/[FTU Forum].url
1.4 kB
47.11 - Activation functions/[FTU Forum].url
1.4 kB
47.12 - Vanishing Gradient problem/[FTU Forum].url
1.4 kB
47.13 - Bias-Variance tradeoff/[FTU Forum].url
1.4 kB
47.14 - Decision surfaces Playground/[FTU Forum].url
1.4 kB
47.1 - History of Neural networks and Deep Learning/[FTU Forum].url
1.4 kB
47.2 - How Biological Neurons work/[FTU Forum].url
1.4 kB
47.3 - Growth of biological neural networks/[FTU Forum].url
1.4 kB
47.4 - Diagrammatic representation Logistic Regression and Perceptron/[FTU Forum].url
1.4 kB
47.5 - Multi-Layered Perceptron (MLP)/[FTU Forum].url
1.4 kB
47.6 - Notation/[FTU Forum].url
1.4 kB
47.7 - Training a single-neuron model/[FTU Forum].url
1.4 kB
47.8 - Training an MLP Chain Rule/[FTU Forum].url
1.4 kB
47.9 - Training an MLPMemoization/[FTU Forum].url
1.4 kB
4.7 - Packages/[FTU Forum].url
1.4 kB
48.10 - Nesterov Accelerated Gradient (NAG)/[FTU Forum].url
1.4 kB
48.11 - OptimizersAdaGrad/[FTU Forum].url
1.4 kB
48.12 - Optimizers Adadelta andRMSProp/[FTU Forum].url
1.4 kB
48.13 - Adam/[FTU Forum].url
1.4 kB
48.14 - Which algorithm to choose when/[FTU Forum].url
1.4 kB
48.15 - Gradient Checking and clipping/[FTU Forum].url
1.4 kB
48.16 - Softmax and Cross-entropy for multi-class classification/[FTU Forum].url
1.4 kB
48.17 - How to train a Deep MLP/[FTU Forum].url
1.4 kB
48.18 - Auto Encoders/[FTU Forum].url
1.4 kB
48.19 - Word2Vec CBOW/[FTU Forum].url
1.4 kB
48.1 - Deep Multi-layer perceptrons1980s to 2010s/[FTU Forum].url
1.4 kB
48.20 - Word2Vec Skip-gram/[FTU Forum].url
1.4 kB
48.21 - Word2Vec Algorithmic Optimizations/[FTU Forum].url
1.4 kB
48.2 - Dropout layers & Regularization/[FTU Forum].url
1.4 kB
48.3 - Rectified Linear Units (ReLU)/[FTU Forum].url
1.4 kB
48.4 - Weight initialization/[FTU Forum].url
1.4 kB
48.5 - Batch Normalization/[FTU Forum].url
1.4 kB
48.6 - OptimizersHill-descent analogy in 2D/[FTU Forum].url
1.4 kB
48.7 - OptimizersHill descent in 3D and contours/[FTU Forum].url
1.4 kB
48.8 - SGD Recap/[FTU Forum].url
1.4 kB
48.9 - Batch SGD with momentum/[FTU Forum].url
1.4 kB
4.8 - File Handling/[FTU Forum].url
1.4 kB
49.10 - Model 3 Batch Normalization/[FTU Forum].url
1.4 kB
49.11 - Model 4 Dropout/[FTU Forum].url
1.4 kB
49.12 - MNIST classification in Keras/[FTU Forum].url
1.4 kB
49.13 - Hyperparameter tuning in Keras/[FTU Forum].url
1.4 kB
49.14 - Exercise Try different MLP architectures on MNIST dataset/[FTU Forum].url
1.4 kB
49.1 - Tensorflow and Keras overview/[FTU Forum].url
1.4 kB
49.2 - GPU vs CPU for Deep Learning/[FTU Forum].url
1.4 kB
49.3 - Google Colaboratory/[FTU Forum].url
1.4 kB
49.4 - Install TensorFlow/[FTU Forum].url
1.4 kB
49.5 - Online documentation and tutorials/[FTU Forum].url
1.4 kB
49.6 - Softmax Classifier on MNIST dataset/[FTU Forum].url
1.4 kB
49.7 - MLP Initialization/[FTU Forum].url
1.4 kB
49.8 - Model 1 Sigmoid activation/[FTU Forum].url
1.4 kB
49.9 - Model 2 ReLU activation/[FTU Forum].url
1.4 kB
4.9 - Exception Handling/[FTU Forum].url
1.4 kB
50.10 - Data Augmentation/[FTU Forum].url
1.4 kB
50.11 - Convolution Layers in Keras/[FTU Forum].url
1.4 kB
50.12 - AlexNet/[FTU Forum].url
1.4 kB
50.13 - VGGNet/[FTU Forum].url
1.4 kB
50.14 - Residual Network/[FTU Forum].url
1.4 kB
50.15 - Inception Network/[FTU Forum].url
1.4 kB
50.16 - What is Transfer learning/[FTU Forum].url
1.4 kB
50.17 - Code example Cats vs Dogs/[FTU Forum].url
1.4 kB
50.18 - Code Example MNIST dataset/[FTU Forum].url
1.4 kB
50.19 - Assignment Try various CNN networks on MNIST dataset#/[FTU Forum].url
1.4 kB
50.1 - Biological inspiration Visual Cortex/[FTU Forum].url
1.4 kB
50.2 - ConvolutionEdge Detection on images/[FTU Forum].url
1.4 kB
50.3 - ConvolutionPadding and strides/[FTU Forum].url
1.4 kB
50.4 - Convolution over RGB images/[FTU Forum].url
1.4 kB
50.5 - Convolutional layer/[FTU Forum].url
1.4 kB
50.6 - Max-pooling/[FTU Forum].url
1.4 kB
50.7 - CNN Training Optimization/[FTU Forum].url
1.4 kB
50.8 - Example CNN LeNet [1998]/[FTU Forum].url
1.4 kB
50.9 - ImageNet dataset/[FTU Forum].url
1.4 kB
51.10 - Code example IMDB Sentiment classification/[FTU Forum].url
1.4 kB
51.11 - Exercise Amazon Fine Food reviews LSTM model/[FTU Forum].url
1.4 kB
51.1 - Why RNNs/[FTU Forum].url
1.4 kB
51.2 - Recurrent Neural Network/[FTU Forum].url
1.4 kB
51.3 - Training RNNs Backprop/[FTU Forum].url
1.4 kB
51.4 - Types of RNNs/[FTU Forum].url
1.4 kB
51.5 - Need for LSTMGRU/[FTU Forum].url
1.4 kB
51.6 - LSTM/[FTU Forum].url
1.4 kB
51.7 - GRUs/[FTU Forum].url
1.4 kB
51.8 - Deep RNN/[FTU Forum].url
1.4 kB
51.9 - Bidirectional RNN/[FTU Forum].url
1.4 kB
5.1 - Numpy Introduction/[FTU Forum].url
1.4 kB
52.1 - Questions and Answers/[FTU Forum].url
1.4 kB
5.2 - Numerical operations on Numpy/[FTU Forum].url
1.4 kB
53.10 - NVIDIA’s end to end CNN model/[FTU Forum].url
1.4 kB
53.11 - Train the model/[FTU Forum].url
1.4 kB
53.12 - Test and visualize the output/[FTU Forum].url
1.4 kB
53.13 - Extensions/[FTU Forum].url
1.4 kB
53.14 - Assignment/[FTU Forum].url
1.4 kB
53.1 - Self Driving Car Problem definition/[FTU Forum].url
1.4 kB
53.2 - Datasets/[FTU Forum].url
1.4 kB
53.2 - Datasets#/[FTU Forum].url
1.4 kB
53.3 - Data understanding & Analysis Files and folders/[FTU Forum].url
1.4 kB
53.4 - Dash-cam images and steering angles/[FTU Forum].url
1.4 kB
53.5 - Split the dataset Train vs Test/[FTU Forum].url
1.4 kB
53.6 - EDA Steering angles/[FTU Forum].url
1.4 kB
53.7 - Mean Baseline model simple/[FTU Forum].url
1.4 kB
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/[FTU Forum].url
1.4 kB
53.9 - Batch load the dataset/[FTU Forum].url
1.4 kB
54.10 - MIDI music generation/[FTU Forum].url
1.4 kB
54.11 - Survey blog/[FTU Forum].url
1.4 kB
54.1 - Real-world problem/[FTU Forum].url
1.4 kB
54.2 - Music representation/[FTU Forum].url
1.4 kB
54.3 - Char-RNN with abc-notation Char-RNN model/[FTU Forum].url
1.4 kB
54.4 - Char-RNN with abc-notation Data preparation/[FTU Forum].url
1.4 kB
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/[FTU Forum].url
1.4 kB
54.6 - Char-RNN with abc-notation State full RNN/[FTU Forum].url
1.4 kB
54.7 - Char-RNN with abc-notation Model architecture,Model training/[FTU Forum].url
1.4 kB
54.8 - Char-RNN with abc-notation Music generation/[FTU Forum].url
1.4 kB
54.9 - Char-RNN with abc-notation Generate tabla music/[FTU Forum].url
1.4 kB
55.1 - Human Activity Recognition Problem definition/[FTU Forum].url
1.4 kB
55.2 - Dataset understanding/[FTU Forum].url
1.4 kB
55.3 - Data cleaning & preprocessing/[FTU Forum].url
1.4 kB
55.4 - EDAUnivariate analysis/[FTU Forum].url
1.4 kB
55.5 - EDAData visualization using t-SNE/[FTU Forum].url
1.4 kB
55.6 - Classical ML models/[FTU Forum].url
1.4 kB
55.7 - Deep-learning Model/[FTU Forum].url
1.4 kB
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/[FTU Forum].url
1.4 kB
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/[FTU Forum].url
1.4 kB
56.11 - PageRank/[FTU Forum].url
1.4 kB
56.12 - Shortest Path/[FTU Forum].url
1.4 kB
56.13 - Connected-components/[FTU Forum].url
1.4 kB
56.14 - Adar Index/[FTU Forum].url
1.4 kB
56.15 - Kartz Centrality/[FTU Forum].url
1.4 kB
56.16 - HITS Score/[FTU Forum].url
1.4 kB
56.17 - SVD/[FTU Forum].url
1.4 kB
56.18 - Weight features/[FTU Forum].url
1.4 kB
56.19 - Modeling/[FTU Forum].url
1.4 kB
56.1 - Problem definition/[FTU Forum].url
1.4 kB
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/[FTU Forum].url
1.4 kB
56.3 - Data format & Limitations/[FTU Forum].url
1.4 kB
56.4 - Mapping to a supervised classification problem/[FTU Forum].url
1.4 kB
56.5 - Business constraints & Metrics/[FTU Forum].url
1.4 kB
56.6 - EDABasic Stats/[FTU Forum].url
1.4 kB
56.7 - EDAFollower and following stats/[FTU Forum].url
1.4 kB
56.8 - EDABinary Classification Task/[FTU Forum].url
1.4 kB
56.9 - EDATrain and test split/[FTU Forum].url
1.4 kB
57.10 - ORDER BY/[FTU Forum].url
1.4 kB
57.11 - DISTINCT/[FTU Forum].url
1.4 kB
57.12 - WHERE, Comparison operators, NULL/[FTU Forum].url
1.4 kB
57.13 - Logical Operators/[FTU Forum].url
1.4 kB
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/[FTU Forum].url
1.4 kB
57.15 - GROUP BY/[FTU Forum].url
1.4 kB
57.16 - HAVING/[FTU Forum].url
1.4 kB
57.17 - Order of keywords#/[FTU Forum].url
1.4 kB
57.18 - Join and Natural Join/[FTU Forum].url
1.4 kB
57.19 - Inner, Left, Right and Outer joins/[FTU Forum].url
1.4 kB
57.1 - Introduction to Databases/[FTU Forum].url
1.4 kB
57.20 - Sub QueriesNested QueriesInner Queries/[FTU Forum].url
1.4 kB
57.21 - DMLINSERT/[FTU Forum].url
1.4 kB
57.22 - DMLUPDATE , DELETE/[FTU Forum].url
1.4 kB
57.23 - DDLCREATE TABLE/[FTU Forum].url
1.4 kB
57.24 - DDLALTER ADD, MODIFY, DROP/[FTU Forum].url
1.4 kB
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/[FTU Forum].url
1.4 kB
57.26 - Data Control Language GRANT, REVOKE/[FTU Forum].url
1.4 kB
57.27 - Learning resources/[FTU Forum].url
1.4 kB
57.2 - Why SQL/[FTU Forum].url
1.4 kB
57.3 - Execution of an SQL statement/[FTU Forum].url
1.4 kB
57.4 - IMDB dataset/[FTU Forum].url
1.4 kB
57.5 - Installing MySQL/[FTU Forum].url
1.4 kB
57.6 - Load IMDB data/[FTU Forum].url
1.4 kB
57.7 - USE, DESCRIBE, SHOW TABLES/[FTU Forum].url
1.4 kB
57.8 - SELECT/[FTU Forum].url
1.4 kB
57.9 - LIMIT, OFFSET/[FTU Forum].url
1.4 kB
58.1 - AD-Click Predicition/[FTU Forum].url
1.4 kB
59.1 - Revision Questions/[FTU Forum].url
1.4 kB
59.2 - Questions/[FTU Forum].url
1.4 kB
59.3 - External resources for Interview Questions/[FTU Forum].url
1.4 kB
6.1 - Getting started with Matplotlib/[FTU Forum].url
1.4 kB
7.1 - Getting started with pandas/[FTU Forum].url
1.4 kB
7.2 - Data Frame Basics/[FTU Forum].url
1.4 kB
7.3 - Key Operations on Data Frames/[FTU Forum].url
1.4 kB
8.1 - Space and Time Complexity Find largest number in a list/[FTU Forum].url
1.4 kB
8.2 - Binary search/[FTU Forum].url
1.4 kB
8.3 - Find elements common in two lists/[FTU Forum].url
1.4 kB
8.4 - Find elements common in two lists using a HashtableDict/[FTU Forum].url
1.4 kB
9.10 - Percentiles and Quantiles/[FTU Forum].url
1.4 kB
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/[FTU Forum].url
1.4 kB
9.12 - Box-plot with Whiskers/[FTU Forum].url
1.4 kB
9.13 - Violin Plots/[FTU Forum].url
1.4 kB
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/[FTU Forum].url
1.4 kB
9.15 - Multivariate Probability Density, Contour Plot/[FTU Forum].url
1.4 kB
9.16 - Exercise Perform EDA on Haberman dataset/[FTU Forum].url
1.4 kB
9.1 - Introduction to IRIS dataset and 2D scatter plot/[FTU Forum].url
1.4 kB
9.2 - 3D scatter plot/[FTU Forum].url
1.4 kB
9.3 - Pair plots/[FTU Forum].url
1.4 kB
9.4 - Limitations of Pair Plots/[FTU Forum].url
1.4 kB
9.5 - Histogram and Introduction to PDF(Probability Density Function)/[FTU Forum].url
1.4 kB
9.6 - Univariate Analysis using PDF/[FTU Forum].url
1.4 kB
9.7 - CDF(Cumulative Distribution Function)/[FTU Forum].url
1.4 kB
9.8 - Mean, Variance and Standard Deviation/[FTU Forum].url
1.4 kB
9.9 - Median/[FTU Forum].url
1.4 kB
[FTU Forum].url
1.4 kB
58.1 - AD-Click Predicition/out_files/iframe_api
859 Bytes
58.1 - AD-Click Predicition/out_files/api.js.download
796 Bytes
10.10 - Hyper Cube,Hyper Cuboid/How you can help Team-FTU.txt
241 Bytes
10.11 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
10.1 - Why learn it/How you can help Team-FTU.txt
241 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/How you can help Team-FTU.txt
241 Bytes
10.3 - Dot Product and Angle between 2 Vectors/How you can help Team-FTU.txt
241 Bytes
10.4 - Projection and Unit Vector/How you can help Team-FTU.txt
241 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/How you can help Team-FTU.txt
241 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/How you can help Team-FTU.txt
241 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/How you can help Team-FTU.txt
241 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/How you can help Team-FTU.txt
241 Bytes
10.9 - Square ,Rectangle/How you can help Team-FTU.txt
241 Bytes
11.10 - How distributions are used/How you can help Team-FTU.txt
241 Bytes
11.11 - Chebyshev’s inequality/How you can help Team-FTU.txt
241 Bytes
11.12 - Discrete and Continuous Uniform distributions/How you can help Team-FTU.txt
241 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/How you can help Team-FTU.txt
241 Bytes
11.14 - Bernoulli and Binomial Distribution/How you can help Team-FTU.txt
241 Bytes
11.15 - Log Normal Distribution/How you can help Team-FTU.txt
241 Bytes
11.16 - Power law distribution/How you can help Team-FTU.txt
241 Bytes
11.17 - Box cox transform/How you can help Team-FTU.txt
241 Bytes
11.18 - Applications of non-gaussian distributions/How you can help Team-FTU.txt
241 Bytes
11.19 - Co-variance/How you can help Team-FTU.txt
241 Bytes
11.1 - Introduction to Probability and Statistics/How you can help Team-FTU.txt
241 Bytes
11.20 - Pearson Correlation Coefficient/How you can help Team-FTU.txt
241 Bytes
11.21 - Spearman Rank Correlation Coefficient/How you can help Team-FTU.txt
241 Bytes
11.22 - Correlation vs Causation/How you can help Team-FTU.txt
241 Bytes
11.23 - How to use correlations/How you can help Team-FTU.txt
241 Bytes
11.24 - Confidence interval (C.I) Introduction/How you can help Team-FTU.txt
241 Bytes
11.25 - Computing confidence interval given the underlying distribution/How you can help Team-FTU.txt
241 Bytes
11.26 - C.I for mean of a normal random variable/How you can help Team-FTU.txt
241 Bytes
11.27 - Confidence interval using bootstrapping/How you can help Team-FTU.txt
241 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/How you can help Team-FTU.txt
241 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/How you can help Team-FTU.txt
241 Bytes
11.2 - Population and Sample/How you can help Team-FTU.txt
241 Bytes
11.30 - Resampling and permutation test/How you can help Team-FTU.txt
241 Bytes
11.31 - K-S Test for similarity of two distributions/How you can help Team-FTU.txt
241 Bytes
11.32 - Code Snippet K-S Test/How you can help Team-FTU.txt
241 Bytes
11.33 - Hypothesis testing another example/How you can help Team-FTU.txt
241 Bytes
11.34 - Resampling and Permutation test another example/How you can help Team-FTU.txt
241 Bytes
11.35 - How to use hypothesis testing/How you can help Team-FTU.txt
241 Bytes
11.36 - Proportional Sampling/How you can help Team-FTU.txt
241 Bytes
11.37 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/How you can help Team-FTU.txt
241 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/How you can help Team-FTU.txt
241 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/How you can help Team-FTU.txt
241 Bytes
11.6 - Standard normal variate (Z) and standardization/How you can help Team-FTU.txt
241 Bytes
11.7 - Kernel density estimation/How you can help Team-FTU.txt
241 Bytes
11.8 - Sampling distribution & Central Limit theorem/How you can help Team-FTU.txt
241 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/How you can help Team-FTU.txt
241 Bytes
1.1 - How to Learn from Appliedaicourse/How you can help Team-FTU.txt
241 Bytes
12.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
1.2 - How the Job Guarantee program works/How you can help Team-FTU.txt
241 Bytes
13.10 - Code to Load MNIST Data Set/How you can help Team-FTU.txt
241 Bytes
13.1 - What is Dimensionality reduction/How you can help Team-FTU.txt
241 Bytes
13.2 - Row Vector and Column Vector/How you can help Team-FTU.txt
241 Bytes
13.3 - How to represent a data set/How you can help Team-FTU.txt
241 Bytes
13.4 - How to represent a dataset as a Matrix/How you can help Team-FTU.txt
241 Bytes
13.5 - Data Preprocessing Feature Normalisation/How you can help Team-FTU.txt
241 Bytes
13.6 - Mean of a data matrix/How you can help Team-FTU.txt
241 Bytes
13.7 - Data Preprocessing Column Standardization/How you can help Team-FTU.txt
241 Bytes
13.8 - Co-variance of a Data Matrix/How you can help Team-FTU.txt
241 Bytes
13.9 - MNIST dataset (784 dimensional)/How you can help Team-FTU.txt
241 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/How you can help Team-FTU.txt
241 Bytes
14.1 - Why learn PCA/How you can help Team-FTU.txt
241 Bytes
14.2 - Geometric intuition of PCA/How you can help Team-FTU.txt
241 Bytes
14.3 - Mathematical objective function of PCA/How you can help Team-FTU.txt
241 Bytes
14.4 - Alternative formulation of PCA Distance minimization/How you can help Team-FTU.txt
241 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/How you can help Team-FTU.txt
241 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/How you can help Team-FTU.txt
241 Bytes
14.7 - Visualize MNIST dataset/How you can help Team-FTU.txt
241 Bytes
14.8 - Limitations of PCA/How you can help Team-FTU.txt
241 Bytes
14.9 - PCA Code example/How you can help Team-FTU.txt
241 Bytes
15.1 - What is t-SNE/How you can help Team-FTU.txt
241 Bytes
15.2 - Neighborhood of a point, Embedding/How you can help Team-FTU.txt
241 Bytes
15.3 - Geometric intuition of t-SNE/How you can help Team-FTU.txt
241 Bytes
15.4 - Crowding Problem/How you can help Team-FTU.txt
241 Bytes
15.5 - How to apply t-SNE and interpret its output/How you can help Team-FTU.txt
241 Bytes
15.6 - t-SNE on MNIST/How you can help Team-FTU.txt
241 Bytes
15.7 - Code example of t-SNE/How you can help Team-FTU.txt
241 Bytes
15.8 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
16.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/How you can help Team-FTU.txt
241 Bytes
17.11 - Bag of Words( Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.12 - Text Preprocessing( Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.14 - TF-IDF (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.15 - Word2Vec (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.17 - Assignment-2 Apply t-SNE/How you can help Team-FTU.txt
241 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/How you can help Team-FTU.txt
241 Bytes
17.2 - Data Cleaning Deduplication/How you can help Team-FTU.txt
241 Bytes
17.3 - Why convert text to a vector/How you can help Team-FTU.txt
241 Bytes
17.4 - Bag of Words (BoW)/How you can help Team-FTU.txt
241 Bytes
17.5 - Text Preprocessing Stemming/How you can help Team-FTU.txt
241 Bytes
17.6 - uni-gram, bi-gram, n-grams/How you can help Team-FTU.txt
241 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/How you can help Team-FTU.txt
241 Bytes
17.8 - Why use log in IDF/How you can help Team-FTU.txt
241 Bytes
17.9 - Word2Vec/How you can help Team-FTU.txt
241 Bytes
18.10 - KNN Limitations/How you can help Team-FTU.txt
241 Bytes
18.11 - Decision surface for K-NN as K changes/How you can help Team-FTU.txt
241 Bytes
18.12 - Overfitting and Underfitting/How you can help Team-FTU.txt
241 Bytes
18.13 - Need for Cross validation/How you can help Team-FTU.txt
241 Bytes
18.14 - K-fold cross validation/How you can help Team-FTU.txt
241 Bytes
18.15 - Visualizing train, validation and test datasets/How you can help Team-FTU.txt
241 Bytes
18.16 - How to determine overfitting and underfitting/How you can help Team-FTU.txt
241 Bytes
18.17 - Time based splitting/How you can help Team-FTU.txt
241 Bytes
18.18 - k-NN for regression/How you can help Team-FTU.txt
241 Bytes
18.19 - Weighted k-NN/How you can help Team-FTU.txt
241 Bytes
18.1 - How “Classification” works/How you can help Team-FTU.txt
241 Bytes
18.20 - Voronoi diagram/How you can help Team-FTU.txt
241 Bytes
18.21 - Binary search tree/How you can help Team-FTU.txt
241 Bytes
18.22 - How to build a kd-tree/How you can help Team-FTU.txt
241 Bytes
18.23 - Find nearest neighbours using kd-tree/How you can help Team-FTU.txt
241 Bytes
18.24 - Limitations of Kd tree/How you can help Team-FTU.txt
241 Bytes
18.25 - Extensions/How you can help Team-FTU.txt
241 Bytes
18.26 - Hashing vs LSH/How you can help Team-FTU.txt
241 Bytes
18.27 - LSH for cosine similarity/How you can help Team-FTU.txt
241 Bytes
18.28 - LSH for euclidean distance/How you can help Team-FTU.txt
241 Bytes
18.29 - Probabilistic class label/How you can help Team-FTU.txt
241 Bytes
18.2 - Data matrix notation/How you can help Team-FTU.txt
241 Bytes
18.30 - Code SampleDecision boundary/How you can help Team-FTU.txt
241 Bytes
18.31 - Code SampleCross Validation/How you can help Team-FTU.txt
241 Bytes
18.32 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
18.3 - Classification vs Regression (examples)/How you can help Team-FTU.txt
241 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/How you can help Team-FTU.txt
241 Bytes
18.5 - Failure cases of KNN/How you can help Team-FTU.txt
241 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/How you can help Team-FTU.txt
241 Bytes
18.7 - Cosine Distance & Cosine Similarity/How you can help Team-FTU.txt
241 Bytes
18.8 - How to measure the effectiveness of k-NN/How you can help Team-FTU.txt
241 Bytes
18.9 - TestEvaluation time and space complexity/How you can help Team-FTU.txt
241 Bytes
19.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
20.10 - Local reachability-density(A)/How you can help Team-FTU.txt
241 Bytes
20.11 - Local outlier Factor(A)/How you can help Team-FTU.txt
241 Bytes
20.12 - Impact of Scale & Column standardization/How you can help Team-FTU.txt
241 Bytes
20.13 - Interpretability/How you can help Team-FTU.txt
241 Bytes
20.14 - Feature Importance and Forward Feature selection/How you can help Team-FTU.txt
241 Bytes
20.15 - Handling categorical and numerical features/How you can help Team-FTU.txt
241 Bytes
20.16 - Handling missing values by imputation/How you can help Team-FTU.txt
241 Bytes
20.17 - curse of dimensionality/How you can help Team-FTU.txt
241 Bytes
20.18 - Bias-Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
20.19 - Intuitive understanding of bias-variance/How you can help Team-FTU.txt
241 Bytes
20.1 - Introduction/How you can help Team-FTU.txt
241 Bytes
20.20 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
20.21 - best and wrost case of algorithm/How you can help Team-FTU.txt
241 Bytes
20.2 - Imbalanced vs balanced dataset/How you can help Team-FTU.txt
241 Bytes
20.3 - Multi-class classification/How you can help Team-FTU.txt
241 Bytes
20.4 - k-NN, given a distance or similarity matrix/How you can help Team-FTU.txt
241 Bytes
20.5 - Train and test set differences/How you can help Team-FTU.txt
241 Bytes
20.6 - Impact of outliers/How you can help Team-FTU.txt
241 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/How you can help Team-FTU.txt
241 Bytes
20.8 - k distance/How you can help Team-FTU.txt
241 Bytes
20.9 - Reachability-Distance(A,B)/How you can help Team-FTU.txt
241 Bytes
2.10 - Control flow for loop/How you can help Team-FTU.txt
241 Bytes
21.10 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
21.1 - Accuracy/How you can help Team-FTU.txt
241 Bytes
2.11 - Control flow break and continue/How you can help Team-FTU.txt
241 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/How you can help Team-FTU.txt
241 Bytes
21.3 - Precision and recall, F1-score/How you can help Team-FTU.txt
241 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/How you can help Team-FTU.txt
241 Bytes
21.5 - Log-loss/How you can help Team-FTU.txt
241 Bytes
21.6 - R-SquaredCoefficient of determination/How you can help Team-FTU.txt
241 Bytes
21.7 - Median absolute deviation (MAD)/How you can help Team-FTU.txt
241 Bytes
21.8 - Distribution of errors/How you can help Team-FTU.txt
241 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/How you can help Team-FTU.txt
241 Bytes
2.1 - Python, Anaconda and relevant packages installations/How you can help Team-FTU.txt
241 Bytes
22.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
2.2 - Why learn Python/How you can help Team-FTU.txt
241 Bytes
23.10 - Bias and Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
23.11 - Feature importance and interpretability/How you can help Team-FTU.txt
241 Bytes
23.12 - Imbalanced data/How you can help Team-FTU.txt
241 Bytes
23.13 - Outliers/How you can help Team-FTU.txt
241 Bytes
23.14 - Missing values/How you can help Team-FTU.txt
241 Bytes
23.15 - Handling Numerical features (Gaussian NB)/How you can help Team-FTU.txt
241 Bytes
23.16 - Multiclass classification/How you can help Team-FTU.txt
241 Bytes
23.17 - Similarity or Distance matrix/How you can help Team-FTU.txt
241 Bytes
23.18 - Large dimensionality/How you can help Team-FTU.txt
241 Bytes
23.19 - Best and worst cases/How you can help Team-FTU.txt
241 Bytes
23.1 - Conditional probability/How you can help Team-FTU.txt
241 Bytes
23.20 - Code example/How you can help Team-FTU.txt
241 Bytes
23.21 - Assignment-4 Apply Naive Bayes/How you can help Team-FTU.txt
241 Bytes
23.22 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
23.2 - Independent vs Mutually exclusive events/How you can help Team-FTU.txt
241 Bytes
23.3 - Bayes Theorem with examples/How you can help Team-FTU.txt
241 Bytes
23.4 - Exercise problems on Bayes Theorem/How you can help Team-FTU.txt
241 Bytes
23.5 - Naive Bayes algorithm/How you can help Team-FTU.txt
241 Bytes
23.6 - Toy example Train and test stages/How you can help Team-FTU.txt
241 Bytes
23.7 - Naive Bayes on Text data/How you can help Team-FTU.txt
241 Bytes
23.8 - LaplaceAdditive Smoothing/How you can help Team-FTU.txt
241 Bytes
23.9 - Log-probabilities for numerical stability/How you can help Team-FTU.txt
241 Bytes
2.3 - Keywords and identifiers/How you can help Team-FTU.txt
241 Bytes
24.10 - Column Standardization/How you can help Team-FTU.txt
241 Bytes
24.11 - Feature importance and Model interpretability/How you can help Team-FTU.txt
241 Bytes
24.12 - Collinearity of features/How you can help Team-FTU.txt
241 Bytes
24.13 - TestRun time space and time complexity/How you can help Team-FTU.txt
241 Bytes
24.14 - Real world cases/How you can help Team-FTU.txt
241 Bytes
24.15 - Non-linearly separable data & feature engineering/How you can help Team-FTU.txt
241 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/How you can help Team-FTU.txt
241 Bytes
24.17 - Assignment-5 Apply Logistic Regression/How you can help Team-FTU.txt
241 Bytes
24.18 - Extensions to Generalized linear models/How you can help Team-FTU.txt
241 Bytes
24.1 - Geometric intuition of Logistic Regression/How you can help Team-FTU.txt
241 Bytes
24.2 - Sigmoid function Squashing/How you can help Team-FTU.txt
241 Bytes
24.3 - Mathematical formulation of Objective function/How you can help Team-FTU.txt
241 Bytes
24.4 - Weight vector/How you can help Team-FTU.txt
241 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/How you can help Team-FTU.txt
241 Bytes
24.6 - L1 regularization and sparsity/How you can help Team-FTU.txt
241 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/How you can help Team-FTU.txt
241 Bytes
24.8 - Loss minimization interpretation/How you can help Team-FTU.txt
241 Bytes
24.9 - hyperparameters and random search/How you can help Team-FTU.txt
241 Bytes
2.4 - comments, indentation and statements/How you can help Team-FTU.txt
241 Bytes
25.1 - Geometric intuition of Linear Regression/How you can help Team-FTU.txt
241 Bytes
25.2 - Mathematical formulation/How you can help Team-FTU.txt
241 Bytes
25.3 - Real world Cases/How you can help Team-FTU.txt
241 Bytes
25.4 - Code sample for Linear Regression/How you can help Team-FTU.txt
241 Bytes
2.5 - Variables and data types in Python/How you can help Team-FTU.txt
241 Bytes
26.10 - Logistic regression formulation revisited/How you can help Team-FTU.txt
241 Bytes
26.11 - Why L1 regularization creates sparsity/How you can help Team-FTU.txt
241 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/How you can help Team-FTU.txt
241 Bytes
26.13 - Revision questions/How you can help Team-FTU.txt
241 Bytes
26.1 - Differentiation/How you can help Team-FTU.txt
241 Bytes
26.2 - Online differentiation tools/How you can help Team-FTU.txt
241 Bytes
26.3 - Maxima and Minima/How you can help Team-FTU.txt
241 Bytes
26.4 - Vector calculus Grad/How you can help Team-FTU.txt
241 Bytes
26.5 - Gradient descent geometric intuition/How you can help Team-FTU.txt
241 Bytes
26.6 - Learning rate/How you can help Team-FTU.txt
241 Bytes
26.7 - Gradient descent for linear regression/How you can help Team-FTU.txt
241 Bytes
26.8 - SGD algorithm/How you can help Team-FTU.txt
241 Bytes
26.9 - Constrained Optimization & PCA/How you can help Team-FTU.txt
241 Bytes
2.6 - Standard Input and Output/How you can help Team-FTU.txt
241 Bytes
27.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
2.7 - Operators/How you can help Team-FTU.txt
241 Bytes
28.10 - Train and run time complexities/How you can help Team-FTU.txt
241 Bytes
28.11 - nu-SVM control errors and support vectors/How you can help Team-FTU.txt
241 Bytes
28.12 - SVM Regression/How you can help Team-FTU.txt
241 Bytes
28.13 - Cases/How you can help Team-FTU.txt
241 Bytes
28.14 - Code Sample/How you can help Team-FTU.txt
241 Bytes
28.15 - Assignment-7 Apply SVM/How you can help Team-FTU.txt
241 Bytes
28.16 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
28.1 - Geometric Intution/How you can help Team-FTU.txt
241 Bytes
28.2 - Mathematical derivation/How you can help Team-FTU.txt
241 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/How you can help Team-FTU.txt
241 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/How you can help Team-FTU.txt
241 Bytes
28.5 - Dual form of SVM formulation/How you can help Team-FTU.txt
241 Bytes
28.6 - kernel trick/How you can help Team-FTU.txt
241 Bytes
28.7 - Polynomial Kernel/How you can help Team-FTU.txt
241 Bytes
28.8 - RBF-Kernel/How you can help Team-FTU.txt
241 Bytes
28.9 - Domain specific Kernels/How you can help Team-FTU.txt
241 Bytes
2.8 - Control flow if else/How you can help Team-FTU.txt
241 Bytes
29.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
2.9 - Control flow while loop/How you can help Team-FTU.txt
241 Bytes
30.10 - Overfitting and Underfitting/How you can help Team-FTU.txt
241 Bytes
30.11 - Train and Run time complexity/How you can help Team-FTU.txt
241 Bytes
30.12 - Regression using Decision Trees/How you can help Team-FTU.txt
241 Bytes
30.13 - Cases/How you can help Team-FTU.txt
241 Bytes
30.14 - Code Samples/How you can help Team-FTU.txt
241 Bytes
30.15 - Assignment-8 Apply Decision Trees/How you can help Team-FTU.txt
241 Bytes
30.16 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/How you can help Team-FTU.txt
241 Bytes
30.2 - Sample Decision tree/How you can help Team-FTU.txt
241 Bytes
30.3 - Building a decision TreeEntropy/How you can help Team-FTU.txt
241 Bytes
30.4 - Building a decision TreeInformation Gain/How you can help Team-FTU.txt
241 Bytes
30.5 - Building a decision Tree Gini Impurity/How you can help Team-FTU.txt
241 Bytes
30.6 - Building a decision Tree Constructing a DT/How you can help Team-FTU.txt
241 Bytes
30.7 - Building a decision Tree Splitting numerical features/How you can help Team-FTU.txt
241 Bytes
30.8 - Feature standardization/How you can help Team-FTU.txt
241 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/How you can help Team-FTU.txt
241 Bytes
31.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
3.1 - Lists/How you can help Team-FTU.txt
241 Bytes
32.10 - Residuals, Loss functions and gradients/How you can help Team-FTU.txt
241 Bytes
32.11 - Gradient Boosting/How you can help Team-FTU.txt
241 Bytes
32.12 - Regularization by Shrinkage/How you can help Team-FTU.txt
241 Bytes
32.13 - Train and Run time complexity/How you can help Team-FTU.txt
241 Bytes
32.14 - XGBoost Boosting + Randomization/How you can help Team-FTU.txt
241 Bytes
32.15 - AdaBoost geometric intuition/How you can help Team-FTU.txt
241 Bytes
32.16 - Stacking models/How you can help Team-FTU.txt
241 Bytes
32.17 - Cascading classifiers/How you can help Team-FTU.txt
241 Bytes
32.18 - Kaggle competitions vs Real world/How you can help Team-FTU.txt
241 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/How you can help Team-FTU.txt
241 Bytes
32.1 - What are ensembles/How you can help Team-FTU.txt
241 Bytes
32.20 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/How you can help Team-FTU.txt
241 Bytes
32.3 - Random Forest and their construction/How you can help Team-FTU.txt
241 Bytes
32.4 - Bias-Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
32.5 - Train and run time complexity/How you can help Team-FTU.txt
241 Bytes
32.6 - BaggingCode Sample/How you can help Team-FTU.txt
241 Bytes
32.7 - Extremely randomized trees/How you can help Team-FTU.txt
241 Bytes
32.8 - Random Tree Cases/How you can help Team-FTU.txt
241 Bytes
32.9 - Boosting Intuition/How you can help Team-FTU.txt
241 Bytes
3.2 - Tuples part 1/How you can help Team-FTU.txt
241 Bytes
33.10 - Indicator variables/How you can help Team-FTU.txt
241 Bytes
33.11 - Feature binning/How you can help Team-FTU.txt
241 Bytes
33.12 - Interaction variables/How you can help Team-FTU.txt
241 Bytes
33.13 - Mathematical transforms/How you can help Team-FTU.txt
241 Bytes
33.14 - Model specific featurizations/How you can help Team-FTU.txt
241 Bytes
33.15 - Feature orthogonality/How you can help Team-FTU.txt
241 Bytes
33.16 - Domain specific featurizations/How you can help Team-FTU.txt
241 Bytes
33.17 - Feature slicing/How you can help Team-FTU.txt
241 Bytes
33.18 - Kaggle Winners solutions/How you can help Team-FTU.txt
241 Bytes
33.1 - Introduction/How you can help Team-FTU.txt
241 Bytes
33.2 - Moving window for Time Series Data/How you can help Team-FTU.txt
241 Bytes
33.3 - Fourier decomposition/How you can help Team-FTU.txt
241 Bytes
33.4 - Deep learning features LSTM/How you can help Team-FTU.txt
241 Bytes
33.5 - Image histogram/How you can help Team-FTU.txt
241 Bytes
33.6 - Keypoints SIFT/How you can help Team-FTU.txt
241 Bytes
33.7 - Deep learning features CNN/How you can help Team-FTU.txt
241 Bytes
33.8 - Relational data/How you can help Team-FTU.txt
241 Bytes
33.9 - Graph data/How you can help Team-FTU.txt
241 Bytes
3.3 - Tuples part-2/How you can help Team-FTU.txt
241 Bytes
34.10 - AB testing/How you can help Team-FTU.txt
241 Bytes
34.11 - Data Science Life cycle/How you can help Team-FTU.txt
241 Bytes
34.12 - VC dimension/How you can help Team-FTU.txt
241 Bytes
34.1 - Calibration of ModelsNeed for calibration/How you can help Team-FTU.txt
241 Bytes
34.2 - Productionization and deployment of Machine Learning Models/How you can help Team-FTU.txt
241 Bytes
34.3 - Calibration Plots/How you can help Team-FTU.txt
241 Bytes
34.4 - Platt’s CalibrationScaling/How you can help Team-FTU.txt
241 Bytes
34.5 - Isotonic Regression/How you can help Team-FTU.txt
241 Bytes
34.6 - Code Samples/How you can help Team-FTU.txt
241 Bytes
34.7 - Modeling in the presence of outliers RANSAC/How you can help Team-FTU.txt
241 Bytes
34.8 - Productionizing models/How you can help Team-FTU.txt
241 Bytes
34.9 - Retraining models periodically/How you can help Team-FTU.txt
241 Bytes
3.4 - Sets/How you can help Team-FTU.txt
241 Bytes
35.10 - K-Medoids/How you can help Team-FTU.txt
241 Bytes
35.11 - Determining the right K/How you can help Team-FTU.txt
241 Bytes
35.12 - Code Samples/How you can help Team-FTU.txt
241 Bytes
35.13 - Time and space complexity/How you can help Team-FTU.txt
241 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/How you can help Team-FTU.txt
241 Bytes
35.1 - What is Clustering/How you can help Team-FTU.txt
241 Bytes
35.2 - Unsupervised learning/How you can help Team-FTU.txt
241 Bytes
35.3 - Applications/How you can help Team-FTU.txt
241 Bytes
35.4 - Metrics for Clustering/How you can help Team-FTU.txt
241 Bytes
35.5 - K-Means Geometric intuition, Centroids/How you can help Team-FTU.txt
241 Bytes
35.6 - K-Means Mathematical formulation Objective function/How you can help Team-FTU.txt
241 Bytes
35.7 - K-Means Algorithm/How you can help Team-FTU.txt
241 Bytes
35.8 - How to initialize K-Means++/How you can help Team-FTU.txt
241 Bytes
35.9 - Failure casesLimitations/How you can help Team-FTU.txt
241 Bytes
3.5 - Dictionary/How you can help Team-FTU.txt
241 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/How you can help Team-FTU.txt
241 Bytes
36.2 - Agglomerative Clustering/How you can help Team-FTU.txt
241 Bytes
36.3 - Proximity methods Advantages and Limitations/How you can help Team-FTU.txt
241 Bytes
36.4 - Time and Space Complexity/How you can help Team-FTU.txt
241 Bytes
36.5 - Limitations of Hierarchical Clustering/How you can help Team-FTU.txt
241 Bytes
36.6 - Code sample/How you can help Team-FTU.txt
241 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/How you can help Team-FTU.txt
241 Bytes
3.6 - Strings/How you can help Team-FTU.txt
241 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/How you can help Team-FTU.txt
241 Bytes
37.11 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
37.1 - Density based clustering/How you can help Team-FTU.txt
241 Bytes
37.2 - MinPts and Eps Density/How you can help Team-FTU.txt
241 Bytes
37.3 - Core, Border and Noise points/How you can help Team-FTU.txt
241 Bytes
37.4 - Density edge and Density connected points/How you can help Team-FTU.txt
241 Bytes
37.5 - DBSCAN Algorithm/How you can help Team-FTU.txt
241 Bytes
37.6 - Hyper Parameters MinPts and Eps/How you can help Team-FTU.txt
241 Bytes
37.7 - Advantages and Limitations of DBSCAN/How you can help Team-FTU.txt
241 Bytes
37.8 - Time and Space Complexity/How you can help Team-FTU.txt
241 Bytes
37.9 - Code samples/How you can help Team-FTU.txt
241 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/How you can help Team-FTU.txt
241 Bytes
38.11 - Cold Start problem/How you can help Team-FTU.txt
241 Bytes
38.12 - Word vectors as MF/How you can help Team-FTU.txt
241 Bytes
38.13 - Eigen-Faces/How you can help Team-FTU.txt
241 Bytes
38.14 - Code example/How you can help Team-FTU.txt
241 Bytes
38.15 - Assignment-11 Apply Truncated SVD/How you can help Team-FTU.txt
241 Bytes
38.16 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
38.1 - Problem formulation Movie reviews/How you can help Team-FTU.txt
241 Bytes
38.2 - Content based vs Collaborative Filtering/How you can help Team-FTU.txt
241 Bytes
38.3 - Similarity based Algorithms/How you can help Team-FTU.txt
241 Bytes
38.4 - Matrix Factorization PCA, SVD/How you can help Team-FTU.txt
241 Bytes
38.5 - Matrix Factorization NMF/How you can help Team-FTU.txt
241 Bytes
38.6 - Matrix Factorization for Collaborative filtering/How you can help Team-FTU.txt
241 Bytes
38.7 - Matrix Factorization for feature engineering/How you can help Team-FTU.txt
241 Bytes
38.8 - Clustering as MF/How you can help Team-FTU.txt
241 Bytes
38.9 - Hyperparameter tuning/How you can help Team-FTU.txt
241 Bytes
39.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
40.10 - Data Modeling Multi label Classification/How you can help Team-FTU.txt
241 Bytes
40.11 - Data preparation/How you can help Team-FTU.txt
241 Bytes
40.12 - Train-Test Split/How you can help Team-FTU.txt
241 Bytes
40.13 - Featurization/How you can help Team-FTU.txt
241 Bytes
40.14 - Logistic regression One VS Rest/How you can help Team-FTU.txt
241 Bytes
40.15 - Sampling data and tags+Weighted models/How you can help Team-FTU.txt
241 Bytes
40.16 - Logistic regression revisited/How you can help Team-FTU.txt
241 Bytes
40.17 - Why not use advanced techniques/How you can help Team-FTU.txt
241 Bytes
40.18 - Assignments/How you can help Team-FTU.txt
241 Bytes
40.1 - BusinessReal world problem/How you can help Team-FTU.txt
241 Bytes
40.2 - Business objectives and constraints/How you can help Team-FTU.txt
241 Bytes
40.3 - Mapping to an ML problem Data overview/How you can help Team-FTU.txt
241 Bytes
40.4 - Mapping to an ML problemML problem formulation/How you can help Team-FTU.txt
241 Bytes
40.5 - Mapping to an ML problemPerformance metrics/How you can help Team-FTU.txt
241 Bytes
40.6 - Hamming loss/How you can help Team-FTU.txt
241 Bytes
40.7 - EDAData Loading/How you can help Team-FTU.txt
241 Bytes
40.8 - EDAAnalysis of tags/How you can help Team-FTU.txt
241 Bytes
40.9 - EDAData Preprocessing/How you can help Team-FTU.txt
241 Bytes
4.10 - Debugging Python/How you can help Team-FTU.txt
241 Bytes
41.10 - EDA Feature analysis/How you can help Team-FTU.txt
241 Bytes
41.11 - EDA Data Visualization T-SNE/How you can help Team-FTU.txt
241 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/How you can help Team-FTU.txt
241 Bytes
41.13 - ML Models Loading Data/How you can help Team-FTU.txt
241 Bytes
41.14 - ML Models Random Model/How you can help Team-FTU.txt
241 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/How you can help Team-FTU.txt
241 Bytes
41.16 - ML Models XGBoost/How you can help Team-FTU.txt
241 Bytes
41.17 - Assignments/How you can help Team-FTU.txt
241 Bytes
41.1 - BusinessReal world problem Problem definition/How you can help Team-FTU.txt
241 Bytes
41.2 - Business objectives and constraints/How you can help Team-FTU.txt
241 Bytes
41.3 - Mapping to an ML problem Data overview/How you can help Team-FTU.txt
241 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/How you can help Team-FTU.txt
241 Bytes
41.5 - Mapping to an ML problem Train-test split/How you can help Team-FTU.txt
241 Bytes
41.6 - EDA Basic Statistics/How you can help Team-FTU.txt
241 Bytes
41.7 - EDA Basic Feature Extraction/How you can help Team-FTU.txt
241 Bytes
41.8 - EDA Text Preprocessing/How you can help Team-FTU.txt
241 Bytes
41.9 - EDA Advanced Feature Extraction/How you can help Team-FTU.txt
241 Bytes
4.1 - Introduction/How you can help Team-FTU.txt
241 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/How you can help Team-FTU.txt
241 Bytes
42.11 - Stemming/How you can help Team-FTU.txt
241 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/How you can help Team-FTU.txt
241 Bytes
42.13 - Code for bag of words based product similarity/How you can help Team-FTU.txt
241 Bytes
42.14 - TF-IDF featurizing text based on word-importance/How you can help Team-FTU.txt
241 Bytes
42.15 - Code for TF-IDF based product similarity/How you can help Team-FTU.txt
241 Bytes
42.16 - Code for IDF based product similarity/How you can help Team-FTU.txt
241 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/How you can help Team-FTU.txt
241 Bytes
42.18 - Code for Average Word2Vec product similarity/How you can help Team-FTU.txt
241 Bytes
42.19 - TF-IDF weighted Word2Vec/How you can help Team-FTU.txt
241 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/How you can help Team-FTU.txt
241 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/How you can help Team-FTU.txt
241 Bytes
42.21 - Weighted similarity using brand and color/How you can help Team-FTU.txt
241 Bytes
42.22 - Code for weighted similarity/How you can help Team-FTU.txt
241 Bytes
42.23 - Building a real world solution/How you can help Team-FTU.txt
241 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/How you can help Team-FTU.txt
241 Bytes
42.25 - Using Keras + Tensorflow to extract features/How you can help Team-FTU.txt
241 Bytes
42.26 - Visual similarity based product similarity/How you can help Team-FTU.txt
241 Bytes
42.27 - Measuring goodness of our solution AB testing/How you can help Team-FTU.txt
241 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/How you can help Team-FTU.txt
241 Bytes
42.2 - Plan of action/How you can help Team-FTU.txt
241 Bytes
42.3 - Amazon product advertising API/How you can help Team-FTU.txt
241 Bytes
42.4 - Data folders and paths/How you can help Team-FTU.txt
241 Bytes
42.5 - Overview of the data and Terminology/How you can help Team-FTU.txt
241 Bytes
42.6 - Data cleaning and understandingMissing data in various features/How you can help Team-FTU.txt
241 Bytes
42.7 - Understand duplicate rows/How you can help Team-FTU.txt
241 Bytes
42.8 - Remove duplicates Part 1/How you can help Team-FTU.txt
241 Bytes
42.9 - Remove duplicates Part 2/How you can help Team-FTU.txt
241 Bytes
4.2 - Types of functions/How you can help Team-FTU.txt
241 Bytes
43.10 - ML models – using byte files only Random Model/How you can help Team-FTU.txt
241 Bytes
43.11 - k-NN/How you can help Team-FTU.txt
241 Bytes
43.12 - Logistic regression/How you can help Team-FTU.txt
241 Bytes
43.13 - Random Forest and Xgboost/How you can help Team-FTU.txt
241 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/How you can help Team-FTU.txt
241 Bytes
43.15 - File-size feature/How you can help Team-FTU.txt
241 Bytes
43.16 - Univariate analysis/How you can help Team-FTU.txt
241 Bytes
43.17 - t-SNE analysis/How you can help Team-FTU.txt
241 Bytes
43.18 - ML models on ASM file features/How you can help Team-FTU.txt
241 Bytes
43.19 - Models on all features t-SNE/How you can help Team-FTU.txt
241 Bytes
43.1 - Businessreal world problem Problem definition/How you can help Team-FTU.txt
241 Bytes
43.20 - Models on all features RandomForest and Xgboost/How you can help Team-FTU.txt
241 Bytes
43.21 - Assignments/How you can help Team-FTU.txt
241 Bytes
43.2 - Businessreal world problem Objectives and constraints/How you can help Team-FTU.txt
241 Bytes
43.3 - Machine Learning problem mapping Data overview/How you can help Team-FTU.txt
241 Bytes
43.4 - Machine Learning problem mapping ML problem/How you can help Team-FTU.txt
241 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/How you can help Team-FTU.txt
241 Bytes
43.6 - Exploratory Data Analysis Class distribution/How you can help Team-FTU.txt
241 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/How you can help Team-FTU.txt
241 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/How you can help Team-FTU.txt
241 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/How you can help Team-FTU.txt
241 Bytes
4.3 - Function arguments/How you can help Team-FTU.txt
241 Bytes
44.10 - Exploratory Data AnalysisCold start problem/How you can help Team-FTU.txt
241 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/How you can help Team-FTU.txt
241 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/How you can help Team-FTU.txt
241 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/How you can help Team-FTU.txt
241 Bytes
44.14 - ML ModelsSurprise library/How you can help Team-FTU.txt
241 Bytes
44.15 - Overview of the modelling strategy/How you can help Team-FTU.txt
241 Bytes
44.16 - Data Sampling/How you can help Team-FTU.txt
241 Bytes
44.17 - Google drive with intermediate files/How you can help Team-FTU.txt
241 Bytes
44.18 - Featurizations for regression/How you can help Team-FTU.txt
241 Bytes
44.19 - Data transformation for Surprise/How you can help Team-FTU.txt
241 Bytes
44.1 - BusinessReal world problemProblem definition/How you can help Team-FTU.txt
241 Bytes
44.20 - Xgboost with 13 features/How you can help Team-FTU.txt
241 Bytes
44.21 - Surprise Baseline model/How you can help Team-FTU.txt
241 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/How you can help Team-FTU.txt
241 Bytes
44.23 - Surprise KNN predictors/How you can help Team-FTU.txt
241 Bytes
44.24 - Matrix Factorization models using Surprise/How you can help Team-FTU.txt
241 Bytes
44.25 - SVD ++ with implicit feedback/How you can help Team-FTU.txt
241 Bytes
44.26 - Final models with all features and predictors/How you can help Team-FTU.txt
241 Bytes
44.27 - Comparison between various models/How you can help Team-FTU.txt
241 Bytes
44.28 - Assignments/How you can help Team-FTU.txt
241 Bytes
44.2 - Objectives and constraints/How you can help Team-FTU.txt
241 Bytes
44.3 - Mapping to an ML problemData overview/How you can help Team-FTU.txt
241 Bytes
44.4 - Mapping to an ML problemML problem formulation/How you can help Team-FTU.txt
241 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/How you can help Team-FTU.txt
241 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/How you can help Team-FTU.txt
241 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/How you can help Team-FTU.txt
241 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/How you can help Team-FTU.txt
241 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/How you can help Team-FTU.txt
241 Bytes
4.4 - Recursive functions/How you can help Team-FTU.txt
241 Bytes
45.10 - Univariate AnalysisVariation Feature/How you can help Team-FTU.txt
241 Bytes
45.11 - Univariate AnalysisText feature/How you can help Team-FTU.txt
241 Bytes
45.12 - Machine Learning ModelsData preparation/How you can help Team-FTU.txt
241 Bytes
45.13 - Baseline Model Naive Bayes/How you can help Team-FTU.txt
241 Bytes
45.14 - K-Nearest Neighbors Classification/How you can help Team-FTU.txt
241 Bytes
45.15 - Logistic Regression with class balancing/How you can help Team-FTU.txt
241 Bytes
45.16 - Logistic Regression without class balancing/How you can help Team-FTU.txt
241 Bytes
45.17 - Linear-SVM/How you can help Team-FTU.txt
241 Bytes
45.18 - Random-Forest with one-hot encoded features/How you can help Team-FTU.txt
241 Bytes
45.19 - Random-Forest with response-coded features/How you can help Team-FTU.txt
241 Bytes
45.1 - BusinessReal world problem Overview/How you can help Team-FTU.txt
241 Bytes
45.20 - Stacking Classifier/How you can help Team-FTU.txt
241 Bytes
45.21 - Majority Voting classifier/How you can help Team-FTU.txt
241 Bytes
45.22 - Assignments/How you can help Team-FTU.txt
241 Bytes
45.2 - Business objectives and constraints/How you can help Team-FTU.txt
241 Bytes
45.3 - ML problem formulation Data/How you can help Team-FTU.txt
241 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/How you can help Team-FTU.txt
241 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/How you can help Team-FTU.txt
241 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/How you can help Team-FTU.txt
241 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/How you can help Team-FTU.txt
241 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/How you can help Team-FTU.txt
241 Bytes
45.8 - Exploratory Data Analysis “Random” Model/How you can help Team-FTU.txt
241 Bytes
45.9 - Univariate AnalysisGene feature/How you can help Team-FTU.txt
241 Bytes
4.5 - Lambda functions/How you can help Team-FTU.txt
241 Bytes
46.10 - Data Cleaning Speed/How you can help Team-FTU.txt
241 Bytes
46.11 - Data Cleaning Distance/How you can help Team-FTU.txt
241 Bytes
46.12 - Data Cleaning Fare/How you can help Team-FTU.txt
241 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/How you can help Team-FTU.txt
241 Bytes
46.14 - Data PreparationClusteringSegmentation/How you can help Team-FTU.txt
241 Bytes
46.15 - Data PreparationTime binning/How you can help Team-FTU.txt
241 Bytes
46.16 - Data PreparationSmoothing time-series data/How you can help Team-FTU.txt
241 Bytes
46.17 - Data PreparationSmoothing time-series data cont/How you can help Team-FTU.txt
241 Bytes
46.18 - Data Preparation Time series and Fourier transforms/How you can help Team-FTU.txt
241 Bytes
46.19 - Ratios and previous-time-bin values/How you can help Team-FTU.txt
241 Bytes
46.1 - BusinessReal world problem Overview/How you can help Team-FTU.txt
241 Bytes
46.20 - Simple moving average/How you can help Team-FTU.txt
241 Bytes
46.21 - Weighted Moving average/How you can help Team-FTU.txt
241 Bytes
46.22 - Exponential weighted moving average/How you can help Team-FTU.txt
241 Bytes
46.23 - Results/How you can help Team-FTU.txt
241 Bytes
46.24 - Regression models Train-Test split & Features/How you can help Team-FTU.txt
241 Bytes
46.25 - Linear regression/How you can help Team-FTU.txt
241 Bytes
46.26 - Random Forest regression/How you can help Team-FTU.txt
241 Bytes
46.27 - Xgboost Regression/How you can help Team-FTU.txt
241 Bytes
46.28 - Model comparison/How you can help Team-FTU.txt
241 Bytes
46.29 - Assignment/How you can help Team-FTU.txt
241 Bytes
46.2 - Objectives and Constraints/How you can help Team-FTU.txt
241 Bytes
46.3 - Mapping to ML problem Data/How you can help Team-FTU.txt
241 Bytes
46.4 - Mapping to ML problem dask dataframes/How you can help Team-FTU.txt
241 Bytes
46.5 - Mapping to ML problem FieldsFeatures/How you can help Team-FTU.txt
241 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/How you can help Team-FTU.txt
241 Bytes
46.7 - Mapping to ML problem Performance metrics/How you can help Team-FTU.txt
241 Bytes
46.8 - Data Cleaning Latitude and Longitude data/How you can help Team-FTU.txt
241 Bytes
46.9 - Data Cleaning Trip Duration/How you can help Team-FTU.txt
241 Bytes
4.6 - Modules/How you can help Team-FTU.txt
241 Bytes
47.10 - Backpropagation/How you can help Team-FTU.txt
241 Bytes
47.11 - Activation functions/How you can help Team-FTU.txt
241 Bytes
47.12 - Vanishing Gradient problem/How you can help Team-FTU.txt
241 Bytes
47.13 - Bias-Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
47.14 - Decision surfaces Playground/How you can help Team-FTU.txt
241 Bytes
47.1 - History of Neural networks and Deep Learning/How you can help Team-FTU.txt
241 Bytes
47.2 - How Biological Neurons work/How you can help Team-FTU.txt
241 Bytes
47.3 - Growth of biological neural networks/How you can help Team-FTU.txt
241 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/How you can help Team-FTU.txt
241 Bytes
47.5 - Multi-Layered Perceptron (MLP)/How you can help Team-FTU.txt
241 Bytes
47.6 - Notation/How you can help Team-FTU.txt
241 Bytes
47.7 - Training a single-neuron model/How you can help Team-FTU.txt
241 Bytes
47.8 - Training an MLP Chain Rule/How you can help Team-FTU.txt
241 Bytes
47.9 - Training an MLPMemoization/How you can help Team-FTU.txt
241 Bytes
4.7 - Packages/How you can help Team-FTU.txt
241 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/How you can help Team-FTU.txt
241 Bytes
48.11 - OptimizersAdaGrad/How you can help Team-FTU.txt
241 Bytes
48.12 - Optimizers Adadelta andRMSProp/How you can help Team-FTU.txt
241 Bytes
48.13 - Adam/How you can help Team-FTU.txt
241 Bytes
48.14 - Which algorithm to choose when/How you can help Team-FTU.txt
241 Bytes
48.15 - Gradient Checking and clipping/How you can help Team-FTU.txt
241 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/How you can help Team-FTU.txt
241 Bytes
48.17 - How to train a Deep MLP/How you can help Team-FTU.txt
241 Bytes
48.18 - Auto Encoders/How you can help Team-FTU.txt
241 Bytes
48.19 - Word2Vec CBOW/How you can help Team-FTU.txt
241 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/How you can help Team-FTU.txt
241 Bytes
48.20 - Word2Vec Skip-gram/How you can help Team-FTU.txt
241 Bytes
48.21 - Word2Vec Algorithmic Optimizations/How you can help Team-FTU.txt
241 Bytes
48.2 - Dropout layers & Regularization/How you can help Team-FTU.txt
241 Bytes
48.3 - Rectified Linear Units (ReLU)/How you can help Team-FTU.txt
241 Bytes
48.4 - Weight initialization/How you can help Team-FTU.txt
241 Bytes
48.5 - Batch Normalization/How you can help Team-FTU.txt
241 Bytes
48.6 - OptimizersHill-descent analogy in 2D/How you can help Team-FTU.txt
241 Bytes
48.7 - OptimizersHill descent in 3D and contours/How you can help Team-FTU.txt
241 Bytes
48.8 - SGD Recap/How you can help Team-FTU.txt
241 Bytes
48.9 - Batch SGD with momentum/How you can help Team-FTU.txt
241 Bytes
4.8 - File Handling/How you can help Team-FTU.txt
241 Bytes
49.10 - Model 3 Batch Normalization/How you can help Team-FTU.txt
241 Bytes
49.11 - Model 4 Dropout/How you can help Team-FTU.txt
241 Bytes
49.12 - MNIST classification in Keras/How you can help Team-FTU.txt
241 Bytes
49.13 - Hyperparameter tuning in Keras/How you can help Team-FTU.txt
241 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/How you can help Team-FTU.txt
241 Bytes
49.1 - Tensorflow and Keras overview/How you can help Team-FTU.txt
241 Bytes
49.2 - GPU vs CPU for Deep Learning/How you can help Team-FTU.txt
241 Bytes
49.3 - Google Colaboratory/How you can help Team-FTU.txt
241 Bytes
49.4 - Install TensorFlow/How you can help Team-FTU.txt
241 Bytes
49.5 - Online documentation and tutorials/How you can help Team-FTU.txt
241 Bytes
49.6 - Softmax Classifier on MNIST dataset/How you can help Team-FTU.txt
241 Bytes
49.7 - MLP Initialization/How you can help Team-FTU.txt
241 Bytes
49.8 - Model 1 Sigmoid activation/How you can help Team-FTU.txt
241 Bytes
49.9 - Model 2 ReLU activation/How you can help Team-FTU.txt
241 Bytes
4.9 - Exception Handling/How you can help Team-FTU.txt
241 Bytes
50.10 - Data Augmentation/How you can help Team-FTU.txt
241 Bytes
50.11 - Convolution Layers in Keras/How you can help Team-FTU.txt
241 Bytes
50.12 - AlexNet/How you can help Team-FTU.txt
241 Bytes
50.13 - VGGNet/How you can help Team-FTU.txt
241 Bytes
50.14 - Residual Network/How you can help Team-FTU.txt
241 Bytes
50.15 - Inception Network/How you can help Team-FTU.txt
241 Bytes
50.16 - What is Transfer learning/How you can help Team-FTU.txt
241 Bytes
50.17 - Code example Cats vs Dogs/How you can help Team-FTU.txt
241 Bytes
50.18 - Code Example MNIST dataset/How you can help Team-FTU.txt
241 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/How you can help Team-FTU.txt
241 Bytes
50.1 - Biological inspiration Visual Cortex/How you can help Team-FTU.txt
241 Bytes
50.2 - ConvolutionEdge Detection on images/How you can help Team-FTU.txt
241 Bytes
50.3 - ConvolutionPadding and strides/How you can help Team-FTU.txt
241 Bytes
50.4 - Convolution over RGB images/How you can help Team-FTU.txt
241 Bytes
50.5 - Convolutional layer/How you can help Team-FTU.txt
241 Bytes
50.6 - Max-pooling/How you can help Team-FTU.txt
241 Bytes
50.7 - CNN Training Optimization/How you can help Team-FTU.txt
241 Bytes
50.8 - Example CNN LeNet [1998]/How you can help Team-FTU.txt
241 Bytes
50.9 - ImageNet dataset/How you can help Team-FTU.txt
241 Bytes
51.10 - Code example IMDB Sentiment classification/How you can help Team-FTU.txt
241 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/How you can help Team-FTU.txt
241 Bytes
51.1 - Why RNNs/How you can help Team-FTU.txt
241 Bytes
51.2 - Recurrent Neural Network/How you can help Team-FTU.txt
241 Bytes
51.3 - Training RNNs Backprop/How you can help Team-FTU.txt
241 Bytes
51.4 - Types of RNNs/How you can help Team-FTU.txt
241 Bytes
51.5 - Need for LSTMGRU/How you can help Team-FTU.txt
241 Bytes
51.6 - LSTM/How you can help Team-FTU.txt
241 Bytes
51.7 - GRUs/How you can help Team-FTU.txt
241 Bytes
51.8 - Deep RNN/How you can help Team-FTU.txt
241 Bytes
51.9 - Bidirectional RNN/How you can help Team-FTU.txt
241 Bytes
5.1 - Numpy Introduction/How you can help Team-FTU.txt
241 Bytes
52.1 - Questions and Answers/How you can help Team-FTU.txt
241 Bytes
5.2 - Numerical operations on Numpy/How you can help Team-FTU.txt
241 Bytes
53.10 - NVIDIA’s end to end CNN model/How you can help Team-FTU.txt
241 Bytes
53.11 - Train the model/How you can help Team-FTU.txt
241 Bytes
53.12 - Test and visualize the output/How you can help Team-FTU.txt
241 Bytes
53.13 - Extensions/How you can help Team-FTU.txt
241 Bytes
53.14 - Assignment/How you can help Team-FTU.txt
241 Bytes
53.1 - Self Driving Car Problem definition/How you can help Team-FTU.txt
241 Bytes
53.2 - Datasets/How you can help Team-FTU.txt
241 Bytes
53.2 - Datasets#/How you can help Team-FTU.txt
241 Bytes
53.3 - Data understanding & Analysis Files and folders/How you can help Team-FTU.txt
241 Bytes
53.4 - Dash-cam images and steering angles/How you can help Team-FTU.txt
241 Bytes
53.5 - Split the dataset Train vs Test/How you can help Team-FTU.txt
241 Bytes
53.6 - EDA Steering angles/How you can help Team-FTU.txt
241 Bytes
53.7 - Mean Baseline model simple/How you can help Team-FTU.txt
241 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/How you can help Team-FTU.txt
241 Bytes
53.9 - Batch load the dataset/How you can help Team-FTU.txt
241 Bytes
54.10 - MIDI music generation/How you can help Team-FTU.txt
241 Bytes
54.11 - Survey blog/How you can help Team-FTU.txt
241 Bytes
54.1 - Real-world problem/How you can help Team-FTU.txt
241 Bytes
54.2 - Music representation/How you can help Team-FTU.txt
241 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/How you can help Team-FTU.txt
241 Bytes
54.4 - Char-RNN with abc-notation Data preparation/How you can help Team-FTU.txt
241 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/How you can help Team-FTU.txt
241 Bytes
54.6 - Char-RNN with abc-notation State full RNN/How you can help Team-FTU.txt
241 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/How you can help Team-FTU.txt
241 Bytes
54.8 - Char-RNN with abc-notation Music generation/How you can help Team-FTU.txt
241 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/How you can help Team-FTU.txt
241 Bytes
55.1 - Human Activity Recognition Problem definition/How you can help Team-FTU.txt
241 Bytes
55.2 - Dataset understanding/How you can help Team-FTU.txt
241 Bytes
55.3 - Data cleaning & preprocessing/How you can help Team-FTU.txt
241 Bytes
55.4 - EDAUnivariate analysis/How you can help Team-FTU.txt
241 Bytes
55.5 - EDAData visualization using t-SNE/How you can help Team-FTU.txt
241 Bytes
55.6 - Classical ML models/How you can help Team-FTU.txt
241 Bytes
55.7 - Deep-learning Model/How you can help Team-FTU.txt
241 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/How you can help Team-FTU.txt
241 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/How you can help Team-FTU.txt
241 Bytes
56.11 - PageRank/How you can help Team-FTU.txt
241 Bytes
56.12 - Shortest Path/How you can help Team-FTU.txt
241 Bytes
56.13 - Connected-components/How you can help Team-FTU.txt
241 Bytes
56.14 - Adar Index/How you can help Team-FTU.txt
241 Bytes
56.15 - Kartz Centrality/How you can help Team-FTU.txt
241 Bytes
56.16 - HITS Score/How you can help Team-FTU.txt
241 Bytes
56.17 - SVD/How you can help Team-FTU.txt
241 Bytes
56.18 - Weight features/How you can help Team-FTU.txt
241 Bytes
56.19 - Modeling/How you can help Team-FTU.txt
241 Bytes
56.1 - Problem definition/How you can help Team-FTU.txt
241 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/How you can help Team-FTU.txt
241 Bytes
56.3 - Data format & Limitations/How you can help Team-FTU.txt
241 Bytes
56.4 - Mapping to a supervised classification problem/How you can help Team-FTU.txt
241 Bytes
56.5 - Business constraints & Metrics/How you can help Team-FTU.txt
241 Bytes
56.6 - EDABasic Stats/How you can help Team-FTU.txt
241 Bytes
56.7 - EDAFollower and following stats/How you can help Team-FTU.txt
241 Bytes
56.8 - EDABinary Classification Task/How you can help Team-FTU.txt
241 Bytes
56.9 - EDATrain and test split/How you can help Team-FTU.txt
241 Bytes
57.10 - ORDER BY/How you can help Team-FTU.txt
241 Bytes
57.11 - DISTINCT/How you can help Team-FTU.txt
241 Bytes
57.12 - WHERE, Comparison operators, NULL/How you can help Team-FTU.txt
241 Bytes
57.13 - Logical Operators/How you can help Team-FTU.txt
241 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/How you can help Team-FTU.txt
241 Bytes
57.15 - GROUP BY/How you can help Team-FTU.txt
241 Bytes
57.16 - HAVING/How you can help Team-FTU.txt
241 Bytes
57.17 - Order of keywords#/How you can help Team-FTU.txt
241 Bytes
57.18 - Join and Natural Join/How you can help Team-FTU.txt
241 Bytes
57.19 - Inner, Left, Right and Outer joins/How you can help Team-FTU.txt
241 Bytes
57.1 - Introduction to Databases/How you can help Team-FTU.txt
241 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/How you can help Team-FTU.txt
241 Bytes
57.21 - DMLINSERT/How you can help Team-FTU.txt
241 Bytes
57.22 - DMLUPDATE , DELETE/How you can help Team-FTU.txt
241 Bytes
57.23 - DDLCREATE TABLE/How you can help Team-FTU.txt
241 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/How you can help Team-FTU.txt
241 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/How you can help Team-FTU.txt
241 Bytes
57.26 - Data Control Language GRANT, REVOKE/How you can help Team-FTU.txt
241 Bytes
57.27 - Learning resources/How you can help Team-FTU.txt
241 Bytes
57.2 - Why SQL/How you can help Team-FTU.txt
241 Bytes
57.3 - Execution of an SQL statement/How you can help Team-FTU.txt
241 Bytes
57.4 - IMDB dataset/How you can help Team-FTU.txt
241 Bytes
57.5 - Installing MySQL/How you can help Team-FTU.txt
241 Bytes
57.6 - Load IMDB data/How you can help Team-FTU.txt
241 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/How you can help Team-FTU.txt
241 Bytes
57.8 - SELECT/How you can help Team-FTU.txt
241 Bytes
57.9 - LIMIT, OFFSET/How you can help Team-FTU.txt
241 Bytes
58.1 - AD-Click Predicition/How you can help Team-FTU.txt
241 Bytes
59.1 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
59.2 - Questions/How you can help Team-FTU.txt
241 Bytes
59.3 - External resources for Interview Questions/How you can help Team-FTU.txt
241 Bytes
6.1 - Getting started with Matplotlib/How you can help Team-FTU.txt
241 Bytes
7.1 - Getting started with pandas/How you can help Team-FTU.txt
241 Bytes
7.2 - Data Frame Basics/How you can help Team-FTU.txt
241 Bytes
7.3 - Key Operations on Data Frames/How you can help Team-FTU.txt
241 Bytes
8.1 - Space and Time Complexity Find largest number in a list/How you can help Team-FTU.txt
241 Bytes
8.2 - Binary search/How you can help Team-FTU.txt
241 Bytes
8.3 - Find elements common in two lists/How you can help Team-FTU.txt
241 Bytes
8.4 - Find elements common in two lists using a HashtableDict/How you can help Team-FTU.txt
241 Bytes
9.10 - Percentiles and Quantiles/How you can help Team-FTU.txt
241 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/How you can help Team-FTU.txt
241 Bytes
9.12 - Box-plot with Whiskers/How you can help Team-FTU.txt
241 Bytes
9.13 - Violin Plots/How you can help Team-FTU.txt
241 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/How you can help Team-FTU.txt
241 Bytes
9.15 - Multivariate Probability Density, Contour Plot/How you can help Team-FTU.txt
241 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/How you can help Team-FTU.txt
241 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/How you can help Team-FTU.txt
241 Bytes
9.2 - 3D scatter plot/How you can help Team-FTU.txt
241 Bytes
9.3 - Pair plots/How you can help Team-FTU.txt
241 Bytes
9.4 - Limitations of Pair Plots/How you can help Team-FTU.txt
241 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/How you can help Team-FTU.txt
241 Bytes
9.6 - Univariate Analysis using PDF/How you can help Team-FTU.txt
241 Bytes
9.7 - CDF(Cumulative Distribution Function)/How you can help Team-FTU.txt
241 Bytes
9.8 - Mean, Variance and Standard Deviation/How you can help Team-FTU.txt
241 Bytes
9.9 - Median/How you can help Team-FTU.txt
241 Bytes
How you can help Team-FTU.txt
241 Bytes
10.10 - Hyper Cube,Hyper Cuboid/[FreeCoursesOnline.Me].url
133 Bytes
10.11 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
10.1 - Why learn it/[FreeCoursesOnline.Me].url
133 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/[FreeCoursesOnline.Me].url
133 Bytes
10.3 - Dot Product and Angle between 2 Vectors/[FreeCoursesOnline.Me].url
133 Bytes
10.4 - Projection and Unit Vector/[FreeCoursesOnline.Me].url
133 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/[FreeCoursesOnline.Me].url
133 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/[FreeCoursesOnline.Me].url
133 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/[FreeCoursesOnline.Me].url
133 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/[FreeCoursesOnline.Me].url
133 Bytes
10.9 - Square ,Rectangle/[FreeCoursesOnline.Me].url
133 Bytes
11.10 - How distributions are used/[FreeCoursesOnline.Me].url
133 Bytes
11.11 - Chebyshev’s inequality/[FreeCoursesOnline.Me].url
133 Bytes
11.12 - Discrete and Continuous Uniform distributions/[FreeCoursesOnline.Me].url
133 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/[FreeCoursesOnline.Me].url
133 Bytes
11.14 - Bernoulli and Binomial Distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.15 - Log Normal Distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.16 - Power law distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.17 - Box cox transform/[FreeCoursesOnline.Me].url
133 Bytes
11.18 - Applications of non-gaussian distributions/[FreeCoursesOnline.Me].url
133 Bytes
11.19 - Co-variance/[FreeCoursesOnline.Me].url
133 Bytes
11.1 - Introduction to Probability and Statistics/[FreeCoursesOnline.Me].url
133 Bytes
11.20 - Pearson Correlation Coefficient/[FreeCoursesOnline.Me].url
133 Bytes
11.21 - Spearman Rank Correlation Coefficient/[FreeCoursesOnline.Me].url
133 Bytes
11.22 - Correlation vs Causation/[FreeCoursesOnline.Me].url
133 Bytes
11.23 - How to use correlations/[FreeCoursesOnline.Me].url
133 Bytes
11.24 - Confidence interval (C.I) Introduction/[FreeCoursesOnline.Me].url
133 Bytes
11.25 - Computing confidence interval given the underlying distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.26 - C.I for mean of a normal random variable/[FreeCoursesOnline.Me].url
133 Bytes
11.27 - Confidence interval using bootstrapping/[FreeCoursesOnline.Me].url
133 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/[FreeCoursesOnline.Me].url
133 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/[FreeCoursesOnline.Me].url
133 Bytes
11.2 - Population and Sample/[FreeCoursesOnline.Me].url
133 Bytes
11.30 - Resampling and permutation test/[FreeCoursesOnline.Me].url
133 Bytes
11.31 - K-S Test for similarity of two distributions/[FreeCoursesOnline.Me].url
133 Bytes
11.32 - Code Snippet K-S Test/[FreeCoursesOnline.Me].url
133 Bytes
11.33 - Hypothesis testing another example/[FreeCoursesOnline.Me].url
133 Bytes
11.34 - Resampling and Permutation test another example/[FreeCoursesOnline.Me].url
133 Bytes
11.35 - How to use hypothesis testing/[FreeCoursesOnline.Me].url
133 Bytes
11.36 - Proportional Sampling/[FreeCoursesOnline.Me].url
133 Bytes
11.37 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/[FreeCoursesOnline.Me].url
133 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/[FreeCoursesOnline.Me].url
133 Bytes
11.6 - Standard normal variate (Z) and standardization/[FreeCoursesOnline.Me].url
133 Bytes
11.7 - Kernel density estimation/[FreeCoursesOnline.Me].url
133 Bytes
11.8 - Sampling distribution & Central Limit theorem/[FreeCoursesOnline.Me].url
133 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/[FreeCoursesOnline.Me].url
133 Bytes
1.1 - How to Learn from Appliedaicourse/[FreeCoursesOnline.Me].url
133 Bytes
12.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
1.2 - How the Job Guarantee program works/[FreeCoursesOnline.Me].url
133 Bytes
13.10 - Code to Load MNIST Data Set/[FreeCoursesOnline.Me].url
133 Bytes
13.1 - What is Dimensionality reduction/[FreeCoursesOnline.Me].url
133 Bytes
13.2 - Row Vector and Column Vector/[FreeCoursesOnline.Me].url
133 Bytes
13.3 - How to represent a data set/[FreeCoursesOnline.Me].url
133 Bytes
13.4 - How to represent a dataset as a Matrix/[FreeCoursesOnline.Me].url
133 Bytes
13.5 - Data Preprocessing Feature Normalisation/[FreeCoursesOnline.Me].url
133 Bytes
13.6 - Mean of a data matrix/[FreeCoursesOnline.Me].url
133 Bytes
13.7 - Data Preprocessing Column Standardization/[FreeCoursesOnline.Me].url
133 Bytes
13.8 - Co-variance of a Data Matrix/[FreeCoursesOnline.Me].url
133 Bytes
13.9 - MNIST dataset (784 dimensional)/[FreeCoursesOnline.Me].url
133 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/[FreeCoursesOnline.Me].url
133 Bytes
14.1 - Why learn PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.2 - Geometric intuition of PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.3 - Mathematical objective function of PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.4 - Alternative formulation of PCA Distance minimization/[FreeCoursesOnline.Me].url
133 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/[FreeCoursesOnline.Me].url
133 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/[FreeCoursesOnline.Me].url
133 Bytes
14.7 - Visualize MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
14.8 - Limitations of PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.9 - PCA Code example/[FreeCoursesOnline.Me].url
133 Bytes
15.1 - What is t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
15.2 - Neighborhood of a point, Embedding/[FreeCoursesOnline.Me].url
133 Bytes
15.3 - Geometric intuition of t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
15.4 - Crowding Problem/[FreeCoursesOnline.Me].url
133 Bytes
15.5 - How to apply t-SNE and interpret its output/[FreeCoursesOnline.Me].url
133 Bytes
15.6 - t-SNE on MNIST/[FreeCoursesOnline.Me].url
133 Bytes
15.7 - Code example of t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
15.8 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
16.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/[FreeCoursesOnline.Me].url
133 Bytes
17.11 - Bag of Words( Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.12 - Text Preprocessing( Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.14 - TF-IDF (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.15 - Word2Vec (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.17 - Assignment-2 Apply t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/[FreeCoursesOnline.Me].url
133 Bytes
17.2 - Data Cleaning Deduplication/[FreeCoursesOnline.Me].url
133 Bytes
17.3 - Why convert text to a vector/[FreeCoursesOnline.Me].url
133 Bytes
17.4 - Bag of Words (BoW)/[FreeCoursesOnline.Me].url
133 Bytes
17.5 - Text Preprocessing Stemming/[FreeCoursesOnline.Me].url
133 Bytes
17.6 - uni-gram, bi-gram, n-grams/[FreeCoursesOnline.Me].url
133 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/[FreeCoursesOnline.Me].url
133 Bytes
17.8 - Why use log in IDF/[FreeCoursesOnline.Me].url
133 Bytes
17.9 - Word2Vec/[FreeCoursesOnline.Me].url
133 Bytes
18.10 - KNN Limitations/[FreeCoursesOnline.Me].url
133 Bytes
18.11 - Decision surface for K-NN as K changes/[FreeCoursesOnline.Me].url
133 Bytes
18.12 - Overfitting and Underfitting/[FreeCoursesOnline.Me].url
133 Bytes
18.13 - Need for Cross validation/[FreeCoursesOnline.Me].url
133 Bytes
18.14 - K-fold cross validation/[FreeCoursesOnline.Me].url
133 Bytes
18.15 - Visualizing train, validation and test datasets/[FreeCoursesOnline.Me].url
133 Bytes
18.16 - How to determine overfitting and underfitting/[FreeCoursesOnline.Me].url
133 Bytes
18.17 - Time based splitting/[FreeCoursesOnline.Me].url
133 Bytes
18.18 - k-NN for regression/[FreeCoursesOnline.Me].url
133 Bytes
18.19 - Weighted k-NN/[FreeCoursesOnline.Me].url
133 Bytes
18.1 - How “Classification” works/[FreeCoursesOnline.Me].url
133 Bytes
18.20 - Voronoi diagram/[FreeCoursesOnline.Me].url
133 Bytes
18.21 - Binary search tree/[FreeCoursesOnline.Me].url
133 Bytes
18.22 - How to build a kd-tree/[FreeCoursesOnline.Me].url
133 Bytes
18.23 - Find nearest neighbours using kd-tree/[FreeCoursesOnline.Me].url
133 Bytes
18.24 - Limitations of Kd tree/[FreeCoursesOnline.Me].url
133 Bytes
18.25 - Extensions/[FreeCoursesOnline.Me].url
133 Bytes
18.26 - Hashing vs LSH/[FreeCoursesOnline.Me].url
133 Bytes
18.27 - LSH for cosine similarity/[FreeCoursesOnline.Me].url
133 Bytes
18.28 - LSH for euclidean distance/[FreeCoursesOnline.Me].url
133 Bytes
18.29 - Probabilistic class label/[FreeCoursesOnline.Me].url
133 Bytes
18.2 - Data matrix notation/[FreeCoursesOnline.Me].url
133 Bytes
18.30 - Code SampleDecision boundary/[FreeCoursesOnline.Me].url
133 Bytes
18.31 - Code SampleCross Validation/[FreeCoursesOnline.Me].url
133 Bytes
18.32 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
18.3 - Classification vs Regression (examples)/[FreeCoursesOnline.Me].url
133 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/[FreeCoursesOnline.Me].url
133 Bytes
18.5 - Failure cases of KNN/[FreeCoursesOnline.Me].url
133 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/[FreeCoursesOnline.Me].url
133 Bytes
18.7 - Cosine Distance & Cosine Similarity/[FreeCoursesOnline.Me].url
133 Bytes
18.8 - How to measure the effectiveness of k-NN/[FreeCoursesOnline.Me].url
133 Bytes
18.9 - TestEvaluation time and space complexity/[FreeCoursesOnline.Me].url
133 Bytes
19.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
20.10 - Local reachability-density(A)/[FreeCoursesOnline.Me].url
133 Bytes
20.11 - Local outlier Factor(A)/[FreeCoursesOnline.Me].url
133 Bytes
20.12 - Impact of Scale & Column standardization/[FreeCoursesOnline.Me].url
133 Bytes
20.13 - Interpretability/[FreeCoursesOnline.Me].url
133 Bytes
20.14 - Feature Importance and Forward Feature selection/[FreeCoursesOnline.Me].url
133 Bytes
20.15 - Handling categorical and numerical features/[FreeCoursesOnline.Me].url
133 Bytes
20.16 - Handling missing values by imputation/[FreeCoursesOnline.Me].url
133 Bytes
20.17 - curse of dimensionality/[FreeCoursesOnline.Me].url
133 Bytes
20.18 - Bias-Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
20.19 - Intuitive understanding of bias-variance/[FreeCoursesOnline.Me].url
133 Bytes
20.1 - Introduction/[FreeCoursesOnline.Me].url
133 Bytes
20.20 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
20.21 - best and wrost case of algorithm/[FreeCoursesOnline.Me].url
133 Bytes
20.2 - Imbalanced vs balanced dataset/[FreeCoursesOnline.Me].url
133 Bytes
20.3 - Multi-class classification/[FreeCoursesOnline.Me].url
133 Bytes
20.4 - k-NN, given a distance or similarity matrix/[FreeCoursesOnline.Me].url
133 Bytes
20.5 - Train and test set differences/[FreeCoursesOnline.Me].url
133 Bytes
20.6 - Impact of outliers/[FreeCoursesOnline.Me].url
133 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/[FreeCoursesOnline.Me].url
133 Bytes
20.8 - k distance/[FreeCoursesOnline.Me].url
133 Bytes
20.9 - Reachability-Distance(A,B)/[FreeCoursesOnline.Me].url
133 Bytes
2.10 - Control flow for loop/[FreeCoursesOnline.Me].url
133 Bytes
21.10 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
21.1 - Accuracy/[FreeCoursesOnline.Me].url
133 Bytes
2.11 - Control flow break and continue/[FreeCoursesOnline.Me].url
133 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/[FreeCoursesOnline.Me].url
133 Bytes
21.3 - Precision and recall, F1-score/[FreeCoursesOnline.Me].url
133 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/[FreeCoursesOnline.Me].url
133 Bytes
21.5 - Log-loss/[FreeCoursesOnline.Me].url
133 Bytes
21.6 - R-SquaredCoefficient of determination/[FreeCoursesOnline.Me].url
133 Bytes
21.7 - Median absolute deviation (MAD)/[FreeCoursesOnline.Me].url
133 Bytes
21.8 - Distribution of errors/[FreeCoursesOnline.Me].url
133 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/[FreeCoursesOnline.Me].url
133 Bytes
2.1 - Python, Anaconda and relevant packages installations/[FreeCoursesOnline.Me].url
133 Bytes
22.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
2.2 - Why learn Python/[FreeCoursesOnline.Me].url
133 Bytes
23.10 - Bias and Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
23.11 - Feature importance and interpretability/[FreeCoursesOnline.Me].url
133 Bytes
23.12 - Imbalanced data/[FreeCoursesOnline.Me].url
133 Bytes
23.13 - Outliers/[FreeCoursesOnline.Me].url
133 Bytes
23.14 - Missing values/[FreeCoursesOnline.Me].url
133 Bytes
23.15 - Handling Numerical features (Gaussian NB)/[FreeCoursesOnline.Me].url
133 Bytes
23.16 - Multiclass classification/[FreeCoursesOnline.Me].url
133 Bytes
23.17 - Similarity or Distance matrix/[FreeCoursesOnline.Me].url
133 Bytes
23.18 - Large dimensionality/[FreeCoursesOnline.Me].url
133 Bytes
23.19 - Best and worst cases/[FreeCoursesOnline.Me].url
133 Bytes
23.1 - Conditional probability/[FreeCoursesOnline.Me].url
133 Bytes
23.20 - Code example/[FreeCoursesOnline.Me].url
133 Bytes
23.21 - Assignment-4 Apply Naive Bayes/[FreeCoursesOnline.Me].url
133 Bytes
23.22 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
23.2 - Independent vs Mutually exclusive events/[FreeCoursesOnline.Me].url
133 Bytes
23.3 - Bayes Theorem with examples/[FreeCoursesOnline.Me].url
133 Bytes
23.4 - Exercise problems on Bayes Theorem/[FreeCoursesOnline.Me].url
133 Bytes
23.5 - Naive Bayes algorithm/[FreeCoursesOnline.Me].url
133 Bytes
23.6 - Toy example Train and test stages/[FreeCoursesOnline.Me].url
133 Bytes
23.7 - Naive Bayes on Text data/[FreeCoursesOnline.Me].url
133 Bytes
23.8 - LaplaceAdditive Smoothing/[FreeCoursesOnline.Me].url
133 Bytes
23.9 - Log-probabilities for numerical stability/[FreeCoursesOnline.Me].url
133 Bytes
2.3 - Keywords and identifiers/[FreeCoursesOnline.Me].url
133 Bytes
24.10 - Column Standardization/[FreeCoursesOnline.Me].url
133 Bytes
24.11 - Feature importance and Model interpretability/[FreeCoursesOnline.Me].url
133 Bytes
24.12 - Collinearity of features/[FreeCoursesOnline.Me].url
133 Bytes
24.13 - TestRun time space and time complexity/[FreeCoursesOnline.Me].url
133 Bytes
24.14 - Real world cases/[FreeCoursesOnline.Me].url
133 Bytes
24.15 - Non-linearly separable data & feature engineering/[FreeCoursesOnline.Me].url
133 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/[FreeCoursesOnline.Me].url
133 Bytes
24.17 - Assignment-5 Apply Logistic Regression/[FreeCoursesOnline.Me].url
133 Bytes
24.18 - Extensions to Generalized linear models/[FreeCoursesOnline.Me].url
133 Bytes
24.1 - Geometric intuition of Logistic Regression/[FreeCoursesOnline.Me].url
133 Bytes
24.2 - Sigmoid function Squashing/[FreeCoursesOnline.Me].url
133 Bytes
24.3 - Mathematical formulation of Objective function/[FreeCoursesOnline.Me].url
133 Bytes
24.4 - Weight vector/[FreeCoursesOnline.Me].url
133 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/[FreeCoursesOnline.Me].url
133 Bytes
24.6 - L1 regularization and sparsity/[FreeCoursesOnline.Me].url
133 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/[FreeCoursesOnline.Me].url
133 Bytes
24.8 - Loss minimization interpretation/[FreeCoursesOnline.Me].url
133 Bytes
24.9 - hyperparameters and random search/[FreeCoursesOnline.Me].url
133 Bytes
2.4 - comments, indentation and statements/[FreeCoursesOnline.Me].url
133 Bytes
25.1 - Geometric intuition of Linear Regression/[FreeCoursesOnline.Me].url
133 Bytes
25.2 - Mathematical formulation/[FreeCoursesOnline.Me].url
133 Bytes
25.3 - Real world Cases/[FreeCoursesOnline.Me].url
133 Bytes
25.4 - Code sample for Linear Regression/[FreeCoursesOnline.Me].url
133 Bytes
2.5 - Variables and data types in Python/[FreeCoursesOnline.Me].url
133 Bytes
26.10 - Logistic regression formulation revisited/[FreeCoursesOnline.Me].url
133 Bytes
26.11 - Why L1 regularization creates sparsity/[FreeCoursesOnline.Me].url
133 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/[FreeCoursesOnline.Me].url
133 Bytes
26.13 - Revision questions/[FreeCoursesOnline.Me].url
133 Bytes
26.1 - Differentiation/[FreeCoursesOnline.Me].url
133 Bytes
26.2 - Online differentiation tools/[FreeCoursesOnline.Me].url
133 Bytes
26.3 - Maxima and Minima/[FreeCoursesOnline.Me].url
133 Bytes
26.4 - Vector calculus Grad/[FreeCoursesOnline.Me].url
133 Bytes
26.5 - Gradient descent geometric intuition/[FreeCoursesOnline.Me].url
133 Bytes
26.6 - Learning rate/[FreeCoursesOnline.Me].url
133 Bytes
26.7 - Gradient descent for linear regression/[FreeCoursesOnline.Me].url
133 Bytes
26.8 - SGD algorithm/[FreeCoursesOnline.Me].url
133 Bytes
26.9 - Constrained Optimization & PCA/[FreeCoursesOnline.Me].url
133 Bytes
2.6 - Standard Input and Output/[FreeCoursesOnline.Me].url
133 Bytes
27.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
2.7 - Operators/[FreeCoursesOnline.Me].url
133 Bytes
28.10 - Train and run time complexities/[FreeCoursesOnline.Me].url
133 Bytes
28.11 - nu-SVM control errors and support vectors/[FreeCoursesOnline.Me].url
133 Bytes
28.12 - SVM Regression/[FreeCoursesOnline.Me].url
133 Bytes
28.13 - Cases/[FreeCoursesOnline.Me].url
133 Bytes
28.14 - Code Sample/[FreeCoursesOnline.Me].url
133 Bytes
28.15 - Assignment-7 Apply SVM/[FreeCoursesOnline.Me].url
133 Bytes
28.16 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
28.1 - Geometric Intution/[FreeCoursesOnline.Me].url
133 Bytes
28.2 - Mathematical derivation/[FreeCoursesOnline.Me].url
133 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/[FreeCoursesOnline.Me].url
133 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/[FreeCoursesOnline.Me].url
133 Bytes
28.5 - Dual form of SVM formulation/[FreeCoursesOnline.Me].url
133 Bytes
28.6 - kernel trick/[FreeCoursesOnline.Me].url
133 Bytes
28.7 - Polynomial Kernel/[FreeCoursesOnline.Me].url
133 Bytes
28.8 - RBF-Kernel/[FreeCoursesOnline.Me].url
133 Bytes
28.9 - Domain specific Kernels/[FreeCoursesOnline.Me].url
133 Bytes
2.8 - Control flow if else/[FreeCoursesOnline.Me].url
133 Bytes
29.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
2.9 - Control flow while loop/[FreeCoursesOnline.Me].url
133 Bytes
30.10 - Overfitting and Underfitting/[FreeCoursesOnline.Me].url
133 Bytes
30.11 - Train and Run time complexity/[FreeCoursesOnline.Me].url
133 Bytes
30.12 - Regression using Decision Trees/[FreeCoursesOnline.Me].url
133 Bytes
30.13 - Cases/[FreeCoursesOnline.Me].url
133 Bytes
30.14 - Code Samples/[FreeCoursesOnline.Me].url
133 Bytes
30.15 - Assignment-8 Apply Decision Trees/[FreeCoursesOnline.Me].url
133 Bytes
30.16 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/[FreeCoursesOnline.Me].url
133 Bytes
30.2 - Sample Decision tree/[FreeCoursesOnline.Me].url
133 Bytes
30.3 - Building a decision TreeEntropy/[FreeCoursesOnline.Me].url
133 Bytes
30.4 - Building a decision TreeInformation Gain/[FreeCoursesOnline.Me].url
133 Bytes
30.5 - Building a decision Tree Gini Impurity/[FreeCoursesOnline.Me].url
133 Bytes
30.6 - Building a decision Tree Constructing a DT/[FreeCoursesOnline.Me].url
133 Bytes
30.7 - Building a decision Tree Splitting numerical features/[FreeCoursesOnline.Me].url
133 Bytes
30.8 - Feature standardization/[FreeCoursesOnline.Me].url
133 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/[FreeCoursesOnline.Me].url
133 Bytes
31.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
3.1 - Lists/[FreeCoursesOnline.Me].url
133 Bytes
32.10 - Residuals, Loss functions and gradients/[FreeCoursesOnline.Me].url
133 Bytes
32.11 - Gradient Boosting/[FreeCoursesOnline.Me].url
133 Bytes
32.12 - Regularization by Shrinkage/[FreeCoursesOnline.Me].url
133 Bytes
32.13 - Train and Run time complexity/[FreeCoursesOnline.Me].url
133 Bytes
32.14 - XGBoost Boosting + Randomization/[FreeCoursesOnline.Me].url
133 Bytes
32.15 - AdaBoost geometric intuition/[FreeCoursesOnline.Me].url
133 Bytes
32.16 - Stacking models/[FreeCoursesOnline.Me].url
133 Bytes
32.17 - Cascading classifiers/[FreeCoursesOnline.Me].url
133 Bytes
32.18 - Kaggle competitions vs Real world/[FreeCoursesOnline.Me].url
133 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/[FreeCoursesOnline.Me].url
133 Bytes
32.1 - What are ensembles/[FreeCoursesOnline.Me].url
133 Bytes
32.20 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/[FreeCoursesOnline.Me].url
133 Bytes
32.3 - Random Forest and their construction/[FreeCoursesOnline.Me].url
133 Bytes
32.4 - Bias-Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
32.5 - Train and run time complexity/[FreeCoursesOnline.Me].url
133 Bytes
32.6 - BaggingCode Sample/[FreeCoursesOnline.Me].url
133 Bytes
32.7 - Extremely randomized trees/[FreeCoursesOnline.Me].url
133 Bytes
32.8 - Random Tree Cases/[FreeCoursesOnline.Me].url
133 Bytes
32.9 - Boosting Intuition/[FreeCoursesOnline.Me].url
133 Bytes
3.2 - Tuples part 1/[FreeCoursesOnline.Me].url
133 Bytes
33.10 - Indicator variables/[FreeCoursesOnline.Me].url
133 Bytes
33.11 - Feature binning/[FreeCoursesOnline.Me].url
133 Bytes
33.12 - Interaction variables/[FreeCoursesOnline.Me].url
133 Bytes
33.13 - Mathematical transforms/[FreeCoursesOnline.Me].url
133 Bytes
33.14 - Model specific featurizations/[FreeCoursesOnline.Me].url
133 Bytes
33.15 - Feature orthogonality/[FreeCoursesOnline.Me].url
133 Bytes
33.16 - Domain specific featurizations/[FreeCoursesOnline.Me].url
133 Bytes
33.17 - Feature slicing/[FreeCoursesOnline.Me].url
133 Bytes
33.18 - Kaggle Winners solutions/[FreeCoursesOnline.Me].url
133 Bytes
33.1 - Introduction/[FreeCoursesOnline.Me].url
133 Bytes
33.2 - Moving window for Time Series Data/[FreeCoursesOnline.Me].url
133 Bytes
33.3 - Fourier decomposition/[FreeCoursesOnline.Me].url
133 Bytes
33.4 - Deep learning features LSTM/[FreeCoursesOnline.Me].url
133 Bytes
33.5 - Image histogram/[FreeCoursesOnline.Me].url
133 Bytes
33.6 - Keypoints SIFT/[FreeCoursesOnline.Me].url
133 Bytes
33.7 - Deep learning features CNN/[FreeCoursesOnline.Me].url
133 Bytes
33.8 - Relational data/[FreeCoursesOnline.Me].url
133 Bytes
33.9 - Graph data/[FreeCoursesOnline.Me].url
133 Bytes
3.3 - Tuples part-2/[FreeCoursesOnline.Me].url
133 Bytes
34.10 - AB testing/[FreeCoursesOnline.Me].url
133 Bytes
34.11 - Data Science Life cycle/[FreeCoursesOnline.Me].url
133 Bytes
34.12 - VC dimension/[FreeCoursesOnline.Me].url
133 Bytes
34.1 - Calibration of ModelsNeed for calibration/[FreeCoursesOnline.Me].url
133 Bytes
34.2 - Productionization and deployment of Machine Learning Models/[FreeCoursesOnline.Me].url
133 Bytes
34.3 - Calibration Plots/[FreeCoursesOnline.Me].url
133 Bytes
34.4 - Platt’s CalibrationScaling/[FreeCoursesOnline.Me].url
133 Bytes
34.5 - Isotonic Regression/[FreeCoursesOnline.Me].url
133 Bytes
34.6 - Code Samples/[FreeCoursesOnline.Me].url
133 Bytes
34.7 - Modeling in the presence of outliers RANSAC/[FreeCoursesOnline.Me].url
133 Bytes
34.8 - Productionizing models/[FreeCoursesOnline.Me].url
133 Bytes
34.9 - Retraining models periodically/[FreeCoursesOnline.Me].url
133 Bytes
3.4 - Sets/[FreeCoursesOnline.Me].url
133 Bytes
35.10 - K-Medoids/[FreeCoursesOnline.Me].url
133 Bytes
35.11 - Determining the right K/[FreeCoursesOnline.Me].url
133 Bytes
35.12 - Code Samples/[FreeCoursesOnline.Me].url
133 Bytes
35.13 - Time and space complexity/[FreeCoursesOnline.Me].url
133 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeCoursesOnline.Me].url
133 Bytes
35.1 - What is Clustering/[FreeCoursesOnline.Me].url
133 Bytes
35.2 - Unsupervised learning/[FreeCoursesOnline.Me].url
133 Bytes
35.3 - Applications/[FreeCoursesOnline.Me].url
133 Bytes
35.4 - Metrics for Clustering/[FreeCoursesOnline.Me].url
133 Bytes
35.5 - K-Means Geometric intuition, Centroids/[FreeCoursesOnline.Me].url
133 Bytes
35.6 - K-Means Mathematical formulation Objective function/[FreeCoursesOnline.Me].url
133 Bytes
35.7 - K-Means Algorithm/[FreeCoursesOnline.Me].url
133 Bytes
35.8 - How to initialize K-Means++/[FreeCoursesOnline.Me].url
133 Bytes
35.9 - Failure casesLimitations/[FreeCoursesOnline.Me].url
133 Bytes
3.5 - Dictionary/[FreeCoursesOnline.Me].url
133 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/[FreeCoursesOnline.Me].url
133 Bytes
36.2 - Agglomerative Clustering/[FreeCoursesOnline.Me].url
133 Bytes
36.3 - Proximity methods Advantages and Limitations/[FreeCoursesOnline.Me].url
133 Bytes
36.4 - Time and Space Complexity/[FreeCoursesOnline.Me].url
133 Bytes
36.5 - Limitations of Hierarchical Clustering/[FreeCoursesOnline.Me].url
133 Bytes
36.6 - Code sample/[FreeCoursesOnline.Me].url
133 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeCoursesOnline.Me].url
133 Bytes
3.6 - Strings/[FreeCoursesOnline.Me].url
133 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeCoursesOnline.Me].url
133 Bytes
37.11 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
37.1 - Density based clustering/[FreeCoursesOnline.Me].url
133 Bytes
37.2 - MinPts and Eps Density/[FreeCoursesOnline.Me].url
133 Bytes
37.3 - Core, Border and Noise points/[FreeCoursesOnline.Me].url
133 Bytes
37.4 - Density edge and Density connected points/[FreeCoursesOnline.Me].url
133 Bytes
37.5 - DBSCAN Algorithm/[FreeCoursesOnline.Me].url
133 Bytes
37.6 - Hyper Parameters MinPts and Eps/[FreeCoursesOnline.Me].url
133 Bytes
37.7 - Advantages and Limitations of DBSCAN/[FreeCoursesOnline.Me].url
133 Bytes
37.8 - Time and Space Complexity/[FreeCoursesOnline.Me].url
133 Bytes
37.9 - Code samples/[FreeCoursesOnline.Me].url
133 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/[FreeCoursesOnline.Me].url
133 Bytes
38.11 - Cold Start problem/[FreeCoursesOnline.Me].url
133 Bytes
38.12 - Word vectors as MF/[FreeCoursesOnline.Me].url
133 Bytes
38.13 - Eigen-Faces/[FreeCoursesOnline.Me].url
133 Bytes
38.14 - Code example/[FreeCoursesOnline.Me].url
133 Bytes
38.15 - Assignment-11 Apply Truncated SVD/[FreeCoursesOnline.Me].url
133 Bytes
38.16 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
38.1 - Problem formulation Movie reviews/[FreeCoursesOnline.Me].url
133 Bytes
38.2 - Content based vs Collaborative Filtering/[FreeCoursesOnline.Me].url
133 Bytes
38.3 - Similarity based Algorithms/[FreeCoursesOnline.Me].url
133 Bytes
38.4 - Matrix Factorization PCA, SVD/[FreeCoursesOnline.Me].url
133 Bytes
38.5 - Matrix Factorization NMF/[FreeCoursesOnline.Me].url
133 Bytes
38.6 - Matrix Factorization for Collaborative filtering/[FreeCoursesOnline.Me].url
133 Bytes
38.7 - Matrix Factorization for feature engineering/[FreeCoursesOnline.Me].url
133 Bytes
38.8 - Clustering as MF/[FreeCoursesOnline.Me].url
133 Bytes
38.9 - Hyperparameter tuning/[FreeCoursesOnline.Me].url
133 Bytes
39.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
40.10 - Data Modeling Multi label Classification/[FreeCoursesOnline.Me].url
133 Bytes
40.11 - Data preparation/[FreeCoursesOnline.Me].url
133 Bytes
40.12 - Train-Test Split/[FreeCoursesOnline.Me].url
133 Bytes
40.13 - Featurization/[FreeCoursesOnline.Me].url
133 Bytes
40.14 - Logistic regression One VS Rest/[FreeCoursesOnline.Me].url
133 Bytes
40.15 - Sampling data and tags+Weighted models/[FreeCoursesOnline.Me].url
133 Bytes
40.16 - Logistic regression revisited/[FreeCoursesOnline.Me].url
133 Bytes
40.17 - Why not use advanced techniques/[FreeCoursesOnline.Me].url
133 Bytes
40.18 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
40.1 - BusinessReal world problem/[FreeCoursesOnline.Me].url
133 Bytes
40.2 - Business objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
40.3 - Mapping to an ML problem Data overview/[FreeCoursesOnline.Me].url
133 Bytes
40.4 - Mapping to an ML problemML problem formulation/[FreeCoursesOnline.Me].url
133 Bytes
40.5 - Mapping to an ML problemPerformance metrics/[FreeCoursesOnline.Me].url
133 Bytes
40.6 - Hamming loss/[FreeCoursesOnline.Me].url
133 Bytes
40.7 - EDAData Loading/[FreeCoursesOnline.Me].url
133 Bytes
40.8 - EDAAnalysis of tags/[FreeCoursesOnline.Me].url
133 Bytes
40.9 - EDAData Preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
4.10 - Debugging Python/[FreeCoursesOnline.Me].url
133 Bytes
41.10 - EDA Feature analysis/[FreeCoursesOnline.Me].url
133 Bytes
41.11 - EDA Data Visualization T-SNE/[FreeCoursesOnline.Me].url
133 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/[FreeCoursesOnline.Me].url
133 Bytes
41.13 - ML Models Loading Data/[FreeCoursesOnline.Me].url
133 Bytes
41.14 - ML Models Random Model/[FreeCoursesOnline.Me].url
133 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/[FreeCoursesOnline.Me].url
133 Bytes
41.16 - ML Models XGBoost/[FreeCoursesOnline.Me].url
133 Bytes
41.17 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
41.1 - BusinessReal world problem Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
41.2 - Business objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
41.3 - Mapping to an ML problem Data overview/[FreeCoursesOnline.Me].url
133 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/[FreeCoursesOnline.Me].url
133 Bytes
41.5 - Mapping to an ML problem Train-test split/[FreeCoursesOnline.Me].url
133 Bytes
41.6 - EDA Basic Statistics/[FreeCoursesOnline.Me].url
133 Bytes
41.7 - EDA Basic Feature Extraction/[FreeCoursesOnline.Me].url
133 Bytes
41.8 - EDA Text Preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
41.9 - EDA Advanced Feature Extraction/[FreeCoursesOnline.Me].url
133 Bytes
4.1 - Introduction/[FreeCoursesOnline.Me].url
133 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/[FreeCoursesOnline.Me].url
133 Bytes
42.11 - Stemming/[FreeCoursesOnline.Me].url
133 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/[FreeCoursesOnline.Me].url
133 Bytes
42.13 - Code for bag of words based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.14 - TF-IDF featurizing text based on word-importance/[FreeCoursesOnline.Me].url
133 Bytes
42.15 - Code for TF-IDF based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.16 - Code for IDF based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/[FreeCoursesOnline.Me].url
133 Bytes
42.18 - Code for Average Word2Vec product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.19 - TF-IDF weighted Word2Vec/[FreeCoursesOnline.Me].url
133 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/[FreeCoursesOnline.Me].url
133 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.21 - Weighted similarity using brand and color/[FreeCoursesOnline.Me].url
133 Bytes
42.22 - Code for weighted similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.23 - Building a real world solution/[FreeCoursesOnline.Me].url
133 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/[FreeCoursesOnline.Me].url
133 Bytes
42.25 - Using Keras + Tensorflow to extract features/[FreeCoursesOnline.Me].url
133 Bytes
42.26 - Visual similarity based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.27 - Measuring goodness of our solution AB testing/[FreeCoursesOnline.Me].url
133 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/[FreeCoursesOnline.Me].url
133 Bytes
42.2 - Plan of action/[FreeCoursesOnline.Me].url
133 Bytes
42.3 - Amazon product advertising API/[FreeCoursesOnline.Me].url
133 Bytes
42.4 - Data folders and paths/[FreeCoursesOnline.Me].url
133 Bytes
42.5 - Overview of the data and Terminology/[FreeCoursesOnline.Me].url
133 Bytes
42.6 - Data cleaning and understandingMissing data in various features/[FreeCoursesOnline.Me].url
133 Bytes
42.7 - Understand duplicate rows/[FreeCoursesOnline.Me].url
133 Bytes
42.8 - Remove duplicates Part 1/[FreeCoursesOnline.Me].url
133 Bytes
42.9 - Remove duplicates Part 2/[FreeCoursesOnline.Me].url
133 Bytes
4.2 - Types of functions/[FreeCoursesOnline.Me].url
133 Bytes
43.10 - ML models – using byte files only Random Model/[FreeCoursesOnline.Me].url
133 Bytes
43.11 - k-NN/[FreeCoursesOnline.Me].url
133 Bytes
43.12 - Logistic regression/[FreeCoursesOnline.Me].url
133 Bytes
43.13 - Random Forest and Xgboost/[FreeCoursesOnline.Me].url
133 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/[FreeCoursesOnline.Me].url
133 Bytes
43.15 - File-size feature/[FreeCoursesOnline.Me].url
133 Bytes
43.16 - Univariate analysis/[FreeCoursesOnline.Me].url
133 Bytes
43.17 - t-SNE analysis/[FreeCoursesOnline.Me].url
133 Bytes
43.18 - ML models on ASM file features/[FreeCoursesOnline.Me].url
133 Bytes
43.19 - Models on all features t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
43.1 - Businessreal world problem Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
43.20 - Models on all features RandomForest and Xgboost/[FreeCoursesOnline.Me].url
133 Bytes
43.21 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
43.2 - Businessreal world problem Objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
43.3 - Machine Learning problem mapping Data overview/[FreeCoursesOnline.Me].url
133 Bytes
43.4 - Machine Learning problem mapping ML problem/[FreeCoursesOnline.Me].url
133 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/[FreeCoursesOnline.Me].url
133 Bytes
43.6 - Exploratory Data Analysis Class distribution/[FreeCoursesOnline.Me].url
133 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/[FreeCoursesOnline.Me].url
133 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/[FreeCoursesOnline.Me].url
133 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/[FreeCoursesOnline.Me].url
133 Bytes
4.3 - Function arguments/[FreeCoursesOnline.Me].url
133 Bytes
44.10 - Exploratory Data AnalysisCold start problem/[FreeCoursesOnline.Me].url
133 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/[FreeCoursesOnline.Me].url
133 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/[FreeCoursesOnline.Me].url
133 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/[FreeCoursesOnline.Me].url
133 Bytes
44.14 - ML ModelsSurprise library/[FreeCoursesOnline.Me].url
133 Bytes
44.15 - Overview of the modelling strategy/[FreeCoursesOnline.Me].url
133 Bytes
44.16 - Data Sampling/[FreeCoursesOnline.Me].url
133 Bytes
44.17 - Google drive with intermediate files/[FreeCoursesOnline.Me].url
133 Bytes
44.18 - Featurizations for regression/[FreeCoursesOnline.Me].url
133 Bytes
44.19 - Data transformation for Surprise/[FreeCoursesOnline.Me].url
133 Bytes
44.1 - BusinessReal world problemProblem definition/[FreeCoursesOnline.Me].url
133 Bytes
44.20 - Xgboost with 13 features/[FreeCoursesOnline.Me].url
133 Bytes
44.21 - Surprise Baseline model/[FreeCoursesOnline.Me].url
133 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/[FreeCoursesOnline.Me].url
133 Bytes
44.23 - Surprise KNN predictors/[FreeCoursesOnline.Me].url
133 Bytes
44.24 - Matrix Factorization models using Surprise/[FreeCoursesOnline.Me].url
133 Bytes
44.25 - SVD ++ with implicit feedback/[FreeCoursesOnline.Me].url
133 Bytes
44.26 - Final models with all features and predictors/[FreeCoursesOnline.Me].url
133 Bytes
44.27 - Comparison between various models/[FreeCoursesOnline.Me].url
133 Bytes
44.28 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
44.2 - Objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
44.3 - Mapping to an ML problemData overview/[FreeCoursesOnline.Me].url
133 Bytes
44.4 - Mapping to an ML problemML problem formulation/[FreeCoursesOnline.Me].url
133 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/[FreeCoursesOnline.Me].url
133 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/[FreeCoursesOnline.Me].url
133 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/[FreeCoursesOnline.Me].url
133 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/[FreeCoursesOnline.Me].url
133 Bytes
4.4 - Recursive functions/[FreeCoursesOnline.Me].url
133 Bytes
45.10 - Univariate AnalysisVariation Feature/[FreeCoursesOnline.Me].url
133 Bytes
45.11 - Univariate AnalysisText feature/[FreeCoursesOnline.Me].url
133 Bytes
45.12 - Machine Learning ModelsData preparation/[FreeCoursesOnline.Me].url
133 Bytes
45.13 - Baseline Model Naive Bayes/[FreeCoursesOnline.Me].url
133 Bytes
45.14 - K-Nearest Neighbors Classification/[FreeCoursesOnline.Me].url
133 Bytes
45.15 - Logistic Regression with class balancing/[FreeCoursesOnline.Me].url
133 Bytes
45.16 - Logistic Regression without class balancing/[FreeCoursesOnline.Me].url
133 Bytes
45.17 - Linear-SVM/[FreeCoursesOnline.Me].url
133 Bytes
45.18 - Random-Forest with one-hot encoded features/[FreeCoursesOnline.Me].url
133 Bytes
45.19 - Random-Forest with response-coded features/[FreeCoursesOnline.Me].url
133 Bytes
45.1 - BusinessReal world problem Overview/[FreeCoursesOnline.Me].url
133 Bytes
45.20 - Stacking Classifier/[FreeCoursesOnline.Me].url
133 Bytes
45.21 - Majority Voting classifier/[FreeCoursesOnline.Me].url
133 Bytes
45.22 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
45.2 - Business objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
45.3 - ML problem formulation Data/[FreeCoursesOnline.Me].url
133 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/[FreeCoursesOnline.Me].url
133 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/[FreeCoursesOnline.Me].url
133 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/[FreeCoursesOnline.Me].url
133 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/[FreeCoursesOnline.Me].url
133 Bytes
45.8 - Exploratory Data Analysis “Random” Model/[FreeCoursesOnline.Me].url
133 Bytes
45.9 - Univariate AnalysisGene feature/[FreeCoursesOnline.Me].url
133 Bytes
4.5 - Lambda functions/[FreeCoursesOnline.Me].url
133 Bytes
46.10 - Data Cleaning Speed/[FreeCoursesOnline.Me].url
133 Bytes
46.11 - Data Cleaning Distance/[FreeCoursesOnline.Me].url
133 Bytes
46.12 - Data Cleaning Fare/[FreeCoursesOnline.Me].url
133 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/[FreeCoursesOnline.Me].url
133 Bytes
46.14 - Data PreparationClusteringSegmentation/[FreeCoursesOnline.Me].url
133 Bytes
46.15 - Data PreparationTime binning/[FreeCoursesOnline.Me].url
133 Bytes
46.16 - Data PreparationSmoothing time-series data/[FreeCoursesOnline.Me].url
133 Bytes
46.17 - Data PreparationSmoothing time-series data cont/[FreeCoursesOnline.Me].url
133 Bytes
46.18 - Data Preparation Time series and Fourier transforms/[FreeCoursesOnline.Me].url
133 Bytes
46.19 - Ratios and previous-time-bin values/[FreeCoursesOnline.Me].url
133 Bytes
46.1 - BusinessReal world problem Overview/[FreeCoursesOnline.Me].url
133 Bytes
46.20 - Simple moving average/[FreeCoursesOnline.Me].url
133 Bytes
46.21 - Weighted Moving average/[FreeCoursesOnline.Me].url
133 Bytes
46.22 - Exponential weighted moving average/[FreeCoursesOnline.Me].url
133 Bytes
46.23 - Results/[FreeCoursesOnline.Me].url
133 Bytes
46.24 - Regression models Train-Test split & Features/[FreeCoursesOnline.Me].url
133 Bytes
46.25 - Linear regression/[FreeCoursesOnline.Me].url
133 Bytes
46.26 - Random Forest regression/[FreeCoursesOnline.Me].url
133 Bytes
46.27 - Xgboost Regression/[FreeCoursesOnline.Me].url
133 Bytes
46.28 - Model comparison/[FreeCoursesOnline.Me].url
133 Bytes
46.29 - Assignment/[FreeCoursesOnline.Me].url
133 Bytes
46.2 - Objectives and Constraints/[FreeCoursesOnline.Me].url
133 Bytes
46.3 - Mapping to ML problem Data/[FreeCoursesOnline.Me].url
133 Bytes
46.4 - Mapping to ML problem dask dataframes/[FreeCoursesOnline.Me].url
133 Bytes
46.5 - Mapping to ML problem FieldsFeatures/[FreeCoursesOnline.Me].url
133 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/[FreeCoursesOnline.Me].url
133 Bytes
46.7 - Mapping to ML problem Performance metrics/[FreeCoursesOnline.Me].url
133 Bytes
46.8 - Data Cleaning Latitude and Longitude data/[FreeCoursesOnline.Me].url
133 Bytes
46.9 - Data Cleaning Trip Duration/[FreeCoursesOnline.Me].url
133 Bytes
4.6 - Modules/[FreeCoursesOnline.Me].url
133 Bytes
47.10 - Backpropagation/[FreeCoursesOnline.Me].url
133 Bytes
47.11 - Activation functions/[FreeCoursesOnline.Me].url
133 Bytes
47.12 - Vanishing Gradient problem/[FreeCoursesOnline.Me].url
133 Bytes
47.13 - Bias-Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
47.14 - Decision surfaces Playground/[FreeCoursesOnline.Me].url
133 Bytes
47.1 - History of Neural networks and Deep Learning/[FreeCoursesOnline.Me].url
133 Bytes
47.2 - How Biological Neurons work/[FreeCoursesOnline.Me].url
133 Bytes
47.3 - Growth of biological neural networks/[FreeCoursesOnline.Me].url
133 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/[FreeCoursesOnline.Me].url
133 Bytes
47.5 - Multi-Layered Perceptron (MLP)/[FreeCoursesOnline.Me].url
133 Bytes
47.6 - Notation/[FreeCoursesOnline.Me].url
133 Bytes
47.7 - Training a single-neuron model/[FreeCoursesOnline.Me].url
133 Bytes
47.8 - Training an MLP Chain Rule/[FreeCoursesOnline.Me].url
133 Bytes
47.9 - Training an MLPMemoization/[FreeCoursesOnline.Me].url
133 Bytes
4.7 - Packages/[FreeCoursesOnline.Me].url
133 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/[FreeCoursesOnline.Me].url
133 Bytes
48.11 - OptimizersAdaGrad/[FreeCoursesOnline.Me].url
133 Bytes
48.12 - Optimizers Adadelta andRMSProp/[FreeCoursesOnline.Me].url
133 Bytes
48.13 - Adam/[FreeCoursesOnline.Me].url
133 Bytes
48.14 - Which algorithm to choose when/[FreeCoursesOnline.Me].url
133 Bytes
48.15 - Gradient Checking and clipping/[FreeCoursesOnline.Me].url
133 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/[FreeCoursesOnline.Me].url
133 Bytes
48.17 - How to train a Deep MLP/[FreeCoursesOnline.Me].url
133 Bytes
48.18 - Auto Encoders/[FreeCoursesOnline.Me].url
133 Bytes
48.19 - Word2Vec CBOW/[FreeCoursesOnline.Me].url
133 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/[FreeCoursesOnline.Me].url
133 Bytes
48.20 - Word2Vec Skip-gram/[FreeCoursesOnline.Me].url
133 Bytes
48.21 - Word2Vec Algorithmic Optimizations/[FreeCoursesOnline.Me].url
133 Bytes
48.2 - Dropout layers & Regularization/[FreeCoursesOnline.Me].url
133 Bytes
48.3 - Rectified Linear Units (ReLU)/[FreeCoursesOnline.Me].url
133 Bytes
48.4 - Weight initialization/[FreeCoursesOnline.Me].url
133 Bytes
48.5 - Batch Normalization/[FreeCoursesOnline.Me].url
133 Bytes
48.6 - OptimizersHill-descent analogy in 2D/[FreeCoursesOnline.Me].url
133 Bytes
48.7 - OptimizersHill descent in 3D and contours/[FreeCoursesOnline.Me].url
133 Bytes
48.8 - SGD Recap/[FreeCoursesOnline.Me].url
133 Bytes
48.9 - Batch SGD with momentum/[FreeCoursesOnline.Me].url
133 Bytes
4.8 - File Handling/[FreeCoursesOnline.Me].url
133 Bytes
49.10 - Model 3 Batch Normalization/[FreeCoursesOnline.Me].url
133 Bytes
49.11 - Model 4 Dropout/[FreeCoursesOnline.Me].url
133 Bytes
49.12 - MNIST classification in Keras/[FreeCoursesOnline.Me].url
133 Bytes
49.13 - Hyperparameter tuning in Keras/[FreeCoursesOnline.Me].url
133 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
49.1 - Tensorflow and Keras overview/[FreeCoursesOnline.Me].url
133 Bytes
49.2 - GPU vs CPU for Deep Learning/[FreeCoursesOnline.Me].url
133 Bytes
49.3 - Google Colaboratory/[FreeCoursesOnline.Me].url
133 Bytes
49.4 - Install TensorFlow/[FreeCoursesOnline.Me].url
133 Bytes
49.5 - Online documentation and tutorials/[FreeCoursesOnline.Me].url
133 Bytes
49.6 - Softmax Classifier on MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
49.7 - MLP Initialization/[FreeCoursesOnline.Me].url
133 Bytes
49.8 - Model 1 Sigmoid activation/[FreeCoursesOnline.Me].url
133 Bytes
49.9 - Model 2 ReLU activation/[FreeCoursesOnline.Me].url
133 Bytes
4.9 - Exception Handling/[FreeCoursesOnline.Me].url
133 Bytes
50.10 - Data Augmentation/[FreeCoursesOnline.Me].url
133 Bytes
50.11 - Convolution Layers in Keras/[FreeCoursesOnline.Me].url
133 Bytes
50.12 - AlexNet/[FreeCoursesOnline.Me].url
133 Bytes
50.13 - VGGNet/[FreeCoursesOnline.Me].url
133 Bytes
50.14 - Residual Network/[FreeCoursesOnline.Me].url
133 Bytes
50.15 - Inception Network/[FreeCoursesOnline.Me].url
133 Bytes
50.16 - What is Transfer learning/[FreeCoursesOnline.Me].url
133 Bytes
50.17 - Code example Cats vs Dogs/[FreeCoursesOnline.Me].url
133 Bytes
50.18 - Code Example MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/[FreeCoursesOnline.Me].url
133 Bytes
50.1 - Biological inspiration Visual Cortex/[FreeCoursesOnline.Me].url
133 Bytes
50.2 - ConvolutionEdge Detection on images/[FreeCoursesOnline.Me].url
133 Bytes
50.3 - ConvolutionPadding and strides/[FreeCoursesOnline.Me].url
133 Bytes
50.4 - Convolution over RGB images/[FreeCoursesOnline.Me].url
133 Bytes
50.5 - Convolutional layer/[FreeCoursesOnline.Me].url
133 Bytes
50.6 - Max-pooling/[FreeCoursesOnline.Me].url
133 Bytes
50.7 - CNN Training Optimization/[FreeCoursesOnline.Me].url
133 Bytes
50.8 - Example CNN LeNet [1998]/[FreeCoursesOnline.Me].url
133 Bytes
50.9 - ImageNet dataset/[FreeCoursesOnline.Me].url
133 Bytes
51.10 - Code example IMDB Sentiment classification/[FreeCoursesOnline.Me].url
133 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/[FreeCoursesOnline.Me].url
133 Bytes
51.1 - Why RNNs/[FreeCoursesOnline.Me].url
133 Bytes
51.2 - Recurrent Neural Network/[FreeCoursesOnline.Me].url
133 Bytes
51.3 - Training RNNs Backprop/[FreeCoursesOnline.Me].url
133 Bytes
51.4 - Types of RNNs/[FreeCoursesOnline.Me].url
133 Bytes
51.5 - Need for LSTMGRU/[FreeCoursesOnline.Me].url
133 Bytes
51.6 - LSTM/[FreeCoursesOnline.Me].url
133 Bytes
51.7 - GRUs/[FreeCoursesOnline.Me].url
133 Bytes
51.8 - Deep RNN/[FreeCoursesOnline.Me].url
133 Bytes
51.9 - Bidirectional RNN/[FreeCoursesOnline.Me].url
133 Bytes
5.1 - Numpy Introduction/[FreeCoursesOnline.Me].url
133 Bytes
52.1 - Questions and Answers/[FreeCoursesOnline.Me].url
133 Bytes
5.2 - Numerical operations on Numpy/[FreeCoursesOnline.Me].url
133 Bytes
53.10 - NVIDIA’s end to end CNN model/[FreeCoursesOnline.Me].url
133 Bytes
53.11 - Train the model/[FreeCoursesOnline.Me].url
133 Bytes
53.12 - Test and visualize the output/[FreeCoursesOnline.Me].url
133 Bytes
53.13 - Extensions/[FreeCoursesOnline.Me].url
133 Bytes
53.14 - Assignment/[FreeCoursesOnline.Me].url
133 Bytes
53.1 - Self Driving Car Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
53.2 - Datasets/[FreeCoursesOnline.Me].url
133 Bytes
53.2 - Datasets#/[FreeCoursesOnline.Me].url
133 Bytes
53.3 - Data understanding & Analysis Files and folders/[FreeCoursesOnline.Me].url
133 Bytes
53.4 - Dash-cam images and steering angles/[FreeCoursesOnline.Me].url
133 Bytes
53.5 - Split the dataset Train vs Test/[FreeCoursesOnline.Me].url
133 Bytes
53.6 - EDA Steering angles/[FreeCoursesOnline.Me].url
133 Bytes
53.7 - Mean Baseline model simple/[FreeCoursesOnline.Me].url
133 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/[FreeCoursesOnline.Me].url
133 Bytes
53.9 - Batch load the dataset/[FreeCoursesOnline.Me].url
133 Bytes
54.10 - MIDI music generation/[FreeCoursesOnline.Me].url
133 Bytes
54.11 - Survey blog/[FreeCoursesOnline.Me].url
133 Bytes
54.1 - Real-world problem/[FreeCoursesOnline.Me].url
133 Bytes
54.2 - Music representation/[FreeCoursesOnline.Me].url
133 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/[FreeCoursesOnline.Me].url
133 Bytes
54.4 - Char-RNN with abc-notation Data preparation/[FreeCoursesOnline.Me].url
133 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/[FreeCoursesOnline.Me].url
133 Bytes
54.6 - Char-RNN with abc-notation State full RNN/[FreeCoursesOnline.Me].url
133 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/[FreeCoursesOnline.Me].url
133 Bytes
54.8 - Char-RNN with abc-notation Music generation/[FreeCoursesOnline.Me].url
133 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/[FreeCoursesOnline.Me].url
133 Bytes
55.1 - Human Activity Recognition Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
55.2 - Dataset understanding/[FreeCoursesOnline.Me].url
133 Bytes
55.3 - Data cleaning & preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
55.4 - EDAUnivariate analysis/[FreeCoursesOnline.Me].url
133 Bytes
55.5 - EDAData visualization using t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
55.6 - Classical ML models/[FreeCoursesOnline.Me].url
133 Bytes
55.7 - Deep-learning Model/[FreeCoursesOnline.Me].url
133 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/[FreeCoursesOnline.Me].url
133 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/[FreeCoursesOnline.Me].url
133 Bytes
56.11 - PageRank/[FreeCoursesOnline.Me].url
133 Bytes
56.12 - Shortest Path/[FreeCoursesOnline.Me].url
133 Bytes
56.13 - Connected-components/[FreeCoursesOnline.Me].url
133 Bytes
56.14 - Adar Index/[FreeCoursesOnline.Me].url
133 Bytes
56.15 - Kartz Centrality/[FreeCoursesOnline.Me].url
133 Bytes
56.16 - HITS Score/[FreeCoursesOnline.Me].url
133 Bytes
56.17 - SVD/[FreeCoursesOnline.Me].url
133 Bytes
56.18 - Weight features/[FreeCoursesOnline.Me].url
133 Bytes
56.19 - Modeling/[FreeCoursesOnline.Me].url
133 Bytes
56.1 - Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/[FreeCoursesOnline.Me].url
133 Bytes
56.3 - Data format & Limitations/[FreeCoursesOnline.Me].url
133 Bytes
56.4 - Mapping to a supervised classification problem/[FreeCoursesOnline.Me].url
133 Bytes
56.5 - Business constraints & Metrics/[FreeCoursesOnline.Me].url
133 Bytes
56.6 - EDABasic Stats/[FreeCoursesOnline.Me].url
133 Bytes
56.7 - EDAFollower and following stats/[FreeCoursesOnline.Me].url
133 Bytes
56.8 - EDABinary Classification Task/[FreeCoursesOnline.Me].url
133 Bytes
56.9 - EDATrain and test split/[FreeCoursesOnline.Me].url
133 Bytes
57.10 - ORDER BY/[FreeCoursesOnline.Me].url
133 Bytes
57.11 - DISTINCT/[FreeCoursesOnline.Me].url
133 Bytes
57.12 - WHERE, Comparison operators, NULL/[FreeCoursesOnline.Me].url
133 Bytes
57.13 - Logical Operators/[FreeCoursesOnline.Me].url
133 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/[FreeCoursesOnline.Me].url
133 Bytes
57.15 - GROUP BY/[FreeCoursesOnline.Me].url
133 Bytes
57.16 - HAVING/[FreeCoursesOnline.Me].url
133 Bytes
57.17 - Order of keywords#/[FreeCoursesOnline.Me].url
133 Bytes
57.18 - Join and Natural Join/[FreeCoursesOnline.Me].url
133 Bytes
57.19 - Inner, Left, Right and Outer joins/[FreeCoursesOnline.Me].url
133 Bytes
57.1 - Introduction to Databases/[FreeCoursesOnline.Me].url
133 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/[FreeCoursesOnline.Me].url
133 Bytes
57.21 - DMLINSERT/[FreeCoursesOnline.Me].url
133 Bytes
57.22 - DMLUPDATE , DELETE/[FreeCoursesOnline.Me].url
133 Bytes
57.23 - DDLCREATE TABLE/[FreeCoursesOnline.Me].url
133 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/[FreeCoursesOnline.Me].url
133 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/[FreeCoursesOnline.Me].url
133 Bytes
57.26 - Data Control Language GRANT, REVOKE/[FreeCoursesOnline.Me].url
133 Bytes
57.27 - Learning resources/[FreeCoursesOnline.Me].url
133 Bytes
57.2 - Why SQL/[FreeCoursesOnline.Me].url
133 Bytes
57.3 - Execution of an SQL statement/[FreeCoursesOnline.Me].url
133 Bytes
57.4 - IMDB dataset/[FreeCoursesOnline.Me].url
133 Bytes
57.5 - Installing MySQL/[FreeCoursesOnline.Me].url
133 Bytes
57.6 - Load IMDB data/[FreeCoursesOnline.Me].url
133 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/[FreeCoursesOnline.Me].url
133 Bytes
57.8 - SELECT/[FreeCoursesOnline.Me].url
133 Bytes
57.9 - LIMIT, OFFSET/[FreeCoursesOnline.Me].url
133 Bytes
58.1 - AD-Click Predicition/[FreeCoursesOnline.Me].url
133 Bytes
59.1 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
59.2 - Questions/[FreeCoursesOnline.Me].url
133 Bytes
59.3 - External resources for Interview Questions/[FreeCoursesOnline.Me].url
133 Bytes
6.1 - Getting started with Matplotlib/[FreeCoursesOnline.Me].url
133 Bytes
7.1 - Getting started with pandas/[FreeCoursesOnline.Me].url
133 Bytes
7.2 - Data Frame Basics/[FreeCoursesOnline.Me].url
133 Bytes
7.3 - Key Operations on Data Frames/[FreeCoursesOnline.Me].url
133 Bytes
8.1 - Space and Time Complexity Find largest number in a list/[FreeCoursesOnline.Me].url
133 Bytes
8.2 - Binary search/[FreeCoursesOnline.Me].url
133 Bytes
8.3 - Find elements common in two lists/[FreeCoursesOnline.Me].url
133 Bytes
8.4 - Find elements common in two lists using a HashtableDict/[FreeCoursesOnline.Me].url
133 Bytes
9.10 - Percentiles and Quantiles/[FreeCoursesOnline.Me].url
133 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/[FreeCoursesOnline.Me].url
133 Bytes
9.12 - Box-plot with Whiskers/[FreeCoursesOnline.Me].url
133 Bytes
9.13 - Violin Plots/[FreeCoursesOnline.Me].url
133 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/[FreeCoursesOnline.Me].url
133 Bytes
9.15 - Multivariate Probability Density, Contour Plot/[FreeCoursesOnline.Me].url
133 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/[FreeCoursesOnline.Me].url
133 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/[FreeCoursesOnline.Me].url
133 Bytes
9.2 - 3D scatter plot/[FreeCoursesOnline.Me].url
133 Bytes
9.3 - Pair plots/[FreeCoursesOnline.Me].url
133 Bytes
9.4 - Limitations of Pair Plots/[FreeCoursesOnline.Me].url
133 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/[FreeCoursesOnline.Me].url
133 Bytes
9.6 - Univariate Analysis using PDF/[FreeCoursesOnline.Me].url
133 Bytes
9.7 - CDF(Cumulative Distribution Function)/[FreeCoursesOnline.Me].url
133 Bytes
9.8 - Mean, Variance and Standard Deviation/[FreeCoursesOnline.Me].url
133 Bytes
9.9 - Median/[FreeCoursesOnline.Me].url
133 Bytes
[FreeCoursesOnline.Me].url
133 Bytes
10.10 - Hyper Cube,Hyper Cuboid/[FreeTutorials.Eu].url
129 Bytes
10.11 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
10.1 - Why learn it/[FreeTutorials.Eu].url
129 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/[FreeTutorials.Eu].url
129 Bytes
10.3 - Dot Product and Angle between 2 Vectors/[FreeTutorials.Eu].url
129 Bytes
10.4 - Projection and Unit Vector/[FreeTutorials.Eu].url
129 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/[FreeTutorials.Eu].url
129 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/[FreeTutorials.Eu].url
129 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/[FreeTutorials.Eu].url
129 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/[FreeTutorials.Eu].url
129 Bytes
10.9 - Square ,Rectangle/[FreeTutorials.Eu].url
129 Bytes
11.10 - How distributions are used/[FreeTutorials.Eu].url
129 Bytes
11.11 - Chebyshev’s inequality/[FreeTutorials.Eu].url
129 Bytes
11.12 - Discrete and Continuous Uniform distributions/[FreeTutorials.Eu].url
129 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/[FreeTutorials.Eu].url
129 Bytes
11.14 - Bernoulli and Binomial Distribution/[FreeTutorials.Eu].url
129 Bytes
11.15 - Log Normal Distribution/[FreeTutorials.Eu].url
129 Bytes
11.16 - Power law distribution/[FreeTutorials.Eu].url
129 Bytes
11.17 - Box cox transform/[FreeTutorials.Eu].url
129 Bytes
11.18 - Applications of non-gaussian distributions/[FreeTutorials.Eu].url
129 Bytes
11.19 - Co-variance/[FreeTutorials.Eu].url
129 Bytes
11.1 - Introduction to Probability and Statistics/[FreeTutorials.Eu].url
129 Bytes
11.20 - Pearson Correlation Coefficient/[FreeTutorials.Eu].url
129 Bytes
11.21 - Spearman Rank Correlation Coefficient/[FreeTutorials.Eu].url
129 Bytes
11.22 - Correlation vs Causation/[FreeTutorials.Eu].url
129 Bytes
11.23 - How to use correlations/[FreeTutorials.Eu].url
129 Bytes
11.24 - Confidence interval (C.I) Introduction/[FreeTutorials.Eu].url
129 Bytes
11.25 - Computing confidence interval given the underlying distribution/[FreeTutorials.Eu].url
129 Bytes
11.26 - C.I for mean of a normal random variable/[FreeTutorials.Eu].url
129 Bytes
11.27 - Confidence interval using bootstrapping/[FreeTutorials.Eu].url
129 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/[FreeTutorials.Eu].url
129 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/[FreeTutorials.Eu].url
129 Bytes
11.2 - Population and Sample/[FreeTutorials.Eu].url
129 Bytes
11.30 - Resampling and permutation test/[FreeTutorials.Eu].url
129 Bytes
11.31 - K-S Test for similarity of two distributions/[FreeTutorials.Eu].url
129 Bytes
11.32 - Code Snippet K-S Test/[FreeTutorials.Eu].url
129 Bytes
11.33 - Hypothesis testing another example/[FreeTutorials.Eu].url
129 Bytes
11.34 - Resampling and Permutation test another example/[FreeTutorials.Eu].url
129 Bytes
11.35 - How to use hypothesis testing/[FreeTutorials.Eu].url
129 Bytes
11.36 - Proportional Sampling/[FreeTutorials.Eu].url
129 Bytes
11.37 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/[FreeTutorials.Eu].url
129 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/[FreeTutorials.Eu].url
129 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/[FreeTutorials.Eu].url
129 Bytes
11.6 - Standard normal variate (Z) and standardization/[FreeTutorials.Eu].url
129 Bytes
11.7 - Kernel density estimation/[FreeTutorials.Eu].url
129 Bytes
11.8 - Sampling distribution & Central Limit theorem/[FreeTutorials.Eu].url
129 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/[FreeTutorials.Eu].url
129 Bytes
1.1 - How to Learn from Appliedaicourse/[FreeTutorials.Eu].url
129 Bytes
12.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
1.2 - How the Job Guarantee program works/[FreeTutorials.Eu].url
129 Bytes
13.10 - Code to Load MNIST Data Set/[FreeTutorials.Eu].url
129 Bytes
13.1 - What is Dimensionality reduction/[FreeTutorials.Eu].url
129 Bytes
13.2 - Row Vector and Column Vector/[FreeTutorials.Eu].url
129 Bytes
13.3 - How to represent a data set/[FreeTutorials.Eu].url
129 Bytes
13.4 - How to represent a dataset as a Matrix/[FreeTutorials.Eu].url
129 Bytes
13.5 - Data Preprocessing Feature Normalisation/[FreeTutorials.Eu].url
129 Bytes
13.6 - Mean of a data matrix/[FreeTutorials.Eu].url
129 Bytes
13.7 - Data Preprocessing Column Standardization/[FreeTutorials.Eu].url
129 Bytes
13.8 - Co-variance of a Data Matrix/[FreeTutorials.Eu].url
129 Bytes
13.9 - MNIST dataset (784 dimensional)/[FreeTutorials.Eu].url
129 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/[FreeTutorials.Eu].url
129 Bytes
14.1 - Why learn PCA/[FreeTutorials.Eu].url
129 Bytes
14.2 - Geometric intuition of PCA/[FreeTutorials.Eu].url
129 Bytes
14.3 - Mathematical objective function of PCA/[FreeTutorials.Eu].url
129 Bytes
14.4 - Alternative formulation of PCA Distance minimization/[FreeTutorials.Eu].url
129 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/[FreeTutorials.Eu].url
129 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/[FreeTutorials.Eu].url
129 Bytes
14.7 - Visualize MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
14.8 - Limitations of PCA/[FreeTutorials.Eu].url
129 Bytes
14.9 - PCA Code example/[FreeTutorials.Eu].url
129 Bytes
15.1 - What is t-SNE/[FreeTutorials.Eu].url
129 Bytes
15.2 - Neighborhood of a point, Embedding/[FreeTutorials.Eu].url
129 Bytes
15.3 - Geometric intuition of t-SNE/[FreeTutorials.Eu].url
129 Bytes
15.4 - Crowding Problem/[FreeTutorials.Eu].url
129 Bytes
15.5 - How to apply t-SNE and interpret its output/[FreeTutorials.Eu].url
129 Bytes
15.6 - t-SNE on MNIST/[FreeTutorials.Eu].url
129 Bytes
15.7 - Code example of t-SNE/[FreeTutorials.Eu].url
129 Bytes
15.8 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
16.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/[FreeTutorials.Eu].url
129 Bytes
17.11 - Bag of Words( Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.12 - Text Preprocessing( Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.14 - TF-IDF (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.15 - Word2Vec (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.17 - Assignment-2 Apply t-SNE/[FreeTutorials.Eu].url
129 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/[FreeTutorials.Eu].url
129 Bytes
17.2 - Data Cleaning Deduplication/[FreeTutorials.Eu].url
129 Bytes
17.3 - Why convert text to a vector/[FreeTutorials.Eu].url
129 Bytes
17.4 - Bag of Words (BoW)/[FreeTutorials.Eu].url
129 Bytes
17.5 - Text Preprocessing Stemming/[FreeTutorials.Eu].url
129 Bytes
17.6 - uni-gram, bi-gram, n-grams/[FreeTutorials.Eu].url
129 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/[FreeTutorials.Eu].url
129 Bytes
17.8 - Why use log in IDF/[FreeTutorials.Eu].url
129 Bytes
17.9 - Word2Vec/[FreeTutorials.Eu].url
129 Bytes
18.10 - KNN Limitations/[FreeTutorials.Eu].url
129 Bytes
18.11 - Decision surface for K-NN as K changes/[FreeTutorials.Eu].url
129 Bytes
18.12 - Overfitting and Underfitting/[FreeTutorials.Eu].url
129 Bytes
18.13 - Need for Cross validation/[FreeTutorials.Eu].url
129 Bytes
18.14 - K-fold cross validation/[FreeTutorials.Eu].url
129 Bytes
18.15 - Visualizing train, validation and test datasets/[FreeTutorials.Eu].url
129 Bytes
18.16 - How to determine overfitting and underfitting/[FreeTutorials.Eu].url
129 Bytes
18.17 - Time based splitting/[FreeTutorials.Eu].url
129 Bytes
18.18 - k-NN for regression/[FreeTutorials.Eu].url
129 Bytes
18.19 - Weighted k-NN/[FreeTutorials.Eu].url
129 Bytes
18.1 - How “Classification” works/[FreeTutorials.Eu].url
129 Bytes
18.20 - Voronoi diagram/[FreeTutorials.Eu].url
129 Bytes
18.21 - Binary search tree/[FreeTutorials.Eu].url
129 Bytes
18.22 - How to build a kd-tree/[FreeTutorials.Eu].url
129 Bytes
18.23 - Find nearest neighbours using kd-tree/[FreeTutorials.Eu].url
129 Bytes
18.24 - Limitations of Kd tree/[FreeTutorials.Eu].url
129 Bytes
18.25 - Extensions/[FreeTutorials.Eu].url
129 Bytes
18.26 - Hashing vs LSH/[FreeTutorials.Eu].url
129 Bytes
18.27 - LSH for cosine similarity/[FreeTutorials.Eu].url
129 Bytes
18.28 - LSH for euclidean distance/[FreeTutorials.Eu].url
129 Bytes
18.29 - Probabilistic class label/[FreeTutorials.Eu].url
129 Bytes
18.2 - Data matrix notation/[FreeTutorials.Eu].url
129 Bytes
18.30 - Code SampleDecision boundary/[FreeTutorials.Eu].url
129 Bytes
18.31 - Code SampleCross Validation/[FreeTutorials.Eu].url
129 Bytes
18.32 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
18.3 - Classification vs Regression (examples)/[FreeTutorials.Eu].url
129 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/[FreeTutorials.Eu].url
129 Bytes
18.5 - Failure cases of KNN/[FreeTutorials.Eu].url
129 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/[FreeTutorials.Eu].url
129 Bytes
18.7 - Cosine Distance & Cosine Similarity/[FreeTutorials.Eu].url
129 Bytes
18.8 - How to measure the effectiveness of k-NN/[FreeTutorials.Eu].url
129 Bytes
18.9 - TestEvaluation time and space complexity/[FreeTutorials.Eu].url
129 Bytes
19.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
20.10 - Local reachability-density(A)/[FreeTutorials.Eu].url
129 Bytes
20.11 - Local outlier Factor(A)/[FreeTutorials.Eu].url
129 Bytes
20.12 - Impact of Scale & Column standardization/[FreeTutorials.Eu].url
129 Bytes
20.13 - Interpretability/[FreeTutorials.Eu].url
129 Bytes
20.14 - Feature Importance and Forward Feature selection/[FreeTutorials.Eu].url
129 Bytes
20.15 - Handling categorical and numerical features/[FreeTutorials.Eu].url
129 Bytes
20.16 - Handling missing values by imputation/[FreeTutorials.Eu].url
129 Bytes
20.17 - curse of dimensionality/[FreeTutorials.Eu].url
129 Bytes
20.18 - Bias-Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
20.19 - Intuitive understanding of bias-variance/[FreeTutorials.Eu].url
129 Bytes
20.1 - Introduction/[FreeTutorials.Eu].url
129 Bytes
20.20 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
20.21 - best and wrost case of algorithm/[FreeTutorials.Eu].url
129 Bytes
20.2 - Imbalanced vs balanced dataset/[FreeTutorials.Eu].url
129 Bytes
20.3 - Multi-class classification/[FreeTutorials.Eu].url
129 Bytes
20.4 - k-NN, given a distance or similarity matrix/[FreeTutorials.Eu].url
129 Bytes
20.5 - Train and test set differences/[FreeTutorials.Eu].url
129 Bytes
20.6 - Impact of outliers/[FreeTutorials.Eu].url
129 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/[FreeTutorials.Eu].url
129 Bytes
20.8 - k distance/[FreeTutorials.Eu].url
129 Bytes
20.9 - Reachability-Distance(A,B)/[FreeTutorials.Eu].url
129 Bytes
2.10 - Control flow for loop/[FreeTutorials.Eu].url
129 Bytes
21.10 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
21.1 - Accuracy/[FreeTutorials.Eu].url
129 Bytes
2.11 - Control flow break and continue/[FreeTutorials.Eu].url
129 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/[FreeTutorials.Eu].url
129 Bytes
21.3 - Precision and recall, F1-score/[FreeTutorials.Eu].url
129 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/[FreeTutorials.Eu].url
129 Bytes
21.5 - Log-loss/[FreeTutorials.Eu].url
129 Bytes
21.6 - R-SquaredCoefficient of determination/[FreeTutorials.Eu].url
129 Bytes
21.7 - Median absolute deviation (MAD)/[FreeTutorials.Eu].url
129 Bytes
21.8 - Distribution of errors/[FreeTutorials.Eu].url
129 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/[FreeTutorials.Eu].url
129 Bytes
2.1 - Python, Anaconda and relevant packages installations/[FreeTutorials.Eu].url
129 Bytes
22.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
2.2 - Why learn Python/[FreeTutorials.Eu].url
129 Bytes
23.10 - Bias and Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
23.11 - Feature importance and interpretability/[FreeTutorials.Eu].url
129 Bytes
23.12 - Imbalanced data/[FreeTutorials.Eu].url
129 Bytes
23.13 - Outliers/[FreeTutorials.Eu].url
129 Bytes
23.14 - Missing values/[FreeTutorials.Eu].url
129 Bytes
23.15 - Handling Numerical features (Gaussian NB)/[FreeTutorials.Eu].url
129 Bytes
23.16 - Multiclass classification/[FreeTutorials.Eu].url
129 Bytes
23.17 - Similarity or Distance matrix/[FreeTutorials.Eu].url
129 Bytes
23.18 - Large dimensionality/[FreeTutorials.Eu].url
129 Bytes
23.19 - Best and worst cases/[FreeTutorials.Eu].url
129 Bytes
23.1 - Conditional probability/[FreeTutorials.Eu].url
129 Bytes
23.20 - Code example/[FreeTutorials.Eu].url
129 Bytes
23.21 - Assignment-4 Apply Naive Bayes/[FreeTutorials.Eu].url
129 Bytes
23.22 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
23.2 - Independent vs Mutually exclusive events/[FreeTutorials.Eu].url
129 Bytes
23.3 - Bayes Theorem with examples/[FreeTutorials.Eu].url
129 Bytes
23.4 - Exercise problems on Bayes Theorem/[FreeTutorials.Eu].url
129 Bytes
23.5 - Naive Bayes algorithm/[FreeTutorials.Eu].url
129 Bytes
23.6 - Toy example Train and test stages/[FreeTutorials.Eu].url
129 Bytes
23.7 - Naive Bayes on Text data/[FreeTutorials.Eu].url
129 Bytes
23.8 - LaplaceAdditive Smoothing/[FreeTutorials.Eu].url
129 Bytes
23.9 - Log-probabilities for numerical stability/[FreeTutorials.Eu].url
129 Bytes
2.3 - Keywords and identifiers/[FreeTutorials.Eu].url
129 Bytes
24.10 - Column Standardization/[FreeTutorials.Eu].url
129 Bytes
24.11 - Feature importance and Model interpretability/[FreeTutorials.Eu].url
129 Bytes
24.12 - Collinearity of features/[FreeTutorials.Eu].url
129 Bytes
24.13 - TestRun time space and time complexity/[FreeTutorials.Eu].url
129 Bytes
24.14 - Real world cases/[FreeTutorials.Eu].url
129 Bytes
24.15 - Non-linearly separable data & feature engineering/[FreeTutorials.Eu].url
129 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/[FreeTutorials.Eu].url
129 Bytes
24.17 - Assignment-5 Apply Logistic Regression/[FreeTutorials.Eu].url
129 Bytes
24.18 - Extensions to Generalized linear models/[FreeTutorials.Eu].url
129 Bytes
24.1 - Geometric intuition of Logistic Regression/[FreeTutorials.Eu].url
129 Bytes
24.2 - Sigmoid function Squashing/[FreeTutorials.Eu].url
129 Bytes
24.3 - Mathematical formulation of Objective function/[FreeTutorials.Eu].url
129 Bytes
24.4 - Weight vector/[FreeTutorials.Eu].url
129 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/[FreeTutorials.Eu].url
129 Bytes
24.6 - L1 regularization and sparsity/[FreeTutorials.Eu].url
129 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/[FreeTutorials.Eu].url
129 Bytes
24.8 - Loss minimization interpretation/[FreeTutorials.Eu].url
129 Bytes
24.9 - hyperparameters and random search/[FreeTutorials.Eu].url
129 Bytes
2.4 - comments, indentation and statements/[FreeTutorials.Eu].url
129 Bytes
25.1 - Geometric intuition of Linear Regression/[FreeTutorials.Eu].url
129 Bytes
25.2 - Mathematical formulation/[FreeTutorials.Eu].url
129 Bytes
25.3 - Real world Cases/[FreeTutorials.Eu].url
129 Bytes
25.4 - Code sample for Linear Regression/[FreeTutorials.Eu].url
129 Bytes
2.5 - Variables and data types in Python/[FreeTutorials.Eu].url
129 Bytes
26.10 - Logistic regression formulation revisited/[FreeTutorials.Eu].url
129 Bytes
26.11 - Why L1 regularization creates sparsity/[FreeTutorials.Eu].url
129 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/[FreeTutorials.Eu].url
129 Bytes
26.13 - Revision questions/[FreeTutorials.Eu].url
129 Bytes
26.1 - Differentiation/[FreeTutorials.Eu].url
129 Bytes
26.2 - Online differentiation tools/[FreeTutorials.Eu].url
129 Bytes
26.3 - Maxima and Minima/[FreeTutorials.Eu].url
129 Bytes
26.4 - Vector calculus Grad/[FreeTutorials.Eu].url
129 Bytes
26.5 - Gradient descent geometric intuition/[FreeTutorials.Eu].url
129 Bytes
26.6 - Learning rate/[FreeTutorials.Eu].url
129 Bytes
26.7 - Gradient descent for linear regression/[FreeTutorials.Eu].url
129 Bytes
26.8 - SGD algorithm/[FreeTutorials.Eu].url
129 Bytes
26.9 - Constrained Optimization & PCA/[FreeTutorials.Eu].url
129 Bytes
2.6 - Standard Input and Output/[FreeTutorials.Eu].url
129 Bytes
27.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
2.7 - Operators/[FreeTutorials.Eu].url
129 Bytes
28.10 - Train and run time complexities/[FreeTutorials.Eu].url
129 Bytes
28.11 - nu-SVM control errors and support vectors/[FreeTutorials.Eu].url
129 Bytes
28.12 - SVM Regression/[FreeTutorials.Eu].url
129 Bytes
28.13 - Cases/[FreeTutorials.Eu].url
129 Bytes
28.14 - Code Sample/[FreeTutorials.Eu].url
129 Bytes
28.15 - Assignment-7 Apply SVM/[FreeTutorials.Eu].url
129 Bytes
28.16 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
28.1 - Geometric Intution/[FreeTutorials.Eu].url
129 Bytes
28.2 - Mathematical derivation/[FreeTutorials.Eu].url
129 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/[FreeTutorials.Eu].url
129 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/[FreeTutorials.Eu].url
129 Bytes
28.5 - Dual form of SVM formulation/[FreeTutorials.Eu].url
129 Bytes
28.6 - kernel trick/[FreeTutorials.Eu].url
129 Bytes
28.7 - Polynomial Kernel/[FreeTutorials.Eu].url
129 Bytes
28.8 - RBF-Kernel/[FreeTutorials.Eu].url
129 Bytes
28.9 - Domain specific Kernels/[FreeTutorials.Eu].url
129 Bytes
2.8 - Control flow if else/[FreeTutorials.Eu].url
129 Bytes
29.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
2.9 - Control flow while loop/[FreeTutorials.Eu].url
129 Bytes
30.10 - Overfitting and Underfitting/[FreeTutorials.Eu].url
129 Bytes
30.11 - Train and Run time complexity/[FreeTutorials.Eu].url
129 Bytes
30.12 - Regression using Decision Trees/[FreeTutorials.Eu].url
129 Bytes
30.13 - Cases/[FreeTutorials.Eu].url
129 Bytes
30.14 - Code Samples/[FreeTutorials.Eu].url
129 Bytes
30.15 - Assignment-8 Apply Decision Trees/[FreeTutorials.Eu].url
129 Bytes
30.16 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/[FreeTutorials.Eu].url
129 Bytes
30.2 - Sample Decision tree/[FreeTutorials.Eu].url
129 Bytes
30.3 - Building a decision TreeEntropy/[FreeTutorials.Eu].url
129 Bytes
30.4 - Building a decision TreeInformation Gain/[FreeTutorials.Eu].url
129 Bytes
30.5 - Building a decision Tree Gini Impurity/[FreeTutorials.Eu].url
129 Bytes
30.6 - Building a decision Tree Constructing a DT/[FreeTutorials.Eu].url
129 Bytes
30.7 - Building a decision Tree Splitting numerical features/[FreeTutorials.Eu].url
129 Bytes
30.8 - Feature standardization/[FreeTutorials.Eu].url
129 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/[FreeTutorials.Eu].url
129 Bytes
31.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
3.1 - Lists/[FreeTutorials.Eu].url
129 Bytes
32.10 - Residuals, Loss functions and gradients/[FreeTutorials.Eu].url
129 Bytes
32.11 - Gradient Boosting/[FreeTutorials.Eu].url
129 Bytes
32.12 - Regularization by Shrinkage/[FreeTutorials.Eu].url
129 Bytes
32.13 - Train and Run time complexity/[FreeTutorials.Eu].url
129 Bytes
32.14 - XGBoost Boosting + Randomization/[FreeTutorials.Eu].url
129 Bytes
32.15 - AdaBoost geometric intuition/[FreeTutorials.Eu].url
129 Bytes
32.16 - Stacking models/[FreeTutorials.Eu].url
129 Bytes
32.17 - Cascading classifiers/[FreeTutorials.Eu].url
129 Bytes
32.18 - Kaggle competitions vs Real world/[FreeTutorials.Eu].url
129 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/[FreeTutorials.Eu].url
129 Bytes
32.1 - What are ensembles/[FreeTutorials.Eu].url
129 Bytes
32.20 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/[FreeTutorials.Eu].url
129 Bytes
32.3 - Random Forest and their construction/[FreeTutorials.Eu].url
129 Bytes
32.4 - Bias-Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
32.5 - Train and run time complexity/[FreeTutorials.Eu].url
129 Bytes
32.6 - BaggingCode Sample/[FreeTutorials.Eu].url
129 Bytes
32.7 - Extremely randomized trees/[FreeTutorials.Eu].url
129 Bytes
32.8 - Random Tree Cases/[FreeTutorials.Eu].url
129 Bytes
32.9 - Boosting Intuition/[FreeTutorials.Eu].url
129 Bytes
3.2 - Tuples part 1/[FreeTutorials.Eu].url
129 Bytes
33.10 - Indicator variables/[FreeTutorials.Eu].url
129 Bytes
33.11 - Feature binning/[FreeTutorials.Eu].url
129 Bytes
33.12 - Interaction variables/[FreeTutorials.Eu].url
129 Bytes
33.13 - Mathematical transforms/[FreeTutorials.Eu].url
129 Bytes
33.14 - Model specific featurizations/[FreeTutorials.Eu].url
129 Bytes
33.15 - Feature orthogonality/[FreeTutorials.Eu].url
129 Bytes
33.16 - Domain specific featurizations/[FreeTutorials.Eu].url
129 Bytes
33.17 - Feature slicing/[FreeTutorials.Eu].url
129 Bytes
33.18 - Kaggle Winners solutions/[FreeTutorials.Eu].url
129 Bytes
33.1 - Introduction/[FreeTutorials.Eu].url
129 Bytes
33.2 - Moving window for Time Series Data/[FreeTutorials.Eu].url
129 Bytes
33.3 - Fourier decomposition/[FreeTutorials.Eu].url
129 Bytes
33.4 - Deep learning features LSTM/[FreeTutorials.Eu].url
129 Bytes
33.5 - Image histogram/[FreeTutorials.Eu].url
129 Bytes
33.6 - Keypoints SIFT/[FreeTutorials.Eu].url
129 Bytes
33.7 - Deep learning features CNN/[FreeTutorials.Eu].url
129 Bytes
33.8 - Relational data/[FreeTutorials.Eu].url
129 Bytes
33.9 - Graph data/[FreeTutorials.Eu].url
129 Bytes
3.3 - Tuples part-2/[FreeTutorials.Eu].url
129 Bytes
34.10 - AB testing/[FreeTutorials.Eu].url
129 Bytes
34.11 - Data Science Life cycle/[FreeTutorials.Eu].url
129 Bytes
34.12 - VC dimension/[FreeTutorials.Eu].url
129 Bytes
34.1 - Calibration of ModelsNeed for calibration/[FreeTutorials.Eu].url
129 Bytes
34.2 - Productionization and deployment of Machine Learning Models/[FreeTutorials.Eu].url
129 Bytes
34.3 - Calibration Plots/[FreeTutorials.Eu].url
129 Bytes
34.4 - Platt’s CalibrationScaling/[FreeTutorials.Eu].url
129 Bytes
34.5 - Isotonic Regression/[FreeTutorials.Eu].url
129 Bytes
34.6 - Code Samples/[FreeTutorials.Eu].url
129 Bytes
34.7 - Modeling in the presence of outliers RANSAC/[FreeTutorials.Eu].url
129 Bytes
34.8 - Productionizing models/[FreeTutorials.Eu].url
129 Bytes
34.9 - Retraining models periodically/[FreeTutorials.Eu].url
129 Bytes
3.4 - Sets/[FreeTutorials.Eu].url
129 Bytes
35.10 - K-Medoids/[FreeTutorials.Eu].url
129 Bytes
35.11 - Determining the right K/[FreeTutorials.Eu].url
129 Bytes
35.12 - Code Samples/[FreeTutorials.Eu].url
129 Bytes
35.13 - Time and space complexity/[FreeTutorials.Eu].url
129 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeTutorials.Eu].url
129 Bytes
35.1 - What is Clustering/[FreeTutorials.Eu].url
129 Bytes
35.2 - Unsupervised learning/[FreeTutorials.Eu].url
129 Bytes
35.3 - Applications/[FreeTutorials.Eu].url
129 Bytes
35.4 - Metrics for Clustering/[FreeTutorials.Eu].url
129 Bytes
35.5 - K-Means Geometric intuition, Centroids/[FreeTutorials.Eu].url
129 Bytes
35.6 - K-Means Mathematical formulation Objective function/[FreeTutorials.Eu].url
129 Bytes
35.7 - K-Means Algorithm/[FreeTutorials.Eu].url
129 Bytes
35.8 - How to initialize K-Means++/[FreeTutorials.Eu].url
129 Bytes
35.9 - Failure casesLimitations/[FreeTutorials.Eu].url
129 Bytes
3.5 - Dictionary/[FreeTutorials.Eu].url
129 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/[FreeTutorials.Eu].url
129 Bytes
36.2 - Agglomerative Clustering/[FreeTutorials.Eu].url
129 Bytes
36.3 - Proximity methods Advantages and Limitations/[FreeTutorials.Eu].url
129 Bytes
36.4 - Time and Space Complexity/[FreeTutorials.Eu].url
129 Bytes
36.5 - Limitations of Hierarchical Clustering/[FreeTutorials.Eu].url
129 Bytes
36.6 - Code sample/[FreeTutorials.Eu].url
129 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeTutorials.Eu].url
129 Bytes
3.6 - Strings/[FreeTutorials.Eu].url
129 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeTutorials.Eu].url
129 Bytes
37.11 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
37.1 - Density based clustering/[FreeTutorials.Eu].url
129 Bytes
37.2 - MinPts and Eps Density/[FreeTutorials.Eu].url
129 Bytes
37.3 - Core, Border and Noise points/[FreeTutorials.Eu].url
129 Bytes
37.4 - Density edge and Density connected points/[FreeTutorials.Eu].url
129 Bytes
37.5 - DBSCAN Algorithm/[FreeTutorials.Eu].url
129 Bytes
37.6 - Hyper Parameters MinPts and Eps/[FreeTutorials.Eu].url
129 Bytes
37.7 - Advantages and Limitations of DBSCAN/[FreeTutorials.Eu].url
129 Bytes
37.8 - Time and Space Complexity/[FreeTutorials.Eu].url
129 Bytes
37.9 - Code samples/[FreeTutorials.Eu].url
129 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/[FreeTutorials.Eu].url
129 Bytes
38.11 - Cold Start problem/[FreeTutorials.Eu].url
129 Bytes
38.12 - Word vectors as MF/[FreeTutorials.Eu].url
129 Bytes
38.13 - Eigen-Faces/[FreeTutorials.Eu].url
129 Bytes
38.14 - Code example/[FreeTutorials.Eu].url
129 Bytes
38.15 - Assignment-11 Apply Truncated SVD/[FreeTutorials.Eu].url
129 Bytes
38.16 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
38.1 - Problem formulation Movie reviews/[FreeTutorials.Eu].url
129 Bytes
38.2 - Content based vs Collaborative Filtering/[FreeTutorials.Eu].url
129 Bytes
38.3 - Similarity based Algorithms/[FreeTutorials.Eu].url
129 Bytes
38.4 - Matrix Factorization PCA, SVD/[FreeTutorials.Eu].url
129 Bytes
38.5 - Matrix Factorization NMF/[FreeTutorials.Eu].url
129 Bytes
38.6 - Matrix Factorization for Collaborative filtering/[FreeTutorials.Eu].url
129 Bytes
38.7 - Matrix Factorization for feature engineering/[FreeTutorials.Eu].url
129 Bytes
38.8 - Clustering as MF/[FreeTutorials.Eu].url
129 Bytes
38.9 - Hyperparameter tuning/[FreeTutorials.Eu].url
129 Bytes
39.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
40.10 - Data Modeling Multi label Classification/[FreeTutorials.Eu].url
129 Bytes
40.11 - Data preparation/[FreeTutorials.Eu].url
129 Bytes
40.12 - Train-Test Split/[FreeTutorials.Eu].url
129 Bytes
40.13 - Featurization/[FreeTutorials.Eu].url
129 Bytes
40.14 - Logistic regression One VS Rest/[FreeTutorials.Eu].url
129 Bytes
40.15 - Sampling data and tags+Weighted models/[FreeTutorials.Eu].url
129 Bytes
40.16 - Logistic regression revisited/[FreeTutorials.Eu].url
129 Bytes
40.17 - Why not use advanced techniques/[FreeTutorials.Eu].url
129 Bytes
40.18 - Assignments/[FreeTutorials.Eu].url
129 Bytes
40.1 - BusinessReal world problem/[FreeTutorials.Eu].url
129 Bytes
40.2 - Business objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
40.3 - Mapping to an ML problem Data overview/[FreeTutorials.Eu].url
129 Bytes
40.4 - Mapping to an ML problemML problem formulation/[FreeTutorials.Eu].url
129 Bytes
40.5 - Mapping to an ML problemPerformance metrics/[FreeTutorials.Eu].url
129 Bytes
40.6 - Hamming loss/[FreeTutorials.Eu].url
129 Bytes
40.7 - EDAData Loading/[FreeTutorials.Eu].url
129 Bytes
40.8 - EDAAnalysis of tags/[FreeTutorials.Eu].url
129 Bytes
40.9 - EDAData Preprocessing/[FreeTutorials.Eu].url
129 Bytes
4.10 - Debugging Python/[FreeTutorials.Eu].url
129 Bytes
41.10 - EDA Feature analysis/[FreeTutorials.Eu].url
129 Bytes
41.11 - EDA Data Visualization T-SNE/[FreeTutorials.Eu].url
129 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/[FreeTutorials.Eu].url
129 Bytes
41.13 - ML Models Loading Data/[FreeTutorials.Eu].url
129 Bytes
41.14 - ML Models Random Model/[FreeTutorials.Eu].url
129 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/[FreeTutorials.Eu].url
129 Bytes
41.16 - ML Models XGBoost/[FreeTutorials.Eu].url
129 Bytes
41.17 - Assignments/[FreeTutorials.Eu].url
129 Bytes
41.1 - BusinessReal world problem Problem definition/[FreeTutorials.Eu].url
129 Bytes
41.2 - Business objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
41.3 - Mapping to an ML problem Data overview/[FreeTutorials.Eu].url
129 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/[FreeTutorials.Eu].url
129 Bytes
41.5 - Mapping to an ML problem Train-test split/[FreeTutorials.Eu].url
129 Bytes
41.6 - EDA Basic Statistics/[FreeTutorials.Eu].url
129 Bytes
41.7 - EDA Basic Feature Extraction/[FreeTutorials.Eu].url
129 Bytes
41.8 - EDA Text Preprocessing/[FreeTutorials.Eu].url
129 Bytes
41.9 - EDA Advanced Feature Extraction/[FreeTutorials.Eu].url
129 Bytes
4.1 - Introduction/[FreeTutorials.Eu].url
129 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/[FreeTutorials.Eu].url
129 Bytes
42.11 - Stemming/[FreeTutorials.Eu].url
129 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/[FreeTutorials.Eu].url
129 Bytes
42.13 - Code for bag of words based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.14 - TF-IDF featurizing text based on word-importance/[FreeTutorials.Eu].url
129 Bytes
42.15 - Code for TF-IDF based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.16 - Code for IDF based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/[FreeTutorials.Eu].url
129 Bytes
42.18 - Code for Average Word2Vec product similarity/[FreeTutorials.Eu].url
129 Bytes
42.19 - TF-IDF weighted Word2Vec/[FreeTutorials.Eu].url
129 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/[FreeTutorials.Eu].url
129 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/[FreeTutorials.Eu].url
129 Bytes
42.21 - Weighted similarity using brand and color/[FreeTutorials.Eu].url
129 Bytes
42.22 - Code for weighted similarity/[FreeTutorials.Eu].url
129 Bytes
42.23 - Building a real world solution/[FreeTutorials.Eu].url
129 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/[FreeTutorials.Eu].url
129 Bytes
42.25 - Using Keras + Tensorflow to extract features/[FreeTutorials.Eu].url
129 Bytes
42.26 - Visual similarity based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.27 - Measuring goodness of our solution AB testing/[FreeTutorials.Eu].url
129 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/[FreeTutorials.Eu].url
129 Bytes
42.2 - Plan of action/[FreeTutorials.Eu].url
129 Bytes
42.3 - Amazon product advertising API/[FreeTutorials.Eu].url
129 Bytes
42.4 - Data folders and paths/[FreeTutorials.Eu].url
129 Bytes
42.5 - Overview of the data and Terminology/[FreeTutorials.Eu].url
129 Bytes
42.6 - Data cleaning and understandingMissing data in various features/[FreeTutorials.Eu].url
129 Bytes
42.7 - Understand duplicate rows/[FreeTutorials.Eu].url
129 Bytes
42.8 - Remove duplicates Part 1/[FreeTutorials.Eu].url
129 Bytes
42.9 - Remove duplicates Part 2/[FreeTutorials.Eu].url
129 Bytes
4.2 - Types of functions/[FreeTutorials.Eu].url
129 Bytes
43.10 - ML models – using byte files only Random Model/[FreeTutorials.Eu].url
129 Bytes
43.11 - k-NN/[FreeTutorials.Eu].url
129 Bytes
43.12 - Logistic regression/[FreeTutorials.Eu].url
129 Bytes
43.13 - Random Forest and Xgboost/[FreeTutorials.Eu].url
129 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/[FreeTutorials.Eu].url
129 Bytes
43.15 - File-size feature/[FreeTutorials.Eu].url
129 Bytes
43.16 - Univariate analysis/[FreeTutorials.Eu].url
129 Bytes
43.17 - t-SNE analysis/[FreeTutorials.Eu].url
129 Bytes
43.18 - ML models on ASM file features/[FreeTutorials.Eu].url
129 Bytes
43.19 - Models on all features t-SNE/[FreeTutorials.Eu].url
129 Bytes
43.1 - Businessreal world problem Problem definition/[FreeTutorials.Eu].url
129 Bytes
43.20 - Models on all features RandomForest and Xgboost/[FreeTutorials.Eu].url
129 Bytes
43.21 - Assignments/[FreeTutorials.Eu].url
129 Bytes
43.2 - Businessreal world problem Objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
43.3 - Machine Learning problem mapping Data overview/[FreeTutorials.Eu].url
129 Bytes
43.4 - Machine Learning problem mapping ML problem/[FreeTutorials.Eu].url
129 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/[FreeTutorials.Eu].url
129 Bytes
43.6 - Exploratory Data Analysis Class distribution/[FreeTutorials.Eu].url
129 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/[FreeTutorials.Eu].url
129 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/[FreeTutorials.Eu].url
129 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/[FreeTutorials.Eu].url
129 Bytes
4.3 - Function arguments/[FreeTutorials.Eu].url
129 Bytes
44.10 - Exploratory Data AnalysisCold start problem/[FreeTutorials.Eu].url
129 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/[FreeTutorials.Eu].url
129 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/[FreeTutorials.Eu].url
129 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/[FreeTutorials.Eu].url
129 Bytes
44.14 - ML ModelsSurprise library/[FreeTutorials.Eu].url
129 Bytes
44.15 - Overview of the modelling strategy/[FreeTutorials.Eu].url
129 Bytes
44.16 - Data Sampling/[FreeTutorials.Eu].url
129 Bytes
44.17 - Google drive with intermediate files/[FreeTutorials.Eu].url
129 Bytes
44.18 - Featurizations for regression/[FreeTutorials.Eu].url
129 Bytes
44.19 - Data transformation for Surprise/[FreeTutorials.Eu].url
129 Bytes
44.1 - BusinessReal world problemProblem definition/[FreeTutorials.Eu].url
129 Bytes
44.20 - Xgboost with 13 features/[FreeTutorials.Eu].url
129 Bytes
44.21 - Surprise Baseline model/[FreeTutorials.Eu].url
129 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/[FreeTutorials.Eu].url
129 Bytes
44.23 - Surprise KNN predictors/[FreeTutorials.Eu].url
129 Bytes
44.24 - Matrix Factorization models using Surprise/[FreeTutorials.Eu].url
129 Bytes
44.25 - SVD ++ with implicit feedback/[FreeTutorials.Eu].url
129 Bytes
44.26 - Final models with all features and predictors/[FreeTutorials.Eu].url
129 Bytes
44.27 - Comparison between various models/[FreeTutorials.Eu].url
129 Bytes
44.28 - Assignments/[FreeTutorials.Eu].url
129 Bytes
44.2 - Objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
44.3 - Mapping to an ML problemData overview/[FreeTutorials.Eu].url
129 Bytes
44.4 - Mapping to an ML problemML problem formulation/[FreeTutorials.Eu].url
129 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/[FreeTutorials.Eu].url
129 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/[FreeTutorials.Eu].url
129 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/[FreeTutorials.Eu].url
129 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/[FreeTutorials.Eu].url
129 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/[FreeTutorials.Eu].url
129 Bytes
4.4 - Recursive functions/[FreeTutorials.Eu].url
129 Bytes
45.10 - Univariate AnalysisVariation Feature/[FreeTutorials.Eu].url
129 Bytes
45.11 - Univariate AnalysisText feature/[FreeTutorials.Eu].url
129 Bytes
45.12 - Machine Learning ModelsData preparation/[FreeTutorials.Eu].url
129 Bytes
45.13 - Baseline Model Naive Bayes/[FreeTutorials.Eu].url
129 Bytes
45.14 - K-Nearest Neighbors Classification/[FreeTutorials.Eu].url
129 Bytes
45.15 - Logistic Regression with class balancing/[FreeTutorials.Eu].url
129 Bytes
45.16 - Logistic Regression without class balancing/[FreeTutorials.Eu].url
129 Bytes
45.17 - Linear-SVM/[FreeTutorials.Eu].url
129 Bytes
45.18 - Random-Forest with one-hot encoded features/[FreeTutorials.Eu].url
129 Bytes
45.19 - Random-Forest with response-coded features/[FreeTutorials.Eu].url
129 Bytes
45.1 - BusinessReal world problem Overview/[FreeTutorials.Eu].url
129 Bytes
45.20 - Stacking Classifier/[FreeTutorials.Eu].url
129 Bytes
45.21 - Majority Voting classifier/[FreeTutorials.Eu].url
129 Bytes
45.22 - Assignments/[FreeTutorials.Eu].url
129 Bytes
45.2 - Business objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
45.3 - ML problem formulation Data/[FreeTutorials.Eu].url
129 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/[FreeTutorials.Eu].url
129 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/[FreeTutorials.Eu].url
129 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/[FreeTutorials.Eu].url
129 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/[FreeTutorials.Eu].url
129 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/[FreeTutorials.Eu].url
129 Bytes
45.8 - Exploratory Data Analysis “Random” Model/[FreeTutorials.Eu].url
129 Bytes
45.9 - Univariate AnalysisGene feature/[FreeTutorials.Eu].url
129 Bytes
4.5 - Lambda functions/[FreeTutorials.Eu].url
129 Bytes
46.10 - Data Cleaning Speed/[FreeTutorials.Eu].url
129 Bytes
46.11 - Data Cleaning Distance/[FreeTutorials.Eu].url
129 Bytes
46.12 - Data Cleaning Fare/[FreeTutorials.Eu].url
129 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/[FreeTutorials.Eu].url
129 Bytes
46.14 - Data PreparationClusteringSegmentation/[FreeTutorials.Eu].url
129 Bytes
46.15 - Data PreparationTime binning/[FreeTutorials.Eu].url
129 Bytes
46.16 - Data PreparationSmoothing time-series data/[FreeTutorials.Eu].url
129 Bytes
46.17 - Data PreparationSmoothing time-series data cont/[FreeTutorials.Eu].url
129 Bytes
46.18 - Data Preparation Time series and Fourier transforms/[FreeTutorials.Eu].url
129 Bytes
46.19 - Ratios and previous-time-bin values/[FreeTutorials.Eu].url
129 Bytes
46.1 - BusinessReal world problem Overview/[FreeTutorials.Eu].url
129 Bytes
46.20 - Simple moving average/[FreeTutorials.Eu].url
129 Bytes
46.21 - Weighted Moving average/[FreeTutorials.Eu].url
129 Bytes
46.22 - Exponential weighted moving average/[FreeTutorials.Eu].url
129 Bytes
46.23 - Results/[FreeTutorials.Eu].url
129 Bytes
46.24 - Regression models Train-Test split & Features/[FreeTutorials.Eu].url
129 Bytes
46.25 - Linear regression/[FreeTutorials.Eu].url
129 Bytes
46.26 - Random Forest regression/[FreeTutorials.Eu].url
129 Bytes
46.27 - Xgboost Regression/[FreeTutorials.Eu].url
129 Bytes
46.28 - Model comparison/[FreeTutorials.Eu].url
129 Bytes
46.29 - Assignment/[FreeTutorials.Eu].url
129 Bytes
46.2 - Objectives and Constraints/[FreeTutorials.Eu].url
129 Bytes
46.3 - Mapping to ML problem Data/[FreeTutorials.Eu].url
129 Bytes
46.4 - Mapping to ML problem dask dataframes/[FreeTutorials.Eu].url
129 Bytes
46.5 - Mapping to ML problem FieldsFeatures/[FreeTutorials.Eu].url
129 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/[FreeTutorials.Eu].url
129 Bytes
46.7 - Mapping to ML problem Performance metrics/[FreeTutorials.Eu].url
129 Bytes
46.8 - Data Cleaning Latitude and Longitude data/[FreeTutorials.Eu].url
129 Bytes
46.9 - Data Cleaning Trip Duration/[FreeTutorials.Eu].url
129 Bytes
4.6 - Modules/[FreeTutorials.Eu].url
129 Bytes
47.10 - Backpropagation/[FreeTutorials.Eu].url
129 Bytes
47.11 - Activation functions/[FreeTutorials.Eu].url
129 Bytes
47.12 - Vanishing Gradient problem/[FreeTutorials.Eu].url
129 Bytes
47.13 - Bias-Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
47.14 - Decision surfaces Playground/[FreeTutorials.Eu].url
129 Bytes
47.1 - History of Neural networks and Deep Learning/[FreeTutorials.Eu].url
129 Bytes
47.2 - How Biological Neurons work/[FreeTutorials.Eu].url
129 Bytes
47.3 - Growth of biological neural networks/[FreeTutorials.Eu].url
129 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/[FreeTutorials.Eu].url
129 Bytes
47.5 - Multi-Layered Perceptron (MLP)/[FreeTutorials.Eu].url
129 Bytes
47.6 - Notation/[FreeTutorials.Eu].url
129 Bytes
47.7 - Training a single-neuron model/[FreeTutorials.Eu].url
129 Bytes
47.8 - Training an MLP Chain Rule/[FreeTutorials.Eu].url
129 Bytes
47.9 - Training an MLPMemoization/[FreeTutorials.Eu].url
129 Bytes
4.7 - Packages/[FreeTutorials.Eu].url
129 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/[FreeTutorials.Eu].url
129 Bytes
48.11 - OptimizersAdaGrad/[FreeTutorials.Eu].url
129 Bytes
48.12 - Optimizers Adadelta andRMSProp/[FreeTutorials.Eu].url
129 Bytes
48.13 - Adam/[FreeTutorials.Eu].url
129 Bytes
48.14 - Which algorithm to choose when/[FreeTutorials.Eu].url
129 Bytes
48.15 - Gradient Checking and clipping/[FreeTutorials.Eu].url
129 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/[FreeTutorials.Eu].url
129 Bytes
48.17 - How to train a Deep MLP/[FreeTutorials.Eu].url
129 Bytes
48.18 - Auto Encoders/[FreeTutorials.Eu].url
129 Bytes
48.19 - Word2Vec CBOW/[FreeTutorials.Eu].url
129 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/[FreeTutorials.Eu].url
129 Bytes
48.20 - Word2Vec Skip-gram/[FreeTutorials.Eu].url
129 Bytes
48.21 - Word2Vec Algorithmic Optimizations/[FreeTutorials.Eu].url
129 Bytes
48.2 - Dropout layers & Regularization/[FreeTutorials.Eu].url
129 Bytes
48.3 - Rectified Linear Units (ReLU)/[FreeTutorials.Eu].url
129 Bytes
48.4 - Weight initialization/[FreeTutorials.Eu].url
129 Bytes
48.5 - Batch Normalization/[FreeTutorials.Eu].url
129 Bytes
48.6 - OptimizersHill-descent analogy in 2D/[FreeTutorials.Eu].url
129 Bytes
48.7 - OptimizersHill descent in 3D and contours/[FreeTutorials.Eu].url
129 Bytes
48.8 - SGD Recap/[FreeTutorials.Eu].url
129 Bytes
48.9 - Batch SGD with momentum/[FreeTutorials.Eu].url
129 Bytes
4.8 - File Handling/[FreeTutorials.Eu].url
129 Bytes
49.10 - Model 3 Batch Normalization/[FreeTutorials.Eu].url
129 Bytes
49.11 - Model 4 Dropout/[FreeTutorials.Eu].url
129 Bytes
49.12 - MNIST classification in Keras/[FreeTutorials.Eu].url
129 Bytes
49.13 - Hyperparameter tuning in Keras/[FreeTutorials.Eu].url
129 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
49.1 - Tensorflow and Keras overview/[FreeTutorials.Eu].url
129 Bytes
49.2 - GPU vs CPU for Deep Learning/[FreeTutorials.Eu].url
129 Bytes
49.3 - Google Colaboratory/[FreeTutorials.Eu].url
129 Bytes
49.4 - Install TensorFlow/[FreeTutorials.Eu].url
129 Bytes
49.5 - Online documentation and tutorials/[FreeTutorials.Eu].url
129 Bytes
49.6 - Softmax Classifier on MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
49.7 - MLP Initialization/[FreeTutorials.Eu].url
129 Bytes
49.8 - Model 1 Sigmoid activation/[FreeTutorials.Eu].url
129 Bytes
49.9 - Model 2 ReLU activation/[FreeTutorials.Eu].url
129 Bytes
4.9 - Exception Handling/[FreeTutorials.Eu].url
129 Bytes
50.10 - Data Augmentation/[FreeTutorials.Eu].url
129 Bytes
50.11 - Convolution Layers in Keras/[FreeTutorials.Eu].url
129 Bytes
50.12 - AlexNet/[FreeTutorials.Eu].url
129 Bytes
50.13 - VGGNet/[FreeTutorials.Eu].url
129 Bytes
50.14 - Residual Network/[FreeTutorials.Eu].url
129 Bytes
50.15 - Inception Network/[FreeTutorials.Eu].url
129 Bytes
50.16 - What is Transfer learning/[FreeTutorials.Eu].url
129 Bytes
50.17 - Code example Cats vs Dogs/[FreeTutorials.Eu].url
129 Bytes
50.18 - Code Example MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/[FreeTutorials.Eu].url
129 Bytes
50.1 - Biological inspiration Visual Cortex/[FreeTutorials.Eu].url
129 Bytes
50.2 - ConvolutionEdge Detection on images/[FreeTutorials.Eu].url
129 Bytes
50.3 - ConvolutionPadding and strides/[FreeTutorials.Eu].url
129 Bytes
50.4 - Convolution over RGB images/[FreeTutorials.Eu].url
129 Bytes
50.5 - Convolutional layer/[FreeTutorials.Eu].url
129 Bytes
50.6 - Max-pooling/[FreeTutorials.Eu].url
129 Bytes
50.7 - CNN Training Optimization/[FreeTutorials.Eu].url
129 Bytes
50.8 - Example CNN LeNet [1998]/[FreeTutorials.Eu].url
129 Bytes
50.9 - ImageNet dataset/[FreeTutorials.Eu].url
129 Bytes
51.10 - Code example IMDB Sentiment classification/[FreeTutorials.Eu].url
129 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/[FreeTutorials.Eu].url
129 Bytes
51.1 - Why RNNs/[FreeTutorials.Eu].url
129 Bytes
51.2 - Recurrent Neural Network/[FreeTutorials.Eu].url
129 Bytes
51.3 - Training RNNs Backprop/[FreeTutorials.Eu].url
129 Bytes
51.4 - Types of RNNs/[FreeTutorials.Eu].url
129 Bytes
51.5 - Need for LSTMGRU/[FreeTutorials.Eu].url
129 Bytes
51.6 - LSTM/[FreeTutorials.Eu].url
129 Bytes
51.7 - GRUs/[FreeTutorials.Eu].url
129 Bytes
51.8 - Deep RNN/[FreeTutorials.Eu].url
129 Bytes
51.9 - Bidirectional RNN/[FreeTutorials.Eu].url
129 Bytes
5.1 - Numpy Introduction/[FreeTutorials.Eu].url
129 Bytes
52.1 - Questions and Answers/[FreeTutorials.Eu].url
129 Bytes
5.2 - Numerical operations on Numpy/[FreeTutorials.Eu].url
129 Bytes
53.10 - NVIDIA’s end to end CNN model/[FreeTutorials.Eu].url
129 Bytes
53.11 - Train the model/[FreeTutorials.Eu].url
129 Bytes
53.12 - Test and visualize the output/[FreeTutorials.Eu].url
129 Bytes
53.13 - Extensions/[FreeTutorials.Eu].url
129 Bytes
53.14 - Assignment/[FreeTutorials.Eu].url
129 Bytes
53.1 - Self Driving Car Problem definition/[FreeTutorials.Eu].url
129 Bytes
53.2 - Datasets/[FreeTutorials.Eu].url
129 Bytes
53.2 - Datasets#/[FreeTutorials.Eu].url
129 Bytes
53.3 - Data understanding & Analysis Files and folders/[FreeTutorials.Eu].url
129 Bytes
53.4 - Dash-cam images and steering angles/[FreeTutorials.Eu].url
129 Bytes
53.5 - Split the dataset Train vs Test/[FreeTutorials.Eu].url
129 Bytes
53.6 - EDA Steering angles/[FreeTutorials.Eu].url
129 Bytes
53.7 - Mean Baseline model simple/[FreeTutorials.Eu].url
129 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/[FreeTutorials.Eu].url
129 Bytes
53.9 - Batch load the dataset/[FreeTutorials.Eu].url
129 Bytes
54.10 - MIDI music generation/[FreeTutorials.Eu].url
129 Bytes
54.11 - Survey blog/[FreeTutorials.Eu].url
129 Bytes
54.1 - Real-world problem/[FreeTutorials.Eu].url
129 Bytes
54.2 - Music representation/[FreeTutorials.Eu].url
129 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/[FreeTutorials.Eu].url
129 Bytes
54.4 - Char-RNN with abc-notation Data preparation/[FreeTutorials.Eu].url
129 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/[FreeTutorials.Eu].url
129 Bytes
54.6 - Char-RNN with abc-notation State full RNN/[FreeTutorials.Eu].url
129 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/[FreeTutorials.Eu].url
129 Bytes
54.8 - Char-RNN with abc-notation Music generation/[FreeTutorials.Eu].url
129 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/[FreeTutorials.Eu].url
129 Bytes
55.1 - Human Activity Recognition Problem definition/[FreeTutorials.Eu].url
129 Bytes
55.2 - Dataset understanding/[FreeTutorials.Eu].url
129 Bytes
55.3 - Data cleaning & preprocessing/[FreeTutorials.Eu].url
129 Bytes
55.4 - EDAUnivariate analysis/[FreeTutorials.Eu].url
129 Bytes
55.5 - EDAData visualization using t-SNE/[FreeTutorials.Eu].url
129 Bytes
55.6 - Classical ML models/[FreeTutorials.Eu].url
129 Bytes
55.7 - Deep-learning Model/[FreeTutorials.Eu].url
129 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/[FreeTutorials.Eu].url
129 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/[FreeTutorials.Eu].url
129 Bytes
56.11 - PageRank/[FreeTutorials.Eu].url
129 Bytes
56.12 - Shortest Path/[FreeTutorials.Eu].url
129 Bytes
56.13 - Connected-components/[FreeTutorials.Eu].url
129 Bytes
56.14 - Adar Index/[FreeTutorials.Eu].url
129 Bytes
56.15 - Kartz Centrality/[FreeTutorials.Eu].url
129 Bytes
56.16 - HITS Score/[FreeTutorials.Eu].url
129 Bytes
56.17 - SVD/[FreeTutorials.Eu].url
129 Bytes
56.18 - Weight features/[FreeTutorials.Eu].url
129 Bytes
56.19 - Modeling/[FreeTutorials.Eu].url
129 Bytes
56.1 - Problem definition/[FreeTutorials.Eu].url
129 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/[FreeTutorials.Eu].url
129 Bytes
56.3 - Data format & Limitations/[FreeTutorials.Eu].url
129 Bytes
56.4 - Mapping to a supervised classification problem/[FreeTutorials.Eu].url
129 Bytes
56.5 - Business constraints & Metrics/[FreeTutorials.Eu].url
129 Bytes
56.6 - EDABasic Stats/[FreeTutorials.Eu].url
129 Bytes
56.7 - EDAFollower and following stats/[FreeTutorials.Eu].url
129 Bytes
56.8 - EDABinary Classification Task/[FreeTutorials.Eu].url
129 Bytes
56.9 - EDATrain and test split/[FreeTutorials.Eu].url
129 Bytes
57.10 - ORDER BY/[FreeTutorials.Eu].url
129 Bytes
57.11 - DISTINCT/[FreeTutorials.Eu].url
129 Bytes
57.12 - WHERE, Comparison operators, NULL/[FreeTutorials.Eu].url
129 Bytes
57.13 - Logical Operators/[FreeTutorials.Eu].url
129 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/[FreeTutorials.Eu].url
129 Bytes
57.15 - GROUP BY/[FreeTutorials.Eu].url
129 Bytes
57.16 - HAVING/[FreeTutorials.Eu].url
129 Bytes
57.17 - Order of keywords#/[FreeTutorials.Eu].url
129 Bytes
57.18 - Join and Natural Join/[FreeTutorials.Eu].url
129 Bytes
57.19 - Inner, Left, Right and Outer joins/[FreeTutorials.Eu].url
129 Bytes
57.1 - Introduction to Databases/[FreeTutorials.Eu].url
129 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/[FreeTutorials.Eu].url
129 Bytes
57.21 - DMLINSERT/[FreeTutorials.Eu].url
129 Bytes
57.22 - DMLUPDATE , DELETE/[FreeTutorials.Eu].url
129 Bytes
57.23 - DDLCREATE TABLE/[FreeTutorials.Eu].url
129 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/[FreeTutorials.Eu].url
129 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/[FreeTutorials.Eu].url
129 Bytes
57.26 - Data Control Language GRANT, REVOKE/[FreeTutorials.Eu].url
129 Bytes
57.27 - Learning resources/[FreeTutorials.Eu].url
129 Bytes
57.2 - Why SQL/[FreeTutorials.Eu].url
129 Bytes
57.3 - Execution of an SQL statement/[FreeTutorials.Eu].url
129 Bytes
57.4 - IMDB dataset/[FreeTutorials.Eu].url
129 Bytes
57.5 - Installing MySQL/[FreeTutorials.Eu].url
129 Bytes
57.6 - Load IMDB data/[FreeTutorials.Eu].url
129 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/[FreeTutorials.Eu].url
129 Bytes
57.8 - SELECT/[FreeTutorials.Eu].url
129 Bytes
57.9 - LIMIT, OFFSET/[FreeTutorials.Eu].url
129 Bytes
58.1 - AD-Click Predicition/[FreeTutorials.Eu].url
129 Bytes
59.1 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
59.2 - Questions/[FreeTutorials.Eu].url
129 Bytes
59.3 - External resources for Interview Questions/[FreeTutorials.Eu].url
129 Bytes
6.1 - Getting started with Matplotlib/[FreeTutorials.Eu].url
129 Bytes
7.1 - Getting started with pandas/[FreeTutorials.Eu].url
129 Bytes
7.2 - Data Frame Basics/[FreeTutorials.Eu].url
129 Bytes
7.3 - Key Operations on Data Frames/[FreeTutorials.Eu].url
129 Bytes
8.1 - Space and Time Complexity Find largest number in a list/[FreeTutorials.Eu].url
129 Bytes
8.2 - Binary search/[FreeTutorials.Eu].url
129 Bytes
8.3 - Find elements common in two lists/[FreeTutorials.Eu].url
129 Bytes
8.4 - Find elements common in two lists using a HashtableDict/[FreeTutorials.Eu].url
129 Bytes
9.10 - Percentiles and Quantiles/[FreeTutorials.Eu].url
129 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/[FreeTutorials.Eu].url
129 Bytes
9.12 - Box-plot with Whiskers/[FreeTutorials.Eu].url
129 Bytes
9.13 - Violin Plots/[FreeTutorials.Eu].url
129 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/[FreeTutorials.Eu].url
129 Bytes
9.15 - Multivariate Probability Density, Contour Plot/[FreeTutorials.Eu].url
129 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/[FreeTutorials.Eu].url
129 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/[FreeTutorials.Eu].url
129 Bytes
9.2 - 3D scatter plot/[FreeTutorials.Eu].url
129 Bytes
9.3 - Pair plots/[FreeTutorials.Eu].url
129 Bytes
9.4 - Limitations of Pair Plots/[FreeTutorials.Eu].url
129 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/[FreeTutorials.Eu].url
129 Bytes
9.6 - Univariate Analysis using PDF/[FreeTutorials.Eu].url
129 Bytes
9.7 - CDF(Cumulative Distribution Function)/[FreeTutorials.Eu].url
129 Bytes
9.8 - Mean, Variance and Standard Deviation/[FreeTutorials.Eu].url
129 Bytes
9.9 - Median/[FreeTutorials.Eu].url
129 Bytes
[FreeTutorials.Eu].url
129 Bytes
10.10 - Hyper Cube,Hyper Cuboid/FTUApps.com website coming soon.txt
94 Bytes
10.11 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
10.1 - Why learn it/FTUApps.com website coming soon.txt
94 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/FTUApps.com website coming soon.txt
94 Bytes
10.3 - Dot Product and Angle between 2 Vectors/FTUApps.com website coming soon.txt
94 Bytes
10.4 - Projection and Unit Vector/FTUApps.com website coming soon.txt
94 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/FTUApps.com website coming soon.txt
94 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/FTUApps.com website coming soon.txt
94 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/FTUApps.com website coming soon.txt
94 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/FTUApps.com website coming soon.txt
94 Bytes
10.9 - Square ,Rectangle/FTUApps.com website coming soon.txt
94 Bytes
11.10 - How distributions are used/FTUApps.com website coming soon.txt
94 Bytes
11.11 - Chebyshev’s inequality/FTUApps.com website coming soon.txt
94 Bytes
11.12 - Discrete and Continuous Uniform distributions/FTUApps.com website coming soon.txt
94 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/FTUApps.com website coming soon.txt
94 Bytes
11.14 - Bernoulli and Binomial Distribution/FTUApps.com website coming soon.txt
94 Bytes
11.15 - Log Normal Distribution/FTUApps.com website coming soon.txt
94 Bytes
11.16 - Power law distribution/FTUApps.com website coming soon.txt
94 Bytes
11.17 - Box cox transform/FTUApps.com website coming soon.txt
94 Bytes
11.18 - Applications of non-gaussian distributions/FTUApps.com website coming soon.txt
94 Bytes
11.19 - Co-variance/FTUApps.com website coming soon.txt
94 Bytes
11.1 - Introduction to Probability and Statistics/FTUApps.com website coming soon.txt
94 Bytes
11.20 - Pearson Correlation Coefficient/FTUApps.com website coming soon.txt
94 Bytes
11.21 - Spearman Rank Correlation Coefficient/FTUApps.com website coming soon.txt
94 Bytes
11.22 - Correlation vs Causation/FTUApps.com website coming soon.txt
94 Bytes
11.23 - How to use correlations/FTUApps.com website coming soon.txt
94 Bytes
11.24 - Confidence interval (C.I) Introduction/FTUApps.com website coming soon.txt
94 Bytes
11.25 - Computing confidence interval given the underlying distribution/FTUApps.com website coming soon.txt
94 Bytes
11.26 - C.I for mean of a normal random variable/FTUApps.com website coming soon.txt
94 Bytes
11.27 - Confidence interval using bootstrapping/FTUApps.com website coming soon.txt
94 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/FTUApps.com website coming soon.txt
94 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/FTUApps.com website coming soon.txt
94 Bytes
11.2 - Population and Sample/FTUApps.com website coming soon.txt
94 Bytes
11.30 - Resampling and permutation test/FTUApps.com website coming soon.txt
94 Bytes
11.31 - K-S Test for similarity of two distributions/FTUApps.com website coming soon.txt
94 Bytes
11.32 - Code Snippet K-S Test/FTUApps.com website coming soon.txt
94 Bytes
11.33 - Hypothesis testing another example/FTUApps.com website coming soon.txt
94 Bytes
11.34 - Resampling and Permutation test another example/FTUApps.com website coming soon.txt
94 Bytes
11.35 - How to use hypothesis testing/FTUApps.com website coming soon.txt
94 Bytes
11.36 - Proportional Sampling/FTUApps.com website coming soon.txt
94 Bytes
11.37 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/FTUApps.com website coming soon.txt
94 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/FTUApps.com website coming soon.txt
94 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/FTUApps.com website coming soon.txt
94 Bytes
11.6 - Standard normal variate (Z) and standardization/FTUApps.com website coming soon.txt
94 Bytes
11.7 - Kernel density estimation/FTUApps.com website coming soon.txt
94 Bytes
11.8 - Sampling distribution & Central Limit theorem/FTUApps.com website coming soon.txt
94 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/FTUApps.com website coming soon.txt
94 Bytes
1.1 - How to Learn from Appliedaicourse/FTUApps.com website coming soon.txt
94 Bytes
12.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
1.2 - How the Job Guarantee program works/FTUApps.com website coming soon.txt
94 Bytes
13.10 - Code to Load MNIST Data Set/FTUApps.com website coming soon.txt
94 Bytes
13.1 - What is Dimensionality reduction/FTUApps.com website coming soon.txt
94 Bytes
13.2 - Row Vector and Column Vector/FTUApps.com website coming soon.txt
94 Bytes
13.3 - How to represent a data set/FTUApps.com website coming soon.txt
94 Bytes
13.4 - How to represent a dataset as a Matrix/FTUApps.com website coming soon.txt
94 Bytes
13.5 - Data Preprocessing Feature Normalisation/FTUApps.com website coming soon.txt
94 Bytes
13.6 - Mean of a data matrix/FTUApps.com website coming soon.txt
94 Bytes
13.7 - Data Preprocessing Column Standardization/FTUApps.com website coming soon.txt
94 Bytes
13.8 - Co-variance of a Data Matrix/FTUApps.com website coming soon.txt
94 Bytes
13.9 - MNIST dataset (784 dimensional)/FTUApps.com website coming soon.txt
94 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/FTUApps.com website coming soon.txt
94 Bytes
14.1 - Why learn PCA/FTUApps.com website coming soon.txt
94 Bytes
14.2 - Geometric intuition of PCA/FTUApps.com website coming soon.txt
94 Bytes
14.3 - Mathematical objective function of PCA/FTUApps.com website coming soon.txt
94 Bytes
14.4 - Alternative formulation of PCA Distance minimization/FTUApps.com website coming soon.txt
94 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/FTUApps.com website coming soon.txt
94 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/FTUApps.com website coming soon.txt
94 Bytes
14.7 - Visualize MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
14.8 - Limitations of PCA/FTUApps.com website coming soon.txt
94 Bytes
14.9 - PCA Code example/FTUApps.com website coming soon.txt
94 Bytes
15.1 - What is t-SNE/FTUApps.com website coming soon.txt
94 Bytes
15.2 - Neighborhood of a point, Embedding/FTUApps.com website coming soon.txt
94 Bytes
15.3 - Geometric intuition of t-SNE/FTUApps.com website coming soon.txt
94 Bytes
15.4 - Crowding Problem/FTUApps.com website coming soon.txt
94 Bytes
15.5 - How to apply t-SNE and interpret its output/FTUApps.com website coming soon.txt
94 Bytes
15.6 - t-SNE on MNIST/FTUApps.com website coming soon.txt
94 Bytes
15.7 - Code example of t-SNE/FTUApps.com website coming soon.txt
94 Bytes
15.8 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
16.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/FTUApps.com website coming soon.txt
94 Bytes
17.11 - Bag of Words( Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.12 - Text Preprocessing( Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.14 - TF-IDF (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.15 - Word2Vec (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.17 - Assignment-2 Apply t-SNE/FTUApps.com website coming soon.txt
94 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/FTUApps.com website coming soon.txt
94 Bytes
17.2 - Data Cleaning Deduplication/FTUApps.com website coming soon.txt
94 Bytes
17.3 - Why convert text to a vector/FTUApps.com website coming soon.txt
94 Bytes
17.4 - Bag of Words (BoW)/FTUApps.com website coming soon.txt
94 Bytes
17.5 - Text Preprocessing Stemming/FTUApps.com website coming soon.txt
94 Bytes
17.6 - uni-gram, bi-gram, n-grams/FTUApps.com website coming soon.txt
94 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/FTUApps.com website coming soon.txt
94 Bytes
17.8 - Why use log in IDF/FTUApps.com website coming soon.txt
94 Bytes
17.9 - Word2Vec/FTUApps.com website coming soon.txt
94 Bytes
18.10 - KNN Limitations/FTUApps.com website coming soon.txt
94 Bytes
18.11 - Decision surface for K-NN as K changes/FTUApps.com website coming soon.txt
94 Bytes
18.12 - Overfitting and Underfitting/FTUApps.com website coming soon.txt
94 Bytes
18.13 - Need for Cross validation/FTUApps.com website coming soon.txt
94 Bytes
18.14 - K-fold cross validation/FTUApps.com website coming soon.txt
94 Bytes
18.15 - Visualizing train, validation and test datasets/FTUApps.com website coming soon.txt
94 Bytes
18.16 - How to determine overfitting and underfitting/FTUApps.com website coming soon.txt
94 Bytes
18.17 - Time based splitting/FTUApps.com website coming soon.txt
94 Bytes
18.18 - k-NN for regression/FTUApps.com website coming soon.txt
94 Bytes
18.19 - Weighted k-NN/FTUApps.com website coming soon.txt
94 Bytes
18.1 - How “Classification” works/FTUApps.com website coming soon.txt
94 Bytes
18.20 - Voronoi diagram/FTUApps.com website coming soon.txt
94 Bytes
18.21 - Binary search tree/FTUApps.com website coming soon.txt
94 Bytes
18.22 - How to build a kd-tree/FTUApps.com website coming soon.txt
94 Bytes
18.23 - Find nearest neighbours using kd-tree/FTUApps.com website coming soon.txt
94 Bytes
18.24 - Limitations of Kd tree/FTUApps.com website coming soon.txt
94 Bytes
18.25 - Extensions/FTUApps.com website coming soon.txt
94 Bytes
18.26 - Hashing vs LSH/FTUApps.com website coming soon.txt
94 Bytes
18.27 - LSH for cosine similarity/FTUApps.com website coming soon.txt
94 Bytes
18.28 - LSH for euclidean distance/FTUApps.com website coming soon.txt
94 Bytes
18.29 - Probabilistic class label/FTUApps.com website coming soon.txt
94 Bytes
18.2 - Data matrix notation/FTUApps.com website coming soon.txt
94 Bytes
18.30 - Code SampleDecision boundary/FTUApps.com website coming soon.txt
94 Bytes
18.31 - Code SampleCross Validation/FTUApps.com website coming soon.txt
94 Bytes
18.32 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
18.3 - Classification vs Regression (examples)/FTUApps.com website coming soon.txt
94 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/FTUApps.com website coming soon.txt
94 Bytes
18.5 - Failure cases of KNN/FTUApps.com website coming soon.txt
94 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/FTUApps.com website coming soon.txt
94 Bytes
18.7 - Cosine Distance & Cosine Similarity/FTUApps.com website coming soon.txt
94 Bytes
18.8 - How to measure the effectiveness of k-NN/FTUApps.com website coming soon.txt
94 Bytes
18.9 - TestEvaluation time and space complexity/FTUApps.com website coming soon.txt
94 Bytes
19.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
20.10 - Local reachability-density(A)/FTUApps.com website coming soon.txt
94 Bytes
20.11 - Local outlier Factor(A)/FTUApps.com website coming soon.txt
94 Bytes
20.12 - Impact of Scale & Column standardization/FTUApps.com website coming soon.txt
94 Bytes
20.13 - Interpretability/FTUApps.com website coming soon.txt
94 Bytes
20.14 - Feature Importance and Forward Feature selection/FTUApps.com website coming soon.txt
94 Bytes
20.15 - Handling categorical and numerical features/FTUApps.com website coming soon.txt
94 Bytes
20.16 - Handling missing values by imputation/FTUApps.com website coming soon.txt
94 Bytes
20.17 - curse of dimensionality/FTUApps.com website coming soon.txt
94 Bytes
20.18 - Bias-Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
20.19 - Intuitive understanding of bias-variance/FTUApps.com website coming soon.txt
94 Bytes
20.1 - Introduction/FTUApps.com website coming soon.txt
94 Bytes
20.20 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
20.21 - best and wrost case of algorithm/FTUApps.com website coming soon.txt
94 Bytes
20.2 - Imbalanced vs balanced dataset/FTUApps.com website coming soon.txt
94 Bytes
20.3 - Multi-class classification/FTUApps.com website coming soon.txt
94 Bytes
20.4 - k-NN, given a distance or similarity matrix/FTUApps.com website coming soon.txt
94 Bytes
20.5 - Train and test set differences/FTUApps.com website coming soon.txt
94 Bytes
20.6 - Impact of outliers/FTUApps.com website coming soon.txt
94 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/FTUApps.com website coming soon.txt
94 Bytes
20.8 - k distance/FTUApps.com website coming soon.txt
94 Bytes
20.9 - Reachability-Distance(A,B)/FTUApps.com website coming soon.txt
94 Bytes
2.10 - Control flow for loop/FTUApps.com website coming soon.txt
94 Bytes
21.10 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
21.1 - Accuracy/FTUApps.com website coming soon.txt
94 Bytes
2.11 - Control flow break and continue/FTUApps.com website coming soon.txt
94 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/FTUApps.com website coming soon.txt
94 Bytes
21.3 - Precision and recall, F1-score/FTUApps.com website coming soon.txt
94 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/FTUApps.com website coming soon.txt
94 Bytes
21.5 - Log-loss/FTUApps.com website coming soon.txt
94 Bytes
21.6 - R-SquaredCoefficient of determination/FTUApps.com website coming soon.txt
94 Bytes
21.7 - Median absolute deviation (MAD)/FTUApps.com website coming soon.txt
94 Bytes
21.8 - Distribution of errors/FTUApps.com website coming soon.txt
94 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/FTUApps.com website coming soon.txt
94 Bytes
2.1 - Python, Anaconda and relevant packages installations/FTUApps.com website coming soon.txt
94 Bytes
22.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
2.2 - Why learn Python/FTUApps.com website coming soon.txt
94 Bytes
23.10 - Bias and Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
23.11 - Feature importance and interpretability/FTUApps.com website coming soon.txt
94 Bytes
23.12 - Imbalanced data/FTUApps.com website coming soon.txt
94 Bytes
23.13 - Outliers/FTUApps.com website coming soon.txt
94 Bytes
23.14 - Missing values/FTUApps.com website coming soon.txt
94 Bytes
23.15 - Handling Numerical features (Gaussian NB)/FTUApps.com website coming soon.txt
94 Bytes
23.16 - Multiclass classification/FTUApps.com website coming soon.txt
94 Bytes
23.17 - Similarity or Distance matrix/FTUApps.com website coming soon.txt
94 Bytes
23.18 - Large dimensionality/FTUApps.com website coming soon.txt
94 Bytes
23.19 - Best and worst cases/FTUApps.com website coming soon.txt
94 Bytes
23.1 - Conditional probability/FTUApps.com website coming soon.txt
94 Bytes
23.20 - Code example/FTUApps.com website coming soon.txt
94 Bytes
23.21 - Assignment-4 Apply Naive Bayes/FTUApps.com website coming soon.txt
94 Bytes
23.22 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
23.2 - Independent vs Mutually exclusive events/FTUApps.com website coming soon.txt
94 Bytes
23.3 - Bayes Theorem with examples/FTUApps.com website coming soon.txt
94 Bytes
23.4 - Exercise problems on Bayes Theorem/FTUApps.com website coming soon.txt
94 Bytes
23.5 - Naive Bayes algorithm/FTUApps.com website coming soon.txt
94 Bytes
23.6 - Toy example Train and test stages/FTUApps.com website coming soon.txt
94 Bytes
23.7 - Naive Bayes on Text data/FTUApps.com website coming soon.txt
94 Bytes
23.8 - LaplaceAdditive Smoothing/FTUApps.com website coming soon.txt
94 Bytes
23.9 - Log-probabilities for numerical stability/FTUApps.com website coming soon.txt
94 Bytes
2.3 - Keywords and identifiers/FTUApps.com website coming soon.txt
94 Bytes
24.10 - Column Standardization/FTUApps.com website coming soon.txt
94 Bytes
24.11 - Feature importance and Model interpretability/FTUApps.com website coming soon.txt
94 Bytes
24.12 - Collinearity of features/FTUApps.com website coming soon.txt
94 Bytes
24.13 - TestRun time space and time complexity/FTUApps.com website coming soon.txt
94 Bytes
24.14 - Real world cases/FTUApps.com website coming soon.txt
94 Bytes
24.15 - Non-linearly separable data & feature engineering/FTUApps.com website coming soon.txt
94 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/FTUApps.com website coming soon.txt
94 Bytes
24.17 - Assignment-5 Apply Logistic Regression/FTUApps.com website coming soon.txt
94 Bytes
24.18 - Extensions to Generalized linear models/FTUApps.com website coming soon.txt
94 Bytes
24.1 - Geometric intuition of Logistic Regression/FTUApps.com website coming soon.txt
94 Bytes
24.2 - Sigmoid function Squashing/FTUApps.com website coming soon.txt
94 Bytes
24.3 - Mathematical formulation of Objective function/FTUApps.com website coming soon.txt
94 Bytes
24.4 - Weight vector/FTUApps.com website coming soon.txt
94 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/FTUApps.com website coming soon.txt
94 Bytes
24.6 - L1 regularization and sparsity/FTUApps.com website coming soon.txt
94 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/FTUApps.com website coming soon.txt
94 Bytes
24.8 - Loss minimization interpretation/FTUApps.com website coming soon.txt
94 Bytes
24.9 - hyperparameters and random search/FTUApps.com website coming soon.txt
94 Bytes
2.4 - comments, indentation and statements/FTUApps.com website coming soon.txt
94 Bytes
25.1 - Geometric intuition of Linear Regression/FTUApps.com website coming soon.txt
94 Bytes
25.2 - Mathematical formulation/FTUApps.com website coming soon.txt
94 Bytes
25.3 - Real world Cases/FTUApps.com website coming soon.txt
94 Bytes
25.4 - Code sample for Linear Regression/FTUApps.com website coming soon.txt
94 Bytes
2.5 - Variables and data types in Python/FTUApps.com website coming soon.txt
94 Bytes
26.10 - Logistic regression formulation revisited/FTUApps.com website coming soon.txt
94 Bytes
26.11 - Why L1 regularization creates sparsity/FTUApps.com website coming soon.txt
94 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/FTUApps.com website coming soon.txt
94 Bytes
26.13 - Revision questions/FTUApps.com website coming soon.txt
94 Bytes
26.1 - Differentiation/FTUApps.com website coming soon.txt
94 Bytes
26.2 - Online differentiation tools/FTUApps.com website coming soon.txt
94 Bytes
26.3 - Maxima and Minima/FTUApps.com website coming soon.txt
94 Bytes
26.4 - Vector calculus Grad/FTUApps.com website coming soon.txt
94 Bytes
26.5 - Gradient descent geometric intuition/FTUApps.com website coming soon.txt
94 Bytes
26.6 - Learning rate/FTUApps.com website coming soon.txt
94 Bytes
26.7 - Gradient descent for linear regression/FTUApps.com website coming soon.txt
94 Bytes
26.8 - SGD algorithm/FTUApps.com website coming soon.txt
94 Bytes
26.9 - Constrained Optimization & PCA/FTUApps.com website coming soon.txt
94 Bytes
2.6 - Standard Input and Output/FTUApps.com website coming soon.txt
94 Bytes
27.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
2.7 - Operators/FTUApps.com website coming soon.txt
94 Bytes
28.10 - Train and run time complexities/FTUApps.com website coming soon.txt
94 Bytes
28.11 - nu-SVM control errors and support vectors/FTUApps.com website coming soon.txt
94 Bytes
28.12 - SVM Regression/FTUApps.com website coming soon.txt
94 Bytes
28.13 - Cases/FTUApps.com website coming soon.txt
94 Bytes
28.14 - Code Sample/FTUApps.com website coming soon.txt
94 Bytes
28.15 - Assignment-7 Apply SVM/FTUApps.com website coming soon.txt
94 Bytes
28.16 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
28.1 - Geometric Intution/FTUApps.com website coming soon.txt
94 Bytes
28.2 - Mathematical derivation/FTUApps.com website coming soon.txt
94 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/FTUApps.com website coming soon.txt
94 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/FTUApps.com website coming soon.txt
94 Bytes
28.5 - Dual form of SVM formulation/FTUApps.com website coming soon.txt
94 Bytes
28.6 - kernel trick/FTUApps.com website coming soon.txt
94 Bytes
28.7 - Polynomial Kernel/FTUApps.com website coming soon.txt
94 Bytes
28.8 - RBF-Kernel/FTUApps.com website coming soon.txt
94 Bytes
28.9 - Domain specific Kernels/FTUApps.com website coming soon.txt
94 Bytes
2.8 - Control flow if else/FTUApps.com website coming soon.txt
94 Bytes
29.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
2.9 - Control flow while loop/FTUApps.com website coming soon.txt
94 Bytes
30.10 - Overfitting and Underfitting/FTUApps.com website coming soon.txt
94 Bytes
30.11 - Train and Run time complexity/FTUApps.com website coming soon.txt
94 Bytes
30.12 - Regression using Decision Trees/FTUApps.com website coming soon.txt
94 Bytes
30.13 - Cases/FTUApps.com website coming soon.txt
94 Bytes
30.14 - Code Samples/FTUApps.com website coming soon.txt
94 Bytes
30.15 - Assignment-8 Apply Decision Trees/FTUApps.com website coming soon.txt
94 Bytes
30.16 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/FTUApps.com website coming soon.txt
94 Bytes
30.2 - Sample Decision tree/FTUApps.com website coming soon.txt
94 Bytes
30.3 - Building a decision TreeEntropy/FTUApps.com website coming soon.txt
94 Bytes
30.4 - Building a decision TreeInformation Gain/FTUApps.com website coming soon.txt
94 Bytes
30.5 - Building a decision Tree Gini Impurity/FTUApps.com website coming soon.txt
94 Bytes
30.6 - Building a decision Tree Constructing a DT/FTUApps.com website coming soon.txt
94 Bytes
30.7 - Building a decision Tree Splitting numerical features/FTUApps.com website coming soon.txt
94 Bytes
30.8 - Feature standardization/FTUApps.com website coming soon.txt
94 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/FTUApps.com website coming soon.txt
94 Bytes
31.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
3.1 - Lists/FTUApps.com website coming soon.txt
94 Bytes
32.10 - Residuals, Loss functions and gradients/FTUApps.com website coming soon.txt
94 Bytes
32.11 - Gradient Boosting/FTUApps.com website coming soon.txt
94 Bytes
32.12 - Regularization by Shrinkage/FTUApps.com website coming soon.txt
94 Bytes
32.13 - Train and Run time complexity/FTUApps.com website coming soon.txt
94 Bytes
32.14 - XGBoost Boosting + Randomization/FTUApps.com website coming soon.txt
94 Bytes
32.15 - AdaBoost geometric intuition/FTUApps.com website coming soon.txt
94 Bytes
32.16 - Stacking models/FTUApps.com website coming soon.txt
94 Bytes
32.17 - Cascading classifiers/FTUApps.com website coming soon.txt
94 Bytes
32.18 - Kaggle competitions vs Real world/FTUApps.com website coming soon.txt
94 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/FTUApps.com website coming soon.txt
94 Bytes
32.1 - What are ensembles/FTUApps.com website coming soon.txt
94 Bytes
32.20 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/FTUApps.com website coming soon.txt
94 Bytes
32.3 - Random Forest and their construction/FTUApps.com website coming soon.txt
94 Bytes
32.4 - Bias-Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
32.5 - Train and run time complexity/FTUApps.com website coming soon.txt
94 Bytes
32.6 - BaggingCode Sample/FTUApps.com website coming soon.txt
94 Bytes
32.7 - Extremely randomized trees/FTUApps.com website coming soon.txt
94 Bytes
32.8 - Random Tree Cases/FTUApps.com website coming soon.txt
94 Bytes
32.9 - Boosting Intuition/FTUApps.com website coming soon.txt
94 Bytes
3.2 - Tuples part 1/FTUApps.com website coming soon.txt
94 Bytes
33.10 - Indicator variables/FTUApps.com website coming soon.txt
94 Bytes
33.11 - Feature binning/FTUApps.com website coming soon.txt
94 Bytes
33.12 - Interaction variables/FTUApps.com website coming soon.txt
94 Bytes
33.13 - Mathematical transforms/FTUApps.com website coming soon.txt
94 Bytes
33.14 - Model specific featurizations/FTUApps.com website coming soon.txt
94 Bytes
33.15 - Feature orthogonality/FTUApps.com website coming soon.txt
94 Bytes
33.16 - Domain specific featurizations/FTUApps.com website coming soon.txt
94 Bytes
33.17 - Feature slicing/FTUApps.com website coming soon.txt
94 Bytes
33.18 - Kaggle Winners solutions/FTUApps.com website coming soon.txt
94 Bytes
33.1 - Introduction/FTUApps.com website coming soon.txt
94 Bytes
33.2 - Moving window for Time Series Data/FTUApps.com website coming soon.txt
94 Bytes
33.3 - Fourier decomposition/FTUApps.com website coming soon.txt
94 Bytes
33.4 - Deep learning features LSTM/FTUApps.com website coming soon.txt
94 Bytes
33.5 - Image histogram/FTUApps.com website coming soon.txt
94 Bytes
33.6 - Keypoints SIFT/FTUApps.com website coming soon.txt
94 Bytes
33.7 - Deep learning features CNN/FTUApps.com website coming soon.txt
94 Bytes
33.8 - Relational data/FTUApps.com website coming soon.txt
94 Bytes
33.9 - Graph data/FTUApps.com website coming soon.txt
94 Bytes
3.3 - Tuples part-2/FTUApps.com website coming soon.txt
94 Bytes
34.10 - AB testing/FTUApps.com website coming soon.txt
94 Bytes
34.11 - Data Science Life cycle/FTUApps.com website coming soon.txt
94 Bytes
34.12 - VC dimension/FTUApps.com website coming soon.txt
94 Bytes
34.1 - Calibration of ModelsNeed for calibration/FTUApps.com website coming soon.txt
94 Bytes
34.2 - Productionization and deployment of Machine Learning Models/FTUApps.com website coming soon.txt
94 Bytes
34.3 - Calibration Plots/FTUApps.com website coming soon.txt
94 Bytes
34.4 - Platt’s CalibrationScaling/FTUApps.com website coming soon.txt
94 Bytes
34.5 - Isotonic Regression/FTUApps.com website coming soon.txt
94 Bytes
34.6 - Code Samples/FTUApps.com website coming soon.txt
94 Bytes
34.7 - Modeling in the presence of outliers RANSAC/FTUApps.com website coming soon.txt
94 Bytes
34.8 - Productionizing models/FTUApps.com website coming soon.txt
94 Bytes
34.9 - Retraining models periodically/FTUApps.com website coming soon.txt
94 Bytes
3.4 - Sets/FTUApps.com website coming soon.txt
94 Bytes
35.10 - K-Medoids/FTUApps.com website coming soon.txt
94 Bytes
35.11 - Determining the right K/FTUApps.com website coming soon.txt
94 Bytes
35.12 - Code Samples/FTUApps.com website coming soon.txt
94 Bytes
35.13 - Time and space complexity/FTUApps.com website coming soon.txt
94 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/FTUApps.com website coming soon.txt
94 Bytes
35.1 - What is Clustering/FTUApps.com website coming soon.txt
94 Bytes
35.2 - Unsupervised learning/FTUApps.com website coming soon.txt
94 Bytes
35.3 - Applications/FTUApps.com website coming soon.txt
94 Bytes
35.4 - Metrics for Clustering/FTUApps.com website coming soon.txt
94 Bytes
35.5 - K-Means Geometric intuition, Centroids/FTUApps.com website coming soon.txt
94 Bytes
35.6 - K-Means Mathematical formulation Objective function/FTUApps.com website coming soon.txt
94 Bytes
35.7 - K-Means Algorithm/FTUApps.com website coming soon.txt
94 Bytes
35.8 - How to initialize K-Means++/FTUApps.com website coming soon.txt
94 Bytes
35.9 - Failure casesLimitations/FTUApps.com website coming soon.txt
94 Bytes
3.5 - Dictionary/FTUApps.com website coming soon.txt
94 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/FTUApps.com website coming soon.txt
94 Bytes
36.2 - Agglomerative Clustering/FTUApps.com website coming soon.txt
94 Bytes
36.3 - Proximity methods Advantages and Limitations/FTUApps.com website coming soon.txt
94 Bytes
36.4 - Time and Space Complexity/FTUApps.com website coming soon.txt
94 Bytes
36.5 - Limitations of Hierarchical Clustering/FTUApps.com website coming soon.txt
94 Bytes
36.6 - Code sample/FTUApps.com website coming soon.txt
94 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/FTUApps.com website coming soon.txt
94 Bytes
3.6 - Strings/FTUApps.com website coming soon.txt
94 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/FTUApps.com website coming soon.txt
94 Bytes
37.11 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
37.1 - Density based clustering/FTUApps.com website coming soon.txt
94 Bytes
37.2 - MinPts and Eps Density/FTUApps.com website coming soon.txt
94 Bytes
37.3 - Core, Border and Noise points/FTUApps.com website coming soon.txt
94 Bytes
37.4 - Density edge and Density connected points/FTUApps.com website coming soon.txt
94 Bytes
37.5 - DBSCAN Algorithm/FTUApps.com website coming soon.txt
94 Bytes
37.6 - Hyper Parameters MinPts and Eps/FTUApps.com website coming soon.txt
94 Bytes
37.7 - Advantages and Limitations of DBSCAN/FTUApps.com website coming soon.txt
94 Bytes
37.8 - Time and Space Complexity/FTUApps.com website coming soon.txt
94 Bytes
37.9 - Code samples/FTUApps.com website coming soon.txt
94 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/FTUApps.com website coming soon.txt
94 Bytes
38.11 - Cold Start problem/FTUApps.com website coming soon.txt
94 Bytes
38.12 - Word vectors as MF/FTUApps.com website coming soon.txt
94 Bytes
38.13 - Eigen-Faces/FTUApps.com website coming soon.txt
94 Bytes
38.14 - Code example/FTUApps.com website coming soon.txt
94 Bytes
38.15 - Assignment-11 Apply Truncated SVD/FTUApps.com website coming soon.txt
94 Bytes
38.16 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
38.1 - Problem formulation Movie reviews/FTUApps.com website coming soon.txt
94 Bytes
38.2 - Content based vs Collaborative Filtering/FTUApps.com website coming soon.txt
94 Bytes
38.3 - Similarity based Algorithms/FTUApps.com website coming soon.txt
94 Bytes
38.4 - Matrix Factorization PCA, SVD/FTUApps.com website coming soon.txt
94 Bytes
38.5 - Matrix Factorization NMF/FTUApps.com website coming soon.txt
94 Bytes
38.6 - Matrix Factorization for Collaborative filtering/FTUApps.com website coming soon.txt
94 Bytes
38.7 - Matrix Factorization for feature engineering/FTUApps.com website coming soon.txt
94 Bytes
38.8 - Clustering as MF/FTUApps.com website coming soon.txt
94 Bytes
38.9 - Hyperparameter tuning/FTUApps.com website coming soon.txt
94 Bytes
39.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
40.10 - Data Modeling Multi label Classification/FTUApps.com website coming soon.txt
94 Bytes
40.11 - Data preparation/FTUApps.com website coming soon.txt
94 Bytes
40.12 - Train-Test Split/FTUApps.com website coming soon.txt
94 Bytes
40.13 - Featurization/FTUApps.com website coming soon.txt
94 Bytes
40.14 - Logistic regression One VS Rest/FTUApps.com website coming soon.txt
94 Bytes
40.15 - Sampling data and tags+Weighted models/FTUApps.com website coming soon.txt
94 Bytes
40.16 - Logistic regression revisited/FTUApps.com website coming soon.txt
94 Bytes
40.17 - Why not use advanced techniques/FTUApps.com website coming soon.txt
94 Bytes
40.18 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
40.1 - BusinessReal world problem/FTUApps.com website coming soon.txt
94 Bytes
40.2 - Business objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
40.3 - Mapping to an ML problem Data overview/FTUApps.com website coming soon.txt
94 Bytes
40.4 - Mapping to an ML problemML problem formulation/FTUApps.com website coming soon.txt
94 Bytes
40.5 - Mapping to an ML problemPerformance metrics/FTUApps.com website coming soon.txt
94 Bytes
40.6 - Hamming loss/FTUApps.com website coming soon.txt
94 Bytes
40.7 - EDAData Loading/FTUApps.com website coming soon.txt
94 Bytes
40.8 - EDAAnalysis of tags/FTUApps.com website coming soon.txt
94 Bytes
40.9 - EDAData Preprocessing/FTUApps.com website coming soon.txt
94 Bytes
4.10 - Debugging Python/FTUApps.com website coming soon.txt
94 Bytes
41.10 - EDA Feature analysis/FTUApps.com website coming soon.txt
94 Bytes
41.11 - EDA Data Visualization T-SNE/FTUApps.com website coming soon.txt
94 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/FTUApps.com website coming soon.txt
94 Bytes
41.13 - ML Models Loading Data/FTUApps.com website coming soon.txt
94 Bytes
41.14 - ML Models Random Model/FTUApps.com website coming soon.txt
94 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/FTUApps.com website coming soon.txt
94 Bytes
41.16 - ML Models XGBoost/FTUApps.com website coming soon.txt
94 Bytes
41.17 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
41.1 - BusinessReal world problem Problem definition/FTUApps.com website coming soon.txt
94 Bytes
41.2 - Business objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
41.3 - Mapping to an ML problem Data overview/FTUApps.com website coming soon.txt
94 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/FTUApps.com website coming soon.txt
94 Bytes
41.5 - Mapping to an ML problem Train-test split/FTUApps.com website coming soon.txt
94 Bytes
41.6 - EDA Basic Statistics/FTUApps.com website coming soon.txt
94 Bytes
41.7 - EDA Basic Feature Extraction/FTUApps.com website coming soon.txt
94 Bytes
41.8 - EDA Text Preprocessing/FTUApps.com website coming soon.txt
94 Bytes
41.9 - EDA Advanced Feature Extraction/FTUApps.com website coming soon.txt
94 Bytes
4.1 - Introduction/FTUApps.com website coming soon.txt
94 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/FTUApps.com website coming soon.txt
94 Bytes
42.11 - Stemming/FTUApps.com website coming soon.txt
94 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/FTUApps.com website coming soon.txt
94 Bytes
42.13 - Code for bag of words based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.14 - TF-IDF featurizing text based on word-importance/FTUApps.com website coming soon.txt
94 Bytes
42.15 - Code for TF-IDF based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.16 - Code for IDF based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/FTUApps.com website coming soon.txt
94 Bytes
42.18 - Code for Average Word2Vec product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.19 - TF-IDF weighted Word2Vec/FTUApps.com website coming soon.txt
94 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/FTUApps.com website coming soon.txt
94 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.21 - Weighted similarity using brand and color/FTUApps.com website coming soon.txt
94 Bytes
42.22 - Code for weighted similarity/FTUApps.com website coming soon.txt
94 Bytes
42.23 - Building a real world solution/FTUApps.com website coming soon.txt
94 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/FTUApps.com website coming soon.txt
94 Bytes
42.25 - Using Keras + Tensorflow to extract features/FTUApps.com website coming soon.txt
94 Bytes
42.26 - Visual similarity based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.27 - Measuring goodness of our solution AB testing/FTUApps.com website coming soon.txt
94 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/FTUApps.com website coming soon.txt
94 Bytes
42.2 - Plan of action/FTUApps.com website coming soon.txt
94 Bytes
42.3 - Amazon product advertising API/FTUApps.com website coming soon.txt
94 Bytes
42.4 - Data folders and paths/FTUApps.com website coming soon.txt
94 Bytes
42.5 - Overview of the data and Terminology/FTUApps.com website coming soon.txt
94 Bytes
42.6 - Data cleaning and understandingMissing data in various features/FTUApps.com website coming soon.txt
94 Bytes
42.7 - Understand duplicate rows/FTUApps.com website coming soon.txt
94 Bytes
42.8 - Remove duplicates Part 1/FTUApps.com website coming soon.txt
94 Bytes
42.9 - Remove duplicates Part 2/FTUApps.com website coming soon.txt
94 Bytes
4.2 - Types of functions/FTUApps.com website coming soon.txt
94 Bytes
43.10 - ML models – using byte files only Random Model/FTUApps.com website coming soon.txt
94 Bytes
43.11 - k-NN/FTUApps.com website coming soon.txt
94 Bytes
43.12 - Logistic regression/FTUApps.com website coming soon.txt
94 Bytes
43.13 - Random Forest and Xgboost/FTUApps.com website coming soon.txt
94 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/FTUApps.com website coming soon.txt
94 Bytes
43.15 - File-size feature/FTUApps.com website coming soon.txt
94 Bytes
43.16 - Univariate analysis/FTUApps.com website coming soon.txt
94 Bytes
43.17 - t-SNE analysis/FTUApps.com website coming soon.txt
94 Bytes
43.18 - ML models on ASM file features/FTUApps.com website coming soon.txt
94 Bytes
43.19 - Models on all features t-SNE/FTUApps.com website coming soon.txt
94 Bytes
43.1 - Businessreal world problem Problem definition/FTUApps.com website coming soon.txt
94 Bytes
43.20 - Models on all features RandomForest and Xgboost/FTUApps.com website coming soon.txt
94 Bytes
43.21 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
43.2 - Businessreal world problem Objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
43.3 - Machine Learning problem mapping Data overview/FTUApps.com website coming soon.txt
94 Bytes
43.4 - Machine Learning problem mapping ML problem/FTUApps.com website coming soon.txt
94 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/FTUApps.com website coming soon.txt
94 Bytes
43.6 - Exploratory Data Analysis Class distribution/FTUApps.com website coming soon.txt
94 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/FTUApps.com website coming soon.txt
94 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/FTUApps.com website coming soon.txt
94 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/FTUApps.com website coming soon.txt
94 Bytes
4.3 - Function arguments/FTUApps.com website coming soon.txt
94 Bytes
44.10 - Exploratory Data AnalysisCold start problem/FTUApps.com website coming soon.txt
94 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/FTUApps.com website coming soon.txt
94 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/FTUApps.com website coming soon.txt
94 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/FTUApps.com website coming soon.txt
94 Bytes
44.14 - ML ModelsSurprise library/FTUApps.com website coming soon.txt
94 Bytes
44.15 - Overview of the modelling strategy/FTUApps.com website coming soon.txt
94 Bytes
44.16 - Data Sampling/FTUApps.com website coming soon.txt
94 Bytes
44.17 - Google drive with intermediate files/FTUApps.com website coming soon.txt
94 Bytes
44.18 - Featurizations for regression/FTUApps.com website coming soon.txt
94 Bytes
44.19 - Data transformation for Surprise/FTUApps.com website coming soon.txt
94 Bytes
44.1 - BusinessReal world problemProblem definition/FTUApps.com website coming soon.txt
94 Bytes
44.20 - Xgboost with 13 features/FTUApps.com website coming soon.txt
94 Bytes
44.21 - Surprise Baseline model/FTUApps.com website coming soon.txt
94 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/FTUApps.com website coming soon.txt
94 Bytes
44.23 - Surprise KNN predictors/FTUApps.com website coming soon.txt
94 Bytes
44.24 - Matrix Factorization models using Surprise/FTUApps.com website coming soon.txt
94 Bytes
44.25 - SVD ++ with implicit feedback/FTUApps.com website coming soon.txt
94 Bytes
44.26 - Final models with all features and predictors/FTUApps.com website coming soon.txt
94 Bytes
44.27 - Comparison between various models/FTUApps.com website coming soon.txt
94 Bytes
44.28 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
44.2 - Objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
44.3 - Mapping to an ML problemData overview/FTUApps.com website coming soon.txt
94 Bytes
44.4 - Mapping to an ML problemML problem formulation/FTUApps.com website coming soon.txt
94 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/FTUApps.com website coming soon.txt
94 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/FTUApps.com website coming soon.txt
94 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/FTUApps.com website coming soon.txt
94 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/FTUApps.com website coming soon.txt
94 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/FTUApps.com website coming soon.txt
94 Bytes
4.4 - Recursive functions/FTUApps.com website coming soon.txt
94 Bytes
45.10 - Univariate AnalysisVariation Feature/FTUApps.com website coming soon.txt
94 Bytes
45.11 - Univariate AnalysisText feature/FTUApps.com website coming soon.txt
94 Bytes
45.12 - Machine Learning ModelsData preparation/FTUApps.com website coming soon.txt
94 Bytes
45.13 - Baseline Model Naive Bayes/FTUApps.com website coming soon.txt
94 Bytes
45.14 - K-Nearest Neighbors Classification/FTUApps.com website coming soon.txt
94 Bytes
45.15 - Logistic Regression with class balancing/FTUApps.com website coming soon.txt
94 Bytes
45.16 - Logistic Regression without class balancing/FTUApps.com website coming soon.txt
94 Bytes
45.17 - Linear-SVM/FTUApps.com website coming soon.txt
94 Bytes
45.18 - Random-Forest with one-hot encoded features/FTUApps.com website coming soon.txt
94 Bytes
45.19 - Random-Forest with response-coded features/FTUApps.com website coming soon.txt
94 Bytes
45.1 - BusinessReal world problem Overview/FTUApps.com website coming soon.txt
94 Bytes
45.20 - Stacking Classifier/FTUApps.com website coming soon.txt
94 Bytes
45.21 - Majority Voting classifier/FTUApps.com website coming soon.txt
94 Bytes
45.22 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
45.2 - Business objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
45.3 - ML problem formulation Data/FTUApps.com website coming soon.txt
94 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/FTUApps.com website coming soon.txt
94 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/FTUApps.com website coming soon.txt
94 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/FTUApps.com website coming soon.txt
94 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/FTUApps.com website coming soon.txt
94 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/FTUApps.com website coming soon.txt
94 Bytes
45.8 - Exploratory Data Analysis “Random” Model/FTUApps.com website coming soon.txt
94 Bytes
45.9 - Univariate AnalysisGene feature/FTUApps.com website coming soon.txt
94 Bytes
4.5 - Lambda functions/FTUApps.com website coming soon.txt
94 Bytes
46.10 - Data Cleaning Speed/FTUApps.com website coming soon.txt
94 Bytes
46.11 - Data Cleaning Distance/FTUApps.com website coming soon.txt
94 Bytes
46.12 - Data Cleaning Fare/FTUApps.com website coming soon.txt
94 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/FTUApps.com website coming soon.txt
94 Bytes
46.14 - Data PreparationClusteringSegmentation/FTUApps.com website coming soon.txt
94 Bytes
46.15 - Data PreparationTime binning/FTUApps.com website coming soon.txt
94 Bytes
46.16 - Data PreparationSmoothing time-series data/FTUApps.com website coming soon.txt
94 Bytes
46.17 - Data PreparationSmoothing time-series data cont/FTUApps.com website coming soon.txt
94 Bytes
46.18 - Data Preparation Time series and Fourier transforms/FTUApps.com website coming soon.txt
94 Bytes
46.19 - Ratios and previous-time-bin values/FTUApps.com website coming soon.txt
94 Bytes
46.1 - BusinessReal world problem Overview/FTUApps.com website coming soon.txt
94 Bytes
46.20 - Simple moving average/FTUApps.com website coming soon.txt
94 Bytes
46.21 - Weighted Moving average/FTUApps.com website coming soon.txt
94 Bytes
46.22 - Exponential weighted moving average/FTUApps.com website coming soon.txt
94 Bytes
46.23 - Results/FTUApps.com website coming soon.txt
94 Bytes
46.24 - Regression models Train-Test split & Features/FTUApps.com website coming soon.txt
94 Bytes
46.25 - Linear regression/FTUApps.com website coming soon.txt
94 Bytes
46.26 - Random Forest regression/FTUApps.com website coming soon.txt
94 Bytes
46.27 - Xgboost Regression/FTUApps.com website coming soon.txt
94 Bytes
46.28 - Model comparison/FTUApps.com website coming soon.txt
94 Bytes
46.29 - Assignment/FTUApps.com website coming soon.txt
94 Bytes
46.2 - Objectives and Constraints/FTUApps.com website coming soon.txt
94 Bytes
46.3 - Mapping to ML problem Data/FTUApps.com website coming soon.txt
94 Bytes
46.4 - Mapping to ML problem dask dataframes/FTUApps.com website coming soon.txt
94 Bytes
46.5 - Mapping to ML problem FieldsFeatures/FTUApps.com website coming soon.txt
94 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/FTUApps.com website coming soon.txt
94 Bytes
46.7 - Mapping to ML problem Performance metrics/FTUApps.com website coming soon.txt
94 Bytes
46.8 - Data Cleaning Latitude and Longitude data/FTUApps.com website coming soon.txt
94 Bytes
46.9 - Data Cleaning Trip Duration/FTUApps.com website coming soon.txt
94 Bytes
4.6 - Modules/FTUApps.com website coming soon.txt
94 Bytes
47.10 - Backpropagation/FTUApps.com website coming soon.txt
94 Bytes
47.11 - Activation functions/FTUApps.com website coming soon.txt
94 Bytes
47.12 - Vanishing Gradient problem/FTUApps.com website coming soon.txt
94 Bytes
47.13 - Bias-Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
47.14 - Decision surfaces Playground/FTUApps.com website coming soon.txt
94 Bytes
47.1 - History of Neural networks and Deep Learning/FTUApps.com website coming soon.txt
94 Bytes
47.2 - How Biological Neurons work/FTUApps.com website coming soon.txt
94 Bytes
47.3 - Growth of biological neural networks/FTUApps.com website coming soon.txt
94 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/FTUApps.com website coming soon.txt
94 Bytes
47.5 - Multi-Layered Perceptron (MLP)/FTUApps.com website coming soon.txt
94 Bytes
47.6 - Notation/FTUApps.com website coming soon.txt
94 Bytes
47.7 - Training a single-neuron model/FTUApps.com website coming soon.txt
94 Bytes
47.8 - Training an MLP Chain Rule/FTUApps.com website coming soon.txt
94 Bytes
47.9 - Training an MLPMemoization/FTUApps.com website coming soon.txt
94 Bytes
4.7 - Packages/FTUApps.com website coming soon.txt
94 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/FTUApps.com website coming soon.txt
94 Bytes
48.11 - OptimizersAdaGrad/FTUApps.com website coming soon.txt
94 Bytes
48.12 - Optimizers Adadelta andRMSProp/FTUApps.com website coming soon.txt
94 Bytes
48.13 - Adam/FTUApps.com website coming soon.txt
94 Bytes
48.14 - Which algorithm to choose when/FTUApps.com website coming soon.txt
94 Bytes
48.15 - Gradient Checking and clipping/FTUApps.com website coming soon.txt
94 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/FTUApps.com website coming soon.txt
94 Bytes
48.17 - How to train a Deep MLP/FTUApps.com website coming soon.txt
94 Bytes
48.18 - Auto Encoders/FTUApps.com website coming soon.txt
94 Bytes
48.19 - Word2Vec CBOW/FTUApps.com website coming soon.txt
94 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/FTUApps.com website coming soon.txt
94 Bytes
48.20 - Word2Vec Skip-gram/FTUApps.com website coming soon.txt
94 Bytes
48.21 - Word2Vec Algorithmic Optimizations/FTUApps.com website coming soon.txt
94 Bytes
48.2 - Dropout layers & Regularization/FTUApps.com website coming soon.txt
94 Bytes
48.3 - Rectified Linear Units (ReLU)/FTUApps.com website coming soon.txt
94 Bytes
48.4 - Weight initialization/FTUApps.com website coming soon.txt
94 Bytes
48.5 - Batch Normalization/FTUApps.com website coming soon.txt
94 Bytes
48.6 - OptimizersHill-descent analogy in 2D/FTUApps.com website coming soon.txt
94 Bytes
48.7 - OptimizersHill descent in 3D and contours/FTUApps.com website coming soon.txt
94 Bytes
48.8 - SGD Recap/FTUApps.com website coming soon.txt
94 Bytes
48.9 - Batch SGD with momentum/FTUApps.com website coming soon.txt
94 Bytes
4.8 - File Handling/FTUApps.com website coming soon.txt
94 Bytes
49.10 - Model 3 Batch Normalization/FTUApps.com website coming soon.txt
94 Bytes
49.11 - Model 4 Dropout/FTUApps.com website coming soon.txt
94 Bytes
49.12 - MNIST classification in Keras/FTUApps.com website coming soon.txt
94 Bytes
49.13 - Hyperparameter tuning in Keras/FTUApps.com website coming soon.txt
94 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
49.1 - Tensorflow and Keras overview/FTUApps.com website coming soon.txt
94 Bytes
49.2 - GPU vs CPU for Deep Learning/FTUApps.com website coming soon.txt
94 Bytes
49.3 - Google Colaboratory/FTUApps.com website coming soon.txt
94 Bytes
49.4 - Install TensorFlow/FTUApps.com website coming soon.txt
94 Bytes
49.5 - Online documentation and tutorials/FTUApps.com website coming soon.txt
94 Bytes
49.6 - Softmax Classifier on MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
49.7 - MLP Initialization/FTUApps.com website coming soon.txt
94 Bytes
49.8 - Model 1 Sigmoid activation/FTUApps.com website coming soon.txt
94 Bytes
49.9 - Model 2 ReLU activation/FTUApps.com website coming soon.txt
94 Bytes
4.9 - Exception Handling/FTUApps.com website coming soon.txt
94 Bytes
50.10 - Data Augmentation/FTUApps.com website coming soon.txt
94 Bytes
50.11 - Convolution Layers in Keras/FTUApps.com website coming soon.txt
94 Bytes
50.12 - AlexNet/FTUApps.com website coming soon.txt
94 Bytes
50.13 - VGGNet/FTUApps.com website coming soon.txt
94 Bytes
50.14 - Residual Network/FTUApps.com website coming soon.txt
94 Bytes
50.15 - Inception Network/FTUApps.com website coming soon.txt
94 Bytes
50.16 - What is Transfer learning/FTUApps.com website coming soon.txt
94 Bytes
50.17 - Code example Cats vs Dogs/FTUApps.com website coming soon.txt
94 Bytes
50.18 - Code Example MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/FTUApps.com website coming soon.txt
94 Bytes
50.1 - Biological inspiration Visual Cortex/FTUApps.com website coming soon.txt
94 Bytes
50.2 - ConvolutionEdge Detection on images/FTUApps.com website coming soon.txt
94 Bytes
50.3 - ConvolutionPadding and strides/FTUApps.com website coming soon.txt
94 Bytes
50.4 - Convolution over RGB images/FTUApps.com website coming soon.txt
94 Bytes
50.5 - Convolutional layer/FTUApps.com website coming soon.txt
94 Bytes
50.6 - Max-pooling/FTUApps.com website coming soon.txt
94 Bytes
50.7 - CNN Training Optimization/FTUApps.com website coming soon.txt
94 Bytes
50.8 - Example CNN LeNet [1998]/FTUApps.com website coming soon.txt
94 Bytes
50.9 - ImageNet dataset/FTUApps.com website coming soon.txt
94 Bytes
51.10 - Code example IMDB Sentiment classification/FTUApps.com website coming soon.txt
94 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/FTUApps.com website coming soon.txt
94 Bytes
51.1 - Why RNNs/FTUApps.com website coming soon.txt
94 Bytes
51.2 - Recurrent Neural Network/FTUApps.com website coming soon.txt
94 Bytes
51.3 - Training RNNs Backprop/FTUApps.com website coming soon.txt
94 Bytes
51.4 - Types of RNNs/FTUApps.com website coming soon.txt
94 Bytes
51.5 - Need for LSTMGRU/FTUApps.com website coming soon.txt
94 Bytes
51.6 - LSTM/FTUApps.com website coming soon.txt
94 Bytes
51.7 - GRUs/FTUApps.com website coming soon.txt
94 Bytes
51.8 - Deep RNN/FTUApps.com website coming soon.txt
94 Bytes
51.9 - Bidirectional RNN/FTUApps.com website coming soon.txt
94 Bytes
5.1 - Numpy Introduction/FTUApps.com website coming soon.txt
94 Bytes
52.1 - Questions and Answers/FTUApps.com website coming soon.txt
94 Bytes
5.2 - Numerical operations on Numpy/FTUApps.com website coming soon.txt
94 Bytes
53.10 - NVIDIA’s end to end CNN model/FTUApps.com website coming soon.txt
94 Bytes
53.11 - Train the model/FTUApps.com website coming soon.txt
94 Bytes
53.12 - Test and visualize the output/FTUApps.com website coming soon.txt
94 Bytes
53.13 - Extensions/FTUApps.com website coming soon.txt
94 Bytes
53.14 - Assignment/FTUApps.com website coming soon.txt
94 Bytes
53.1 - Self Driving Car Problem definition/FTUApps.com website coming soon.txt
94 Bytes
53.2 - Datasets/FTUApps.com website coming soon.txt
94 Bytes
53.2 - Datasets#/FTUApps.com website coming soon.txt
94 Bytes
53.3 - Data understanding & Analysis Files and folders/FTUApps.com website coming soon.txt
94 Bytes
53.4 - Dash-cam images and steering angles/FTUApps.com website coming soon.txt
94 Bytes
53.5 - Split the dataset Train vs Test/FTUApps.com website coming soon.txt
94 Bytes
53.6 - EDA Steering angles/FTUApps.com website coming soon.txt
94 Bytes
53.7 - Mean Baseline model simple/FTUApps.com website coming soon.txt
94 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/FTUApps.com website coming soon.txt
94 Bytes
53.9 - Batch load the dataset/FTUApps.com website coming soon.txt
94 Bytes
54.10 - MIDI music generation/FTUApps.com website coming soon.txt
94 Bytes
54.11 - Survey blog/FTUApps.com website coming soon.txt
94 Bytes
54.1 - Real-world problem/FTUApps.com website coming soon.txt
94 Bytes
54.2 - Music representation/FTUApps.com website coming soon.txt
94 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/FTUApps.com website coming soon.txt
94 Bytes
54.4 - Char-RNN with abc-notation Data preparation/FTUApps.com website coming soon.txt
94 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/FTUApps.com website coming soon.txt
94 Bytes
54.6 - Char-RNN with abc-notation State full RNN/FTUApps.com website coming soon.txt
94 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/FTUApps.com website coming soon.txt
94 Bytes
54.8 - Char-RNN with abc-notation Music generation/FTUApps.com website coming soon.txt
94 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/FTUApps.com website coming soon.txt
94 Bytes
55.1 - Human Activity Recognition Problem definition/FTUApps.com website coming soon.txt
94 Bytes
55.2 - Dataset understanding/FTUApps.com website coming soon.txt
94 Bytes
55.3 - Data cleaning & preprocessing/FTUApps.com website coming soon.txt
94 Bytes
55.4 - EDAUnivariate analysis/FTUApps.com website coming soon.txt
94 Bytes
55.5 - EDAData visualization using t-SNE/FTUApps.com website coming soon.txt
94 Bytes
55.6 - Classical ML models/FTUApps.com website coming soon.txt
94 Bytes
55.7 - Deep-learning Model/FTUApps.com website coming soon.txt
94 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/FTUApps.com website coming soon.txt
94 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/FTUApps.com website coming soon.txt
94 Bytes
56.11 - PageRank/FTUApps.com website coming soon.txt
94 Bytes
56.12 - Shortest Path/FTUApps.com website coming soon.txt
94 Bytes
56.13 - Connected-components/FTUApps.com website coming soon.txt
94 Bytes
56.14 - Adar Index/FTUApps.com website coming soon.txt
94 Bytes
56.15 - Kartz Centrality/FTUApps.com website coming soon.txt
94 Bytes
56.16 - HITS Score/FTUApps.com website coming soon.txt
94 Bytes
56.17 - SVD/FTUApps.com website coming soon.txt
94 Bytes
56.18 - Weight features/FTUApps.com website coming soon.txt
94 Bytes
56.19 - Modeling/FTUApps.com website coming soon.txt
94 Bytes
56.1 - Problem definition/FTUApps.com website coming soon.txt
94 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/FTUApps.com website coming soon.txt
94 Bytes
56.3 - Data format & Limitations/FTUApps.com website coming soon.txt
94 Bytes
56.4 - Mapping to a supervised classification problem/FTUApps.com website coming soon.txt
94 Bytes
56.5 - Business constraints & Metrics/FTUApps.com website coming soon.txt
94 Bytes
56.6 - EDABasic Stats/FTUApps.com website coming soon.txt
94 Bytes
56.7 - EDAFollower and following stats/FTUApps.com website coming soon.txt
94 Bytes
56.8 - EDABinary Classification Task/FTUApps.com website coming soon.txt
94 Bytes
56.9 - EDATrain and test split/FTUApps.com website coming soon.txt
94 Bytes
57.10 - ORDER BY/FTUApps.com website coming soon.txt
94 Bytes
57.11 - DISTINCT/FTUApps.com website coming soon.txt
94 Bytes
57.12 - WHERE, Comparison operators, NULL/FTUApps.com website coming soon.txt
94 Bytes
57.13 - Logical Operators/FTUApps.com website coming soon.txt
94 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/FTUApps.com website coming soon.txt
94 Bytes
57.15 - GROUP BY/FTUApps.com website coming soon.txt
94 Bytes
57.16 - HAVING/FTUApps.com website coming soon.txt
94 Bytes
57.17 - Order of keywords#/FTUApps.com website coming soon.txt
94 Bytes
57.18 - Join and Natural Join/FTUApps.com website coming soon.txt
94 Bytes
57.19 - Inner, Left, Right and Outer joins/FTUApps.com website coming soon.txt
94 Bytes
57.1 - Introduction to Databases/FTUApps.com website coming soon.txt
94 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/FTUApps.com website coming soon.txt
94 Bytes
57.21 - DMLINSERT/FTUApps.com website coming soon.txt
94 Bytes
57.22 - DMLUPDATE , DELETE/FTUApps.com website coming soon.txt
94 Bytes
57.23 - DDLCREATE TABLE/FTUApps.com website coming soon.txt
94 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/FTUApps.com website coming soon.txt
94 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/FTUApps.com website coming soon.txt
94 Bytes
57.26 - Data Control Language GRANT, REVOKE/FTUApps.com website coming soon.txt
94 Bytes
57.27 - Learning resources/FTUApps.com website coming soon.txt
94 Bytes
57.2 - Why SQL/FTUApps.com website coming soon.txt
94 Bytes
57.3 - Execution of an SQL statement/FTUApps.com website coming soon.txt
94 Bytes
57.4 - IMDB dataset/FTUApps.com website coming soon.txt
94 Bytes
57.5 - Installing MySQL/FTUApps.com website coming soon.txt
94 Bytes
57.6 - Load IMDB data/FTUApps.com website coming soon.txt
94 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/FTUApps.com website coming soon.txt
94 Bytes
57.8 - SELECT/FTUApps.com website coming soon.txt
94 Bytes
57.9 - LIMIT, OFFSET/FTUApps.com website coming soon.txt
94 Bytes
58.1 - AD-Click Predicition/FTUApps.com website coming soon.txt
94 Bytes
59.1 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
59.2 - Questions/FTUApps.com website coming soon.txt
94 Bytes
59.3 - External resources for Interview Questions/FTUApps.com website coming soon.txt
94 Bytes
6.1 - Getting started with Matplotlib/FTUApps.com website coming soon.txt
94 Bytes
7.1 - Getting started with pandas/FTUApps.com website coming soon.txt
94 Bytes
7.2 - Data Frame Basics/FTUApps.com website coming soon.txt
94 Bytes
7.3 - Key Operations on Data Frames/FTUApps.com website coming soon.txt
94 Bytes
8.1 - Space and Time Complexity Find largest number in a list/FTUApps.com website coming soon.txt
94 Bytes
8.2 - Binary search/FTUApps.com website coming soon.txt
94 Bytes
8.3 - Find elements common in two lists/FTUApps.com website coming soon.txt
94 Bytes
8.4 - Find elements common in two lists using a HashtableDict/FTUApps.com website coming soon.txt
94 Bytes
9.10 - Percentiles and Quantiles/FTUApps.com website coming soon.txt
94 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/FTUApps.com website coming soon.txt
94 Bytes
9.12 - Box-plot with Whiskers/FTUApps.com website coming soon.txt
94 Bytes
9.13 - Violin Plots/FTUApps.com website coming soon.txt
94 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/FTUApps.com website coming soon.txt
94 Bytes
9.15 - Multivariate Probability Density, Contour Plot/FTUApps.com website coming soon.txt
94 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/FTUApps.com website coming soon.txt
94 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/FTUApps.com website coming soon.txt
94 Bytes
9.2 - 3D scatter plot/FTUApps.com website coming soon.txt
94 Bytes
9.3 - Pair plots/FTUApps.com website coming soon.txt
94 Bytes
9.4 - Limitations of Pair Plots/FTUApps.com website coming soon.txt
94 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/FTUApps.com website coming soon.txt
94 Bytes
9.6 - Univariate Analysis using PDF/FTUApps.com website coming soon.txt
94 Bytes
9.7 - CDF(Cumulative Distribution Function)/FTUApps.com website coming soon.txt
94 Bytes
9.8 - Mean, Variance and Standard Deviation/FTUApps.com website coming soon.txt
94 Bytes
9.9 - Median/FTUApps.com website coming soon.txt
94 Bytes
FTUApps.com website coming soon.txt
94 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>