搜索
[Tutorialsplanet.NET] Udemy - 2022 Python for Machine Learning & Data Science Masterclass
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - 2022 Python for Machine Learning & Data Science Masterclass
磁力链接/BT种子简介
种子哈希:
1f792304a9c54ca10904f35d679983939027c19c
文件大小:
11.43G
已经下载:
45
次
下载速度:
极快
收录时间:
2023-12-22
最近下载:
2024-09-05
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:1F792304A9C54CA10904F35D679983939027C19C
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
下海接客养男友
电影
starbound
qizz
熟女风
겹겹이 여름
麻豆+传
秘女神
joker 2024 bluray 1080p x265
teens suck
lull de leva
private.23.06.
明星++性
heydouga-4187
贾斯坦
福利岛
onlyfans ts
多毛摄影
ramba
韩国情侣
萝莉反差母狗
一屋子
剧情 旁边
sd-wan
女友3p
rosie.rider
推特wink是可爱的wink
friday the 13th 1986
自杀岛
k pure passion
文件列表
23 - Hierarchical Clustering/004 Hierarchical Clustering - Coding Part Two - Scikit-Learn.mp4
219.4 MB
05 - Pandas/028 Pandas Project Exercise Solutions.mp4
180.9 MB
13 - Logistic Regression/016 Logistic Regression Project Exercise - Solutions.mp4
169.1 MB
08 - Data Analysis and Visualization Capstone Project Exercise/004 Capstone Project Solutions - Part Three.mp4
144.1 MB
17 - Random Forests/007 Coding Classification with Random Forest Classifier - Part Two.mp4
136.7 MB
19 - Supervised Learning Capstone Project/003 Solution Walkthrough - Supervised Learning Project - Cohort Analysis.mp4
136.5 MB
05 - Pandas/026 Pandas Pivot Tables.mp4
135.4 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/007 DBSCAN - Outlier Project Exercise Solutions.mp4
134.1 MB
25 - PCA - Principal Component Analysis and Manifold Learning/007 PCA - Project Exercise Solution.mp4
125.3 MB
11 - Feature Engineering and Data Preparation/005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows.mp4
123.3 MB
16 - Tree Based Methods_ Decision Tree Learning/008 Coding Decision Trees - Part Two -Creating the Model.mp4
121.4 MB
23 - Hierarchical Clustering/003 Hierarchical Clustering - Coding Part One - Data and Visualization.mp4
120.6 MB
19 - Supervised Learning Capstone Project/004 Solution Walkthrough - Supervised Learning Project - Tree Models.mp4
119.8 MB
07 - Seaborn Data Visualizations/002 Scatterplots with Seaborn.mp4
116.7 MB
08 - Data Analysis and Visualization Capstone Project Exercise/002 Capstone Project Solutions - Part One.mp4
116.0 MB
26 - Model Deployment/003 Model Persistence.mp4
115.1 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/002 DBSCAN - Theory and Intuition.mp4
114.4 MB
22 - K-Means Clustering/011 K-Means Clustering Exercise Solution - Part Two.mp4
113.5 MB
08 - Data Analysis and Visualization Capstone Project Exercise/003 Capstone Project Solutions - Part Two.mp4
111.3 MB
19 - Supervised Learning Capstone Project/002 Solution Walkthrough - Supervised Learning Project - Data and EDA.mp4
111.3 MB
06 - Matplotlib/011 Matplotlib Exercise Questions - Solutions.mp4
111.0 MB
07 - Seaborn Data Visualizations/014 Seaborn Plot Exercises Solutions.mp4
110.9 MB
11 - Feature Engineering and Data Preparation/006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns.mp4
110.3 MB
13 - Logistic Regression/014 Multi-Class Classification with Logistic Regression - Part Two - Model.mp4
110.2 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/005 DBSCAN - Hyperparameter Tuning Methods.mp4
110.2 MB
14 - KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions.mp4
110.1 MB
11 - Feature Engineering and Data Preparation/003 Dealing with Outliers.mp4
108.3 MB
14 - KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K.mp4
107.9 MB
05 - Pandas/023 Pandas Input and Output - HTML Tables.mp4
107.3 MB
20 - Naive Bayes Classification and Natural Language Processing/010 Text Classification Project Exercise Solutions.mp4
105.5 MB
04 - NumPy/002 NumPy Arrays.mp4
104.3 MB
16 - Tree Based Methods_ Decision Tree Learning/007 Coding Decision Trees - Part One - The Data.mp4
103.5 MB
22 - K-Means Clustering/004 K-Means Clustering - Coding Part One.mp4
102.7 MB
05 - Pandas/004 DataFrames - Part One - Creating a DataFrame.mp4
102.2 MB
06 - Matplotlib/006 Matplotlib - Subplots Functionality.mp4
101.3 MB
05 - Pandas/025 Pandas Input and Output - SQL Databases.mp4
100.6 MB
25 - PCA - Principal Component Analysis and Manifold Learning/004 PCA - Manual Implementation in Python.mp4
99.7 MB
10 - Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation.mp4
99.2 MB
15 - Support Vector Machines/010 Support Vector Machine Project Solutions.mp4
97.9 MB
05 - Pandas/015 GroupBy Operations - Part Two - MultiIndex.mp4
97.4 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions.mp4
95.7 MB
15 - Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two.mp4
95.0 MB
10 - Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation.mp4
93.7 MB
07 - Seaborn Data Visualizations/011 Seaborn Grid Plots.mp4
91.2 MB
05 - Pandas/014 GroupBy Operations - Part One.mp4
91.2 MB
10 - Linear Regression/003 Linear Regression - Understanding Ordinary Least Squares.mp4
90.6 MB
05 - Pandas/010 Pandas - Useful Methods - Apply on Multiple Columns.mp4
89.5 MB
17 - Random Forests/009 Coding Regression with Random Forest Regressor - Part Two - Basic Models.mp4
89.1 MB
07 - Seaborn Data Visualizations/008 Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4
88.7 MB
01 - Introduction to Course/003 Anaconda Python and Jupyter Install and Setup.mp4
88.6 MB
05 - Pandas/006 DataFrames - Part Three - Working with Columns.mp4
88.2 MB
10 - Linear Regression/011 Linear Regression - Model Deployment and Coefficient Interpretation.mp4
85.1 MB
22 - K-Means Clustering/005 K-Means Clustering Coding Part Two.mp4
84.8 MB
22 - K-Means Clustering/007 K-Means Color Quantization - Part One.mp4
84.5 MB
05 - Pandas/021 Pandas - Time Methods for Date and Time Data.mp4
84.1 MB
22 - K-Means Clustering/010 K-Means Clustering Exercise Solution - Part One.mp4
83.8 MB
15 - Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks.mp4
80.0 MB
05 - Pandas/011 Pandas - Useful Methods - Statistical Information and Sorting.mp4
78.0 MB
25 - PCA - Principal Component Analysis and Manifold Learning/005 PCA - SciKit-Learn.mp4
77.7 MB
05 - Pandas/013 Missing Data - Pandas Operations.mp4
77.2 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/006 Grid Search.mp4
76.7 MB
05 - Pandas/007 DataFrames - Part Four - Working with Rows.mp4
76.1 MB
10 - Linear Regression/006 Python coding Simple Linear Regression.mp4
73.5 MB
05 - Pandas/008 Pandas - Conditional Filtering.mp4
72.6 MB
26 - Model Deployment/006 Model API - Creating the Script.mp4
70.5 MB
01 - Introduction to Course/33985574-UNZIP-FOR-NOTEBOOKS-FINAL.zip
70.4 MB
01 - Introduction to Course/33985614-UNZIP-FOR-NOTEBOOKS-FINAL.zip
70.4 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/003 DBSCAN versus K-Means Clustering.mp4
69.9 MB
10 - Linear Regression/025 L1 and L2 Regularization - Elastic Net.mp4
69.6 MB
22 - K-Means Clustering/008 K-Means Color Quantization - Part Two.mp4
68.2 MB
18 - Boosting Methods/005 AdaBoost Coding Part Two - The Model.mp4
66.2 MB
22 - K-Means Clustering/012 K-Means Clustering Exercise Solution - Part Three.mp4
65.5 MB
13 - Logistic Regression/007 Logistic Regression with Scikit-Learn - Part One - EDA.mp4
65.5 MB
14 - KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One.mp4
64.5 MB
07 - Seaborn Data Visualizations/012 Seaborn - Matrix Plots.mp4
64.5 MB
10 - Linear Regression/008 Linear Regression - Scikit-Learn Train Test Split.mp4
64.4 MB
10 - Linear Regression/022 L2 Regularization - Ridge Regression Theory.mp4
64.3 MB
22 - K-Means Clustering/006 K-Means Clustering Coding Part Three.mp4
62.7 MB
22 - K-Means Clustering/009 K-Means Clustering Exercise Overview.mp4
62.4 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/003 Cross Validation - Test _ Validation _ Train Split.mp4
62.3 MB
07 - Seaborn Data Visualizations/004 Distribution Plots - Part Two - Coding with Seaborn.mp4
62.1 MB
11 - Feature Engineering and Data Preparation/007 Dealing with Categorical Data - Encoding Options.mp4
61.7 MB
18 - Boosting Methods/007 Gradient Boosting Coding Walkthrough.mp4
60.7 MB
02 - OPTIONAL_ Python Crash Course/003 Python Crash Course - Part Two.mp4
60.4 MB
13 - Logistic Regression/012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.mp4
59.8 MB
10 - Linear Regression/016 Polynomial Regression - Choosing Degree of Polynomial.mp4
58.4 MB
13 - Logistic Regression/006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.mp4
57.6 MB
10 - Linear Regression/002 Linear Regression - Algorithm History.mp4
57.5 MB
05 - Pandas/009 Pandas - Useful Methods - Apply on Single Column.mp4
56.3 MB
10 - Linear Regression/009 Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4
56.0 MB
25 - PCA - Principal Component Analysis and Manifold Learning/006 PCA - Project Exercise Overview.mp4
55.3 MB
15 - Support Vector Machines/005 SVM - Theory and Intuition - Kernel Trick and Mathematics.mp4
55.2 MB
22 - K-Means Clustering/003 K-Means Clustering Theory.mp4
55.0 MB
16 - Tree Based Methods_ Decision Tree Learning/006 Constructing Decision Trees with Gini Impurity - Part Two.mp4
54.9 MB
17 - Random Forests/006 Coding Classification with Random Forest Classifier - Part One.mp4
54.6 MB
23 - Hierarchical Clustering/002 Hierarchical Clustering - Theory and Intuition.mp4
54.6 MB
07 - Seaborn Data Visualizations/006 Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4
54.2 MB
07 - Seaborn Data Visualizations/010 Seaborn - Comparison Plots - Coding with Seaborn.mp4
53.6 MB
17 - Random Forests/011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models.mp4
53.1 MB
20 - Naive Bayes Classification and Natural Language Processing/006 Feature Extraction from Text - Coding with Scikit-Learn.mp4
52.8 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/006 DBSCAN - Outlier Project Exercise Overview.mp4
52.7 MB
06 - Matplotlib/010 Matplotlib Exercise Questions Overview.mp4
51.4 MB
02 - OPTIONAL_ Python Crash Course/006 Python Crash Course - Exercise Solutions.mp4
51.1 MB
20 - Naive Bayes Classification and Natural Language Processing/003 Naive Bayes Algorithm - Part Two - Model Algorithm.mp4
51.0 MB
07 - Seaborn Data Visualizations/013 Seaborn Plot Exercises Overview.mp4
50.2 MB
15 - Support Vector Machines/003 SVM - Theory and Intuition - Hyperplanes and Margins.mp4
50.1 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/002 Cross Validation - Test _ Train Split.mp4
49.1 MB
15 - Support Vector Machines/006 SVM with Scikit-Learn and Python - Classification Part One.mp4
48.5 MB
17 - Random Forests/010 Coding Regression with Random Forest Regressor - Part Three - Polynomials.mp4
47.7 MB
05 - Pandas/020 Pandas - Text Methods for String Data.mp4
47.3 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/005 Cross Validation - cross_validate.mp4
47.2 MB
07 - Seaborn Data Visualizations/007 Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4
47.1 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score.mp4
46.6 MB
06 - Matplotlib/008 Matplotlib Styling - Colors and Styles.mp4
46.4 MB
10 - Linear Regression/010 Linear Regression - Residual Plots.mp4
46.2 MB
18 - Boosting Methods/004 AdaBoost Coding Part One - The Data.mp4
44.3 MB
18 - Boosting Methods/003 AdaBoost Theory and Intuition.mp4
43.5 MB
05 - Pandas/005 DataFrames - Part Two - Basic Properties.mp4
42.2 MB
05 - Pandas/017 Combining DataFrames - Inner Merge.mp4
42.2 MB
10 - Linear Regression/013 Polynomial Regression - Creating Polynomial Features.mp4
42.0 MB
04 - NumPy/003 NumPy Indexing and Selection.mp4
41.6 MB
05 - Pandas/027 Pandas Project Exercise Overview.mp4
41.3 MB
13 - Logistic Regression/013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA.mp4
39.2 MB
05 - Pandas/022 Pandas Input and Output - CSV Files.mp4
39.0 MB
05 - Pandas/016 Combining DataFrames - Concatenation.mp4
38.6 MB
10 - Linear Regression/014 Polynomial Regression - Training and Evaluation.mp4
38.1 MB
10 - Linear Regression/015 Bias Variance Trade-Off.mp4
37.9 MB
11 - Feature Engineering and Data Preparation/002 Introduction to Feature Engineering and Data Preparation.mp4
37.9 MB
04 - NumPy/004 NumPy Operations.mp4
37.8 MB
13 - Logistic Regression/005 Logistic Regression - Theory and Intuition - Linear to Logistic Math.mp4
37.8 MB
01 - Introduction to Course/005 Environment Setup.mp4
37.4 MB
16 - Tree Based Methods_ Decision Tree Learning/002 Decision Tree - History.mp4
37.3 MB
04 - NumPy/006 Numpy Exercises - Solutions.mp4
36.6 MB
06 - Matplotlib/004 Matplotlib - Implementing Figures and Axes.mp4
36.6 MB
15 - Support Vector Machines/009 Support Vector Machine Project Overview.mp4
36.5 MB
20 - Naive Bayes Classification and Natural Language Processing/008 Natural Language Processing - Classification of Text - Part Two.mp4
36.5 MB
09 - Machine Learning Concepts Overview/004 Supervised Machine Learning Process.mp4
35.2 MB
26 - Model Deployment/007 Testing the API.mp4
34.8 MB
13 - Logistic Regression/010 Classification Metrics - Precison, Recall, F1-Score.mp4
34.8 MB
10 - Linear Regression/020 Introduction to Cross Validation.mp4
34.6 MB
17 - Random Forests/005 Random Forests - Bootstrapping and Out-of-Bag Error.mp4
34.3 MB
13 - Logistic Regression/008 Logistic Regression with Scikit-Learn - Part Two - Model Training.mp4
34.2 MB
02 - OPTIONAL_ Python Crash Course/004 Python Crash Course - Part Three.mp4
33.6 MB
10 - Linear Regression/007 Overview of Scikit-Learn and Python.mp4
33.0 MB
08 - Data Analysis and Visualization Capstone Project Exercise/001 Capstone Project Overview.mp4
32.6 MB
06 - Matplotlib/002 Matplotlib Basics.mp4
32.6 MB
20 - Naive Bayes Classification and Natural Language Processing/009 Text Classification Project Exercise Overview.mp4
32.0 MB
19 - Supervised Learning Capstone Project/001 Introduction to Supervised Learning Capstone Project.mp4
31.3 MB
02 - OPTIONAL_ Python Crash Course/002 Python Crash Course - Part One.mp4
31.2 MB
25 - PCA - Principal Component Analysis and Manifold Learning/002 PCA Theory and Intuition - Part One.mp4
31.2 MB
20 - Naive Bayes Classification and Natural Language Processing/004 Feature Extraction from Text - Part One - Theory and Intuition.mp4
30.8 MB
10 - Linear Regression/005 Linear Regression - Gradient Descent.mp4
30.6 MB
05 - Pandas/002 Series - Part One.mp4
30.0 MB
20 - Naive Bayes Classification and Natural Language Processing/007 Natural Language Processing - Classification of Text - Part One.mp4
29.6 MB
17 - Random Forests/004 Random Forests - Number of Estimators and Features in Subsets.mp4
28.6 MB
05 - Pandas/012 Missing Data - Overview.mp4
28.6 MB
05 - Pandas/003 Series - Part Two.mp4
27.4 MB
05 - Pandas/024 Pandas Input and Output - Excel Files.mp4
27.1 MB
06 - Matplotlib/009 Advanced Matplotlib Commands (Optional).mp4
26.4 MB
22 - K-Means Clustering/002 Clustering General Overview.mp4
26.1 MB
10 - Linear Regression/019 Feature Scaling.mp4
25.5 MB
13 - Logistic Regression/015 Logistic Regression Exercise Project Overview.mp4
25.5 MB
17 - Random Forests/002 Random Forests - History and Motivation.mp4
25.2 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/007 Linear Regression Project Overview.mp4
24.8 MB
14 - KNN - K Nearest Neighbors/002 KNN Classification - Theory and Intuition.mp4
24.7 MB
10 - Linear Regression/017 Polynomial Regression - Model Deployment.mp4
24.4 MB
18 - Boosting Methods/006 Gradient Boosting Theory.mp4
24.1 MB
10 - Linear Regression/012 Polynomial Regression - Theory and Motivation.mp4
23.3 MB
05 - Pandas/019 Combining DataFrames - Outer Merge.mp4
23.3 MB
20 - Naive Bayes Classification and Natural Language Processing/002 Naive Bayes Algorithm - Part One - Bayes Theorem.mp4
23.1 MB
18 - Boosting Methods/002 Boosting Methods - Motivation and History.mp4
23.0 MB
13 - Logistic Regression/009 Classification Metrics - Confusion Matrix and Accuracy.mp4
22.8 MB
14 - KNN - K Nearest Neighbors/005 KNN Classification Project Exercise Overview.mp4
22.2 MB
09 - Machine Learning Concepts Overview/002 Why Machine Learning_.mp4
22.1 MB
10 - Linear Regression/021 Regularization Data Setup.mp4
21.1 MB
16 - Tree Based Methods_ Decision Tree Learning/004 Decision Tree - Understanding Gini Impurity.mp4
20.4 MB
11 - Feature Engineering and Data Preparation/004 Dealing with Missing Data _ Part One - Evaluation of Missing Data.mp4
20.0 MB
25 - PCA - Principal Component Analysis and Manifold Learning/003 PCA Theory and Intuition - Part Two.mp4
20.0 MB
26 - Model Deployment/002 Model Deployment Considerations.mp4
19.2 MB
09 - Machine Learning Concepts Overview/003 Types of Machine Learning Algorithms.mp4
19.0 MB
16 - Tree Based Methods_ Decision Tree Learning/005 Constructing Decision Trees with Gini Impurity - Part One.mp4
18.6 MB
26 - Model Deployment/004 Model Deployment as an API - General Overview.mp4
18.3 MB
13 - Logistic Regression/003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function.mp4
18.2 MB
10 - Linear Regression/026 Linear Regression Project - Data Overview.mp4
17.8 MB
10 - Linear Regression/004 Linear Regression - Cost Functions.mp4
17.4 MB
05 - Pandas/018 Combining DataFrames - Left and Right Merge.mp4
17.2 MB
06 - Matplotlib/007 Matplotlib Styling - Legends.mp4
17.0 MB
13 - Logistic Regression/011 Classification Metrics - ROC Curves.mp4
16.9 MB
07 - Seaborn Data Visualizations/005 Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4
16.8 MB
15 - Support Vector Machines/002 History of Support Vector Machines.mp4
16.3 MB
10 - Linear Regression/018 Regularization Overview.mp4
16.3 MB
07 - Seaborn Data Visualizations/003 Distribution Plots - Part One - Understanding Plot Types.mp4
15.8 MB
03 - Machine Learning Pathway Overview/001 Machine Learning Pathway.mp4
14.8 MB
13 - Logistic Regression/002 Introduction to Logistic Regression Section.mp4
14.6 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/004 DBSCAN - Hyperparameter Theory.mp4
14.5 MB
21 - Unsupervised Learning/001 Unsupervised Learning Overview.mp4
14.4 MB
17 - Random Forests/008 Coding Regression with Random Forest Regressor - Part One - Data.mp4
14.3 MB
09 - Machine Learning Concepts Overview/001 Introduction to Machine Learning Overview Section.mp4
13.8 MB
06 - Matplotlib/005 Matplotlib - Figure Parameters.mp4
13.7 MB
06 - Matplotlib/003 Matplotlib - Understanding the Figure Object.mp4
12.3 MB
07 - Seaborn Data Visualizations/009 Seaborn - Comparison Plots - Understanding the Plot Types.mp4
11.1 MB
15 - Support Vector Machines/004 SVM - Theory and Intuition - Kernel Intuition.mp4
10.3 MB
04 - NumPy/005 NumPy Exercises.mp4
10.1 MB
17 - Random Forests/003 Random Forests - Key Hyperparameters.mp4
8.7 MB
13 - Logistic Regression/004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic.mp4
8.4 MB
16 - Tree Based Methods_ Decision Tree Learning/003 Decision Tree - Terminology.mp4
7.6 MB
20 - Naive Bayes Classification and Natural Language Processing/31640132-moviereviews.csv
7.6 MB
01 - Introduction to Course/002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP_.mp4
7.6 MB
19 - Supervised Learning Capstone Project/31389398-17-Supervised-Learning-Capstone-Project.zip
7.4 MB
05 - Pandas/001 Introduction to Pandas.mp4
7.0 MB
06 - Matplotlib/001 Introduction to Matplotlib.mp4
6.9 MB
22 - K-Means Clustering/32407448-20-Kmeans-Clustering.zip
6.1 MB
07 - Seaborn Data Visualizations/001 Introduction to Seaborn.mp4
6.0 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/001 Section Overview and Introduction.mp4
5.9 MB
09 - Machine Learning Concepts Overview/005 Companion Book - Introduction to Statistical Learning.mp4
5.4 MB
25 - PCA - Principal Component Analysis and Manifold Learning/001 Introduction to Principal Component Analysis.mp4
5.3 MB
22 - K-Means Clustering/32407452-bank-full.csv
5.2 MB
20 - Naive Bayes Classification and Natural Language Processing/001 Introduction to NLP and Naive Bayes Section.mp4
4.4 MB
26 - Model Deployment/001 Model Deployment Section Overview.mp4
4.4 MB
25 - PCA - Principal Component Analysis and Manifold Learning/33912220-23-PCA-Principal-Component-Analysis.zip
4.1 MB
17 - Random Forests/30930956-15-Random-Forests.zip
4.1 MB
14 - KNN - K Nearest Neighbors/001 Introduction to KNN Section.mp4
3.8 MB
22 - K-Means Clustering/001 Introduction to K-Means Clustering Section.mp4
3.7 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643014-22-DBSCAN.zip
3.7 MB
02 - OPTIONAL_ Python Crash Course/005 Python Crash Course - Exercise Questions.mp4
3.6 MB
04 - NumPy/001 Introduction to NumPy.mp4
3.5 MB
20 - Naive Bayes Classification and Natural Language Processing/31640102-airline-tweets.csv
3.4 MB
18 - Boosting Methods/001 Introduction to Boosting Section.mp4
3.1 MB
17 - Random Forests/001 Introduction to Random Forests Section.mp4
3.0 MB
15 - Support Vector Machines/001 Introduction to Support Vector Machines.mp4
2.9 MB
10 - Linear Regression/001 Introduction to Linear Regression Section.mp4
2.7 MB
16 - Tree Based Methods_ Decision Tree Learning/001 Introduction to Tree Based Methods.mp4
2.4 MB
13 - Logistic Regression/29304858-11-Logistic-Regression-Models.zip
2.1 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/001 Introduction to DBSCAN Section.mp4
1.9 MB
16 - Tree Based Methods_ Decision Tree Learning/30205020-14-Decision-Trees.zip
1.9 MB
23 - Hierarchical Clustering/001 Introduction to Hierarchical Clustering.mp4
1.8 MB
15 - Support Vector Machines/29902052-13-Support-Vector-Machines.zip
1.6 MB
14 - KNN - K Nearest Neighbors/29434428-12-K-Nearest-Neighbors.zip
1.4 MB
19 - Supervised Learning Capstone Project/31389400-Telco-Customer-Churn.csv
976.5 kB
18 - Boosting Methods/31286608-16-Boosted-Trees.zip
940.0 kB
23 - Hierarchical Clustering/33028500-21-Hierarchical-Clustering.zip
636.5 kB
25 - PCA - Principal Component Analysis and Manifold Learning/33912190-digits.csv
497.2 kB
18 - Boosting Methods/31286610-mushrooms.csv
374.0 kB
20 - Naive Bayes Classification and Natural Language Processing/31640094-18-Naive-Bayes-and-NLP.zip
197.1 kB
22 - K-Means Clustering/33555798-palm-trees.jpg
176.9 kB
25 - PCA - Principal Component Analysis and Manifold Learning/33912194-cancer-tumor-data-features.csv
120.8 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643060-cluster-circles.csv
61.3 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643082-cluster-moons.csv
60.1 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643080-cluster-blobs.csv
57.2 kB
17 - Random Forests/30930966-data-banknote-authentication.csv
46.5 kB
23 - Hierarchical Clustering/004 Hierarchical Clustering - Coding Part Two - Scikit-Learn__en.srt
43.3 kB
11 - Feature Engineering and Data Preparation/003 Dealing with Outliers__en.srt
42.2 kB
05 - Pandas/028 Pandas Project Exercise Solutions__en.srt
39.7 kB
19 - Supervised Learning Capstone Project/003 Solution Walkthrough - Supervised Learning Project - Cohort Analysis__en.srt
39.7 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643070-cluster-two-blobs-outliers.csv
39.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643072-cluster-two-blobs.csv
39.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/007 DBSCAN - Outlier Project Exercise Solutions__en.srt
39.0 kB
11 - Feature Engineering and Data Preparation/006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns__en.srt
37.6 kB
22 - K-Means Clustering/32407456-CIA-Country-Facts.csv
33.5 kB
16 - Tree Based Methods_ Decision Tree Learning/008 Coding Decision Trees - Part Two -Creating the Model__en.srt
33.5 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/005 DBSCAN - Hyperparameter Tuning Methods__en.srt
33.4 kB
05 - Pandas/026 Pandas Pivot Tables__en.srt
33.0 kB
04 - NumPy/002 NumPy Arrays__en.srt
32.7 kB
05 - Pandas/021 Pandas - Time Methods for Date and Time Data__en.srt
32.5 kB
11 - Feature Engineering and Data Preparation/005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows__en.srt
32.2 kB
13 - Logistic Regression/016 Logistic Regression Project Exercise - Solutions_en.vtt
31.6 kB
08 - Data Analysis and Visualization Capstone Project Exercise/004 Capstone Project Solutions - Part Three__en.srt
31.6 kB
14 - KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K_en.vtt
31.4 kB
22 - K-Means Clustering/004 K-Means Clustering - Coding Part One__en.srt
31.1 kB
07 - Seaborn Data Visualizations/002 Scatterplots with Seaborn__en.srt
30.4 kB
19 - Supervised Learning Capstone Project/002 Solution Walkthrough - Supervised Learning Project - Data and EDA__en.srt
30.4 kB
05 - Pandas/025 Pandas Input and Output - SQL Databases__en.srt
30.1 kB
19 - Supervised Learning Capstone Project/004 Solution Walkthrough - Supervised Learning Project - Tree Models_en.vtt
30.1 kB
15 - Support Vector Machines/005 SVM - Theory and Intuition - Kernel Trick and Mathematics__en.srt
30.0 kB
16 - Tree Based Methods_ Decision Tree Learning/007 Coding Decision Trees - Part One - The Data__en.srt
30.0 kB
05 - Pandas/004 DataFrames - Part One - Creating a DataFrame__en.srt
29.7 kB
18 - Boosting Methods/003 AdaBoost Theory and Intuition__en.srt
29.6 kB
06 - Matplotlib/006 Matplotlib - Subplots Functionality__en.srt
29.3 kB
07 - Seaborn Data Visualizations/008 Categorical Plots - Distributions within Categories - Coding with Seaborn__en.srt
28.9 kB
10 - Linear Regression/006 Python coding Simple Linear Regression__en.srt
28.8 kB
26 - Model Deployment/003 Model Persistence_en.vtt
28.8 kB
17 - Random Forests/007 Coding Classification with Random Forest Classifier - Part Two_en.vtt
28.6 kB
05 - Pandas/013 Missing Data - Pandas Operations__en.srt
28.1 kB
05 - Pandas/008 Pandas - Conditional Filtering__en.srt
27.8 kB
08 - Data Analysis and Visualization Capstone Project Exercise/002 Capstone Project Solutions - Part One__en.srt
27.5 kB
18 - Boosting Methods/005 AdaBoost Coding Part Two - The Model__en.srt
27.2 kB
22 - K-Means Clustering/005 K-Means Clustering Coding Part Two__en.srt
27.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/002 DBSCAN - Theory and Intuition__en.srt
27.1 kB
20 - Naive Bayes Classification and Natural Language Processing/003 Naive Bayes Algorithm - Part Two - Model Algorithm__en.srt
27.0 kB
25 - PCA - Principal Component Analysis and Manifold Learning/004 PCA - Manual Implementation in Python__en.srt
26.9 kB
15 - Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks_en.vtt
26.8 kB
26 - Model Deployment/006 Model API - Creating the Script__en.srt
26.7 kB
05 - Pandas/010 Pandas - Useful Methods - Apply on Multiple Columns__en.srt
26.6 kB
25 - PCA - Principal Component Analysis and Manifold Learning/007 PCA - Project Exercise Solution__en.srt
26.3 kB
19 - Supervised Learning Capstone Project/001 Introduction to Supervised Learning Capstone Project__en.srt
26.3 kB
15 - Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks__en.srt
26.3 kB
10 - Linear Regression/011 Linear Regression - Model Deployment and Coefficient Interpretation__en.srt
26.2 kB
23 - Hierarchical Clustering/003 Hierarchical Clustering - Coding Part One - Data and Visualization__en.srt
26.0 kB
13 - Logistic Regression/005 Logistic Regression - Theory and Intuition - Linear to Logistic Math__en.srt
25.4 kB
07 - Seaborn Data Visualizations/004 Distribution Plots - Part Two - Coding with Seaborn__en.srt
25.4 kB
02 - OPTIONAL_ Python Crash Course/002 Python Crash Course - Part One__en.srt
25.2 kB
06 - Matplotlib/011 Matplotlib Exercise Questions - Solutions__en.srt
25.1 kB
11 - Feature Engineering and Data Preparation/002 Introduction to Feature Engineering and Data Preparation__en.srt
24.7 kB
05 - Pandas/020 Pandas - Text Methods for String Data__en.srt
24.5 kB
13 - Logistic Regression/014 Multi-Class Classification with Logistic Regression - Part Two - Model__en.srt
24.4 kB
10 - Linear Regression/008 Linear Regression - Scikit-Learn Train Test Split__en.srt
24.3 kB
22 - K-Means Clustering/011 K-Means Clustering Exercise Solution - Part Two__en.srt
24.1 kB
08 - Data Analysis and Visualization Capstone Project Exercise/003 Capstone Project Solutions - Part Two__en.srt
24.0 kB
13 - Logistic Regression/012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation__en.srt
24.0 kB
05 - Pandas/011 Pandas - Useful Methods - Statistical Information and Sorting__en.srt
24.0 kB
10 - Linear Regression/009 Linear Regression - Scikit-Learn Performance Evaluation - Regression__en.srt
23.6 kB
10 - Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation_en.vtt
23.5 kB
13 - Logistic Regression/006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood__en.srt
23.5 kB
10 - Linear Regression/025 L1 and L2 Regularization - Elastic Net_en.vtt
23.2 kB
10 - Linear Regression/003 Linear Regression - Understanding Ordinary Least Squares__en.srt
23.1 kB
15 - Support Vector Machines/010 Support Vector Machine Project Solutions_en.vtt
23.0 kB
07 - Seaborn Data Visualizations/014 Seaborn Plot Exercises Solutions__en.srt
22.9 kB
05 - Pandas/023 Pandas Input and Output - HTML Tables__en.srt
22.9 kB
13 - Logistic Regression/007 Logistic Regression with Scikit-Learn - Part One - EDA__en.srt
22.4 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/003 Cross Validation - Test _ Validation _ Train Split__en.srt
22.2 kB
01 - Introduction to Course/003 Anaconda Python and Jupyter Install and Setup__en.srt
22.1 kB
05 - Pandas/014 GroupBy Operations - Part One__en.srt
21.9 kB
22 - K-Means Clustering/006 K-Means Clustering Coding Part Three__en.srt
21.9 kB
20 - Naive Bayes Classification and Natural Language Processing/010 Text Classification Project Exercise Solutions_en.vtt
21.8 kB
22 - K-Means Clustering/008 K-Means Color Quantization - Part Two__en.srt
21.8 kB
22 - K-Means Clustering/010 K-Means Clustering Exercise Solution - Part One__en.srt
21.6 kB
07 - Seaborn Data Visualizations/012 Seaborn - Matrix Plots__en.srt
21.6 kB
05 - Pandas/007 DataFrames - Part Four - Working with Rows__en.srt
21.6 kB
06 - Matplotlib/008 Matplotlib Styling - Colors and Styles__en.srt
21.6 kB
15 - Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two_en.vtt
21.5 kB
06 - Matplotlib/004 Matplotlib - Implementing Figures and Axes__en.srt
21.5 kB
05 - Pandas/015 GroupBy Operations - Part Two - MultiIndex__en.srt
21.4 kB
23 - Hierarchical Clustering/33028506-cluster-mpg.csv
21.3 kB
15 - Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two__en.srt
21.2 kB
10 - Linear Regression/022 L2 Regularization - Ridge Regression Theory__en.srt
21.2 kB
05 - Pandas/006 DataFrames - Part Three - Working with Columns__en.srt
21.1 kB
08 - Data Analysis and Visualization Capstone Project Exercise/001 Capstone Project Overview__en.srt
21.1 kB
07 - Seaborn Data Visualizations/011 Seaborn Grid Plots__en.srt
21.0 kB
17 - Random Forests/009 Coding Regression with Random Forest Regressor - Part Two - Basic Models__en.srt
20.9 kB
22 - K-Means Clustering/007 K-Means Color Quantization - Part One__en.srt
20.9 kB
05 - Pandas/009 Pandas - Useful Methods - Apply on Single Column__en.srt
20.7 kB
10 - Linear Regression/010 Linear Regression - Residual Plots__en.srt
20.7 kB
07 - Seaborn Data Visualizations/007 Categorical Plots - Distributions within Categories - Understanding Plot Types__en.srt
20.6 kB
11 - Feature Engineering and Data Preparation/007 Dealing with Categorical Data - Encoding Options__en.srt
20.6 kB
17 - Random Forests/007 Coding Classification with Random Forest Classifier - Part Two__en.srt
20.5 kB
10 - Linear Regression/016 Polynomial Regression - Choosing Degree of Polynomial__en.srt
20.4 kB
10 - Linear Regression/020 Introduction to Cross Validation__en.srt
20.3 kB
09 - Machine Learning Concepts Overview/004 Supervised Machine Learning Process__en.srt
20.2 kB
06 - Matplotlib/002 Matplotlib Basics__en.srt
20.1 kB
10 - Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation_en.vtt
20.1 kB
20 - Naive Bayes Classification and Natural Language Processing/010 Text Classification Project Exercise Solutions__en.srt
19.9 kB
14 - KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One_en.vtt
19.8 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/006 Grid Search__en.srt
19.7 kB
15 - Support Vector Machines/003 SVM - Theory and Intuition - Hyperplanes and Margins__en.srt
19.0 kB
14 - KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions_en.vtt
19.0 kB
05 - Pandas/017 Combining DataFrames - Inner Merge__en.srt
19.0 kB
05 - Pandas/012 Missing Data - Overview__en.srt
18.8 kB
02 - OPTIONAL_ Python Crash Course/003 Python Crash Course - Part Two__en.srt
18.5 kB
17 - Random Forests/005 Random Forests - Bootstrapping and Out-of-Bag Error__en.srt
18.4 kB
18 - Boosting Methods/007 Gradient Boosting Coding Walkthrough_en.vtt
17.9 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/002 Cross Validation - Test _ Train Split__en.srt
17.9 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/003 DBSCAN versus K-Means Clustering__en.srt
17.8 kB
25 - PCA - Principal Component Analysis and Manifold Learning/005 PCA - SciKit-Learn__en.srt
17.7 kB
23 - Hierarchical Clustering/002 Hierarchical Clustering - Theory and Intuition__en.srt
17.7 kB
22 - K-Means Clustering/003 K-Means Clustering Theory__en.srt
17.7 kB
17 - Random Forests/002 Random Forests - History and Motivation__en.srt
17.6 kB
11 - Feature Engineering and Data Preparation/004 Dealing with Missing Data _ Part One - Evaluation of Missing Data__en.srt
17.4 kB
10 - Linear Regression/025 L1 and L2 Regularization - Elastic Net__en.srt
17.4 kB
14 - KNN - K Nearest Neighbors/002 KNN Classification - Theory and Intuition__en.srt
17.3 kB
10 - Linear Regression/005 Linear Regression - Gradient Descent__en.srt
17.1 kB
20 - Naive Bayes Classification and Natural Language Processing/006 Feature Extraction from Text - Coding with Scikit-Learn__en.srt
17.1 kB
18 - Boosting Methods/004 AdaBoost Coding Part One - The Data__en.srt
17.1 kB
05 - Pandas/022 Pandas Input and Output - CSV Files__en.srt
17.0 kB
02 - OPTIONAL_ Python Crash Course/004 Python Crash Course - Part Three__en.srt
17.0 kB
22 - K-Means Clustering/002 Clustering General Overview__en.srt
16.9 kB
16 - Tree Based Methods_ Decision Tree Learning/006 Constructing Decision Trees with Gini Impurity - Part Two__en.srt
16.8 kB
10 - Linear Regression/013 Polynomial Regression - Creating Polynomial Features__en.srt
16.8 kB
15 - Support Vector Machines/006 SVM with Scikit-Learn and Python - Classification Part One__en.srt
16.8 kB
25 - PCA - Principal Component Analysis and Manifold Learning/003 PCA Theory and Intuition - Part Two__en.srt
16.8 kB
04 - NumPy/003 NumPy Indexing and Selection__en.srt
16.6 kB
17 - Random Forests/004 Random Forests - Number of Estimators and Features in Subsets__en.srt
16.6 kB
18 - Boosting Methods/006 Gradient Boosting Theory__en.srt
16.5 kB
10 - Linear Regression/015 Bias Variance Trade-Off__en.srt
16.3 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions_en.vtt
16.3 kB
03 - Machine Learning Pathway Overview/001 Machine Learning Pathway__en.srt
16.2 kB
17 - Random Forests/006 Coding Classification with Random Forest Classifier - Part One_en.vtt
16.2 kB
07 - Seaborn Data Visualizations/010 Seaborn - Comparison Plots - Coding with Seaborn__en.srt
16.1 kB
25 - PCA - Principal Component Analysis and Manifold Learning/002 PCA Theory and Intuition - Part One__en.srt
16.0 kB
17 - Random Forests/011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models__en.srt
15.8 kB
05 - Pandas/003 Series - Part Two__en.srt
15.7 kB
17 - Random Forests/010 Coding Regression with Random Forest Regressor - Part Three - Polynomials__en.srt
15.7 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score_en.vtt
15.6 kB
05 - Pandas/016 Combining DataFrames - Concatenation__en.srt
15.4 kB
07 - Seaborn Data Visualizations/003 Distribution Plots - Part One - Understanding Plot Types__en.srt
15.4 kB
10 - Linear Regression/019 Feature Scaling__en.srt
15.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643066-wholesome-customers-data.csv
15.0 kB
09 - Machine Learning Concepts Overview/002 Why Machine Learning___en.srt
15.0 kB
07 - Seaborn Data Visualizations/006 Categorical Plots - Statistics within Categories - Coding with Seaborn__en.srt
15.0 kB
05 - Pandas/019 Combining DataFrames - Outer Merge__en.srt
14.9 kB
01 - Introduction to Course/005 Environment Setup__en.srt
14.8 kB
13 - Logistic Regression/016 Logistic Regression Project Exercise - Solutions__en.srt
14.7 kB
10 - Linear Regression/014 Polynomial Regression - Training and Evaluation__en.srt
14.5 kB
13 - Logistic Regression/009 Classification Metrics - Confusion Matrix and Accuracy__en.srt
14.3 kB
02 - OPTIONAL_ Python Crash Course/006 Python Crash Course - Exercise Solutions__en.srt
13.8 kB
22 - K-Means Clustering/009 K-Means Clustering Exercise Overview__en.srt
13.8 kB
05 - Pandas/002 Series - Part One__en.srt
13.7 kB
05 - Pandas/005 DataFrames - Part Two - Basic Properties__en.srt
13.6 kB
16 - Tree Based Methods_ Decision Tree Learning/002 Decision Tree - History__en.srt
13.5 kB
10 - Linear Regression/002 Linear Regression - Algorithm History__en.srt
13.4 kB
21 - Unsupervised Learning/001 Unsupervised Learning Overview__en.srt
13.2 kB
15 - Support Vector Machines/010 Support Vector Machine Project Solutions__en.srt
13.1 kB
10 - Linear Regression/021 Regularization Data Setup__en.srt
12.7 kB
26 - Model Deployment/007 Testing the API__en.srt
12.5 kB
22 - K-Means Clustering/012 K-Means Clustering Exercise Solution - Part Three__en.srt
12.4 kB
04 - NumPy/004 NumPy Operations__en.srt
12.3 kB
13 - Logistic Regression/013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA__en.srt
12.3 kB
25 - PCA - Principal Component Analysis and Manifold Learning/006 PCA - Project Exercise Overview__en.srt
12.2 kB
20 - Naive Bayes Classification and Natural Language Processing/002 Naive Bayes Algorithm - Part One - Bayes Theorem__en.srt
12.1 kB
09 - Machine Learning Concepts Overview/003 Types of Machine Learning Algorithms__en.srt
11.9 kB
26 - Model Deployment/004 Model Deployment as an API - General Overview__en.srt
11.9 kB
06 - Matplotlib/003 Matplotlib - Understanding the Figure Object__en.srt
11.8 kB
16 - Tree Based Methods_ Decision Tree Learning/005 Constructing Decision Trees with Gini Impurity - Part One__en.srt
11.8 kB
10 - Linear Regression/004 Linear Regression - Cost Functions__en.srt
11.7 kB
07 - Seaborn Data Visualizations/013 Seaborn Plot Exercises Overview__en.srt
11.5 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/005 Cross Validation - cross_validate__en.srt
11.5 kB
10 - Linear Regression/012 Polynomial Regression - Theory and Motivation__en.srt
11.5 kB
16 - Tree Based Methods_ Decision Tree Learning/004 Decision Tree - Understanding Gini Impurity__en.srt
11.4 kB
13 - Logistic Regression/011 Classification Metrics - ROC Curves__en.srt
11.3 kB
14 - KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One__en.srt
11.3 kB
10 - Linear Regression/007 Overview of Scikit-Learn and Python_en.vtt
11.2 kB
10 - Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation__en.srt
11.2 kB
05 - Pandas/024 Pandas Input and Output - Excel Files__en.srt
11.1 kB
04 - NumPy/006 Numpy Exercises - Solutions__en.srt
11.1 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/004 DBSCAN - Hyperparameter Theory__en.srt
11.0 kB
26 - Model Deployment/002 Model Deployment Considerations__en.srt
10.8 kB
06 - Matplotlib/007 Matplotlib Styling - Legends__en.srt
10.6 kB
10 - Linear Regression/018 Regularization Overview__en.srt
10.6 kB
10 - Linear Regression/007 Overview of Scikit-Learn and Python__en.srt
10.4 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/006 DBSCAN - Outlier Project Exercise Overview__en.srt
10.2 kB
17 - Random Forests/006 Coding Classification with Random Forest Classifier - Part One__en.srt
10.2 kB
05 - Pandas/027 Pandas Project Exercise Overview__en.srt
9.8 kB
13 - Logistic Regression/008 Logistic Regression with Scikit-Learn - Part Two - Model Training__en.srt
9.8 kB
06 - Matplotlib/010 Matplotlib Exercise Questions Overview__en.srt
9.6 kB
05 - Pandas/018 Combining DataFrames - Left and Right Merge__en.srt
9.3 kB
18 - Boosting Methods/002 Boosting Methods - Motivation and History__en.srt
9.2 kB
18 - Boosting Methods/007 Gradient Boosting Coding Walkthrough__en.srt
9.1 kB
07 - Seaborn Data Visualizations/005 Categorical Plots - Statistics within Categories - Understanding Plot Types__en.srt
9.0 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions__en.srt
9.0 kB
07 - Seaborn Data Visualizations/009 Seaborn - Comparison Plots - Understanding the Plot Types__en.srt
8.9 kB
14 - KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions__en.srt
8.8 kB
09 - Machine Learning Concepts Overview/001 Introduction to Machine Learning Overview Section__en.srt
8.8 kB
13 - Logistic Regression/002 Introduction to Logistic Regression Section__en.srt
8.6 kB
10 - Linear Regression/017 Polynomial Regression - Model Deployment__en.srt
8.6 kB
13 - Logistic Regression/010 Classification Metrics - Precison, Recall, F1-Score__en.srt
8.5 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score__en.srt
8.3 kB
13 - Logistic Regression/003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function__en.srt
8.3 kB
22 - K-Means Clustering/32407460-country-iso-codes.csv
8.1 kB
20 - Naive Bayes Classification and Natural Language Processing/009 Text Classification Project Exercise Overview__en.srt
8.0 kB
10 - Linear Regression/026 Linear Regression Project - Data Overview__en.srt
7.9 kB
06 - Matplotlib/005 Matplotlib - Figure Parameters__en.srt
7.8 kB
13 - Logistic Regression/004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic__en.srt
7.4 kB
05 - Pandas/001 Introduction to Pandas__en.srt
7.4 kB
01 - Introduction to Course/002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP___en.srt
7.3 kB
15 - Support Vector Machines/004 SVM - Theory and Intuition - Kernel Intuition__en.srt
7.3 kB
15 - Support Vector Machines/009 Support Vector Machine Project Overview__en.srt
7.0 kB
17 - Random Forests/008 Coding Regression with Random Forest Regressor - Part One - Data__en.srt
7.0 kB
06 - Matplotlib/001 Introduction to Matplotlib__en.srt
6.9 kB
15 - Support Vector Machines/002 History of Support Vector Machines__en.srt
6.7 kB
07 - Seaborn Data Visualizations/001 Introduction to Seaborn__en.srt
6.7 kB
06 - Matplotlib/009 Advanced Matplotlib Commands (Optional)__en.srt
6.7 kB
13 - Logistic Regression/015 Logistic Regression Exercise Project Overview__en.srt
6.6 kB
16 - Tree Based Methods_ Decision Tree Learning/003 Decision Tree - Terminology__en.srt
6.6 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/007 Linear Regression Project Overview__en.srt
6.0 kB
10 - Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation__en.srt
5.5 kB
14 - KNN - K Nearest Neighbors/005 KNN Classification Project Exercise Overview__en.srt
5.4 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/001 Section Overview and Introduction__en.srt
5.2 kB
09 - Machine Learning Concepts Overview/005 Companion Book - Introduction to Statistical Learning__en.srt
4.8 kB
17 - Random Forests/003 Random Forests - Key Hyperparameters__en.srt
4.6 kB
19 - Supervised Learning Capstone Project/004 Solution Walkthrough - Supervised Learning Project - Tree Models__en.srt
4.3 kB
25 - PCA - Principal Component Analysis and Manifold Learning/001 Introduction to Principal Component Analysis__en.srt
4.1 kB
14 - KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K__en.srt
4.0 kB
20 - Naive Bayes Classification and Natural Language Processing/001 Introduction to NLP and Naive Bayes Section__en.srt
3.8 kB
14 - KNN - K Nearest Neighbors/001 Introduction to KNN Section__en.srt
3.7 kB
22 - K-Means Clustering/001 Introduction to K-Means Clustering Section__en.srt
3.6 kB
26 - Model Deployment/001 Model Deployment Section Overview__en.srt
3.6 kB
26 - Model Deployment/003 Model Persistence__en.srt
3.1 kB
04 - NumPy/001 Introduction to NumPy__en.srt
3.1 kB
17 - Random Forests/001 Introduction to Random Forests Section__en.srt
2.9 kB
10 - Linear Regression/001 Introduction to Linear Regression Section__en.srt
2.7 kB
18 - Boosting Methods/001 Introduction to Boosting Section__en.srt
2.7 kB
02 - OPTIONAL_ Python Crash Course/005 Python Crash Course - Exercise Questions__en.srt
2.6 kB
15 - Support Vector Machines/001 Introduction to Support Vector Machines__en.srt
2.4 kB
16 - Tree Based Methods_ Decision Tree Learning/001 Introduction to Tree Based Methods__en.srt
2.3 kB
04 - NumPy/005 NumPy Exercises__en.srt
2.1 kB
01 - Introduction to Course/001 Welcome to the Course_.html
1.7 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/001 Introduction to DBSCAN Section__en.srt
1.4 kB
23 - Hierarchical Clustering/001 Introduction to Hierarchical Clustering__en.srt
1.2 kB
11 - Feature Engineering and Data Preparation/001 A note from Jose on Feature Engineering and Data Preparation.html
990 Bytes
01 - Introduction to Course/004 Note on Environment Setup - Please read me_.html
857 Bytes
13 - Logistic Regression/001 Early Bird Note on Downloading .zip for Logistic Regression Notes.html
523 Bytes
02 - OPTIONAL_ Python Crash Course/001 OPTIONAL_ Python Crash Course.html
472 Bytes
26 - Model Deployment/005 Note on Upcoming Video.html
249 Bytes
01 - Introduction to Course/28813464-requirements.txt
221 Bytes
01 - Introduction to Course/external-assets-links.txt
132 Bytes
0. Websites you may like/[Tutorialsplanet.NET].url
128 Bytes
02 - OPTIONAL_ Python Crash Course/[Tutorialsplanet.NET].url
128 Bytes
11 - Feature Engineering and Data Preparation/[Tutorialsplanet.NET].url
128 Bytes
26 - Model Deployment/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
24 - DBSCAN - Density-based spatial clustering of applications with noise/external-assets-links.txt
103 Bytes
20 - Naive Bayes Classification and Natural Language Processing/004 Feature Extraction from Text - Part One - Theory and Intuition__en.srt
0 Bytes
20 - Naive Bayes Classification and Natural Language Processing/005 Feature Extraction from Text - Coding Count Vectorization Manually.mp4
0 Bytes
20 - Naive Bayes Classification and Natural Language Processing/005 Feature Extraction from Text - Coding Count Vectorization Manually__en.srt
0 Bytes
20 - Naive Bayes Classification and Natural Language Processing/007 Natural Language Processing - Classification of Text - Part One__en.srt
0 Bytes
20 - Naive Bayes Classification and Natural Language Processing/008 Natural Language Processing - Classification of Text - Part Two__en.srt
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>