搜索
[DesireCourse.Net] Udemy - Credit Risk Modeling in Python 2020
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - Credit Risk Modeling in Python 2020
磁力链接/BT种子简介
种子哈希:
2486aa86833a8e1e9f9949ae9c6f5efed66ab561
文件大小:
3.16G
已经下载:
2040
次
下载速度:
极快
收录时间:
2021-03-07
最近下载:
2024-11-29
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:2486AA86833A8E1E9F9949AE9C6F5EFED66AB561
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
fc2-3125926
无码+女学生
h0930-ki221225
sone-313-uc
珍藏
darling in the
美豔人妻房東太太 美櫻
密舞团
曹长卿joker
丝袜
电影
katka
doggystile
ls-dyna handbook
ganar o morir latino . tuspelisgratis
裤里
rki 158
【巨乳女神】
小学做爱
偷拍稀缺
洗澡间
juicyneko最强蒂法
550ene-025
大鸟十八河野玲酱
健身私教
柒柒7
malayalam 2024
layndare
欧美同人
snis-199
文件列表
13. Calculating expected loss/1. Calculating expected loss.mp4
132.9 MB
5. PD Model Data Preparation/25. Data preparation. Preprocessing continuous variables creating dummies (Part 2).mp4
117.2 MB
9. PD model monitoring/3. Population stability index preprocessing.mp4
110.4 MB
1. Introduction/10. Different facility types (asset classes) and credit risk modeling approaches.mp4
109.5 MB
6. PD model estimation/5. Build a logistic regression model with p-values.mp4
107.4 MB
1. Introduction/8. Basel II approaches SA, F-IRB, and A-IRB.mp4
107.4 MB
5. PD Model Data Preparation/28. Data preparation. Preprocessing continuous variables creating dummies (Part 3).mp4
105.9 MB
8. Applying the PD Model for decision making/2. Creating a scorecard.mp4
102.2 MB
5. PD Model Data Preparation/18. Data preparation. Preprocessing discrete variables creating dummies (Part 2).mp4
97.8 MB
9. PD model monitoring/4. Population stability index calculation and interpretation.mp4
96.1 MB
4. General preprocessing/3. Preprocessing few continuous variables.mp4
87.8 MB
8. Applying the PD Model for decision making/8. Setting cut-offs.mp4
79.7 MB
7. PD model validation/3. Evaluation of model performance accuracy and area under the curve (AUC).mp4
79.6 MB
1. Introduction/1. What does the course cover.mp4
76.5 MB
7. PD model validation/5. Evaluation of model performance Gini and Kolmogorov-Smirnov.mp4
73.3 MB
5. PD Model Data Preparation/15. Data preparation. Preprocessing discrete variables visualizing results.mp4
69.6 MB
3. Dataset description/3. Dependent variables and independent variables.mp4
69.1 MB
6. PD model estimation/1. The PD model. Logistic regression with dummy variables.mp4
63.4 MB
5. PD Model Data Preparation/9. Data preparation. Splitting data.mp4
62.3 MB
1. Introduction/2. What is credit risk and why is it important.mp4
61.0 MB
5. PD Model Data Preparation/5. Fine classing, weight of evidence, and coarse classing.mp4
58.0 MB
7. PD model validation/1. Out-of-sample validation (test).mp4
55.0 MB
1. Introduction/6. Capital adequacy, regulations, and the Basel II accord.mp4
53.5 MB
10. LGD and EAD Models Preparing the data/1. LGD and EAD models independent variables..mp4
52.5 MB
5. PD Model Data Preparation/11. Data preparation. An example.mp4
52.3 MB
5. PD Model Data Preparation/16. Data preparation. Preprocessing discrete variables creating dummies (Part 1).mp4
52.1 MB
12. EAD model/1. EAD model estimation and interpretation.mp4
50.3 MB
1. Introduction/4. Expected loss (EL) and its components PD, LGD and EAD.mp4
50.3 MB
4. General preprocessing/6. Preprocessing few discrete variables.mp4
48.5 MB
5. PD Model Data Preparation/21. Data preparation. Preprocessing continuous variables Automating calculations.mp4
47.2 MB
5. PD Model Data Preparation/7. Information value.mp4
46.9 MB
5. PD Model Data Preparation/23. Data preparation. Preprocessing continuous variables creating dummies (Part 1).mp4
46.2 MB
5. PD Model Data Preparation/13. Data preparation. Preprocessing discrete variables automating calculations.mp4
45.8 MB
6. PD model estimation/3. Loading the data and selecting the features.mp4
45.4 MB
11. LGD model/2. LGD model testing the model.mp4
44.7 MB
8. Applying the PD Model for decision making/4. Calculating credit score.mp4
43.1 MB
10. LGD and EAD Models Preparing the data/3. LGD and EAD models dependent variables.mp4
42.3 MB
10. LGD and EAD Models Preparing the data/5. LGD and EAD models distribution of recovery rates and credit conversion factors.mp4
42.0 MB
8. Applying the PD Model for decision making/1. Calculating probability of default for a single customer.mp4
41.7 MB
9. PD model monitoring/1. PD model monitoring via assessing population stability.mp4
40.9 MB
5. PD Model Data Preparation/3. Dependent variable Good Bad (default) definition.mp4
40.9 MB
5. PD Model Data Preparation/1. How is the PD model going to look like.mp4
39.4 MB
3. Dataset description/1. Our example consumer loans. A first look at the dataset.mp4
38.5 MB
11. LGD model/6. LGD model stage 2 – linear regression.mp4
37.8 MB
6. PD model estimation/7. Interpreting the coefficients in the PD model.mp4
36.9 MB
11. LGD model/4. LGD model estimating the accuracy of the model.mp4
36.5 MB
4. General preprocessing/1. Importing the data into Python.mp4
34.5 MB
5. PD Model Data Preparation/31. Data preparation. Preprocessing the test dataset.mp4
31.4 MB
12. EAD model/3. EAD model validation.mp4
31.3 MB
2. Setting up the working environment/3. Installing Anaconda.mp4
30.7 MB
2. Setting up the working environment/2. Why Python and why Jupyter.mp4
30.7 MB
11. LGD model/8. LGD model stage 2 – linear regression evaluation.mp4
28.1 MB
4. General preprocessing/8. Check for missing values and clean.mp4
26.3 MB
6. PD model estimation/4. PD model estimation.mp4
26.1 MB
11. LGD model/1. LGD model preparing the inputs.mp4
25.4 MB
11. LGD model/10. LGD model combining stage 1 and stage 2.mp4
25.1 MB
2. Setting up the working environment/5. Jupyter Dashboard - Part 2.mp4
25.1 MB
11. LGD model/5. LGD model saving the model.mp4
25.0 MB
8. Applying the PD Model for decision making/6. From credit score to PD.mp4
24.3 MB
2. Setting up the working environment/4. Jupyter Dashboard - Part 1.mp4
12.1 MB
2. Setting up the working environment/6. Installing the sklearn package.mp4
10.1 MB
2. Setting up the working environment/1. Setting up the environment - Do not skip, please!.mp4
6.3 MB
2. Setting up the working environment/5.1 Shortcuts-for-Jupyter.pdf
644.3 kB
13. Calculating expected loss/1. Calculating expected loss.srt
20.7 kB
3. Dataset description/1.1 LCDataDictionary.xlsx
20.1 kB
5. PD Model Data Preparation/25. Data preparation. Preprocessing continuous variables creating dummies (Part 2).srt
19.8 kB
4. General preprocessing/3. Preprocessing few continuous variables.srt
17.7 kB
5. PD Model Data Preparation/28. Data preparation. Preprocessing continuous variables creating dummies (Part 3).srt
17.3 kB
8. Applying the PD Model for decision making/2. Creating a scorecard.srt
17.2 kB
5. PD Model Data Preparation/18. Data preparation. Preprocessing discrete variables creating dummies (Part 2).srt
15.4 kB
9. PD model monitoring/3. Population stability index preprocessing.srt
15.1 kB
6. PD model estimation/5. Build a logistic regression model with p-values.srt
14.8 kB
7. PD model validation/3. Evaluation of model performance accuracy and area under the curve (AUC).srt
14.7 kB
9. PD model monitoring/4. Population stability index calculation and interpretation.srt
14.6 kB
7. PD model validation/5. Evaluation of model performance Gini and Kolmogorov-Smirnov.srt
13.8 kB
5. PD Model Data Preparation/15. Data preparation. Preprocessing discrete variables visualizing results.srt
13.2 kB
1. Introduction/8. Basel II approaches SA, F-IRB, and A-IRB.srt
12.9 kB
1. Introduction/10. Different facility types (asset classes) and credit risk modeling approaches.srt
12.2 kB
5. PD Model Data Preparation/9. Data preparation. Splitting data.srt
11.8 kB
8. Applying the PD Model for decision making/8. Setting cut-offs.srt
11.7 kB
5. PD Model Data Preparation/11. Data preparation. An example.srt
11.4 kB
6. PD model estimation/1. The PD model. Logistic regression with dummy variables.srt
10.8 kB
5. PD Model Data Preparation/23. Data preparation. Preprocessing continuous variables creating dummies (Part 1).srt
10.1 kB
5. PD Model Data Preparation/16. Data preparation. Preprocessing discrete variables creating dummies (Part 1).srt
9.8 kB
4. General preprocessing/6. Preprocessing few discrete variables.srt
9.1 kB
7. PD model validation/1. Out-of-sample validation (test).srt
9.0 kB
5. PD Model Data Preparation/5. Fine classing, weight of evidence, and coarse classing.srt
8.9 kB
10. LGD and EAD Models Preparing the data/1. LGD and EAD models independent variables..srt
8.5 kB
12. EAD model/1. EAD model estimation and interpretation.srt
8.2 kB
3. Dataset description/3. Dependent variables and independent variables.srt
8.2 kB
6. PD model estimation/7. Interpreting the coefficients in the PD model.srt
8.2 kB
1. Introduction/1. What does the course cover.srt
8.2 kB
5. PD Model Data Preparation/13. Data preparation. Preprocessing discrete variables automating calculations.srt
8.0 kB
10. LGD and EAD Models Preparing the data/5. LGD and EAD models distribution of recovery rates and credit conversion factors.srt
7.9 kB
8. Applying the PD Model for decision making/4. Calculating credit score.srt
7.7 kB
6. PD model estimation/3. Loading the data and selecting the features.srt
7.5 kB
5. PD Model Data Preparation/3. Dependent variable Good Bad (default) definition.srt
7.3 kB
10. LGD and EAD Models Preparing the data/3. LGD and EAD models dependent variables.srt
7.1 kB
9. PD model monitoring/1. PD model monitoring via assessing population stability.srt
7.0 kB
5. PD Model Data Preparation/7. Information value.srt
7.0 kB
11. LGD model/2. LGD model testing the model.srt
7.0 kB
2. Setting up the working environment/5. Jupyter Dashboard - Part 2.srt
6.8 kB
5. PD Model Data Preparation/21. Data preparation. Preprocessing continuous variables Automating calculations.srt
6.8 kB
2. Setting up the working environment/2. Why Python and why Jupyter.srt
6.6 kB
1. Introduction/2. What is credit risk and why is it important.srt
6.2 kB
11. LGD model/4. LGD model estimating the accuracy of the model.srt
6.1 kB
1. Introduction/6. Capital adequacy, regulations, and the Basel II accord.srt
5.9 kB
12. EAD model/3. EAD model validation.srt
5.8 kB
4. General preprocessing/1. Importing the data into Python.srt
5.7 kB
8. Applying the PD Model for decision making/1. Calculating probability of default for a single customer.srt
5.7 kB
5. PD Model Data Preparation/31. Data preparation. Preprocessing the test dataset.srt
5.6 kB
5. PD Model Data Preparation/1. How is the PD model going to look like.srt
5.4 kB
11. LGD model/6. LGD model stage 2 – linear regression.srt
5.4 kB
1. Introduction/4. Expected loss (EL) and its components PD, LGD and EAD.srt
5.4 kB
6. PD model estimation/4. PD model estimation.srt
5.0 kB
11. LGD model/8. LGD model stage 2 – linear regression evaluation.srt
4.7 kB
4. General preprocessing/8. Check for missing values and clean.srt
4.7 kB
2. Setting up the working environment/3. Installing Anaconda.srt
4.7 kB
11. LGD model/1. LGD model preparing the inputs.srt
4.5 kB
11. LGD model/10. LGD model combining stage 1 and stage 2.srt
4.3 kB
8. Applying the PD Model for decision making/6. From credit score to PD.srt
4.2 kB
11. LGD model/5. LGD model saving the model.srt
4.1 kB
3. Dataset description/1. Our example consumer loans. A first look at the dataset.srt
4.1 kB
2. Setting up the working environment/4. Jupyter Dashboard - Part 1.srt
3.3 kB
2. Setting up the working environment/6. Installing the sklearn package.srt
2.0 kB
5. PD Model Data Preparation/27. Data preparation. Preprocessing continuous variables creating dummies. Homework.html
1.9 kB
13. Calculating expected loss/4. Completing 100%.html
1.9 kB
11. LGD model/12. Homework building an updated LGD model.html
1.5 kB
5. PD Model Data Preparation/30. Data preparation. Preprocessing continuous variables creating dummies. Homework.html
1.4 kB
2. Setting up the working environment/1. Setting up the environment - Do not skip, please!.srt
1.3 kB
5. PD Model Data Preparation/20. Data preparation. Preprocessing discrete variables. Homework..html
1.3 kB
13. Calculating expected loss/3. Homework calculate expected loss on more recent data.html
974 Bytes
8. Applying the PD Model for decision making/10. Setting cut-offs. Homework.html
957 Bytes
4. General preprocessing/5. Preprocessing few continuous variables Homework.html
919 Bytes
12. EAD model/5. Homework building an updated EAD model.html
875 Bytes
9. PD model monitoring/6. Homework building an updated PD model.html
820 Bytes
4. General preprocessing/10. Check for missing values and clean Homework.html
668 Bytes
13. Calculating expected loss/1.1 Calculating expected loss with comments.html
207 Bytes
13. Calculating expected loss/3.1 Calculating expected loss complete notebook with comments.html
207 Bytes
10. LGD and EAD Models Preparing the data/1.1 LGD and EAD models independent variables with comments.html
202 Bytes
10. LGD and EAD Models Preparing the data/3.2 LGD and EAD models dependent variables with comments.html
202 Bytes
10. LGD and EAD Models Preparing the data/5.1 LGD and EAD models distribution of recovery rates and credit conversion factors with comments.html
202 Bytes
11. LGD model/1.1 LGD model preparing the inputs with comments.html
202 Bytes
11. LGD model/10.2 LGD model combining stage 1 and stage 2 with comments.html
202 Bytes
11. LGD model/2.1 LGD model testing the model with comments.html
202 Bytes
11. LGD model/4.1 LGD model estimating the accuracy of the model with comments.html
202 Bytes
11. LGD model/5.1 LGD model saving the model with comments.html
202 Bytes
11. LGD model/6.2 LGD model stage 2 – linear regression with comments.html
202 Bytes
11. LGD model/8.2 LGD model stage 2 – linear regression evaluation with comments.html
202 Bytes
12. EAD model/1.1 EAD model estimation and interpretation with comments.html
202 Bytes
12. EAD model/3.2 EAD model validation with comments.html
202 Bytes
5. PD Model Data Preparation/18.2 Data preparation. Preprocessing discrete variables creating dummies (Part 2) with comments.html
189 Bytes
5. PD Model Data Preparation/20.1 Data preparation. Preprocessing discrete variables. Homework with comments.html
189 Bytes
5. PD Model Data Preparation/21.1 Data preparation. Preprocessing continuous variables Automating calculations with comments.html
189 Bytes
5. PD Model Data Preparation/23.2 Data preparation. Preprocessing continuous variables creating dummies (Part 1) with comments.html
189 Bytes
5. PD Model Data Preparation/25.2 Data preparation. Preprocessing continuous variables creating dummies (Part 2) with comments.html
189 Bytes
5. PD Model Data Preparation/27.1 Data preparation. Preprocessing continuous variables creating dummies. Homework with comments.html
189 Bytes
5. PD Model Data Preparation/28.2 Data preparation. Preprocessing continuous variables creating dummies (Part 3) with comments.html
189 Bytes
5. PD Model Data Preparation/30.2 Data preparation. Preprocessing continuous variables creating dummies. Homework with comments.html
189 Bytes
5. PD Model Data Preparation/31.1 Data preparation. Preprocessing the test dataset with comments.html
189 Bytes
3. Dataset description/1.2 Data preparation with comments.html
188 Bytes
4. General preprocessing/1.1 Importing the data into Python with comments.html
188 Bytes
4. General preprocessing/10.2 Check for missing values and clean the data Homework - Solution with comments.html
188 Bytes
4. General preprocessing/3.1 Preprocessing few continuous variables with comments.html
188 Bytes
4. General preprocessing/5.2 Preprocessing few continuous variables Homework - Solution with comments.html
188 Bytes
4. General preprocessing/6.1 Preprocessing few discrete variables with comments.html
188 Bytes
4. General preprocessing/8.2 Check for missing values and clean with comments.html
188 Bytes
5. PD Model Data Preparation/11.1 Data preparation. An example with comments.html
188 Bytes
5. PD Model Data Preparation/13.2 Data preparation. Preprocessing discrete variables automating calculations with comments.html
188 Bytes
5. PD Model Data Preparation/15.1 Data preparation. Preprocessing discrete variables visualizing results with comments.html
188 Bytes
5. PD Model Data Preparation/16.1 Data preparation. Preprocessing discrete variables creating dummies (Part 1) with comments.html
188 Bytes
5. PD Model Data Preparation/3.2 Dependent variable GoodBad with comments.html
188 Bytes
5. PD Model Data Preparation/9.2 Data preparation. Splitting data with comments.html
188 Bytes
6. PD model estimation/3.2 Loading the data and selecting the features with comments.html
187 Bytes
6. PD model estimation/4.2 PD model estimation with comments.html
187 Bytes
6. PD model estimation/5.2 Build a logistic regression model with p-values with comments.html
187 Bytes
7. PD model validation/1.2 Out-of-sample validation (test) with comments.html
187 Bytes
7. PD model validation/3.1 Evaluation of model performance accuracy and area under the curve (AUC) with comments.html
187 Bytes
7. PD model validation/5.1 Evaluation of model performance Gini and Kolmogorov-Smirnov with comments.html
187 Bytes
8. Applying the PD Model for decision making/1.1 Calculating probability of default for a single customer with comments.html
187 Bytes
8. Applying the PD Model for decision making/2.1 Creating a scorecard with comments.html
187 Bytes
8. Applying the PD Model for decision making/4.2 Calculating credit score with comments.html
187 Bytes
8. Applying the PD Model for decision making/6.2 From credit score to PD with comments.html
187 Bytes
8. Applying the PD Model for decision making/8.2 Setting cut-offs with comments.html
187 Bytes
13. Calculating expected loss/1.2 Calculating expected loss.html
185 Bytes
13. Calculating expected loss/3.2 Calculating expected loss complete notebook.html
185 Bytes
10. LGD and EAD Models Preparing the data/1.2 LGD and EAD models independent variables..html
180 Bytes
10. LGD and EAD Models Preparing the data/3.1 LGD and EAD models dependent variables.html
180 Bytes
10. LGD and EAD Models Preparing the data/5.2 LGD and EAD models distribution of recovery rates and credit conversion factors.html
180 Bytes
11. LGD model/1.3 LGD model preparing the inputs.html
180 Bytes
11. LGD model/10.1 LGD model combining stage 1 and stage 2.html
180 Bytes
11. LGD model/2.2 LGD model testing the model.html
180 Bytes
11. LGD model/4.2 LGD model estimating the accuracy of the model.html
180 Bytes
11. LGD model/5.2 LGD model saving the model.html
180 Bytes
11. LGD model/6.1 LGD model stage 2 – linear regression.html
180 Bytes
11. LGD model/8.1 LGD model stage 2 – linear regression evaluation.html
180 Bytes
12. EAD model/1.2 EAD model estimation and interpretation.html
180 Bytes
12. EAD model/3.1 EAD model validation.html
180 Bytes
5. PD Model Data Preparation/32.2 PD model data preparation with comments.html
178 Bytes
8. Applying the PD Model for decision making/11.1 PD model complete with comments.html
177 Bytes
9. PD model monitoring/4.2 Monitoring with comments.html
177 Bytes
5. PD Model Data Preparation/18.1 Data preparation. Preprocessing discrete variables creating dummies (Part 2).html
167 Bytes
5. PD Model Data Preparation/20.2 Data preparation. Preprocessing discrete variables Homework - Soluton.html
167 Bytes
5. PD Model Data Preparation/21.2 Data preparation. Preprocessing continuous variables Automating calculations.html
167 Bytes
5. PD Model Data Preparation/23.1 Data preparation. Preprocessing continuous variables creating dummies (Part 1).html
167 Bytes
5. PD Model Data Preparation/25.1 Data preparation. Preprocessing continuous variables creating dummies (Part 2).html
167 Bytes
5. PD Model Data Preparation/27.2 Data preparation. Preprocessing continuous variables creating dummies. Homework.html
167 Bytes
5. PD Model Data Preparation/28.1 Data preparation. Preprocessing continuous variables creating dummies (Part 3).html
167 Bytes
5. PD Model Data Preparation/30.1 Data preparation. Preprocessing continuous variables creating dummies Homework - Solution.html
167 Bytes
5. PD Model Data Preparation/31.2 Data preparation. Preprocessing the test dataset.html
167 Bytes
3. Dataset description/1.3 Data Preparation.html
166 Bytes
4. General preprocessing/1.2 Importing the data into Python.html
166 Bytes
4. General preprocessing/10.1 Check for missing values and clean the data Homework - Solution.html
166 Bytes
4. General preprocessing/3.2 Preprocessing few continuous variables.html
166 Bytes
4. General preprocessing/5.1 Preprocessing few continuous variables Homework - Solution.html
166 Bytes
4. General preprocessing/6.2 Preprocessing few discrete variables.html
166 Bytes
4. General preprocessing/8.1 Check for missing values and clean.html
166 Bytes
5. PD Model Data Preparation/11.2 Data preparation. An example.html
166 Bytes
5. PD Model Data Preparation/13.1 Data preparation. Preprocessing discrete variables automating calculations.html
166 Bytes
5. PD Model Data Preparation/15.2 Data preparation. Preprocessing discrete variables visualizing results.html
166 Bytes
5. PD Model Data Preparation/16.2 Data preparation. Preprocessing discrete variables creating dummies (Part 1).html
166 Bytes
5. PD Model Data Preparation/3.1 Dependent variable GoodBad.html
166 Bytes
5. PD Model Data Preparation/9.1 Data preparation. Splitting data.html
166 Bytes
6. PD model estimation/3.1 Loading the data and selecting the features.html
165 Bytes
6. PD model estimation/4.1 PD model estimation.html
165 Bytes
6. PD model estimation/5.1 Build a logistic regression model with p-values.html
165 Bytes
7. PD model validation/1.1 Out-of-sample validation (test).html
165 Bytes
7. PD model validation/3.2 Evaluation of model performance accuracy and area under the curve (AUC).html
165 Bytes
7. PD model validation/5.2 Evaluation of model performance Gini and Kolmogorov-Smirnov.html
165 Bytes
8. Applying the PD Model for decision making/1.2 Calculating probability of default for a single customer.html
165 Bytes
8. Applying the PD Model for decision making/2.2 Creating a scorecard.html
165 Bytes
8. Applying the PD Model for decision making/4.1 Calculating credit score.html
165 Bytes
8. Applying the PD Model for decision making/6.1 From credit score to PD.html
165 Bytes
8. Applying the PD Model for decision making/8.1 Setting cut-offs.html
165 Bytes
5. PD Model Data Preparation/32.1 PD model data preparation.html
156 Bytes
8. Applying the PD Model for decision making/11.2 PD model complete.html
155 Bytes
9. PD model monitoring/4.1 Monitoring.html
155 Bytes
10. LGD and EAD Models Preparing the data/1.3 loan_data_2007_2014_preprocessed.csv.html
144 Bytes
11. LGD model/1.2 loan_data_2007_2014_preprocessed.csv.html
144 Bytes
1. Introduction/11. Different facility types (asset classes) and credit risk modeling approaches.html
141 Bytes
1. Introduction/3. What is credit risk and why is it important.html
141 Bytes
1. Introduction/5. Expected loss (EL) and its components PD, LGD and EAD.html
141 Bytes
1. Introduction/7. Capital adequacy, regulations, and the Basel II accord.html
141 Bytes
1. Introduction/9. Basel II approaches SA, F-IRB, and A-IRB.html
141 Bytes
10. LGD and EAD Models Preparing the data/2. LGD and EAD models independent variables.html
141 Bytes
10. LGD and EAD Models Preparing the data/4. LGD and EAD models dependent variables.html
141 Bytes
10. LGD and EAD Models Preparing the data/6. LGD and EAD models distribution of recovery rates and credit conversion factors.html
141 Bytes
11. LGD model/11. LGD model combining stage 1 and stage 2.html
141 Bytes
11. LGD model/3. LGD model testing the model.html
141 Bytes
11. LGD model/7. LGD model stage 2 – linear regression with comments.html
141 Bytes
11. LGD model/9. LGD model stage 2 – linear regression evaluation.html
141 Bytes
12. EAD model/2. EAD model estimation and interpretation.html
141 Bytes
12. EAD model/4. EAD model validation.html
141 Bytes
13. Calculating expected loss/2. Calculating expected loss.html
141 Bytes
3. Dataset description/2. Our example consumer loans. A first look at the dataset.html
141 Bytes
3. Dataset description/4. Dependent variables and independent variables.html
141 Bytes
4. General preprocessing/2. Importing the data into Python.html
141 Bytes
4. General preprocessing/4. Preprocessing few continuous variables.html
141 Bytes
4. General preprocessing/7. Preprocessing few discrete variables.html
141 Bytes
4. General preprocessing/9. Check for missing values and clean.html
141 Bytes
5. PD Model Data Preparation/10. Data preparation. Splitting data.html
141 Bytes
5. PD Model Data Preparation/12. Data preparation. An example.html
141 Bytes
5. PD Model Data Preparation/14. Data preparation. Preprocessing discrete variables automating calculations.html
141 Bytes
5. PD Model Data Preparation/17. Data preparation. Preprocessing discrete variables creating dummies (Part 1).html
141 Bytes
5. PD Model Data Preparation/19. Data preparation. Preprocessing discrete variables creating dummies (Part 2).html
141 Bytes
5. PD Model Data Preparation/2. How is the PD model going to look like.html
141 Bytes
5. PD Model Data Preparation/22. Data preparation. Preprocessing continuous variables Automating calculations.html
141 Bytes
5. PD Model Data Preparation/24. Data preparation. Preprocessing continuous variables creating dummies (Part 1).html
141 Bytes
5. PD Model Data Preparation/26. Data preparation. Preprocessing continuous variables creating dummies (Part 2).html
141 Bytes
5. PD Model Data Preparation/29. Data preparation. Preprocessing continuous variables creating dummies (Part 3).html
141 Bytes
5. PD Model Data Preparation/4. Dependent variable Good Bad (default) definition.html
141 Bytes
5. PD Model Data Preparation/6. Fine classing, weight of evidence, and coarse classing.html
141 Bytes
5. PD Model Data Preparation/8. Information value.html
141 Bytes
6. PD model estimation/2. The PD model. Logistic regression with dummy variables.html
141 Bytes
6. PD model estimation/6. Build a logistic regression model with p-values.html
141 Bytes
6. PD model estimation/8. Interpreting the coefficients in the PD model.html
141 Bytes
7. PD model validation/2. Out-of-sample validation (test).html
141 Bytes
7. PD model validation/4. Evaluation of model performance accuracy and area under the curve (AUC).html
141 Bytes
7. PD model validation/6. Evaluation of model performance Gini and Kolmogorov-Smirnov.html
141 Bytes
8. Applying the PD Model for decision making/3. Creating a scorecard.html
141 Bytes
8. Applying the PD Model for decision making/5. Calculating credit score.html
141 Bytes
8. Applying the PD Model for decision making/7. From credit score to PD.html
141 Bytes
8. Applying the PD Model for decision making/9. Setting cut-offs.html
141 Bytes
9. PD model monitoring/2. PD model monitoring via assessing population stability.html
141 Bytes
9. PD model monitoring/5. Population stability index calculation and interpretation.html
141 Bytes
3. Dataset description/1.4 Dataset for the course.html
131 Bytes
3. Dataset description/3.1 Dataset for the course.html
131 Bytes
11. LGD model/12.1 Dataset with new data (loan_data_2015.csv).html
126 Bytes
9. PD model monitoring/6.1 Dataset with new data (loan_data_2015.csv).html
126 Bytes
5. PD Model Data Preparation/32. PD model data preparation notebooks.html
85 Bytes
8. Applying the PD Model for decision making/11. PD model logistic regression notebooks.html
73 Bytes
0. Websites you may like/[DesireCourse.Net].url
51 Bytes
1. Introduction/[DesireCourse.Net].url
51 Bytes
12. EAD model/[DesireCourse.Net].url
51 Bytes
7. PD model validation/[DesireCourse.Net].url
51 Bytes
[DesireCourse.Net].url
51 Bytes
0. Websites you may like/[CourseClub.Me].url
48 Bytes
1. Introduction/[CourseClub.Me].url
48 Bytes
12. EAD model/[CourseClub.Me].url
48 Bytes
7. PD model validation/[CourseClub.Me].url
48 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>