搜索
Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子名称
Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子简介
种子哈希:
2543ea4dbc74ecd1eb9a1bb654e99149fc55c262
文件大小:
23.65G
已经下载:
388
次
下载速度:
极快
收录时间:
2023-12-18
最近下载:
2024-10-04
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:2543EA4DBC74ECD1EB9A1BB654E99149FC55C262
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
酒店+两个女
侠女
女儿的便宜
合集
av
nxg+368
emergency
养生无套内射
fc2 美乳
bwp
美杜莎 糖心
terminator.2.judgment.day.1991.theatrical
户外勾搭 学生
easy
savr+253
十大巨兽排行榜
strange darling
芸能界
shabet
ssk-094
xc
bj女团
porn
年轻的妻子-交换丈夫的日子+韩国
一表姐
animal babies
爱呦
灌醉+▶大长腿极品姐姐◀+插b后续3
母子乱伦69舔逼
gdh099
文件列表
19 - Understand and design CNNs/177 - Examine feature map activations.mp4
432.2 MB
22 - Style transfer/205 - Transferring the screaming bathtub.mp4
361.5 MB
19 - Understand and design CNNs/176 - Classify Gaussian blurs.mp4
293.3 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/218 - CodeChallenge sine wave extrapolation.mp4
272.5 MB
18 - Convolution and transformations/163 - Convolution in code.mp4
270.8 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/217 - Predicting alternating sequences.mp4
259.1 MB
26 - Where to go from here/229 - How to read academic DL papers.mp4
232.8 MB
19 - Understand and design CNNs/184 - The EMNIST dataset letter recognition.mp4
230.7 MB
19 - Understand and design CNNs/174 - CNN to classify MNIST digits.mp4
228.4 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/222 - Lorem ipsum.mp4
226.2 MB
7 - ANNs Artificial Neural Networks/52 - Multioutput ANN iris dataset.mp4
225.5 MB
23 - Generative adversarial networks/210 - CNN GAN with Gaussians.mp4
224.6 MB
21 - Transfer learning/200 - Pretraining with autoencoders.mp4
218.8 MB
19 - Understand and design CNNs/180 - Do autoencoders clean Gaussians.mp4
216.1 MB
9 - Regularization/72 - Dropout regularization in practice.mp4
211.2 MB
21 - Transfer learning/198 - Transfer learning with ResNet18.mp4
210.9 MB
16 - Autoencoders/157 - Autoencoder with tied weights.mp4
210.4 MB
7 - ANNs Artificial Neural Networks/47 - ANN for classifying qwerties.mp4
205.8 MB
10 - Metaparameters activations optimizers/82 - The wine quality dataset.mp4
203.8 MB
18 - Convolution and transformations/171 - Image transforms.mp4
202.3 MB
8 - Overfitting and crossvalidation/66 - Crossvalidation DataLoader.mp4
197.7 MB
23 - Generative adversarial networks/208 - Linear GAN with MNIST.mp4
197.3 MB
12 - More on data/119 - CodeChallenge unbalanced data.mp4
192.3 MB
16 - Autoencoders/156 - The latent code of MNIST.mp4
190.9 MB
11 - FFNs FeedForward Networks/107 - FFN to classify digits.mp4
187.0 MB
7 - ANNs Artificial Neural Networks/57 - Model depth vs breadth.mp4
186.0 MB
12 - More on data/123 - Data feature augmentation.mp4
184.8 MB
19 - Understand and design CNNs/178 - CodeChallenge Softcode internal parameters.mp4
184.6 MB
15 - Weight inits and investigations/147 - CodeChallenge Xavier vs Kaiming.mp4
177.3 MB
7 - ANNs Artificial Neural Networks/48 - Learning rates comparison.mp4
176.8 MB
21 - Transfer learning/201 - CIFAR10 with autoencoderpretrained model.mp4
175.0 MB
13 - Measuring model performance/131 - APRF example 1 wine quality.mp4
170.6 MB
15 - Weight inits and investigations/150 - Learningrelated changes in weights.mp4
169.4 MB
10 - Metaparameters activations optimizers/83 - CodeChallenge Minibatch size in the wine dataset.mp4
168.2 MB
7 - ANNs Artificial Neural Networks/49 - Multilayer ANN.mp4
168.0 MB
8 - Overfitting and crossvalidation/65 - Crossvalidation scikitlearn.mp4
167.3 MB
14 - FFN milestone projects/139 - Project 2 My solution.mp4
163.3 MB
19 - Understand and design CNNs/182 - CodeChallenge Custom loss functions.mp4
162.4 MB
10 - Metaparameters activations optimizers/95 - Loss functions in PyTorch.mp4
162.2 MB
18 - Convolution and transformations/172 - Creating and using custom DataLoaders.mp4
161.6 MB
9 - Regularization/71 - Dropout regularization.mp4
159.3 MB
12 - More on data/117 - Anatomy of a torch dataset and dataloader.mp4
159.2 MB
6 - Gradient descent/36 - Parametric experiments on gd.mp4
158.8 MB
13 - Measuring model performance/132 - APRF example 2 MNIST.mp4
157.6 MB
7 - ANNs Artificial Neural Networks/46 - CodeChallenge manipulate regression slopes.mp4
157.5 MB
12 - More on data/118 - Data size and network size.mp4
156.8 MB
7 - ANNs Artificial Neural Networks/55 - Depth vs breadth number of parameters.mp4
156.3 MB
15 - Weight inits and investigations/146 - Xavier and Kaiming initializations.mp4
156.1 MB
16 - Autoencoders/154 - CodeChallenge How many units.mp4
155.6 MB
19 - Understand and design CNNs/179 - CodeChallenge How wide the FC.mp4
151.7 MB
11 - FFNs FeedForward Networks/110 - Distributions of weights pre and postlearning.mp4
148.7 MB
11 - FFNs FeedForward Networks/111 - CodeChallenge MNIST and breadth vs depth.mp4
147.2 MB
12 - More on data/126 - Save the bestperforming model.mp4
146.7 MB
16 - Autoencoders/155 - AEs for occlusion.mp4
144.9 MB
15 - Weight inits and investigations/149 - Freezing weights during learning.mp4
144.5 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/220 - GRU and LSTM.mp4
144.2 MB
19 - Understand and design CNNs/183 - Discover the Gaussian parameters.mp4
143.3 MB
12 - More on data/121 - Data oversampling in MNIST.mp4
142.7 MB
11 - FFNs FeedForward Networks/106 - The MNIST dataset.mp4
142.3 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/216 - The RNN class in PyTorch.mp4
141.2 MB
10 - Metaparameters activations optimizers/93 - CodeChallenge Predict sugar.mp4
140.8 MB
16 - Autoencoders/153 - Denoising MNIST.mp4
140.7 MB
15 - Weight inits and investigations/143 - A surprising demo of weight initializations.mp4
139.2 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/221 - The LSTM and GRU classes.mp4
138.9 MB
21 - Transfer learning/196 - CodeChallenge letters to numbers.mp4
138.3 MB
6 - Gradient descent/32 - Gradient descent in 1D.mp4
137.8 MB
9 - Regularization/80 - CodeChallenge Effects of minibatch size.mp4
136.7 MB
20 - CNN milestone projects/190 - Project 1 My solution.mp4
136.3 MB
19 - Understand and design CNNs/181 - CodeChallenge AEs and occluded Gaussians.mp4
134.3 MB
7 - ANNs Artificial Neural Networks/53 - CodeChallenge more qwerties.mp4
133.3 MB
3 - Concepts in deep learning/7 - The role of DL in science and knowledge.mp4
133.3 MB
6 - Gradient descent/37 - CodeChallenge fixed vs dynamic learning rate.mp4
132.3 MB
18 - Convolution and transformations/161 - Convolution concepts.mp4
132.2 MB
9 - Regularization/75 - L2 regularization in practice.mp4
129.3 MB
21 - Transfer learning/195 - Transfer learning MNIST FMNIST.mp4
127.2 MB
10 - Metaparameters activations optimizers/89 - Activation functions.mp4
126.9 MB
9 - Regularization/78 - Batch training in action.mp4
126.1 MB
12 - More on data/122 - Data noise augmentation with devsettest.mp4
123.4 MB
18 - Convolution and transformations/165 - The Conv2 class in PyTorch.mp4
118.9 MB
15 - Weight inits and investigations/145 - CodeChallenge Weight variance inits.mp4
118.3 MB
10 - Metaparameters activations optimizers/91 - Activation functions comparison.mp4
118.2 MB
30 - Python intro Flow control/257 - Function error checking and handling.mp4
117.1 MB
13 - Measuring model performance/134 - Computation time.mp4
115.8 MB
9 - Regularization/76 - L1 regularization in practice.mp4
115.4 MB
10 - Metaparameters activations optimizers/96 - More practice with multioutput ANNs.mp4
115.3 MB
14 - FFN milestone projects/137 - Project 1 My solution.mp4
114.9 MB
8 - Overfitting and crossvalidation/64 - Crossvalidation manual separation.mp4
114.0 MB
15 - Weight inits and investigations/144 - Theory Why and how to initialize weights.mp4
113.2 MB
10 - Metaparameters activations optimizers/103 - Learning rate decay.mp4
112.4 MB
7 - ANNs Artificial Neural Networks/45 - ANN for regression.mp4
110.4 MB
19 - Understand and design CNNs/185 - Dropout in CNNs.mp4
109.3 MB
11 - FFNs FeedForward Networks/109 - CodeChallenge Data normalization.mp4
109.2 MB
31 - Python intro Text and plots/263 - Images.mp4
109.2 MB
18 - Convolution and transformations/167 - Transpose convolution.mp4
107.8 MB
5 - Math numpy PyTorch/19 - Softmax.mp4
106.3 MB
10 - Metaparameters activations optimizers/90 - Activation functions in PyTorch.mp4
106.2 MB
19 - Understand and design CNNs/187 - CodeChallenge Varying number of channels.mp4
104.7 MB
7 - ANNs Artificial Neural Networks/56 - Defining models using sequential vs class.mp4
102.6 MB
10 - Metaparameters activations optimizers/100 - Optimizers comparison.mp4
102.0 MB
6 - Gradient descent/34 - Gradient descent in 2D.mp4
101.1 MB
10 - Metaparameters activations optimizers/94 - Loss functions.mp4
100.9 MB
15 - Weight inits and investigations/148 - CodeChallenge Identically random weights.mp4
100.8 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/219 - More on RNNs Hidden states embeddings.mp4
98.8 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/214 - Leveraging sequences in deep learning.mp4
96.1 MB
13 - Measuring model performance/133 - CodeChallenge MNIST with unequal groups.mp4
95.9 MB
29 - Python intro Functions/242 - Python libraries pandas.mp4
95.7 MB
13 - Measuring model performance/129 - Accuracy precision recall F1.mp4
95.1 MB
15 - Weight inits and investigations/142 - Explanation of weight matrix sizes.mp4
93.9 MB
9 - Regularization/69 - Regularization Concept and methods.mp4
92.9 MB
29 - Python intro Functions/247 - Classes and objectoriented programming.mp4
92.8 MB
25 - Ethics of deep learning/227 - Accountability and making ethical AI.mp4
92.7 MB
5 - Math numpy PyTorch/26 - The ttest.mp4
92.5 MB
31 - Python intro Text and plots/261 - Making the graphs look nicer.mp4
91.3 MB
8 - Overfitting and crossvalidation/67 - Splitting data into train devset test.mp4
91.2 MB
23 - Generative adversarial networks/209 - CodeChallenge Linear GAN with FMNIST.mp4
90.7 MB
11 - FFNs FeedForward Networks/114 - Shifted MNIST.mp4
90.6 MB
6 - Gradient descent/33 - CodeChallenge unfortunate starting value.mp4
90.1 MB
5 - Math numpy PyTorch/21 - Entropy and crossentropy.mp4
89.5 MB
3 - Concepts in deep learning/9 - Are artificial neurons like biological neurons.mp4
89.3 MB
25 - Ethics of deep learning/225 - Some other possible ethical scenarios.mp4
88.4 MB
23 - Generative adversarial networks/211 - CodeChallenge Gaussians with fewer layers.mp4
88.4 MB
14 - FFN milestone projects/141 - Project 3 My solution.mp4
87.6 MB
18 - Convolution and transformations/162 - Feature maps and convolution kernels.mp4
87.3 MB
9 - Regularization/79 - The importance of equal batch sizes.mp4
86.1 MB
22 - Style transfer/206 - CodeChallenge Style transfer with AlexNet.mp4
85.4 MB
11 - FFNs FeedForward Networks/115 - CodeChallenge The mystery of the missing 7.mp4
84.8 MB
8 - Overfitting and crossvalidation/61 - What is overfitting and is it as bad as they say.mp4
80.7 MB
7 - ANNs Artificial Neural Networks/60 - Reflection Are DL models understandable yet.mp4
80.5 MB
20 - CNN milestone projects/193 - Project 4 Psychometric functions in CNNs.mp4
80.2 MB
30 - Python intro Flow control/249 - Ifelse statements part 2.mp4
80.0 MB
5 - Math numpy PyTorch/25 - Reproducible randomness via seeding.mp4
79.2 MB
3 - Concepts in deep learning/8 - Running experiments to understand DL.mp4
78.5 MB
23 - Generative adversarial networks/212 - CNN GAN with FMNIST.mp4
78.3 MB
10 - Metaparameters activations optimizers/85 - The importance of data normalization.mp4
76.3 MB
18 - Convolution and transformations/170 - To pool or to stride.mp4
74.2 MB
31 - Python intro Text and plots/260 - Subplot geometry.mp4
73.8 MB
10 - Metaparameters activations optimizers/87 - Batch normalization in practice.mp4
73.4 MB
23 - Generative adversarial networks/213 - CodeChallenge CNN GAN with CIFAR.mp4
72.9 MB
18 - Convolution and transformations/168 - Maxmean pooling.mp4
72.7 MB
17 - Running models on a GPU/158 - What is a GPU and why use it.mp4
72.6 MB
31 - Python intro Text and plots/258 - Printing and string interpolation.mp4
72.4 MB
5 - Math numpy PyTorch/22 - Minmax and argminargmax.mp4
72.3 MB
30 - Python intro Flow control/255 - while loops.mp4
71.7 MB
8 - Overfitting and crossvalidation/62 - Crossvalidation.mp4
71.6 MB
30 - Python intro Flow control/253 - Initializing variables.mp4
70.7 MB
5 - Math numpy PyTorch/18 - Matrix multiplication.mp4
70.0 MB
22 - Style transfer/203 - The Gram matrix feature activation covariance.mp4
69.7 MB
9 - Regularization/74 - Weight regularization L1L2 math.mp4
68.6 MB
10 - Metaparameters activations optimizers/88 - CodeChallenge Batchnormalize the qwerties.mp4
68.0 MB
27 - Python intro Data types/236 - Booleans.mp4
67.7 MB
5 - Math numpy PyTorch/13 - Spectral theories in mathematics.mp4
67.6 MB
30 - Python intro Flow control/250 - For loops.mp4
67.5 MB
18 - Convolution and transformations/169 - Pooling in PyTorch.mp4
67.4 MB
10 - Metaparameters activations optimizers/92 - CodeChallenge Compare relu variants.mp4
67.1 MB
19 - Understand and design CNNs/175 - CNN on shifted MNIST.mp4
66.6 MB
5 - Math numpy PyTorch/24 - Random sampling and sampling variability.mp4
66.3 MB
10 - Metaparameters activations optimizers/84 - Data normalization.mp4
65.5 MB
25 - Ethics of deep learning/224 - Example case studies.mp4
65.4 MB
10 - Metaparameters activations optimizers/98 - SGD with momentum.mp4
65.1 MB
30 - Python intro Flow control/254 - Singleline loops list comprehension.mp4
64.9 MB
12 - More on data/125 - Save and load trained models.mp4
64.6 MB
10 - Metaparameters activations optimizers/102 - CodeChallenge Adam with L2 regularization.mp4
64.1 MB
13 - Measuring model performance/130 - APRF in code.mp4
64.0 MB
9 - Regularization/73 - Dropout example 2.mp4
63.7 MB
17 - Running models on a GPU/159 - Implementation.mp4
63.6 MB
19 - Understand and design CNNs/186 - CodeChallenge How low can you go.mp4
63.2 MB
11 - FFNs FeedForward Networks/113 - Scrambled MNIST.mp4
63.1 MB
10 - Metaparameters activations optimizers/97 - Optimizers minibatch momentum.mp4
62.3 MB
17 - Running models on a GPU/160 - CodeChallenge Run an experiment on the GPU.mp4
62.0 MB
30 - Python intro Flow control/251 - Enumerate and zip.mp4
61.4 MB
21 - Transfer learning/194 - Transfer learning What why and when.mp4
61.0 MB
27 - Python intro Data types/231 - Variables.mp4
60.6 MB
23 - Generative adversarial networks/207 - GAN What why and how.mp4
60.3 MB
29 - Python intro Functions/244 - Creating functions.mp4
60.1 MB
7 - ANNs Artificial Neural Networks/58 - CodeChallenge convert sequential to class.mp4
59.9 MB
31 - Python intro Text and plots/264 - Export plots in low and high resolution.mp4
59.0 MB
1 - Introduction/1 - How to learn from this course.mp4
57.6 MB
29 - Python intro Functions/245 - Global and local variable scopes.mp4
57.5 MB
7 - ANNs Artificial Neural Networks/50 - Linear solutions to linear problems.mp4
57.2 MB
10 - Metaparameters activations optimizers/86 - Batch normalization.mp4
57.1 MB
10 - Metaparameters activations optimizers/101 - CodeChallenge Optimizers and something.mp4
57.0 MB
6 - Gradient descent/30 - Overview of gradient descent.mp4
57.0 MB
20 - CNN milestone projects/189 - Project 1 Import and classify CIFAR10.mp4
55.8 MB
25 - Ethics of deep learning/226 - Will deep learning take our jobs.mp4
55.6 MB
2 - Download all course materials/3 - Downloading and using the code.mp4
55.1 MB
10 - Metaparameters activations optimizers/99 - Optimizers RMSprop Adam.mp4
55.1 MB
30 - Python intro Flow control/256 - Broadcasting in numpy.mp4
55.0 MB
7 - ANNs Artificial Neural Networks/43 - ANN math part 2 errors loss cost.mp4
54.7 MB
27 - Python intro Data types/232 - Math and printing.mp4
53.6 MB
3 - Concepts in deep learning/6 - How models learn.mp4
53.6 MB
31 - Python intro Text and plots/262 - Seaborn.mp4
53.4 MB
7 - ANNs Artificial Neural Networks/40 - The perceptron and ANN architecture.mp4
53.2 MB
11 - FFNs FeedForward Networks/112 - CodeChallenge Optimizers and MNIST.mp4
53.2 MB
7 - ANNs Artificial Neural Networks/54 - Comparing the number of hidden units.mp4
51.8 MB
12 - More on data/124 - Getting data into colab.mp4
51.1 MB
5 - Math numpy PyTorch/23 - Mean and variance.mp4
49.3 MB
5 - Math numpy PyTorch/27 - Derivatives intuition and polynomials.mp4
48.5 MB
12 - More on data/127 - Where to find online datasets.mp4
48.3 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/215 - How RNNs work.mp4
47.9 MB
20 - CNN milestone projects/191 - Project 2 CIFARautoencoder.mp4
47.4 MB
11 - FFNs FeedForward Networks/108 - CodeChallenge Binarized MNIST images.mp4
46.7 MB
7 - ANNs Artificial Neural Networks/42 - ANN math part 1 forward prop.mp4
46.1 MB
6 - Gradient descent/35 - CodeChallenge 2D gradient ascent.mp4
45.5 MB
30 - Python intro Flow control/248 - Ifelse statements.mp4
45.3 MB
7 - ANNs Artificial Neural Networks/41 - A geometric view of ANNs.mp4
45.0 MB
8 - Overfitting and crossvalidation/68 - Crossvalidation on regression.mp4
43.1 MB
22 - Style transfer/204 - The style transfer algorithm.mp4
42.7 MB
3 - Concepts in deep learning/5 - What is an artificial neural network.mp4
42.0 MB
31 - Python intro Text and plots/259 - Plotting dots and lines.mp4
42.0 MB
28 - Python intro Indexing slicing/239 - Slicing.mp4
41.9 MB
29 - Python intro Functions/241 - Python libraries numpy.mp4
41.8 MB
18 - Convolution and transformations/164 - Convolution parameters stride padding.mp4
40.8 MB
6 - Gradient descent/31 - What about local minima.mp4
39.9 MB
1 - Introduction/2 - Using Udemy like a pro.mp4
39.9 MB
7 - ANNs Artificial Neural Networks/44 - ANN math part 3 backprop.mp4
39.4 MB
14 - FFN milestone projects/136 - Project 1 A gratuitously complex adding machine.mp4
39.2 MB
29 - Python intro Functions/243 - Getting help on functions.mp4
39.1 MB
25 - Ethics of deep learning/223 - Will AI save us or destroy us.mp4
39.0 MB
5 - Math numpy PyTorch/29 - Derivatives product and chain rules.mp4
38.8 MB
10 - Metaparameters activations optimizers/104 - How to pick the right metaparameters.mp4
38.6 MB
14 - FFN milestone projects/138 - Project 2 Predicting heart disease.mp4
37.3 MB
9 - Regularization/77 - Training in minibatches.mp4
37.1 MB
27 - Python intro Data types/233 - Lists 1 of 2.mp4
36.8 MB
11 - FFNs FeedForward Networks/116 - Universal approximation theorem.mp4
35.9 MB
27 - Python intro Data types/234 - Lists 2 of 2.mp4
35.1 MB
19 - Understand and design CNNs/173 - The canonical CNN architecture.mp4
34.8 MB
27 - Python intro Data types/237 - Dictionaries.mp4
34.6 MB
21 - Transfer learning/197 - Famous CNN architectures.mp4
34.6 MB
28 - Python intro Indexing slicing/238 - Indexing.mp4
34.5 MB
6 - Gradient descent/38 - Vanishing and exploding gradients.mp4
33.2 MB
18 - Convolution and transformations/166 - CodeChallenge Choose the parameters.mp4
32.5 MB
12 - More on data/120 - What to do about unbalanced designs.mp4
31.2 MB
16 - Autoencoders/152 - What are autoencoders and what do they do.mp4
30.8 MB
5 - Math numpy PyTorch/20 - Logarithms.mp4
30.6 MB
20 - CNN milestone projects/192 - Project 3 FMNIST.mp4
30.2 MB
5 - Math numpy PyTorch/17 - OMG its the dot product.mp4
30.1 MB
22 - Style transfer/202 - What is style transfer and how does it work.mp4
29.5 MB
14 - FFN milestone projects/140 - Project 3 FFN for missing data interpolation.mp4
28.7 MB
7 - ANNs Artificial Neural Networks/51 - Why multilayer linear models dont exist.mp4
28.5 MB
13 - Measuring model performance/128 - Two perspectives of the world.mp4
28.1 MB
13 - Measuring model performance/135 - Better performance in test than train.mp4
27.5 MB
5 - Math numpy PyTorch/16 - Vector and matrix transpose.mp4
27.4 MB
5 - Math numpy PyTorch/28 - Derivatives find minima.mp4
27.3 MB
26 - Where to go from here/228 - How to learn topic X in deep learning.mp4
26.5 MB
6 - Gradient descent/39 - Tangent Notebook revision history.mp4
26.4 MB
9 - Regularization/70 - train and eval modes.mp4
23.9 MB
5 - Math numpy PyTorch/14 - Terms and datatypes in math and computers.mp4
23.8 MB
27 - Python intro Data types/235 - Tuples.mp4
23.3 MB
30 - Python intro Flow control/252 - Continue.mp4
21.7 MB
21 - Transfer learning/199 - CodeChallenge VGG16.mp4
21.3 MB
5 - Math numpy PyTorch/15 - Converting reality to numbers.mp4
20.7 MB
29 - Python intro Functions/240 - Inputs and outputs.mp4
20.1 MB
8 - Overfitting and crossvalidation/63 - Generalization.mp4
19.9 MB
10 - Metaparameters activations optimizers/81 - What are metaparameters.mp4
19.6 MB
11 - FFNs FeedForward Networks/105 - What are fullyconnected and feedforward networks.mp4
18.7 MB
27 - Python intro Data types/230 - How to learn from the Python tutorial.mp4
18.4 MB
15 - Weight inits and investigations/151 - Use default inits or apply your own.mp4
17.6 MB
29 - Python intro Functions/246 - Copies and referents of variables.mp4
15.8 MB
4 - About the Python tutorial/10 - Should you watch the Python tutorial.mp4
14.5 MB
19 - Understand and design CNNs/188 - So many possibilities How to create a CNN.mp4
13.6 MB
5 - Math numpy PyTorch/12 - Introduction to this section.mp4
6.9 MB
2 - Download all course materials/4 - My policy on codesharing.mp4
5.9 MB
2 - Download all course materials/3 - DUDL-PythonCode.zip
1.4 MB
19 - Understand and design CNNs/177 - Examine feature map activations Vietnamese.vtt
45.1 kB
7 - ANNs Artificial Neural Networks/52 - Multioutput ANN iris dataset Vietnamese.vtt
43.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/218 - CodeChallenge sine wave extrapolation Vietnamese.vtt
42.8 kB
19 - Understand and design CNNs/174 - CNN to classify MNIST digits Vietnamese.vtt
41.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/222 - Lorem ipsum Vietnamese.vtt
40.7 kB
7 - ANNs Artificial Neural Networks/45 - ANN for regression Vietnamese.vtt
40.4 kB
7 - ANNs Artificial Neural Networks/48 - Learning rates comparison Vietnamese.vtt
40.3 kB
19 - Understand and design CNNs/184 - The EMNIST dataset letter recognition Vietnamese.vtt
39.5 kB
16 - Autoencoders/157 - Autoencoder with tied weights Vietnamese.vtt
39.3 kB
7 - ANNs Artificial Neural Networks/47 - ANN for classifying qwerties Vietnamese.vtt
38.4 kB
19 - Understand and design CNNs/176 - Classify Gaussian blurs Vietnamese.vtt
37.4 kB
9 - Regularization/72 - Dropout regularization in practice Vietnamese.vtt
37.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/220 - GRU and LSTM Vietnamese.vtt
36.4 kB
11 - FFNs FeedForward Networks/107 - FFN to classify digits Vietnamese.vtt
36.3 kB
9 - Regularization/71 - Dropout regularization Vietnamese.vtt
36.1 kB
19 - Understand and design CNNs/177 - Examine feature map activations English.vtt
35.8 kB
15 - Weight inits and investigations/150 - Learningrelated changes in weights Vietnamese.vtt
35.7 kB
23 - Generative adversarial networks/208 - Linear GAN with MNIST Vietnamese.vtt
35.6 kB
22 - Style transfer/205 - Transferring the screaming bathtub Vietnamese.vtt
35.5 kB
7 - ANNs Artificial Neural Networks/52 - Multioutput ANN iris dataset English.vtt
35.4 kB
18 - Convolution and transformations/161 - Convolution concepts Vietnamese.vtt
35.4 kB
8 - Overfitting and crossvalidation/65 - Crossvalidation scikitlearn Vietnamese.vtt
34.9 kB
16 - Autoencoders/156 - The latent code of MNIST Vietnamese.vtt
34.6 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/218 - CodeChallenge sine wave extrapolation English.vtt
34.4 kB
29 - Python intro Functions/244 - Creating functions Vietnamese.vtt
34.0 kB
18 - Convolution and transformations/163 - Convolution in code Vietnamese.vtt
33.7 kB
7 - ANNs Artificial Neural Networks/57 - Model depth vs breadth Vietnamese.vtt
33.7 kB
19 - Understand and design CNNs/174 - CNN to classify MNIST digits English.vtt
33.6 kB
8 - Overfitting and crossvalidation/66 - Crossvalidation DataLoader Vietnamese.vtt
33.5 kB
21 - Transfer learning/200 - Pretraining with autoencoders Vietnamese.vtt
33.3 kB
12 - More on data/119 - CodeChallenge unbalanced data Vietnamese.vtt
33.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/222 - Lorem ipsum English.vtt
33.0 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/217 - Predicting alternating sequences Vietnamese.vtt
32.8 kB
19 - Understand and design CNNs/182 - CodeChallenge Custom loss functions Vietnamese.vtt
32.4 kB
7 - ANNs Artificial Neural Networks/48 - Learning rates comparison English.vtt
31.9 kB
19 - Understand and design CNNs/184 - The EMNIST dataset letter recognition English.vtt
31.8 kB
7 - ANNs Artificial Neural Networks/45 - ANN for regression English.vtt
31.7 kB
7 - ANNs Artificial Neural Networks/49 - Multilayer ANN Vietnamese.vtt
31.6 kB
12 - More on data/123 - Data feature augmentation Vietnamese.vtt
31.5 kB
16 - Autoencoders/154 - CodeChallenge How many units Vietnamese.vtt
31.5 kB
7 - ANNs Artificial Neural Networks/46 - CodeChallenge manipulate regression slopes Vietnamese.vtt
31.3 kB
7 - ANNs Artificial Neural Networks/40 - The perceptron and ANN architecture Vietnamese.vtt
31.3 kB
10 - Metaparameters activations optimizers/97 - Optimizers minibatch momentum Vietnamese.vtt
31.3 kB
16 - Autoencoders/157 - Autoencoder with tied weights English.vtt
30.7 kB
6 - Gradient descent/36 - Parametric experiments on gd Vietnamese.vtt
30.6 kB
14 - FFN milestone projects/139 - Project 2 My solution Vietnamese.vtt
30.5 kB
7 - ANNs Artificial Neural Networks/47 - ANN for classifying qwerties English.vtt
30.4 kB
30 - Python intro Flow control/255 - while loops Vietnamese.vtt
30.4 kB
19 - Understand and design CNNs/176 - Classify Gaussian blurs English.vtt
30.4 kB
18 - Convolution and transformations/172 - Creating and using custom DataLoaders Vietnamese.vtt
30.1 kB
27 - Python intro Data types/236 - Booleans Vietnamese.vtt
30.1 kB
18 - Convolution and transformations/168 - Maxmean pooling Vietnamese.vtt
30.0 kB
27 - Python intro Data types/231 - Variables Vietnamese.vtt
30.0 kB
5 - Math numpy PyTorch/19 - Softmax Vietnamese.vtt
29.9 kB
31 - Python intro Text and plots/261 - Making the graphs look nicer Vietnamese.vtt
29.9 kB
29 - Python intro Functions/247 - Classes and objectoriented programming Vietnamese.vtt
29.8 kB
12 - More on data/117 - Anatomy of a torch dataset and dataloader Vietnamese.vtt
29.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/216 - The RNN class in PyTorch Vietnamese.vtt
29.7 kB
9 - Regularization/74 - Weight regularization L1L2 math Vietnamese.vtt
29.7 kB
10 - Metaparameters activations optimizers/95 - Loss functions in PyTorch Vietnamese.vtt
29.6 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/220 - GRU and LSTM English.vtt
29.6 kB
9 - Regularization/72 - Dropout regularization in practice English.vtt
29.5 kB
30 - Python intro Flow control/253 - Initializing variables Vietnamese.vtt
29.3 kB
27 - Python intro Data types/232 - Math and printing Vietnamese.vtt
29.1 kB
21 - Transfer learning/201 - CIFAR10 with autoencoderpretrained model Vietnamese.vtt
29.0 kB
11 - FFNs FeedForward Networks/107 - FFN to classify digits English.vtt
29.0 kB
15 - Weight inits and investigations/150 - Learningrelated changes in weights English.vtt
29.0 kB
10 - Metaparameters activations optimizers/89 - Activation functions Vietnamese.vtt
28.9 kB
10 - Metaparameters activations optimizers/82 - The wine quality dataset Vietnamese.vtt
28.9 kB
26 - Where to go from here/229 - How to read academic DL papers Vietnamese.vtt
28.8 kB
18 - Convolution and transformations/161 - Convolution concepts English.vtt
28.6 kB
8 - Overfitting and crossvalidation/62 - Crossvalidation Vietnamese.vtt
28.6 kB
22 - Style transfer/205 - Transferring the screaming bathtub English.vtt
28.4 kB
10 - Metaparameters activations optimizers/93 - CodeChallenge Predict sugar Vietnamese.vtt
28.4 kB
16 - Autoencoders/155 - AEs for occlusion Vietnamese.vtt
28.4 kB
30 - Python intro Flow control/257 - Function error checking and handling Vietnamese.vtt
28.2 kB
23 - Generative adversarial networks/208 - Linear GAN with MNIST English.vtt
28.2 kB
31 - Python intro Text and plots/263 - Images Vietnamese.vtt
28.1 kB
3 - Concepts in deep learning/9 - Are artificial neurons like biological neurons Vietnamese.vtt
28.1 kB
9 - Regularization/71 - Dropout regularization English.vtt
28.0 kB
7 - ANNs Artificial Neural Networks/55 - Depth vs breadth number of parameters Vietnamese.vtt
28.0 kB
16 - Autoencoders/156 - The latent code of MNIST English.vtt
28.0 kB
19 - Understand and design CNNs/178 - CodeChallenge Softcode internal parameters Vietnamese.vtt
27.7 kB
21 - Transfer learning/194 - Transfer learning What why and when Vietnamese.vtt
27.7 kB
5 - Math numpy PyTorch/21 - Entropy and crossentropy Vietnamese.vtt
27.7 kB
15 - Weight inits and investigations/147 - CodeChallenge Xavier vs Kaiming Vietnamese.vtt
27.6 kB
30 - Python intro Flow control/250 - For loops Vietnamese.vtt
27.6 kB
11 - FFNs FeedForward Networks/109 - CodeChallenge Data normalization Vietnamese.vtt
27.4 kB
6 - Gradient descent/32 - Gradient descent in 1D Vietnamese.vtt
27.3 kB
7 - ANNs Artificial Neural Networks/57 - Model depth vs breadth English.vtt
27.3 kB
15 - Weight inits and investigations/143 - A surprising demo of weight initializations Vietnamese.vtt
27.2 kB
29 - Python intro Functions/244 - Creating functions English.vtt
27.1 kB
21 - Transfer learning/198 - Transfer learning with ResNet18 Vietnamese.vtt
27.1 kB
12 - More on data/121 - Data oversampling in MNIST Vietnamese.vtt
27.1 kB
18 - Convolution and transformations/163 - Convolution in code English.vtt
27.0 kB
31 - Python intro Text and plots/258 - Printing and string interpolation Vietnamese.vtt
27.0 kB
19 - Understand and design CNNs/180 - Do autoencoders clean Gaussians Vietnamese.vtt
26.9 kB
8 - Overfitting and crossvalidation/65 - Crossvalidation scikitlearn English.vtt
26.9 kB
23 - Generative adversarial networks/207 - GAN What why and how Vietnamese.vtt
26.9 kB
18 - Convolution and transformations/171 - Image transforms Vietnamese.vtt
26.8 kB
3 - Concepts in deep learning/7 - The role of DL in science and knowledge Vietnamese.vtt
26.5 kB
19 - Understand and design CNNs/182 - CodeChallenge Custom loss functions English.vtt
26.4 kB
10 - Metaparameters activations optimizers/94 - Loss functions Vietnamese.vtt
26.2 kB
10 - Metaparameters activations optimizers/83 - CodeChallenge Minibatch size in the wine dataset Vietnamese.vtt
26.0 kB
7 - ANNs Artificial Neural Networks/49 - Multilayer ANN English.vtt
25.9 kB
12 - More on data/118 - Data size and network size Vietnamese.vtt
25.9 kB
31 - Python intro Text and plots/260 - Subplot geometry Vietnamese.vtt
25.9 kB
12 - More on data/119 - CodeChallenge unbalanced data English.vtt
25.9 kB
6 - Gradient descent/37 - CodeChallenge fixed vs dynamic learning rate Vietnamese.vtt
25.8 kB
16 - Autoencoders/154 - CodeChallenge How many units English.vtt
25.6 kB
5 - Math numpy PyTorch/27 - Derivatives intuition and polynomials Vietnamese.vtt
25.6 kB
21 - Transfer learning/200 - Pretraining with autoencoders English.vtt
25.5 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/217 - Predicting alternating sequences English.vtt
25.5 kB
19 - Understand and design CNNs/183 - Discover the Gaussian parameters Vietnamese.vtt
25.5 kB
30 - Python intro Flow control/249 - Ifelse statements part 2 Vietnamese.vtt
25.4 kB
8 - Overfitting and crossvalidation/66 - Crossvalidation DataLoader English.vtt
25.3 kB
5 - Math numpy PyTorch/23 - Mean and variance Vietnamese.vtt
25.3 kB
15 - Weight inits and investigations/146 - Xavier and Kaiming initializations Vietnamese.vtt
25.2 kB
12 - More on data/123 - Data feature augmentation English.vtt
25.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/219 - More on RNNs Hidden states embeddings Vietnamese.vtt
25.1 kB
7 - ANNs Artificial Neural Networks/46 - CodeChallenge manipulate regression slopes English.vtt
25.0 kB
16 - Autoencoders/153 - Denoising MNIST Vietnamese.vtt
25.0 kB
12 - More on data/126 - Save the bestperforming model Vietnamese.vtt
24.9 kB
7 - ANNs Artificial Neural Networks/40 - The perceptron and ANN architecture English.vtt
24.8 kB
10 - Metaparameters activations optimizers/99 - Optimizers RMSprop Adam Vietnamese.vtt
24.7 kB
30 - Python intro Flow control/255 - while loops English.vtt
24.6 kB
5 - Math numpy PyTorch/19 - Softmax English.vtt
24.6 kB
7 - ANNs Artificial Neural Networks/42 - ANN math part 1 forward prop Vietnamese.vtt
24.5 kB
11 - FFNs FeedForward Networks/110 - Distributions of weights pre and postlearning Vietnamese.vtt
24.5 kB
14 - FFN milestone projects/139 - Project 2 My solution English.vtt
24.4 kB
10 - Metaparameters activations optimizers/97 - Optimizers minibatch momentum English.vtt
24.4 kB
23 - Generative adversarial networks/210 - CNN GAN with Gaussians Vietnamese.vtt
24.3 kB
17 - Running models on a GPU/158 - What is a GPU and why use it Vietnamese.vtt
24.3 kB
30 - Python intro Flow control/254 - Singleline loops list comprehension Vietnamese.vtt
24.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/215 - How RNNs work Vietnamese.vtt
24.2 kB
27 - Python intro Data types/236 - Booleans English.vtt
24.2 kB
6 - Gradient descent/36 - Parametric experiments on gd English.vtt
24.1 kB
9 - Regularization/74 - Weight regularization L1L2 math English.vtt
24.0 kB
27 - Python intro Data types/231 - Variables English.vtt
23.9 kB
21 - Transfer learning/196 - CodeChallenge letters to numbers Vietnamese.vtt
23.9 kB
3 - Concepts in deep learning/5 - What is an artificial neural network Vietnamese.vtt
23.8 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/216 - The RNN class in PyTorch English.vtt
23.8 kB
31 - Python intro Text and plots/261 - Making the graphs look nicer English.vtt
23.8 kB
10 - Metaparameters activations optimizers/95 - Loss functions in PyTorch English.vtt
23.7 kB
18 - Convolution and transformations/168 - Maxmean pooling English.vtt
23.7 kB
30 - Python intro Flow control/248 - Ifelse statements Vietnamese.vtt
23.6 kB
10 - Metaparameters activations optimizers/89 - Activation functions English.vtt
23.6 kB
30 - Python intro Flow control/256 - Broadcasting in numpy Vietnamese.vtt
23.5 kB
29 - Python intro Functions/247 - Classes and objectoriented programming English.vtt
23.5 kB
27 - Python intro Data types/232 - Math and printing English.vtt
23.5 kB
18 - Convolution and transformations/172 - Creating and using custom DataLoaders English.vtt
23.4 kB
12 - More on data/117 - Anatomy of a torch dataset and dataloader English.vtt
23.2 kB
6 - Gradient descent/34 - Gradient descent in 2D Vietnamese.vtt
23.1 kB
21 - Transfer learning/201 - CIFAR10 with autoencoderpretrained model English.vtt
23.0 kB
10 - Metaparameters activations optimizers/82 - The wine quality dataset English.vtt
22.8 kB
6 - Gradient descent/30 - Overview of gradient descent Vietnamese.vtt
22.8 kB
7 - ANNs Artificial Neural Networks/55 - Depth vs breadth number of parameters English.vtt
22.7 kB
30 - Python intro Flow control/253 - Initializing variables English.vtt
22.6 kB
31 - Python intro Text and plots/263 - Images English.vtt
22.6 kB
27 - Python intro Data types/233 - Lists 1 of 2 Vietnamese.vtt
22.5 kB
16 - Autoencoders/155 - AEs for occlusion English.vtt
22.5 kB
29 - Python intro Functions/241 - Python libraries numpy Vietnamese.vtt
22.5 kB
5 - Math numpy PyTorch/21 - Entropy and crossentropy English.vtt
22.4 kB
26 - Where to go from here/229 - How to read academic DL papers English.vtt
22.4 kB
29 - Python intro Functions/242 - Python libraries pandas Vietnamese.vtt
22.4 kB
10 - Metaparameters activations optimizers/96 - More practice with multioutput ANNs Vietnamese.vtt
22.4 kB
30 - Python intro Flow control/257 - Function error checking and handling English.vtt
22.4 kB
5 - Math numpy PyTorch/18 - Matrix multiplication Vietnamese.vtt
22.3 kB
30 - Python intro Flow control/250 - For loops English.vtt
22.3 kB
19 - Understand and design CNNs/178 - CodeChallenge Softcode internal parameters English.vtt
22.3 kB
18 - Convolution and transformations/169 - Pooling in PyTorch Vietnamese.vtt
22.2 kB
8 - Overfitting and crossvalidation/62 - Crossvalidation English.vtt
22.2 kB
10 - Metaparameters activations optimizers/93 - CodeChallenge Predict sugar English.vtt
22.2 kB
10 - Metaparameters activations optimizers/84 - Data normalization Vietnamese.vtt
22.1 kB
13 - Measuring model performance/131 - APRF example 1 wine quality Vietnamese.vtt
22.0 kB
21 - Transfer learning/194 - Transfer learning What why and when English.vtt
22.0 kB
18 - Convolution and transformations/167 - Transpose convolution Vietnamese.vtt
21.9 kB
5 - Math numpy PyTorch/26 - The ttest Vietnamese.vtt
21.8 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/221 - The LSTM and GRU classes Vietnamese.vtt
21.8 kB
15 - Weight inits and investigations/147 - CodeChallenge Xavier vs Kaiming English.vtt
21.7 kB
6 - Gradient descent/32 - Gradient descent in 1D English.vtt
21.7 kB
11 - FFNs FeedForward Networks/109 - CodeChallenge Data normalization English.vtt
21.7 kB
19 - Understand and design CNNs/180 - Do autoencoders clean Gaussians English.vtt
21.7 kB
21 - Transfer learning/198 - Transfer learning with ResNet18 English.vtt
21.7 kB
15 - Weight inits and investigations/149 - Freezing weights during learning Vietnamese.vtt
21.6 kB
10 - Metaparameters activations optimizers/94 - Loss functions English.vtt
21.6 kB
3 - Concepts in deep learning/8 - Running experiments to understand DL Vietnamese.vtt
21.5 kB
19 - Understand and design CNNs/187 - CodeChallenge Varying number of channels Vietnamese.vtt
21.5 kB
5 - Math numpy PyTorch/27 - Derivatives intuition and polynomials English.vtt
21.5 kB
31 - Python intro Text and plots/258 - Printing and string interpolation English.vtt
21.5 kB
7 - ANNs Artificial Neural Networks/41 - A geometric view of ANNs Vietnamese.vtt
21.5 kB
3 - Concepts in deep learning/9 - Are artificial neurons like biological neurons English.vtt
21.5 kB
9 - Regularization/69 - Regularization Concept and methods Vietnamese.vtt
21.4 kB
12 - More on data/121 - Data oversampling in MNIST English.vtt
21.3 kB
9 - Regularization/75 - L2 regularization in practice Vietnamese.vtt
21.3 kB
29 - Python intro Functions/245 - Global and local variable scopes Vietnamese.vtt
21.3 kB
7 - ANNs Artificial Neural Networks/56 - Defining models using sequential vs class Vietnamese.vtt
21.3 kB
8 - Overfitting and crossvalidation/61 - What is overfitting and is it as bad as they say Vietnamese.vtt
21.2 kB
8 - Overfitting and crossvalidation/64 - Crossvalidation manual separation Vietnamese.vtt
21.2 kB
15 - Weight inits and investigations/143 - A surprising demo of weight initializations English.vtt
21.2 kB
3 - Concepts in deep learning/6 - How models learn Vietnamese.vtt
21.1 kB
23 - Generative adversarial networks/207 - GAN What why and how English.vtt
21.0 kB
18 - Convolution and transformations/171 - Image transforms English.vtt
21.0 kB
10 - Metaparameters activations optimizers/86 - Batch normalization Vietnamese.vtt
21.0 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/214 - Leveraging sequences in deep learning Vietnamese.vtt
20.9 kB
18 - Convolution and transformations/165 - The Conv2 class in PyTorch Vietnamese.vtt
20.9 kB
28 - Python intro Indexing slicing/238 - Indexing Vietnamese.vtt
20.9 kB
12 - More on data/118 - Data size and network size English.vtt
20.8 kB
3 - Concepts in deep learning/7 - The role of DL in science and knowledge English.vtt
20.8 kB
12 - More on data/122 - Data noise augmentation with devsettest Vietnamese.vtt
20.8 kB
19 - Understand and design CNNs/183 - Discover the Gaussian parameters English.vtt
20.7 kB
6 - Gradient descent/37 - CodeChallenge fixed vs dynamic learning rate English.vtt
20.7 kB
15 - Weight inits and investigations/145 - CodeChallenge Weight variance inits Vietnamese.vtt
20.6 kB
10 - Metaparameters activations optimizers/83 - CodeChallenge Minibatch size in the wine dataset English.vtt
20.5 kB
28 - Python intro Indexing slicing/239 - Slicing Vietnamese.vtt
20.4 kB
5 - Math numpy PyTorch/22 - Minmax and argminargmax Vietnamese.vtt
20.4 kB
11 - FFNs FeedForward Networks/106 - The MNIST dataset Vietnamese.vtt
20.4 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/219 - More on RNNs Hidden states embeddings English.vtt
20.4 kB
31 - Python intro Text and plots/260 - Subplot geometry English.vtt
20.4 kB
15 - Weight inits and investigations/144 - Theory Why and how to initialize weights Vietnamese.vtt
20.3 kB
31 - Python intro Text and plots/259 - Plotting dots and lines Vietnamese.vtt
20.3 kB
10 - Metaparameters activations optimizers/103 - Learning rate decay Vietnamese.vtt
20.2 kB
15 - Weight inits and investigations/148 - CodeChallenge Identically random weights Vietnamese.vtt
20.2 kB
9 - Regularization/80 - CodeChallenge Effects of minibatch size Vietnamese.vtt
20.2 kB
30 - Python intro Flow control/249 - Ifelse statements part 2 English.vtt
20.2 kB
16 - Autoencoders/153 - Denoising MNIST English.vtt
20.1 kB
15 - Weight inits and investigations/146 - Xavier and Kaiming initializations English.vtt
20.0 kB
5 - Math numpy PyTorch/23 - Mean and variance English.vtt
20.0 kB
17 - Running models on a GPU/158 - What is a GPU and why use it English.vtt
19.9 kB
7 - ANNs Artificial Neural Networks/42 - ANN math part 1 forward prop English.vtt
19.7 kB
18 - Convolution and transformations/164 - Convolution parameters stride padding Vietnamese.vtt
19.7 kB
9 - Regularization/76 - L1 regularization in practice Vietnamese.vtt
19.6 kB
10 - Metaparameters activations optimizers/99 - Optimizers RMSprop Adam English.vtt
19.6 kB
23 - Generative adversarial networks/210 - CNN GAN with Gaussians English.vtt
19.5 kB
6 - Gradient descent/31 - What about local minima Vietnamese.vtt
19.5 kB
11 - FFNs FeedForward Networks/111 - CodeChallenge MNIST and breadth vs depth Vietnamese.vtt
19.5 kB
12 - More on data/126 - Save the bestperforming model English.vtt
19.4 kB
20 - CNN milestone projects/190 - Project 1 My solution Vietnamese.vtt
19.4 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/215 - How RNNs work English.vtt
19.3 kB
25 - Ethics of deep learning/227 - Accountability and making ethical AI Vietnamese.vtt
19.3 kB
10 - Metaparameters activations optimizers/104 - How to pick the right metaparameters Vietnamese.vtt
19.3 kB
13 - Measuring model performance/129 - Accuracy precision recall F1 Vietnamese.vtt
19.2 kB
11 - FFNs FeedForward Networks/110 - Distributions of weights pre and postlearning English.vtt
19.2 kB
30 - Python intro Flow control/254 - Singleline loops list comprehension English.vtt
19.2 kB
7 - ANNs Artificial Neural Networks/53 - CodeChallenge more qwerties Vietnamese.vtt
19.2 kB
27 - Python intro Data types/237 - Dictionaries Vietnamese.vtt
19.2 kB
13 - Measuring model performance/132 - APRF example 2 MNIST Vietnamese.vtt
19.1 kB
6 - Gradient descent/34 - Gradient descent in 2D English.vtt
19.1 kB
11 - FFNs FeedForward Networks/114 - Shifted MNIST Vietnamese.vtt
19.1 kB
21 - Transfer learning/196 - CodeChallenge letters to numbers English.vtt
19.1 kB
3 - Concepts in deep learning/5 - What is an artificial neural network English.vtt
19.0 kB
30 - Python intro Flow control/248 - Ifelse statements English.vtt
19.0 kB
10 - Metaparameters activations optimizers/90 - Activation functions in PyTorch Vietnamese.vtt
19.0 kB
20 - CNN milestone projects/193 - Project 4 Psychometric functions in CNNs Vietnamese.vtt
19.0 kB
9 - Regularization/77 - Training in minibatches Vietnamese.vtt
19.0 kB
16 - Autoencoders/152 - What are autoencoders and what do they do Vietnamese.vtt
18.9 kB
14 - FFN milestone projects/137 - Project 1 My solution Vietnamese.vtt
18.9 kB
30 - Python intro Flow control/256 - Broadcasting in numpy English.vtt
18.8 kB
22 - Style transfer/203 - The Gram matrix feature activation covariance Vietnamese.vtt
18.5 kB
19 - Understand and design CNNs/179 - CodeChallenge How wide the FC Vietnamese.vtt
18.5 kB
6 - Gradient descent/30 - Overview of gradient descent English.vtt
18.5 kB
15 - Weight inits and investigations/142 - Explanation of weight matrix sizes Vietnamese.vtt
18.4 kB
5 - Math numpy PyTorch/24 - Random sampling and sampling variability Vietnamese.vtt
18.3 kB
5 - Math numpy PyTorch/18 - Matrix multiplication English.vtt
18.3 kB
30 - Python intro Flow control/251 - Enumerate and zip Vietnamese.vtt
18.2 kB
31 - Python intro Text and plots/262 - Seaborn Vietnamese.vtt
18.1 kB
10 - Metaparameters activations optimizers/96 - More practice with multioutput ANNs English.vtt
18.0 kB
27 - Python intro Data types/233 - Lists 1 of 2 English.vtt
17.9 kB
29 - Python intro Functions/242 - Python libraries pandas English.vtt
17.9 kB
18 - Convolution and transformations/169 - Pooling in PyTorch English.vtt
17.8 kB
29 - Python intro Functions/241 - Python libraries numpy English.vtt
17.7 kB
18 - Convolution and transformations/167 - Transpose convolution English.vtt
17.7 kB
6 - Gradient descent/33 - CodeChallenge unfortunate starting value Vietnamese.vtt
17.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/221 - The LSTM and GRU classes English.vtt
17.6 kB
11 - FFNs FeedForward Networks/115 - CodeChallenge The mystery of the missing 7 Vietnamese.vtt
17.6 kB
25 - Ethics of deep learning/225 - Some other possible ethical scenarios Vietnamese.vtt
17.5 kB
19 - Understand and design CNNs/187 - CodeChallenge Varying number of channels English.vtt
17.5 kB
10 - Metaparameters activations optimizers/84 - Data normalization English.vtt
17.5 kB
9 - Regularization/78 - Batch training in action Vietnamese.vtt
17.4 kB
19 - Understand and design CNNs/173 - The canonical CNN architecture Vietnamese.vtt
17.4 kB
29 - Python intro Functions/245 - Global and local variable scopes English.vtt
17.4 kB
5 - Math numpy PyTorch/26 - The ttest English.vtt
17.3 kB
7 - ANNs Artificial Neural Networks/41 - A geometric view of ANNs English.vtt
17.2 kB
3 - Concepts in deep learning/8 - Running experiments to understand DL English.vtt
17.2 kB
15 - Weight inits and investigations/149 - Freezing weights during learning English.vtt
17.1 kB
9 - Regularization/69 - Regularization Concept and methods English.vtt
17.0 kB
13 - Measuring model performance/131 - APRF example 1 wine quality English.vtt
17.0 kB
7 - ANNs Artificial Neural Networks/56 - Defining models using sequential vs class English.vtt
17.0 kB
25 - Ethics of deep learning/226 - Will deep learning take our jobs Vietnamese.vtt
16.9 kB
22 - Style transfer/204 - The style transfer algorithm Vietnamese.vtt
16.9 kB
9 - Regularization/75 - L2 regularization in practice English.vtt
16.8 kB
7 - ANNs Artificial Neural Networks/44 - ANN math part 3 backprop Vietnamese.vtt
16.7 kB
10 - Metaparameters activations optimizers/86 - Batch normalization English.vtt
16.7 kB
18 - Convolution and transformations/165 - The Conv2 class in PyTorch English.vtt
16.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/214 - Leveraging sequences in deep learning English.vtt
16.7 kB
3 - Concepts in deep learning/6 - How models learn English.vtt
16.7 kB
12 - More on data/122 - Data noise augmentation with devsettest English.vtt
16.5 kB
17 - Running models on a GPU/159 - Implementation Vietnamese.vtt
16.5 kB
8 - Overfitting and crossvalidation/64 - Crossvalidation manual separation English.vtt
16.5 kB
18 - Convolution and transformations/170 - To pool or to stride Vietnamese.vtt
16.4 kB
15 - Weight inits and investigations/145 - CodeChallenge Weight variance inits English.vtt
16.4 kB
11 - FFNs FeedForward Networks/106 - The MNIST dataset English.vtt
16.4 kB
14 - FFN milestone projects/140 - Project 3 FFN for missing data interpolation Vietnamese.vtt
16.3 kB
8 - Overfitting and crossvalidation/61 - What is overfitting and is it as bad as they say English.vtt
16.3 kB
27 - Python intro Data types/234 - Lists 2 of 2 Vietnamese.vtt
16.3 kB
15 - Weight inits and investigations/144 - Theory Why and how to initialize weights English.vtt
16.3 kB
10 - Metaparameters activations optimizers/100 - Optimizers comparison Vietnamese.vtt
16.3 kB
5 - Math numpy PyTorch/22 - Minmax and argminargmax English.vtt
16.1 kB
9 - Regularization/80 - CodeChallenge Effects of minibatch size English.vtt
16.1 kB
18 - Convolution and transformations/164 - Convolution parameters stride padding English.vtt
16.0 kB
13 - Measuring model performance/129 - Accuracy precision recall F1 English.vtt
16.0 kB
28 - Python intro Indexing slicing/238 - Indexing English.vtt
16.0 kB
15 - Weight inits and investigations/148 - CodeChallenge Identically random weights English.vtt
15.9 kB
21 - Transfer learning/195 - Transfer learning MNIST FMNIST Vietnamese.vtt
15.9 kB
7 - ANNs Artificial Neural Networks/54 - Comparing the number of hidden units Vietnamese.vtt
15.9 kB
19 - Understand and design CNNs/185 - Dropout in CNNs Vietnamese.vtt
15.8 kB
10 - Metaparameters activations optimizers/103 - Learning rate decay English.vtt
15.8 kB
11 - FFNs FeedForward Networks/111 - CodeChallenge MNIST and breadth vs depth English.vtt
15.8 kB
28 - Python intro Indexing slicing/239 - Slicing English.vtt
15.8 kB
7 - ANNs Artificial Neural Networks/53 - CodeChallenge more qwerties English.vtt
15.8 kB
23 - Generative adversarial networks/209 - CodeChallenge Linear GAN with FMNIST Vietnamese.vtt
15.8 kB
13 - Measuring model performance/134 - Computation time Vietnamese.vtt
15.8 kB
25 - Ethics of deep learning/223 - Will AI save us or destroy us Vietnamese.vtt
15.7 kB
31 - Python intro Text and plots/259 - Plotting dots and lines English.vtt
15.6 kB
19 - Understand and design CNNs/181 - CodeChallenge AEs and occluded Gaussians Vietnamese.vtt
15.6 kB
8 - Overfitting and crossvalidation/67 - Splitting data into train devset test Vietnamese.vtt
15.6 kB
9 - Regularization/76 - L1 regularization in practice English.vtt
15.5 kB
10 - Metaparameters activations optimizers/85 - The importance of data normalization Vietnamese.vtt
15.4 kB
18 - Convolution and transformations/162 - Feature maps and convolution kernels Vietnamese.vtt
15.4 kB
20 - CNN milestone projects/190 - Project 1 My solution English.vtt
15.3 kB
15 - Weight inits and investigations/142 - Explanation of weight matrix sizes English.vtt
15.3 kB
6 - Gradient descent/31 - What about local minima English.vtt
15.3 kB
10 - Metaparameters activations optimizers/91 - Activation functions comparison Vietnamese.vtt
15.2 kB
13 - Measuring model performance/132 - APRF example 2 MNIST English.vtt
15.2 kB
7 - ANNs Artificial Neural Networks/43 - ANN math part 2 errors loss cost Vietnamese.vtt
15.2 kB
10 - Metaparameters activations optimizers/90 - Activation functions in PyTorch English.vtt
15.2 kB
5 - Math numpy PyTorch/13 - Spectral theories in mathematics Vietnamese.vtt
15.1 kB
20 - CNN milestone projects/193 - Project 4 Psychometric functions in CNNs English.vtt
15.0 kB
16 - Autoencoders/152 - What are autoencoders and what do they do English.vtt
15.0 kB
22 - Style transfer/203 - The Gram matrix feature activation covariance English.vtt
15.0 kB
10 - Metaparameters activations optimizers/104 - How to pick the right metaparameters English.vtt
15.0 kB
19 - Understand and design CNNs/179 - CodeChallenge How wide the FC English.vtt
15.0 kB
9 - Regularization/77 - Training in minibatches English.vtt
14.9 kB
14 - FFN milestone projects/137 - Project 1 My solution English.vtt
14.9 kB
27 - Python intro Data types/237 - Dictionaries English.vtt
14.9 kB
25 - Ethics of deep learning/227 - Accountability and making ethical AI English.vtt
14.9 kB
5 - Math numpy PyTorch/17 - OMG its the dot product Vietnamese.vtt
14.7 kB
11 - FFNs FeedForward Networks/114 - Shifted MNIST English.vtt
14.6 kB
5 - Math numpy PyTorch/29 - Derivatives product and chain rules Vietnamese.vtt
14.5 kB
5 - Math numpy PyTorch/24 - Random sampling and sampling variability English.vtt
14.5 kB
1 - Introduction/1 - How to learn from this course Vietnamese.vtt
14.3 kB
7 - ANNs Artificial Neural Networks/60 - Reflection Are DL models understandable yet Vietnamese.vtt
14.2 kB
30 - Python intro Flow control/251 - Enumerate and zip English.vtt
14.1 kB
6 - Gradient descent/33 - CodeChallenge unfortunate starting value English.vtt
14.1 kB
13 - Measuring model performance/133 - CodeChallenge MNIST with unequal groups Vietnamese.vtt
14.1 kB
19 - Understand and design CNNs/175 - CNN on shifted MNIST Vietnamese.vtt
14.1 kB
1 - Introduction/2 - Using Udemy like a pro Vietnamese.vtt
14.1 kB
7 - ANNs Artificial Neural Networks/50 - Linear solutions to linear problems Vietnamese.vtt
14.0 kB
19 - Understand and design CNNs/173 - The canonical CNN architecture English.vtt
14.0 kB
31 - Python intro Text and plots/262 - Seaborn English.vtt
14.0 kB
11 - FFNs FeedForward Networks/115 - CodeChallenge The mystery of the missing 7 English.vtt
13.9 kB
9 - Regularization/78 - Batch training in action English.vtt
13.9 kB
7 - ANNs Artificial Neural Networks/44 - ANN math part 3 backprop English.vtt
13.7 kB
13 - Measuring model performance/135 - Better performance in test than train Vietnamese.vtt
13.6 kB
25 - Ethics of deep learning/225 - Some other possible ethical scenarios English.vtt
13.6 kB
26 - Where to go from here/228 - How to learn topic X in deep learning Vietnamese.vtt
13.6 kB
27 - Python intro Data types/235 - Tuples Vietnamese.vtt
13.5 kB
8 - Overfitting and crossvalidation/68 - Crossvalidation on regression Vietnamese.vtt
13.5 kB
22 - Style transfer/204 - The style transfer algorithm English.vtt
13.4 kB
14 - FFN milestone projects/141 - Project 3 My solution Vietnamese.vtt
13.4 kB
5 - Math numpy PyTorch/25 - Reproducible randomness via seeding Vietnamese.vtt
13.4 kB
25 - Ethics of deep learning/226 - Will deep learning take our jobs English.vtt
13.2 kB
10 - Metaparameters activations optimizers/98 - SGD with momentum Vietnamese.vtt
13.2 kB
5 - Math numpy PyTorch/28 - Derivatives find minima Vietnamese.vtt
13.2 kB
23 - Generative adversarial networks/213 - CodeChallenge CNN GAN with CIFAR Vietnamese.vtt
13.2 kB
17 - Running models on a GPU/159 - Implementation English.vtt
13.1 kB
10 - Metaparameters activations optimizers/100 - Optimizers comparison English.vtt
13.0 kB
11 - FFNs FeedForward Networks/116 - Universal approximation theorem Vietnamese.vtt
13.0 kB
7 - ANNs Artificial Neural Networks/54 - Comparing the number of hidden units English.vtt
12.9 kB
18 - Convolution and transformations/170 - To pool or to stride English.vtt
12.9 kB
21 - Transfer learning/195 - Transfer learning MNIST FMNIST English.vtt
12.9 kB
31 - Python intro Text and plots/264 - Export plots in low and high resolution Vietnamese.vtt
12.9 kB
27 - Python intro Data types/234 - Lists 2 of 2 English.vtt
12.8 kB
11 - FFNs FeedForward Networks/113 - Scrambled MNIST Vietnamese.vtt
12.8 kB
14 - FFN milestone projects/140 - Project 3 FFN for missing data interpolation English.vtt
12.8 kB
25 - Ethics of deep learning/223 - Will AI save us or destroy us English.vtt
12.8 kB
19 - Understand and design CNNs/185 - Dropout in CNNs English.vtt
12.7 kB
12 - More on data/120 - What to do about unbalanced designs Vietnamese.vtt
12.7 kB
13 - Measuring model performance/134 - Computation time English.vtt
12.7 kB
10 - Metaparameters activations optimizers/92 - CodeChallenge Compare relu variants Vietnamese.vtt
12.5 kB
29 - Python intro Functions/243 - Getting help on functions Vietnamese.vtt
12.5 kB
18 - Convolution and transformations/162 - Feature maps and convolution kernels English.vtt
12.4 kB
7 - ANNs Artificial Neural Networks/43 - ANN math part 2 errors loss cost English.vtt
12.4 kB
10 - Metaparameters activations optimizers/87 - Batch normalization in practice Vietnamese.vtt
12.4 kB
19 - Understand and design CNNs/181 - CodeChallenge AEs and occluded Gaussians English.vtt
12.4 kB
5 - Math numpy PyTorch/17 - OMG its the dot product English.vtt
12.4 kB
23 - Generative adversarial networks/209 - CodeChallenge Linear GAN with FMNIST English.vtt
12.4 kB
10 - Metaparameters activations optimizers/85 - The importance of data normalization English.vtt
12.3 kB
5 - Math numpy PyTorch/20 - Logarithms Vietnamese.vtt
12.3 kB
8 - Overfitting and crossvalidation/67 - Splitting data into train devset test English.vtt
12.3 kB
20 - CNN milestone projects/189 - Project 1 Import and classify CIFAR10 Vietnamese.vtt
12.2 kB
5 - Math numpy PyTorch/13 - Spectral theories in mathematics English.vtt
12.1 kB
14 - FFN milestone projects/138 - Project 2 Predicting heart disease Vietnamese.vtt
12.1 kB
5 - Math numpy PyTorch/29 - Derivatives product and chain rules English.vtt
12.1 kB
10 - Metaparameters activations optimizers/91 - Activation functions comparison English.vtt
12.1 kB
14 - FFN milestone projects/136 - Project 1 A gratuitously complex adding machine Vietnamese.vtt
12.0 kB
29 - Python intro Functions/240 - Inputs and outputs Vietnamese.vtt
12.0 kB
5 - Math numpy PyTorch/14 - Terms and datatypes in math and computers Vietnamese.vtt
11.7 kB
13 - Measuring model performance/128 - Two perspectives of the world Vietnamese.vtt
11.7 kB
1 - Introduction/1 - How to learn from this course English.vtt
11.6 kB
22 - Style transfer/206 - CodeChallenge Style transfer with AlexNet Vietnamese.vtt
11.5 kB
18 - Convolution and transformations/166 - CodeChallenge Choose the parameters Vietnamese.vtt
11.5 kB
13 - Measuring model performance/133 - CodeChallenge MNIST with unequal groups English.vtt
11.4 kB
10 - Metaparameters activations optimizers/102 - CodeChallenge Adam with L2 regularization Vietnamese.vtt
11.3 kB
30 - Python intro Flow control/252 - Continue Vietnamese.vtt
11.3 kB
9 - Regularization/70 - train and eval modes Vietnamese.vtt
11.2 kB
5 - Math numpy PyTorch/16 - Vector and matrix transpose Vietnamese.vtt
11.2 kB
7 - ANNs Artificial Neural Networks/60 - Reflection Are DL models understandable yet English.vtt
11.2 kB
19 - Understand and design CNNs/186 - CodeChallenge How low can you go Vietnamese.vtt
11.1 kB
11 - FFNs FeedForward Networks/112 - CodeChallenge Optimizers and MNIST Vietnamese.vtt
11.0 kB
5 - Math numpy PyTorch/15 - Converting reality to numbers Vietnamese.vtt
11.0 kB
26 - Where to go from here/228 - How to learn topic X in deep learning English.vtt
11.0 kB
1 - Introduction/2 - Using Udemy like a pro English.vtt
10.9 kB
7 - ANNs Artificial Neural Networks/50 - Linear solutions to linear problems English.vtt
10.9 kB
5 - Math numpy PyTorch/28 - Derivatives find minima English.vtt
10.8 kB
19 - Understand and design CNNs/175 - CNN on shifted MNIST English.vtt
10.8 kB
13 - Measuring model performance/135 - Better performance in test than train English.vtt
10.8 kB
7 - ANNs Artificial Neural Networks/58 - CodeChallenge convert sequential to class Vietnamese.vtt
10.7 kB
9 - Regularization/79 - The importance of equal batch sizes Vietnamese.vtt
10.7 kB
10 - Metaparameters activations optimizers/101 - CodeChallenge Optimizers and something Vietnamese.vtt
10.6 kB
8 - Overfitting and crossvalidation/68 - Crossvalidation on regression English.vtt
10.6 kB
27 - Python intro Data types/235 - Tuples English.vtt
10.5 kB
14 - FFN milestone projects/141 - Project 3 My solution English.vtt
10.5 kB
13 - Measuring model performance/130 - APRF in code Vietnamese.vtt
10.5 kB
5 - Math numpy PyTorch/25 - Reproducible randomness via seeding English.vtt
10.5 kB
11 - FFNs FeedForward Networks/116 - Universal approximation theorem English.vtt
10.5 kB
6 - Gradient descent/38 - Vanishing and exploding gradients Vietnamese.vtt
10.5 kB
25 - Ethics of deep learning/224 - Example case studies Vietnamese.vtt
10.4 kB
23 - Generative adversarial networks/213 - CodeChallenge CNN GAN with CIFAR English.vtt
10.4 kB
12 - More on data/125 - Save and load trained models Vietnamese.vtt
10.3 kB
17 - Running models on a GPU/160 - CodeChallenge Run an experiment on the GPU Vietnamese.vtt
10.3 kB
23 - Generative adversarial networks/212 - CNN GAN with FMNIST Vietnamese.vtt
10.2 kB
5 - Math numpy PyTorch/20 - Logarithms English.vtt
10.2 kB
10 - Metaparameters activations optimizers/98 - SGD with momentum English.vtt
10.2 kB
9 - Regularization/73 - Dropout example 2 Vietnamese.vtt
10.2 kB
7 - ANNs Artificial Neural Networks/51 - Why multilayer linear models dont exist Vietnamese.vtt
10.2 kB
12 - More on data/124 - Getting data into colab Vietnamese.vtt
10.1 kB
31 - Python intro Text and plots/264 - Export plots in low and high resolution English.vtt
10.1 kB
10 - Metaparameters activations optimizers/92 - CodeChallenge Compare relu variants English.vtt
10.1 kB
11 - FFNs FeedForward Networks/113 - Scrambled MNIST English.vtt
10.0 kB
8 - Overfitting and crossvalidation/63 - Generalization Vietnamese.vtt
10.0 kB
12 - More on data/120 - What to do about unbalanced designs English.vtt
9.9 kB
2 - Download all course materials/3 - Downloading and using the code Vietnamese.vtt
9.9 kB
29 - Python intro Functions/243 - Getting help on functions English.vtt
9.9 kB
10 - Metaparameters activations optimizers/87 - Batch normalization in practice English.vtt
9.8 kB
23 - Generative adversarial networks/211 - CodeChallenge Gaussians with fewer layers Vietnamese.vtt
9.8 kB
14 - FFN milestone projects/138 - Project 2 Predicting heart disease English.vtt
9.8 kB
14 - FFN milestone projects/136 - Project 1 A gratuitously complex adding machine English.vtt
9.6 kB
20 - CNN milestone projects/189 - Project 1 Import and classify CIFAR10 English.vtt
9.5 kB
5 - Math numpy PyTorch/14 - Terms and datatypes in math and computers English.vtt
9.5 kB
29 - Python intro Functions/240 - Inputs and outputs English.vtt
9.4 kB
22 - Style transfer/206 - CodeChallenge Style transfer with AlexNet English.vtt
9.3 kB
21 - Transfer learning/197 - Famous CNN architectures Vietnamese.vtt
9.3 kB
10 - Metaparameters activations optimizers/102 - CodeChallenge Adam with L2 regularization English.vtt
9.3 kB
13 - Measuring model performance/128 - Two perspectives of the world English.vtt
9.1 kB
9 - Regularization/70 - train and eval modes English.vtt
9.1 kB
12 - More on data/127 - Where to find online datasets Vietnamese.vtt
9.1 kB
18 - Convolution and transformations/166 - CodeChallenge Choose the parameters English.vtt
9.1 kB
30 - Python intro Flow control/252 - Continue English.vtt
9.0 kB
5 - Math numpy PyTorch/16 - Vector and matrix transpose English.vtt
8.9 kB
11 - FFNs FeedForward Networks/112 - CodeChallenge Optimizers and MNIST English.vtt
8.9 kB
19 - Understand and design CNNs/186 - CodeChallenge How low can you go English.vtt
8.9 kB
17 - Running models on a GPU/160 - CodeChallenge Run an experiment on the GPU English.vtt
8.7 kB
7 - ANNs Artificial Neural Networks/58 - CodeChallenge convert sequential to class English.vtt
8.7 kB
5 - Math numpy PyTorch/15 - Converting reality to numbers English.vtt
8.5 kB
10 - Metaparameters activations optimizers/88 - CodeChallenge Batchnormalize the qwerties Vietnamese.vtt
8.4 kB
9 - Regularization/79 - The importance of equal batch sizes English.vtt
8.4 kB
6 - Gradient descent/35 - CodeChallenge 2D gradient ascent Vietnamese.vtt
8.4 kB
10 - Metaparameters activations optimizers/101 - CodeChallenge Optimizers and something English.vtt
8.4 kB
29 - Python intro Functions/246 - Copies and referents of variables Vietnamese.vtt
8.4 kB
2 - Download all course materials/3 - Downloading and using the code English.vtt
8.4 kB
13 - Measuring model performance/130 - APRF in code English.vtt
8.4 kB
11 - FFNs FeedForward Networks/108 - CodeChallenge Binarized MNIST images Vietnamese.vtt
8.3 kB
23 - Generative adversarial networks/212 - CNN GAN with FMNIST English.vtt
8.2 kB
25 - Ethics of deep learning/224 - Example case studies English.vtt
8.2 kB
7 - ANNs Artificial Neural Networks/51 - Why multilayer linear models dont exist English.vtt
8.2 kB
9 - Regularization/73 - Dropout example 2 English.vtt
8.2 kB
10 - Metaparameters activations optimizers/81 - What are metaparameters Vietnamese.vtt
8.1 kB
11 - FFNs FeedForward Networks/105 - What are fullyconnected and feedforward networks Vietnamese.vtt
8.1 kB
6 - Gradient descent/38 - Vanishing and exploding gradients English.vtt
8.0 kB
12 - More on data/125 - Save and load trained models English.vtt
8.0 kB
23 - Generative adversarial networks/211 - CodeChallenge Gaussians with fewer layers English.vtt
8.0 kB
8 - Overfitting and crossvalidation/63 - Generalization English.vtt
7.9 kB
12 - More on data/124 - Getting data into colab English.vtt
7.9 kB
21 - Transfer learning/197 - Famous CNN architectures English.vtt
7.8 kB
20 - CNN milestone projects/191 - Project 2 CIFARautoencoder Vietnamese.vtt
7.6 kB
12 - More on data/127 - Where to find online datasets English.vtt
7.3 kB
19 - Understand and design CNNs/188 - So many possibilities How to create a CNN Vietnamese.vtt
7.3 kB
22 - Style transfer/202 - What is style transfer and how does it work Vietnamese.vtt
7.2 kB
15 - Weight inits and investigations/151 - Use default inits or apply your own Vietnamese.vtt
7.1 kB
4 - About the Python tutorial/10 - Should you watch the Python tutorial Vietnamese.vtt
6.7 kB
6 - Gradient descent/35 - CodeChallenge 2D gradient ascent English.vtt
6.7 kB
10 - Metaparameters activations optimizers/88 - CodeChallenge Batchnormalize the qwerties English.vtt
6.7 kB
10 - Metaparameters activations optimizers/81 - What are metaparameters English.vtt
6.6 kB
11 - FFNs FeedForward Networks/108 - CodeChallenge Binarized MNIST images English.vtt
6.6 kB
29 - Python intro Functions/246 - Copies and referents of variables English.vtt
6.5 kB
20 - CNN milestone projects/191 - Project 2 CIFARautoencoder English.vtt
6.3 kB
11 - FFNs FeedForward Networks/105 - What are fullyconnected and feedforward networks English.vtt
6.3 kB
19 - Understand and design CNNs/188 - So many possibilities How to create a CNN English.vtt
5.8 kB
20 - CNN milestone projects/192 - Project 3 FMNIST Vietnamese.vtt
5.8 kB
15 - Weight inits and investigations/151 - Use default inits or apply your own English.vtt
5.7 kB
22 - Style transfer/202 - What is style transfer and how does it work English.vtt
5.7 kB
4 - About the Python tutorial/10 - Should you watch the Python tutorial English.vtt
5.5 kB
21 - Transfer learning/199 - CodeChallenge VGG16 Vietnamese.vtt
5.5 kB
27 - Python intro Data types/230 - How to learn from the Python tutorial Vietnamese.vtt
5.3 kB
20 - CNN milestone projects/192 - Project 3 FMNIST English.vtt
4.7 kB
21 - Transfer learning/199 - CodeChallenge VGG16 English.vtt
4.5 kB
27 - Python intro Data types/230 - How to learn from the Python tutorial English.vtt
4.4 kB
32 - Bonus section/265 - Bonus content.html
3.9 kB
5 - Math numpy PyTorch/12 - Introduction to this section Vietnamese.vtt
3.3 kB
6 - Gradient descent/39 - Tangent Notebook revision history Vietnamese.vtt
3.1 kB
2 - Download all course materials/4 - My policy on codesharing Vietnamese.vtt
2.8 kB
5 - Math numpy PyTorch/12 - Introduction to this section English.vtt
2.6 kB
6 - Gradient descent/39 - Tangent Notebook revision history English.vtt
2.5 kB
2 - Download all course materials/4 - My policy on codesharing English.vtt
2.3 kB
5 - Math numpy PyTorch/11 - PyTorch or TensorFlow.html
1.1 kB
7 - ANNs Artificial Neural Networks/59 - Diversity of ANN visual representations.html
517 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
2 - Download all course materials/3 - Code on my github site.txt
61 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>