搜索
[Udemy] The Data Science Course 2020 Complete Data Science Bootcamp (2021) [En]
磁力链接/BT种子名称
[Udemy] The Data Science Course 2020 Complete Data Science Bootcamp (2021) [En]
磁力链接/BT种子简介
种子哈希:
2ad8b1b1a2b43de3c8a1e4f953b0cf664183dc73
文件大小:
15.31G
已经下载:
1638
次
下载速度:
极快
收录时间:
2021-03-10
最近下载:
2024-10-25
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:2AD8B1B1A2B43DE3C8A1E4F953B0CF664183DC73
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
魔性诱惑
网红大
相泽楠+4k
才1
一周内射7次身材姣好的女朋友
阿姨玩
韩国自
清纯大奶美眉+初摄影+笑容甜美性经验1人+身材丰满+被中出内射+浴室口爆+睡前再中出内射一次
longmaocouple龙猫夫妇
黑丝红衣
bill ted
venx-030
福利姬
被草射
艺术系
platoon
尾随露出
hicks
小菇
movavivideoconverter破解版
大胡子rpa
老孕妇
极品颜值冰冰
白丝肉丝
数百位极品露脸反差母狗福利大合集第一弹301v+1625p,天南海北,良家私下淫荡的一面好精彩[8.
y197-毛妹自拍01
empire 2024
韩国 裸
300mium-1045
女女洗
文件列表
16 Statistics - Practical Example_ Descriptive Statistics/093 Practical Example_ Descriptive Statistics.mp4
168.2 MB
12 Probability - Distributions/066 A Practical Example of Probability Distributions.mp4
165.5 MB
11 Probability - Bayesian Inference/051 A Practical Example of Bayesian Inference.mp4
152.2 MB
40 Part 6_ Mathematics/282 Why is Linear Algebra Useful_.mp4
151.3 MB
05 The Field of Data Science - Popular Data Science Techniques/011 Techniques for Working with Traditional Data.mp4
145.0 MB
10 Probability - Combinatorics/039 A Practical Example of Combinatorics.mp4
140.8 MB
03 The Field of Data Science - Connecting the Data Science Disciplines/009 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
133.0 MB
05 The Field of Data Science - Popular Data Science Techniques/020 Types of Machine Learning.mp4
131.2 MB
56 Software Integration/405 Taking a Closer Look at APIs.mp4
121.2 MB
05 The Field of Data Science - Popular Data Science Techniques/017 Techniques for Working with Traditional Methods.mp4
117.1 MB
02 The Field of Data Science - The Various Data Science Disciplines/007 Continuing with BI, ML, and AI.mp4
114.3 MB
56 Software Integration/404 What are Data Connectivity, APIs, and Endpoints_.mp4
109.1 MB
06 The Field of Data Science - Popular Data Science Tools/022 Necessary Programming Languages and Software Used in Data Science.mp4
108.5 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/394 Business Case_ Preprocessing.mp4
108.4 MB
19 Statistics - Practical Example_ Inferential Statistics/118 Practical Example_ Inferential Statistics.mp4
107.6 MB
05 The Field of Data Science - Popular Data Science Techniques/019 Machine Learning (ML) Techniques.mp4
104.1 MB
13 Probability - Probability in Other Fields/067 Probability in Finance.mp4
103.9 MB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/225 Practical Example_ Linear Regression (Part 1).mp4
101.8 MB
20 Statistics - Hypothesis Testing/120 Null vs Alternative Hypothesis.mp4
96.5 MB
05 The Field of Data Science - Popular Data Science Techniques/015 Business Intelligence (BI) Techniques.mp4
94.3 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/391 Business Case_ Getting Acquainted with the Dataset.mp4
91.9 MB
36 Advanced Statistical Methods - Logistic Regression/236 Logistic vs Logit Function.mp4
90.7 MB
09 Part 2_ Probability/025 The Basic Probability Formula.mp4
90.1 MB
51 Deep Learning - Business Case Example/355 Business Case_ Preprocessing the Data.mp4
88.4 MB
12 Probability - Distributions/059 Characteristics of Continuous Distributions.mp4
88.2 MB
20 Statistics - Hypothesis Testing/122 Rejection Region and Significance Level.mp4
86.6 MB
02 The Field of Data Science - The Various Data Science Disciplines/004 Data Science and Business Buzzwords_ Why are there so Many_.mp4
85.4 MB
04 The Field of Data Science - The Benefits of Each Discipline/010 The Reason Behind These Disciplines.mp4
85.1 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/421 Obtaining Dummies from a Single Feature.mp4
85.0 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/104 Confidence Intervals; Population Variance Known; Z-score.mp4
82.0 MB
13 Probability - Probability in Other Fields/068 Probability in Statistics.mp4
81.0 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/396 Creating a Data Provider.mp4
80.1 MB
09 Part 2_ Probability/026 Computing Expected Values.mp4
79.4 MB
05 The Field of Data Science - Popular Data Science Techniques/013 Techniques for Working with Big Data.mp4
79.2 MB
22 Part 4_ Introduction to Python/138 Why Python_.mp4
78.7 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/426 Classifying the Various Reasons for Absence.mp4
78.2 MB
38 Advanced Statistical Methods - K-Means Clustering/266 How is Clustering Useful_.mp4
78.1 MB
12 Probability - Distributions/052 Fundamentals of Probability Distributions.mp4
77.0 MB
08 The Field of Data Science - Debunking Common Misconceptions/024 Debunking Common Misconceptions.mp4
76.4 MB
15 Statistics - Descriptive Statistics/071 Types of Data.mp4
76.0 MB
37 Advanced Statistical Methods - Cluster Analysis/251 Some Examples of Clusters.mp4
75.0 MB
12 Probability - Distributions/053 Types of Probability Distributions.mp4
74.5 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/111 Confidence intervals. Two means. Dependent samples.mp4
73.9 MB
21 Statistics - Practical Example_ Hypothesis Testing/135 Practical Example_ Hypothesis Testing.mp4
72.9 MB
56 Software Integration/403 What are Data, Servers, Clients, Requests, and Responses.mp4
72.4 MB
12 Probability - Distributions/057 Discrete Distributions_ The Binomial Distribution.mp4
72.2 MB
02 The Field of Data Science - The Various Data Science Disciplines/008 A Breakdown of our Data Science Infographic.mp4
71.0 MB
51 Deep Learning - Business Case Example/352 Business Case_ Exploring the Dataset and Identifying Predictors.mp4
69.5 MB
02 The Field of Data Science - The Various Data Science Disciplines/006 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4
67.6 MB
56 Software Integration/407 Software Integration - Explained.mp4
66.8 MB
13 Probability - Probability in Other Fields/069 Probability in Data Science.mp4
66.6 MB
17 Statistics - Inferential Statistics Fundamentals/100 Central Limit Theorem.mp4
65.9 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/388 MNIST_ Results and Testing.mp4
65.8 MB
01 Part 1_ Introduction/002 What Does the Course Cover.mp4
65.3 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/413 Checking the Content of the Data Set.mp4
64.9 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/417 Dropping a Column from a DataFrame in Python.mp4
64.8 MB
09 Part 2_ Probability/027 Frequency.mp4
64.7 MB
17 Statistics - Inferential Statistics Fundamentals/096 What is a Distribution.mp4
64.6 MB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/299 Basic NN Example (Part 4).mp4
64.1 MB
56 Software Integration/406 Communication between Software Products through Text Files.mp4
63.3 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/312 Digging into a Deep Net.mp4
62.2 MB
61 Case Study - Analyzing the Predicted Outputs in Tableau/467 Analyzing Reasons vs Probability in Tableau.mp4
62.2 MB
09 Part 2_ Probability/028 Events and Their Complements.mp4
62.0 MB
52 Deep Learning - Conclusion/367 An overview of CNNs.mp4
61.6 MB
22 Part 4_ Introduction to Python/137 Introduction to Programming.mp4
61.4 MB
14 Part 3_ Statistics/070 Population and Sample.mp4
60.9 MB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/232 Practical Example_ Linear Regression (Part 5).mp4
60.7 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/182 The Linear Regression Model.mp4
60.2 MB
10 Probability - Combinatorics/034 Solving Combinations.mp4
60.1 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/436 Analyzing the Dates from the Initial Data Set.mp4
60.1 MB
11 Probability - Bayesian Inference/043 Union of Sets.mp4
60.0 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/106 Confidence Interval Clarifications.mp4
59.8 MB
61 Case Study - Analyzing the Predicted Outputs in Tableau/465 Analyzing Age vs Probability in Tableau.mp4
59.3 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/383 MNIST_ Model Outline.mp4
59.1 MB
38 Advanced Statistical Methods - K-Means Clustering/265 Market Segmentation with Cluster Analysis (Part 2).mp4
58.8 MB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/230 Practical Example_ Linear Regression (Part 4).mp4
58.8 MB
20 Statistics - Hypothesis Testing/126 p-value.mp4
58.6 MB
12 Probability - Distributions/058 Discrete Distributions_ The Poisson Distribution.mp4
58.5 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/203 Dealing with Categorical Data - Dummy Variables.mp4
58.4 MB
42 Deep Learning - Introduction to Neural Networks/294 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4
58.3 MB
62 Appendix - Additional Python Tools/474 List Comprehensions.mp4
58.1 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/194 Adjusted R-Squared.mp4
57.5 MB
15 Statistics - Descriptive Statistics/072 Levels of Measurement.mp4
57.0 MB
07 The Field of Data Science - Careers in Data Science/023 Finding the Job - What to Expect and What to Look for.mp4
57.0 MB
60 Case Study - Loading the 'absenteeism_module'/462 Deploying the 'absenteeism_module' - Part II.mp4
56.9 MB
20 Statistics - Hypothesis Testing/124 Test for the Mean. Population Variance Known.mp4
56.9 MB
02 The Field of Data Science - The Various Data Science Disciplines/005 What is the difference between Analysis and Analytics.mp4
56.2 MB
11 Probability - Bayesian Inference/040 Sets and Events.mp4
56.1 MB
37 Advanced Statistical Methods - Cluster Analysis/250 Introduction to Cluster Analysis.mp4
56.0 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/397 Business Case_ Model Outline.mp4
55.7 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/448 Splitting the Data for Training and Testing.mp4
55.3 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/451 Interpreting the Coefficients for Our Problem.mp4
54.9 MB
57 Case Study - What's Next in the Course_/408 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
54.8 MB
38 Advanced Statistical Methods - K-Means Clustering/255 A Simple Example of Clustering.mp4
54.3 MB
22 Part 4_ Introduction to Python/140 Installing Python and Jupyter.mp4
53.5 MB
49 Deep Learning - Preprocessing/337 Standardization.mp4
53.5 MB
15 Statistics - Descriptive Statistics/085 Variance.mp4
53.4 MB
20 Statistics - Hypothesis Testing/129 Test for the Mean. Dependent Samples.mp4
52.8 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/103 What are Confidence Intervals_.mp4
52.4 MB
11 Probability - Bayesian Inference/050 Bayes' Law.mp4
52.4 MB
17 Statistics - Inferential Statistics Fundamentals/097 The Normal Distribution.mp4
52.3 MB
51 Deep Learning - Business Case Example/360 Business Case_ Setting an Early Stopping Mechanism.mp4
52.2 MB
40 Part 6_ Mathematics/274 Linear Algebra and Geometry.mp4
52.2 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/190 Decomposition of Variability.mp4
52.1 MB
40 Part 6_ Mathematics/281 Dot Product of Matrices.mp4
51.8 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/224 Train - Test Split Explained.mp4
51.6 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/455 Testing the Model We Created.mp4
51.4 MB
01 Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course.mp4
51.4 MB
11 Probability - Bayesian Inference/049 The Multiplication Law.mp4
51.4 MB
12 Probability - Distributions/060 Continuous Distributions_ The Normal Distribution.mp4
50.6 MB
12 Probability - Distributions/061 Continuous Distributions_ The Standard Normal Distribution.mp4
50.2 MB
17 Statistics - Inferential Statistics Fundamentals/102 Estimators and Estimates.mp4
50.1 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/437 Extracting the Month Value from the _Date_ Column.mp4
50.1 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/373 TensorFlow Intro.mp4
50.0 MB
62 Appendix - Additional Python Tools/470 Using the .format() Method.mp4
49.9 MB
11 Probability - Bayesian Inference/041 Ways Sets Can Interact.mp4
49.7 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/110 Margin of Error.mp4
49.5 MB
12 Probability - Distributions/065 Continuous Distributions_ The Logistic Distribution.mp4
49.3 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/387 MNIST_ Learning.mp4
49.0 MB
62 Appendix - Additional Python Tools/473 Triple Nested For Loops.mp4
48.9 MB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/226 Practical Example_ Linear Regression (Part 2).mp4
48.2 MB
11 Probability - Bayesian Inference/046 The Conditional Probability Formula.mp4
48.1 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/445 Creating the Targets for the Logistic Regression.mp4
48.0 MB
15 Statistics - Descriptive Statistics/087 Standard Deviation and Coefficient of Variation.mp4
47.3 MB
42 Deep Learning - Introduction to Neural Networks/286 Types of Machine Learning.mp4
47.3 MB
52 Deep Learning - Conclusion/369 An Overview of non-NN Approaches.mp4
46.9 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/189 How to Interpret the Regression Table.mp4
46.8 MB
39 Advanced Statistical Methods - Other Types of Clustering/269 Types of Clustering.mp4
46.7 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/186 First Regression in Python.mp4
46.7 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/459 Preparing the Deployment of the Model through a Module.mp4
46.6 MB
22 Part 4_ Introduction to Python/139 Why Jupyter_.mp4
46.5 MB
38 Advanced Statistical Methods - K-Means Clustering/259 How to Choose the Number of Clusters.mp4
46.3 MB
20 Statistics - Hypothesis Testing/123 Type I Error and Type II Error.mp4
46.1 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/385 Calculating the Accuracy of the Model.mp4
46.0 MB
10 Probability - Combinatorics/033 Solving Variations without Repetition.mp4
45.2 MB
38 Advanced Statistical Methods - K-Means Clustering/264 Market Segmentation with Cluster Analysis (Part 1).mp4
45.1 MB
42 Deep Learning - Introduction to Neural Networks/284 Introduction to Neural Networks.mp4
45.0 MB
05 The Field of Data Science - Popular Data Science Techniques/018 Real Life Examples of Traditional Methods.mp4
44.9 MB
10 Probability - Combinatorics/030 Permutations and How to Use Them.mp4
44.8 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/200 A3_ Normality and Homoscedasticity.mp4
44.8 MB
28 Python - Sequences/170 Dictionaries.mp4
43.7 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/449 Fitting the Model and Assessing its Accuracy.mp4
43.6 MB
50 Deep Learning - Classifying on the MNIST Dataset/345 MNIST_ Preprocess the Data - Shuffle and Batch.mp4
43.5 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/398 Business Case_ Optimization.mp4
43.5 MB
10 Probability - Combinatorics/037 Combinatorics in Real-Life_ The Lottery.mp4
43.3 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/452 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
43.2 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/192 R-Squared.mp4
43.0 MB
50 Deep Learning - Classifying on the MNIST Dataset/349 MNIST_ Learning.mp4
43.0 MB
57 Case Study - What's Next in the Course_/410 Introducing the Data Set.mp4
42.8 MB
61 Case Study - Analyzing the Predicted Outputs in Tableau/469 Analyzing Transportation Expense vs Probability in Tableau.mp4
42.6 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/185 Python Packages Installation.mp4
42.6 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/420 Analyzing the Reasons for Absence.mp4
42.5 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/453 Interpreting the Coefficients of the Logistic Regression.mp4
42.4 MB
10 Probability - Combinatorics/035 Symmetry of Combinations.mp4
42.3 MB
20 Statistics - Hypothesis Testing/127 Test for the Mean. Population Variance Unknown.mp4
42.2 MB
12 Probability - Distributions/064 Continuous Distributions_ The Exponential Distribution.mp4
42.2 MB
15 Statistics - Descriptive Statistics/079 Cross Tables and Scatter Plots.mp4
41.7 MB
52 Deep Learning - Conclusion/364 Summary on What You've Learned.mp4
41.7 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/441 Working on _Education_, _Children_, and _Pets_.mp4
41.5 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/454 Backward Elimination or How to Simplify Your Model.mp4
41.5 MB
42 Deep Learning - Introduction to Neural Networks/295 Optimization Algorithm_ n-Parameter Gradient Descent.mp4
41.3 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/393 The Importance of Working with a Balanced Dataset.mp4
41.3 MB
57 Case Study - What's Next in the Course_/409 The Business Task.mp4
41.1 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/219 Feature Scaling (Standardization).mp4
41.0 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/450 Creating a Summary Table with the Coefficients and Intercept.mp4
40.8 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/301 How to Install TensorFlow 2.0.mp4
40.6 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/427 Using .concat() in Python.mp4
40.6 MB
62 Appendix - Additional Python Tools/475 Anonymous (Lambda) Functions.mp4
40.4 MB
10 Probability - Combinatorics/038 A Recap of Combinatorics.mp4
40.4 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/376 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4
40.4 MB
36 Advanced Statistical Methods - Logistic Regression/243 Binary Predictors in a Logistic Regression.mp4
40.3 MB
42 Deep Learning - Introduction to Neural Networks/289 The Linear model with Multiple Inputs and Multiple Outputs.mp4
40.2 MB
40 Part 6_ Mathematics/279 Transpose of a Matrix.mp4
39.9 MB
28 Python - Sequences/166 Lists.mp4
39.6 MB
38 Advanced Statistical Methods - K-Means Clustering/261 Pros and Cons of K-Means Clustering.mp4
39.5 MB
28 Python - Sequences/167 Using Methods.mp4
39.4 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/456 Saving the Model and Preparing it for Deployment.mp4
39.3 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/378 Basic NN Example with TF_ Model Output.mp4
39.2 MB
42 Deep Learning - Introduction to Neural Networks/293 Common Objective Functions_ Cross-Entropy Loss.mp4
39.0 MB
15 Statistics - Descriptive Statistics/081 Mean, median and mode.mp4
38.9 MB
05 The Field of Data Science - Popular Data Science Techniques/021 Real Life Examples of Machine Learning (ML).mp4
38.6 MB
15 Statistics - Descriptive Statistics/073 Categorical Variables - Visualization Techniques.mp4
38.4 MB
20 Statistics - Hypothesis Testing/133 Test for the mean. Independent Samples (Part 2).mp4
38.2 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/401 Business Case_ A Comment on the Homework.mp4
38.1 MB
37 Advanced Statistical Methods - Cluster Analysis/252 Difference between Classification and Clustering.mp4
37.9 MB
10 Probability - Combinatorics/031 Simple Operations with Factorials.mp4
37.9 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/199 A2_ No Endogeneity.mp4
37.4 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/107 Student's T Distribution.mp4
37.2 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/316 Backpropagation.mp4
36.6 MB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/297 Basic NN Example (Part 2).mp4
36.6 MB
11 Probability - Bayesian Inference/047 The Law of Total Probability.mp4
36.6 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/220 Feature Selection through Standardization of Weights.mp4
36.6 MB
11 Probability - Bayesian Inference/045 Dependence and Independence of Sets.mp4
36.5 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/208 Simple Linear Regression with sklearn.mp4
36.5 MB
36 Advanced Statistical Methods - Logistic Regression/235 A Simple Example in Python.mp4
36.4 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/306 Outlining the Model with TensorFlow 2.mp4
36.4 MB
12 Probability - Distributions/056 Discrete Distributions_ The Bernoulli Distribution.mp4
35.8 MB
10 Probability - Combinatorics/032 Solving Variations with Repetition.mp4
35.7 MB
20 Statistics - Hypothesis Testing/131 Test for the mean. Independent Samples (Part 1).mp4
35.6 MB
40 Part 6_ Mathematics/273 Scalars and Vectors.mp4
35.5 MB
30 Python - Advanced Python Tools/177 Object Oriented Programming.mp4
35.2 MB
40 Part 6_ Mathematics/272 What is a Matrix_.mp4
35.2 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/302 TensorFlow Outline and Comparison with Other Libraries.mp4
35.1 MB
10 Probability - Combinatorics/036 Solving Combinations with Separate Sample Spaces.mp4
34.8 MB
36 Advanced Statistical Methods - Logistic Regression/245 Calculating the Accuracy of the Model.mp4
34.5 MB
46 Deep Learning - Overfitting/321 What is Validation_.mp4
34.3 MB
40 Part 6_ Mathematics/277 Addition and Subtraction of Matrices.mp4
34.2 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/377 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4
34.1 MB
36 Advanced Statistical Methods - Logistic Regression/242 What do the Odds Actually Mean.mp4
33.8 MB
36 Advanced Statistical Methods - Logistic Regression/248 Testing the Model.mp4
33.8 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/108 Confidence Intervals; Population Variance Unknown; T-score.mp4
33.8 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/209 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
33.6 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/201 A4_ No Autocorrelation.mp4
33.0 MB
51 Deep Learning - Business Case Example/359 Business Case_ Learning and Interpreting the Result.mp4
32.7 MB
41 Part 7_ Deep Learning/283 What to Expect from this Part_.mp4
32.6 MB
46 Deep Learning - Overfitting/319 What is Overfitting_.mp4
32.6 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/213 Calculating the Adjusted R-Squared in sklearn.mp4
32.4 MB
28 Python - Sequences/168 List Slicing.mp4
32.3 MB
22 Part 4_ Introduction to Python/142 Prerequisites for Coding in the Jupyter Notebooks.mp4
32.1 MB
36 Advanced Statistical Methods - Logistic Regression/240 Understanding Logistic Regression Tables.mp4
32.0 MB
51 Deep Learning - Business Case Example/354 Business Case_ Balancing the Dataset.mp4
31.9 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/307 Interpreting the Result and Extracting the Weights and Bias.mp4
31.7 MB
38 Advanced Statistical Methods - K-Means Clustering/262 To Standardize or not to Standardize.mp4
31.6 MB
25 Python - Other Python Operators/154 Logical and Identity Operators.mp4
31.5 MB
05 The Field of Data Science - Popular Data Science Techniques/012 Real Life Examples of Traditional Data.mp4
31.4 MB
29 Python - Iterations/176 How to Iterate over Dictionaries.mp4
31.1 MB
39 Advanced Statistical Methods - Other Types of Clustering/271 Heatmaps.mp4
31.1 MB
05 The Field of Data Science - Popular Data Science Techniques/016 Real Life Examples of Business Intelligence (BI).mp4
31.0 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/311 What is a Deep Net_.mp4
31.0 MB
50 Deep Learning - Classifying on the MNIST Dataset/351 MNIST_ Testing the Model.mp4
31.0 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/215 Feature Selection (F-regression).mp4
30.9 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/440 Analyzing Several _Straightforward_ Columns for this Exercise.mp4
30.9 MB
28 Python - Sequences/169 Tuples.mp4
30.9 MB
62 Appendix - Additional Python Tools/472 Introduction to Nested For Loops.mp4
30.9 MB
15 Statistics - Descriptive Statistics/091 Correlation Coefficient.mp4
30.8 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/331 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
30.5 MB
39 Advanced Statistical Methods - Other Types of Clustering/270 Dendrogram.mp4
30.5 MB
50 Deep Learning - Classifying on the MNIST Dataset/343 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4
30.5 MB
49 Deep Learning - Preprocessing/339 Binary and One-Hot Encoding.mp4
30.3 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/113 Confidence intervals. Two means. Independent Samples (Part 1).mp4
30.2 MB
42 Deep Learning - Introduction to Neural Networks/285 Training the Model.mp4
30.1 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/202 A5_ No Multicollinearity.mp4
30.1 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/328 Stochastic Gradient Descent.mp4
30.1 MB
42 Deep Learning - Introduction to Neural Networks/287 The Linear Model (Linear Algebraic Version).mp4
29.8 MB
29 Python - Iterations/172 While Loops and Incrementing.mp4
29.8 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/191 What is the OLS_.mp4
29.7 MB
50 Deep Learning - Classifying on the MNIST Dataset/347 MNIST_ Outline the Model.mp4
29.6 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/438 Extracting the Day of the Week from the _Date_ Column.mp4
29.3 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/414 Introduction to Terms with Multiple Meanings.mp4
29.2 MB
49 Deep Learning - Preprocessing/335 Preprocessing Introduction.mp4
29.1 MB
29 Python - Iterations/174 Conditional Statements and Loops.mp4
29.1 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/313 Non-Linearities and their Purpose.mp4
29.0 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/444 Exploring the Problem with a Machine Learning Mindset.mp4
28.9 MB
15 Statistics - Descriptive Statistics/089 Covariance.mp4
28.8 MB
38 Advanced Statistical Methods - K-Means Clustering/254 K-Means Clustering.mp4
28.6 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/206 What is sklearn and How is it Different from Other Packages.mp4
28.6 MB
12 Probability - Distributions/062 Continuous Distributions_ The Students' T Distribution.mp4
28.5 MB
36 Advanced Statistical Methods - Logistic Regression/234 Introduction to Logistic Regression.mp4
28.4 MB
11 Probability - Bayesian Inference/048 The Additive Rule.mp4
28.3 MB
11 Probability - Bayesian Inference/042 Intersection of Sets.mp4
28.3 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/115 Confidence intervals. Two means. Independent Samples (Part 2).mp4
28.1 MB
40 Part 6_ Mathematics/275 Arrays in Python - A Convenient Way To Represent Matrices.mp4
28.0 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/333 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
27.6 MB
12 Probability - Distributions/063 Continuous Distributions_ The Chi-Squared Distribution.mp4
27.6 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/221 Predicting with the Standardized Coefficients.mp4
27.2 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/315 Activation Functions_ Softmax Activation.mp4
27.2 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/384 MNIST_ Loss and Optimization Algorithm.mp4
27.1 MB
15 Statistics - Descriptive Statistics/075 Numerical Variables - Frequency Distribution Table.mp4
27.1 MB
29 Python - Iterations/173 Lists with the range() Function.mp4
27.0 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/399 Business Case_ Interpretation.mp4
27.0 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/433 Creating Checkpoints while Coding in Jupyter.mp4
26.9 MB
60 Case Study - Loading the 'absenteeism_module'/461 Deploying the 'absenteeism_module' - Part I.mp4
26.7 MB
11 Probability - Bayesian Inference/044 Mutually Exclusive Sets.mp4
26.6 MB
52 Deep Learning - Conclusion/368 An Overview of RNNs.mp4
26.5 MB
46 Deep Learning - Overfitting/322 Training, Validation, and Test Datasets.mp4
26.4 MB
42 Deep Learning - Introduction to Neural Networks/288 The Linear Model with Multiple Inputs.mp4
26.3 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/314 Activation Functions.mp4
26.3 MB
46 Deep Learning - Overfitting/320 Underfitting and Overfitting for Classification.mp4
26.3 MB
26 Python - Conditional Statements/157 The ELIF Statement.mp4
26.3 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/205 Making Predictions with the Linear Regression.mp4
25.9 MB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/298 Basic NN Example (Part 3).mp4
25.6 MB
12 Probability - Distributions/055 Discrete Distributions_ The Uniform Distribution.mp4
25.6 MB
46 Deep Learning - Overfitting/324 Early Stopping or When to Stop Training.mp4
25.3 MB
23 Python - Variables and Data Types/145 Python Strings.mp4
25.3 MB
40 Part 6_ Mathematics/280 Dot Product.mp4
25.2 MB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/228 Practical Example_ Linear Regression (Part 3).mp4
24.8 MB
29 Python - Iterations/171 For Loops.mp4
24.7 MB
42 Deep Learning - Introduction to Neural Networks/292 Common Objective Functions_ L2-norm Loss.mp4
24.4 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/412 Importing the Absenteeism Data in Python.mp4
24.3 MB
36 Advanced Statistical Methods - Logistic Regression/239 An Invaluable Coding Tip.mp4
24.2 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/308 Customizing a TensorFlow 2 Model.mp4
24.0 MB
17 Statistics - Inferential Statistics Fundamentals/101 Standard error.mp4
23.9 MB
12 Probability - Distributions/054 Characteristics of Discrete Distributions.mp4
23.8 MB
42 Deep Learning - Introduction to Neural Networks/290 Graphical Representation of Simple Neural Networks.mp4
23.7 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/381 MNIST_ How to Tackle the MNIST.mp4
23.7 MB
40 Part 6_ Mathematics/276 What is a Tensor_.mp4
23.6 MB
17 Statistics - Inferential Statistics Fundamentals/098 The Standard Normal Distribution.mp4
23.6 MB
62 Appendix - Additional Python Tools/471 Iterating Over Range Objects.mp4
23.6 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/334 Adam (Adaptive Moment Estimation).mp4
23.4 MB
36 Advanced Statistical Methods - Logistic Regression/247 Underfitting and Overfitting.mp4
23.4 MB
05 The Field of Data Science - Popular Data Science Techniques/014 Real Life Examples of Big Data.mp4
23.1 MB
27 Python - Python Functions/165 Built-in Functions in Python.mp4
23.1 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/303 TensorFlow 1 vs TensorFlow 2.mp4
23.1 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/197 OLS Assumptions.mp4
22.9 MB
47 Deep Learning - Initialization/325 What is Initialization_.mp4
22.8 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/442 Final Remarks of this Section.mp4
22.7 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/193 Multiple Linear Regression.mp4
22.6 MB
38 Advanced Statistical Methods - K-Means Clustering/257 Clustering Categorical Data.mp4
22.3 MB
46 Deep Learning - Overfitting/323 N-Fold Cross Validation.mp4
21.7 MB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/296 Basic NN Example (Part 1).mp4
21.6 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/447 Standardizing the Data.mp4
21.6 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/375 Types of File Formats, supporting Tensors.mp4
21.3 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/416 Using a Statistical Approach towards the Solution to the Exercise.mp4
21.2 MB
52 Deep Learning - Conclusion/365 What's Further out there in terms of Machine Learning.mp4
21.1 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/212 Multiple Linear Regression with sklearn.mp4
21.0 MB
18 Statistics - Inferential Statistics_ Confidence Intervals/117 Confidence intervals. Two means. Independent Samples (Part 3).mp4
20.9 MB
30 Python - Advanced Python Tools/180 Importing Modules in Python.mp4
20.9 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/317 Backpropagation Picture.mp4
20.4 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/207 How are we Going to Approach this Section_.mp4
20.3 MB
15 Statistics - Descriptive Statistics/083 Skewness.mp4
20.3 MB
24 Python - Basic Python Syntax/146 Using Arithmetic Operators in Python.mp4
19.8 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/382 MNIST_ Relevant Packages.mp4
19.8 MB
50 Deep Learning - Classifying on the MNIST Dataset/341 MNIST_ How to Tackle the MNIST.mp4
19.6 MB
49 Deep Learning - Preprocessing/338 Preprocessing Categorical Data.mp4
19.5 MB
27 Python - Python Functions/160 How to Create a Function with a Parameter.mp4
19.0 MB
30 Python - Advanced Python Tools/179 What is the Standard Library_.mp4
18.9 MB
42 Deep Learning - Introduction to Neural Networks/291 What is the Objective Function_.mp4
18.8 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/380 MNIST_ What is the MNIST Dataset_.mp4
18.7 MB
51 Deep Learning - Business Case Example/357 Business Case_ Load the Preprocessed Data.mp4
18.4 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/374 Actual Introduction to TensorFlow.mp4
18.3 MB
31 Part 5_ Advanced Statistical Methods in Python/181 Introduction to Regression Analysis.mp4
18.2 MB
47 Deep Learning - Initialization/327 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
18.0 MB
36 Advanced Statistical Methods - Logistic Regression/237 Building a Logistic Regression.mp4
17.9 MB
23 Python - Variables and Data Types/144 Numbers and Boolean Values in Python.mp4
17.9 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/223 Underfitting and Overfitting.mp4
17.8 MB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/446 Selecting the Inputs for the Logistic Regression.mp4
17.6 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/330 Momentum.mp4
17.2 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/196 Test for Significance of the Model (F-Test).mp4
17.2 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/305 Types of File Formats Supporting TensorFlow.mp4
17.2 MB
50 Deep Learning - Classifying on the MNIST Dataset/342 MNIST_ Importing the Relevant Packages and Loading the Data.mp4
17.1 MB
10 Probability - Combinatorics/029 Fundamentals of Combinatorics.mp4
17.0 MB
27 Python - Python Functions/163 Conditional Statements and Functions.mp4
16.4 MB
17 Statistics - Inferential Statistics Fundamentals/095 Introduction.mp4
16.2 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/183 Correlation vs Regression.mp4
15.4 MB
37 Advanced Statistical Methods - Cluster Analysis/253 Math Prerequisites.mp4
15.3 MB
47 Deep Learning - Initialization/326 Types of Simple Initializations.mp4
15.0 MB
23 Python - Variables and Data Types/143 Variables.mp4
14.8 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/430 Reordering Columns in a Pandas DataFrame in Python.mp4
14.7 MB
50 Deep Learning - Classifying on the MNIST Dataset/348 MNIST_ Select the Loss and the Optimizer.mp4
14.6 MB
22 Part 4_ Introduction to Python/141 Understanding Jupyter's Interface - the Notebook Dashboard.mp4
14.5 MB
15 Statistics - Descriptive Statistics/077 The Histogram.mp4
14.4 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/425 More on Dummy Variables_ A Statistical Perspective.mp4
14.4 MB
50 Deep Learning - Classifying on the MNIST Dataset/340 MNIST_ The Dataset.mp4
14.0 MB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/386 MNIST_ Batching and Early Stopping.mp4
13.5 MB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/198 A1_ Linearity.mp4
13.2 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/310 What is a Layer_.mp4
13.1 MB
34 Advanced Statistical Methods - Linear Regression with sklearn/217 Creating a Summary Table with P-values.mp4
12.9 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/188 Using Seaborn for Graphs.mp4
12.8 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/392 Business Case_ Outlining the Solution.mp4
12.8 MB
49 Deep Learning - Preprocessing/336 Types of Basic Preprocessing.mp4
12.4 MB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/371 How to Install TensorFlow 1.mp4
11.9 MB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/400 Business Case_ Testing the Model.mp4
11.7 MB
40 Part 6_ Mathematics/278 Errors when Adding Matrices.mp4
11.7 MB
27 Python - Python Functions/161 Defining a Function in Python - Part II.mp4
11.7 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/329 Problems with Gradient Descent.mp4
11.5 MB
26 Python - Conditional Statements/156 The ELSE Statement.mp4
11.4 MB
26 Python - Conditional Statements/155 The IF Statement.mp4
11.3 MB
51 Deep Learning - Business Case Example/362 Business Case_ Testing the Model.mp4
11.3 MB
25 Python - Other Python Operators/153 Comparison Operators.mp4
10.7 MB
38 Advanced Statistical Methods - K-Means Clustering/263 Relationship between Clustering and Regression.mp4
10.4 MB
29 Python - Iterations/175 Conditional Statements, Functions, and Loops.mp4
9.9 MB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/332 Learning Rate Schedules Visualized.mp4
9.5 MB
26 Python - Conditional Statements/158 A Note on Boolean Values.mp4
9.3 MB
12 Probability - Distributions/066 FIFA19-post.csv
9.1 MB
12 Probability - Distributions/066 FIFA19.csv
9.1 MB
30 Python - Advanced Python Tools/178 Modules and Packages.mp4
8.9 MB
27 Python - Python Functions/162 How to Use a Function within a Function.mp4
8.5 MB
58 Case Study - Preprocessing the 'Absenteeism_data'/439 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb
8.0 MB
51 Deep Learning - Business Case Example/353 Business Case_ Outlining the Solution.mp4
7.7 MB
02 The Field of Data Science - The Various Data Science Disciplines/007 365-DataScience.png
7.3 MB
02 The Field of Data Science - The Various Data Science Disciplines/008 365-DataScience.png
7.3 MB
44 Deep Learning - TensorFlow 2.0_ Introduction/304 A Note on TensorFlow 2 Syntax.mp4
7.1 MB
27 Python - Python Functions/159 Defining a Function in Python.mp4
6.6 MB
27 Python - Python Functions/164 Functions Containing a Few Arguments.mp4
6.3 MB
24 Python - Basic Python Syntax/147 The Double Equality Sign.mp4
6.3 MB
24 Python - Basic Python Syntax/151 Indexing Elements.mp4
6.2 MB
24 Python - Basic Python Syntax/152 Structuring with Indentation.mp4
5.7 MB
32 Advanced Statistical Methods - Linear Regression with StatsModels/184 Geometrical Representation of the Linear Regression Model.mp4
5.4 MB
24 Python - Basic Python Syntax/149 Add Comments.mp4
4.9 MB
24 Python - Basic Python Syntax/148 How to Reassign Values.mp4
4.2 MB
24 Python - Basic Python Syntax/150 Understanding Line Continuation.mp4
2.5 MB
23 Python - Variables and Data Types/143 Python-Introduction-Course-Notes.pdf
2.1 MB
19 Statistics - Practical Example_ Inferential Statistics/119 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
1.9 MB
19 Statistics - Practical Example_ Inferential Statistics/118 3.17.Practical-example.Confidence-intervals-lesson.xlsx
1.8 MB
19 Statistics - Practical Example_ Inferential Statistics/119 3.17.Practical-example.Confidence-intervals-exercise.xlsx
1.8 MB
20 Statistics - Hypothesis Testing/126 Online-p-value-calculator.pdf
1.2 MB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/310 Course-Notes-Section-6.pdf
958.9 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/311 Course-Notes-Section-6.pdf
958.9 kB
11 Probability - Bayesian Inference/051 CDS-E7-E8-Hamilton.pdf
865.6 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/232 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb
728.1 kB
51 Deep Learning - Business Case Example/352 Audiobooks-data.csv
727.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/391 Audiobooks-data.csv
727.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/393 Audiobooks-data.csv
727.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/394 Audiobooks-data.csv
727.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/395 Audiobooks-data.csv
727.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/401 Audiobooks-data.csv
727.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/402 Audiobooks-data.csv
727.8 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/232 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb
715.1 kB
20 Statistics - Hypothesis Testing/120 Course-notes-hypothesis-testing.pdf
672.2 kB
20 Statistics - Hypothesis Testing/122 Course-notes-hypothesis-testing.pdf
672.2 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/296 Shortcuts-for-Jupyter.pdf
634.0 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/301 Shortcuts-for-Jupyter.pdf
634.0 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/374 Shortcuts-for-Jupyter.pdf
634.0 kB
42 Deep Learning - Introduction to Neural Networks/284 Course-Notes-Section-2.pdf
592.0 kB
42 Deep Learning - Introduction to Neural Networks/285 Course-Notes-Section-2.pdf
592.0 kB
14 Part 3_ Statistics/070 Course-notes-descriptive-statistics.pdf
493.8 kB
15 Statistics - Descriptive Statistics/071 Course-notes-descriptive-statistics.pdf
493.8 kB
12 Probability - Distributions/052 Course-Notes-Probability-Distributions.pdf
475.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/230 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb
417.4 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/230 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb
406.8 kB
11 Probability - Bayesian Inference/040 Course-Notes-Bayesian-Inference.pdf
395.3 kB
17 Statistics - Inferential Statistics Fundamentals/095 Course-notes-inferential-statistics.pdf
391.5 kB
17 Statistics - Inferential Statistics Fundamentals/096 Course-notes-inferential-statistics.pdf
391.5 kB
09 Part 2_ Probability/025 Course-Notes-Basic-Probability.pdf
380.0 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/229 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb
379.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/228 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb
359.9 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/229 sklearn-Dummies-and-VIF-Exercise.ipynb
352.9 kB
12 Probability - Distributions/059 Solving-Integrals.pdf
352.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/228 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb
351.8 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/226 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb
343.7 kB
36 Advanced Statistical Methods - Logistic Regression/234 Course-Notes-Logistic-Regression.pdf
343.2 kB
36 Advanced Statistical Methods - Logistic Regression/235 Course-Notes-Logistic-Regression.pdf
343.2 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/226 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb
336.6 kB
02 The Field of Data Science - The Various Data Science Disciplines/006 365-DataScience-Diagram.pdf
330.8 kB
02 The Field of Data Science - The Various Data Science Disciplines/007 365-DataScience-Diagram.pdf
330.8 kB
13 Probability - Probability in Other Fields/069 Probability-Cheat-Sheet.pdf
328.0 kB
31 Part 5_ Advanced Statistical Methods in Python/181 Course-notes-regression-analysis.pdf
319.7 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/182 Course-notes-regression-analysis.pdf
319.7 kB
01 Part 1_ Introduction/003 FAQ-The-Data-Science-Course.pdf
313.4 kB
15 Statistics - Descriptive Statistics/074 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
15 Statistics - Descriptive Statistics/078 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
10 Probability - Combinatorics/039 Additional-Exercises-Combinatorics-Solutions.pdf
251.6 kB
10 Probability - Combinatorics/029 Course-Notes-Combinatorics.pdf
231.5 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/225 1.04.Real-life-example.csv
225.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/226 1.04.Real-life-example.csv
225.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/229 1.04.Real-life-example.csv
225.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/230 1.04.Real-life-example.csv
225.1 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/232 1.04.Real-life-example.csv
225.1 kB
37 Advanced Statistical Methods - Cluster Analysis/250 Course-Notes-Cluster-Analysis.pdf
213.7 kB
37 Advanced Statistical Methods - Cluster Analysis/251 Course-Notes-Cluster-Analysis.pdf
213.7 kB
10 Probability - Combinatorics/034 Combinations-With-Repetition.pdf
212.4 kB
13 Probability - Probability in Other Fields/067 Probability-in-Finance-Solutions.pdf
188.9 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/318 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
186.8 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/225 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb
175.5 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/225 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb
170.9 kB
16 Statistics - Practical Example_ Descriptive Statistics/093 2.13.Practical-example.Descriptive-statistics-lesson.xlsx
150.0 kB
16 Statistics - Practical Example_ Descriptive Statistics/094 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
149.9 kB
12 Probability - Distributions/058 Poisson-Expected-Value-and-Variance.pdf
149.5 kB
12 Probability - Distributions/060 Normal-Distribution-Exp-and-Var.pdf
147.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/411 data-preprocessing-homework.pdf
137.7 kB
16 Statistics - Practical Example_ Descriptive Statistics/094 2.13.Practical-example.Descriptive-statistics-exercise.xlsx
123.2 kB
36 Advanced Statistical Methods - Logistic Regression/249 Testing-the-Model-Solution.ipynb
113.8 kB
13 Probability - Probability in Other Fields/067 Probability-in-Finance-Homework.pdf
113.3 kB
10 Probability - Combinatorics/039 Additional-Exercises-Combinatorics.pdf
109.1 kB
10 Probability - Combinatorics/035 Symmetry-Explained.pdf
87.1 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/309 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
86.5 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-3.d.Solution.ipynb
86.2 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/309 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
85.7 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/309 TensorFlow-Minimal-example-All-exercises.ipynb
85.6 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/308 TensorFlow-Minimal-example-complete-with-comments.ipynb
84.3 kB
36 Advanced Statistical Methods - Logistic Regression/246 Calculating-the-Accuracy-of-the-Model-Solution.ipynb
83.2 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/309 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
79.4 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/308 TensorFlow-Minimal-example-complete.ipynb
78.7 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/307 TensorFlow-Minimal-example-Part3.ipynb
78.4 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-3.c.Solution.ipynb
71.8 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-1-Solution.ipynb
70.7 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-5-Solution.ipynb
70.5 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-3.a.Solution.ipynb
69.5 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-3.b.Solution.ipynb
69.3 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-4-Solution.ipynb
68.1 kB
60 Case Study - Loading the 'absenteeism_module'/460 Absenteeism-Exercise-Integration.ipynb
63.8 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-6-Solution.ipynb
63.2 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-6.ipynb
63.2 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-Exercise-2-Solution.ipynb
62.9 kB
21 Statistics - Practical Example_ Hypothesis Testing/135 4.10.Hypothesis-testing-section-practical-example.xlsx
53.1 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb
51.2 kB
21 Statistics - Practical Example_ Hypothesis Testing/136 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
45.3 kB
21 Statistics - Practical Example_ Hypothesis Testing/136 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx
44.7 kB
42 Deep Learning - Introduction to Neural Networks/294 GD-function-example.xlsx
43.4 kB
15 Statistics - Descriptive Statistics/074 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx
42.1 kB
15 Statistics - Descriptive Statistics/080 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx
41.4 kB
15 Statistics - Descriptive Statistics/083 2.8.Skewness-lesson.xlsx
35.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/411 Absenteeism-data.csv
32.8 kB
15 Statistics - Descriptive Statistics/073 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
31.5 kB
11 Probability - Bayesian Inference/051 Bayesian-Homework-Solutions.pdf
31.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/221 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb
30.5 kB
15 Statistics - Descriptive Statistics/090 2.11.Covariance-exercise-solution.xlsx
30.2 kB
15 Statistics - Descriptive Statistics/092 2.12.Correlation-exercise-solution.xlsx
30.2 kB
15 Statistics - Descriptive Statistics/092 2.12.Correlation-exercise.xlsx
30.0 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/444 Absenteeism-preprocessed.csv
29.8 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/411 df-preprocessed.csv
29.8 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/209 sklearn-Simple-Linear-Regression-with-comments.ipynb
29.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/211 sklearn-Simple-Linear-Regression-with-comments.ipynb
29.0 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/309 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb
28.6 kB
11 Probability - Bayesian Inference/051 Bayesian-Homework.pdf
27.9 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb
27.6 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
27.4 kB
15 Statistics - Descriptive Statistics/079 2.6.Cross-table-and-scatter-plot.xlsx
26.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/209 sklearn-Simple-Linear-Regression.ipynb
26.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/211 sklearn-Simple-Linear-Regression.ipynb
26.7 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/104 3.9.The-z-table.xlsx
26.2 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/105 3.9.The-z-table.xlsx
26.2 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
26.2 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
26.1 kB
62 Appendix - Additional Python Tools/470 Additional-Python-Tools-Solutions.ipynb
26.1 kB
62 Appendix - Additional Python Tools/475 Additional-Python-Tools-Solutions.ipynb
26.1 kB
15 Statistics - Descriptive Statistics/089 2.11.Covariance-lesson.xlsx
25.5 kB
17 Statistics - Inferential Statistics Fundamentals/099 3.4.Standard-normal-distribution-exercise-solution.xlsx
24.6 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb
24.2 kB
01 Part 1_ Introduction/003 Download All Resources and Important FAQ.html
23.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/221 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb
22.6 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb
22.3 kB
16 Statistics - Practical Example_ Descriptive Statistics/093 Practical Example_ Descriptive Statistics.en.srt
22.1 kB
12 Probability - Distributions/066 A Practical Example of Probability Distributions.en.srt
21.1 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
21.1 kB
14 Part 3_ Statistics/070 Statistics-Glossary.xlsx
20.8 kB
15 Statistics - Descriptive Statistics/090 2.11.Covariance-exercise.xlsx
20.7 kB
12 Probability - Distributions/066 Daily-Views-post.xlsx
20.7 kB
11 Probability - Bayesian Inference/051 A Practical Example of Bayesian Inference.en.srt
20.5 kB
15 Statistics - Descriptive Statistics/071 Glossary.xlsx
20.4 kB
15 Statistics - Descriptive Statistics/084 2.8.Skewness-exercise-solution.xlsx
20.2 kB
51 Deep Learning - Business Case Example/359 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb
20.2 kB
36 Advanced Statistical Methods - Logistic Regression/241 Bank-data.csv
20.0 kB
36 Advanced Statistical Methods - Logistic Regression/244 Bank-data.csv
20.0 kB
36 Advanced Statistical Methods - Logistic Regression/246 Bank-data.csv
20.0 kB
36 Advanced Statistical Methods - Logistic Regression/249 Bank-data.csv
20.0 kB
17 Statistics - Inferential Statistics Fundamentals/096 3.2.What-is-a-distribution-lesson.xlsx
19.9 kB
15 Statistics - Descriptive Statistics/077 2.5.The-Histogram-lesson.xlsx
19.1 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/204 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb
18.4 kB
39 Advanced Statistical Methods - Other Types of Clustering/271 Heatmaps-with-comments.ipynb
18.1 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 TensorFlow-MNIST-around-98-percent-accuracy.ipynb
18.1 kB
15 Statistics - Descriptive Statistics/078 2.5.The-Histogram-exercise-solution.xlsx
17.5 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
17.2 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 TensorFlow-MNIST-All-Exercises.ipynb
17.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/217 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb
17.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/222 sklearn-Feature-Scaling-Exercise-Solution.ipynb
16.7 kB
15 Statistics - Descriptive Statistics/080 2.6.Cross-table-and-scatter-plot-exercise.xlsx
16.7 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/108 3.11.The-t-table.xlsx
16.2 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/109 3.11.The-t-table.xlsx
16.2 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
16.2 kB
12 Probability - Distributions/066 Customers-Membership-post.xlsx
16.0 kB
15 Statistics - Descriptive Statistics/078 2.5.The-Histogram-exercise.xlsx
15.9 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/389 TensorFlow-MNIST-Exercises-All.ipynb
15.8 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/218 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb
15.8 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/225 Practical Example_ Linear Regression (Part 1).en.srt
15.8 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 2.TensorFlow-MNIST-Depth-Solution.ipynb
15.7 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
15.7 kB
38 Advanced Statistical Methods - K-Means Clustering/268 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb
15.7 kB
15 Statistics - Descriptive Statistics/074 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx
15.6 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
15.6 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
15.5 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
15.5 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
15.5 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 TensorFlow-MNIST-around-98-percent-accuracy.ipynb
15.4 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/220 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb
15.3 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 2.TensorFlow-MNIST-Depth-Solution.ipynb
15.2 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 1.TensorFlow-MNIST-Width-Solution.ipynb
15.2 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
15.1 kB
20 Statistics - Hypothesis Testing/127 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
14.9 kB
50 Deep Learning - Classifying on the MNIST Dataset/351 TensorFlow-MNIST-complete-with-comments.ipynb
14.9 kB
10 Probability - Combinatorics/039 A Practical Example of Combinatorics.en.srt
14.8 kB
20 Statistics - Hypothesis Testing/130 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx
14.7 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/401 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/402 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
14.7 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
14.6 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/112 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx
14.6 kB
19 Statistics - Practical Example_ Inferential Statistics/118 Practical Example_ Inferential Statistics.en.srt
14.5 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
14.5 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
14.4 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 1.TensorFlow-MNIST-Width-Solution.ipynb
14.3 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb
14.3 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/394 Business Case_ Preprocessing.en.srt
14.3 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 TensorFlow-Minimal-Example-All-Exercises.ipynb
14.3 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
14.3 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/112 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx
14.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/217 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb
14.0 kB
62 Appendix - Additional Python Tools/470 Additional-Python-Tools-Lectures.ipynb
13.8 kB
62 Appendix - Additional Python Tools/475 Additional-Python-Tools-Lectures.ipynb
13.8 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/195 Multiple-Linear-Regression-Exercise-Solution.ipynb
13.7 kB
15 Statistics - Descriptive Statistics/076 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
13.5 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/388 12.9.TensorFlow-MNIST-with-comments.ipynb
13.3 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/215 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb
13.3 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Minimal-example-All-Exercises.ipynb
13.2 kB
62 Appendix - Additional Python Tools/470 Using the .format() Method.en.srt
13.1 kB
62 Appendix - Additional Python Tools/474 List Comprehensions.en.srt
13.1 kB
20 Statistics - Hypothesis Testing/130 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx
13.1 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/398 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/399 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
51 Deep Learning - Business Case Example/355 Business Case_ Preprocessing the Data.en.srt
13.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/216 sklearn-How-to-properly-include-p-values.ipynb
13.0 kB
20 Statistics - Hypothesis Testing/128 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
12.9 kB
15 Statistics - Descriptive Statistics/088 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
12.9 kB
50 Deep Learning - Classifying on the MNIST Dataset/349 TensorFlow-MNIST-Part6-with-comments.ipynb
12.8 kB
02 The Field of Data Science - The Various Data Science Disciplines/007 Continuing with BI, ML, and AI.en.srt
12.6 kB
40 Part 6_ Mathematics/282 Why is Linear Algebra Useful_.en.srt
12.5 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/378 5.6.TensorFlow-Minimal-example-complete.ipynb
12.4 kB
17 Statistics - Inferential Statistics Fundamentals/099 3.4.Standard-normal-distribution-exercise.xlsx
12.3 kB
51 Deep Learning - Business Case Example/362 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
51 Deep Learning - Business Case Example/363 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/230 Practical Example_ Linear Regression (Part 4).en.srt
12.2 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/219 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb
12.0 kB
36 Advanced Statistical Methods - Logistic Regression/245 Accuracy-with-comments.ipynb
12.0 kB
15 Statistics - Descriptive Statistics/088 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
11.9 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/387 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb
11.8 kB
15 Statistics - Descriptive Statistics/075 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx
11.7 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/299 Minimal-example-Part-4-Complete.ipynb
11.7 kB
05 The Field of Data Science - Popular Data Science Techniques/017 Techniques for Working with Traditional Methods.en.srt
11.7 kB
20 Statistics - Hypothesis Testing/134 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
11.7 kB
62 Appendix - Additional Python Tools/470 Additional-Python-Tools-Exercises.ipynb
11.6 kB
62 Appendix - Additional Python Tools/475 Additional-Python-Tools-Exercises.ipynb
11.6 kB
15 Statistics - Descriptive Statistics/082 2.7.Mean-median-and-mode-exercise-solution.xlsx
11.6 kB
20 Statistics - Hypothesis Testing/128 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
11.6 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/299 Basic NN Example (Part 4).en.srt
11.6 kB
20 Statistics - Hypothesis Testing/132 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
11.5 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/391 Business Case_ Getting Acquainted with the Dataset.en.srt
11.5 kB
20 Statistics - Hypothesis Testing/125 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx
11.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/104 3.9.Population-variance-known-z-score-lesson.xlsx
11.5 kB
51 Deep Learning - Business Case Example/355 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/394 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/401 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/402 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/105 3.9.Population-variance-known-z-score-exercise-solution.xlsx
11.4 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/109 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx
11.4 kB
51 Deep Learning - Business Case Example/352 Business Case_ Exploring the Dataset and Identifying Predictors.en.srt
11.3 kB
15 Statistics - Descriptive Statistics/086 2.9.Variance-exercise-solution.xlsx
11.3 kB
02 The Field of Data Science - The Various Data Science Disciplines/006 Business Analytics, Data Analytics, and Data Science_ An Introduction.en.srt
11.3 kB
05 The Field of Data Science - Popular Data Science Techniques/011 Techniques for Working with Traditional Data.en.srt
11.3 kB
20 Statistics - Hypothesis Testing/125 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx
11.3 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/232 Practical Example_ Linear Regression (Part 5).en.srt
11.3 kB
50 Deep Learning - Classifying on the MNIST Dataset/348 TensorFlow-MNIST-Part5-with-comments.ipynb
11.2 kB
15 Statistics - Descriptive Statistics/087 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx
11.2 kB
20 Statistics - Hypothesis Testing/124 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx
11.2 kB
05 The Field of Data Science - Popular Data Science Techniques/020 Types of Machine Learning.en.srt
11.2 kB
15 Statistics - Descriptive Statistics/082 2.7.Mean-median-and-mode-exercise.xlsx
11.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/105 3.9.Population-variance-known-z-score-exercise.xlsx
11.1 kB
15 Statistics - Descriptive Statistics/086 2.9.Variance-exercise.xlsx
11.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/108 3.11.Population-variance-unknown-t-score-lesson.xlsx
11.0 kB
56 Software Integration/405 Taking a Closer Look at APIs.en.srt
11.0 kB
20 Statistics - Hypothesis Testing/132 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
11.0 kB
38 Advanced Statistical Methods - K-Means Clustering/268 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb
11.0 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/398 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/399 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/109 3.11.Population-variance-unknown-t-score-exercise.xlsx
10.9 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/387 MNIST_ Learning.en.srt
10.9 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/421 Obtaining Dummies from a Single Feature.en.srt
10.8 kB
20 Statistics - Hypothesis Testing/134 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
10.8 kB
15 Statistics - Descriptive Statistics/081 2.7.Mean-median-and-mode-lesson.xlsx
10.7 kB
50 Deep Learning - Classifying on the MNIST Dataset/347 TensorFlow-MNIST-Part4-with-comments.ipynb
10.7 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/111 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx
10.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/215 sklearn-Feature-Selection-with-F-regression.ipynb
10.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/213 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb
10.7 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/426 Classifying the Various Reasons for Absence.en.srt
10.7 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/465 Analyzing Age vs Probability in Tableau.en.srt
10.7 kB
17 Statistics - Inferential Statistics Fundamentals/098 3.4.Standard-normal-distribution-lesson.xlsx
10.6 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/397 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb
10.6 kB
38 Advanced Statistical Methods - K-Means Clustering/258 Categorical.csv
10.6 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/214 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb
10.6 kB
62 Appendix - Additional Python Tools/475 Anonymous (Lambda) Functions.en.srt
10.5 kB
28 Python - Sequences/166 Lists.en.srt
10.5 kB
13 Probability - Probability in Other Fields/067 Probability in Finance.en.srt
10.4 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/104 Confidence Intervals; Population Variance Known; Z-score.en.srt
10.4 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/114 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx
10.4 kB
15 Statistics - Descriptive Statistics/085 2.9.Variance-lesson.xlsx
10.3 kB
51 Deep Learning - Business Case Example/360 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb
10.3 kB
51 Deep Learning - Business Case Example/356 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/395 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
38 Advanced Statistical Methods - K-Means Clustering/255 A Simple Example of Clustering.en.srt
10.2 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/224 Train - Test Split Explained.en.srt
10.2 kB
40 Part 6_ Mathematics/281 Dot Product of Matrices.en.srt
10.2 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/467 Analyzing Reasons vs Probability in Tableau.en.srt
10.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/214 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb
10.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/113 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx
10.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/114 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx
10.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/116 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx
10.0 kB
20 Statistics - Hypothesis Testing/129 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx
10.0 kB
12 Probability - Distributions/066 Customers-Membership.xlsx
9.9 kB
20 Statistics - Hypothesis Testing/131 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx
9.9 kB
12 Probability - Distributions/053 Types of Probability Distributions.en.srt
9.8 kB
50 Deep Learning - Classifying on the MNIST Dataset/345 MNIST_ Preprocess the Data - Shuffle and Batch.en.srt
9.8 kB
38 Advanced Statistical Methods - K-Means Clustering/265 Market Segmentation with Cluster Analysis (Part 2).en.srt
9.8 kB
12 Probability - Distributions/066 Daily-Views.xlsx
9.8 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/115 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx
9.7 kB
15 Statistics - Descriptive Statistics/084 2.8.Skewness-exercise.xlsx
9.7 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/383 MNIST_ Model Outline.en.srt
9.6 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/205 Making-predictions-with-comments.ipynb
9.6 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/397 TensorFlow-Audiobooks-Outlining-the-model.ipynb
9.6 kB
03 The Field of Data Science - Connecting the Data Science Disciplines/009 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.en.srt
9.5 kB
20 Statistics - Hypothesis Testing/133 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx
9.5 kB
09 Part 2_ Probability/025 The Basic Probability Formula.en.srt
9.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/116 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx
9.4 kB
22 Part 4_ Introduction to Python/140 Installing Python and Jupyter.en.srt
9.4 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/213 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb
9.3 kB
05 The Field of Data Science - Popular Data Science Techniques/019 Machine Learning (ML) Techniques.en.srt
9.3 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/306 TensorFlow-Minimal-example-Part2.ipynb
9.3 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/224 sklearn-Train-Test-Split-with-comments.ipynb
9.3 kB
20 Statistics - Hypothesis Testing/122 Rejection Region and Significance Level.en.srt
9.2 kB
12 Probability - Distributions/059 Characteristics of Continuous Distributions.en.srt
9.2 kB
05 The Field of Data Science - Popular Data Science Techniques/015 Business Intelligence (BI) Techniques.en.srt
9.2 kB
56 Software Integration/404 What are Data Connectivity, APIs, and Endpoints_.en.srt
9.1 kB
21 Statistics - Practical Example_ Hypothesis Testing/135 Practical Example_ Hypothesis Testing.en.srt
9.0 kB
42 Deep Learning - Introduction to Neural Networks/294 Optimization Algorithm_ 1-Parameter Gradient Descent.en.srt
9.0 kB
28 Python - Sequences/170 Dictionaries.en.srt
9.0 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/436 Analyzing the Dates from the Initial Data Set.en.srt
8.9 kB
13 Probability - Probability in Other Fields/068 Probability in Statistics.en.srt
8.9 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/445 Creating the Targets for the Logistic Regression.en.srt
8.9 kB
28 Python - Sequences/167 Using Methods.en.srt
8.9 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/212 sklearn-Multiple-Linear-Regression-with-comments.ipynb
8.9 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/377 5.5.TensorFlow-Minimal-example-Part-3.ipynb
8.9 kB
62 Appendix - Additional Python Tools/472 Introduction to Nested For Loops.en.srt
8.8 kB
50 Deep Learning - Classifying on the MNIST Dataset/346 TensorFlow-MNIST-Part3-with-comments.ipynb
8.8 kB
51 Deep Learning - Business Case Example/356 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/395 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
12 Probability - Distributions/057 Discrete Distributions_ The Binomial Distribution.en.srt
8.8 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/386 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb
8.7 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/442 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb
8.7 kB
38 Advanced Statistical Methods - K-Means Clustering/260 How-to-Choose-the-Number-of-Clusters-Solution.ipynb
8.7 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/388 MNIST_ Results and Testing.en.srt
8.7 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/203 Dealing with Categorical Data - Dummy Variables.en.srt
8.7 kB
20 Statistics - Hypothesis Testing/124 Test for the Mean. Population Variance Known.en.srt
8.7 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/448 Splitting the Data for Training and Testing.en.srt
8.6 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/226 Practical Example_ Linear Regression (Part 2).en.srt
8.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/111 Confidence intervals. Two means. Dependent samples.en.srt
8.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/439 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb
8.5 kB
36 Advanced Statistical Methods - Logistic Regression/249 Bank-data-testing.csv
8.5 kB
62 Appendix - Additional Python Tools/473 Triple Nested For Loops.en.srt
8.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/437 Extracting the Month Value from the _Date_ Column.en.srt
8.5 kB
38 Advanced Statistical Methods - K-Means Clustering/256 Countries-exercise.csv
8.5 kB
38 Advanced Statistical Methods - K-Means Clustering/260 Countries-exercise.csv
8.5 kB
50 Deep Learning - Classifying on the MNIST Dataset/349 MNIST_ Learning.en.srt
8.5 kB
29 Python - Iterations/176 How to Iterate over Dictionaries.en.srt
8.5 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/378 Basic NN Example with TF_ Model Output.en.srt
8.5 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/186 First Regression in Python.en.srt
8.4 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/451 Interpreting the Coefficients for Our Problem.en.srt
8.4 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/306 Outlining the Model with TensorFlow 2.en.srt
8.3 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/417 Dropping a Column from a DataFrame in Python.en.srt
8.3 kB
51 Deep Learning - Business Case Example/360 Business Case_ Setting an Early Stopping Mechanism.en.srt
8.3 kB
22 Part 4_ Introduction to Python/142 Prerequisites for Coding in the Jupyter Notebooks.en.srt
8.3 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/396 Creating a Data Provider.en.srt
8.2 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/219 Feature Scaling (Standardization).en.srt
8.2 kB
29 Python - Iterations/173 Lists with the range() Function.en.srt
8.1 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/385 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb
8.1 kB
38 Advanced Statistical Methods - K-Means Clustering/264 Market Segmentation with Cluster Analysis (Part 1).en.srt
8.0 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/194 Adjusted R-Squared.en.srt
8.0 kB
15 Statistics - Descriptive Statistics/085 Variance.en.srt
8.0 kB
42 Deep Learning - Introduction to Neural Networks/295 Optimization Algorithm_ n-Parameter Gradient Descent.en.srt
8.0 kB
60 Case Study - Loading the 'absenteeism_module'/462 Deploying the 'absenteeism_module' - Part II.en.srt
8.0 kB
12 Probability - Distributions/052 Fundamentals of Probability Distributions.en.srt
8.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/212 sklearn-Multiple-Linear-Regression.ipynb
8.0 kB
29 Python - Iterations/174 Conditional Statements and Loops.en.srt
7.9 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/449 Fitting the Model and Assessing its Accuracy.en.srt
7.9 kB
38 Advanced Statistical Methods - K-Means Clustering/259 How to Choose the Number of Clusters.en.srt
7.8 kB
39 Advanced Statistical Methods - Other Types of Clustering/270 Dendrogram.en.srt
7.8 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/376 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.en.srt
7.8 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/208 Simple Linear Regression with sklearn.en.srt
7.8 kB
06 The Field of Data Science - Popular Data Science Tools/022 Necessary Programming Languages and Software Used in Data Science.en.srt
7.7 kB
36 Advanced Statistical Methods - Logistic Regression/248 Testing-the-model-with-comments.ipynb
7.7 kB
23 Python - Variables and Data Types/145 Strings-Lecture-Py3.ipynb
7.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/220 Feature Selection through Standardization of Weights.en.srt
7.7 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/453 Interpreting the Coefficients of the Logistic Regression.en.srt
7.7 kB
50 Deep Learning - Classifying on the MNIST Dataset/347 MNIST_ Outline the Model.en.srt
7.7 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/469 Analyzing Transportation Expense vs Probability in Tableau.en.srt
7.7 kB
38 Advanced Statistical Methods - K-Means Clustering/259 Selecting-the-number-of-clusters-with-comments.ipynb
7.7 kB
11 Probability - Bayesian Inference/050 Bayes' Law.en.srt
7.6 kB
23 Python - Variables and Data Types/145 Python Strings.en.srt
7.5 kB
38 Advanced Statistical Methods - K-Means Clustering/267 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb
7.5 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/182 The Linear Regression Model.en.srt
7.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/439 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb
7.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/413 Checking the Content of the Data Set.en.srt
7.5 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/384 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb
7.5 kB
22 Part 4_ Introduction to Python/138 Why Python_.en.srt
7.4 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/224 sklearn-Train-Test-Split.ipynb
7.4 kB
20 Statistics - Hypothesis Testing/120 Null vs Alternative Hypothesis.en.srt
7.4 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/397 Business Case_ Model Outline.en.srt
7.4 kB
28 Python - Sequences/169 Tuples.en.srt
7.3 kB
22 Part 4_ Introduction to Python/137 Introduction to Programming.en.srt
7.3 kB
46 Deep Learning - Overfitting/324 Early Stopping or When to Stop Training.en.srt
7.3 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/203 Dummy-variables-with-comments.ipynb
7.3 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/297 Basic NN Example (Part 2).en.srt
7.2 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/312 Digging into a Deep Net.en.srt
7.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/209 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.en.srt
7.1 kB
09 Part 2_ Probability/028 Events and Their Complements.en.srt
7.1 kB
56 Software Integration/407 Software Integration - Explained.en.srt
7.1 kB
38 Advanced Statistical Methods - K-Means Clustering/254 K-Means Clustering.en.srt
7.1 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/200 A3_ Normality and Homoscedasticity.en.srt
7.1 kB
15 Statistics - Descriptive Statistics/079 Cross Tables and Scatter Plots.en.srt
7.1 kB
09 Part 2_ Probability/026 Computing Expected Values.en.srt
7.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/215 Feature Selection (F-regression).en.srt
7.1 kB
13 Probability - Probability in Other Fields/069 Probability in Data Science.en.srt
7.1 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/450 Creating a Summary Table with the Coefficients and Intercept.en.srt
7.0 kB
02 The Field of Data Science - The Various Data Science Disciplines/004 Data Science and Business Buzzwords_ Why are there so Many_.en.srt
7.0 kB
26 Python - Conditional Statements/157 The ELIF Statement.en.srt
7.0 kB
15 Statistics - Descriptive Statistics/087 Standard Deviation and Coefficient of Variation.en.srt
7.0 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/398 Business Case_ Optimization.en.srt
7.0 kB
29 Python - Iterations/171 For Loops.en.srt
7.0 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/192 R-Squared.en.srt
7.0 kB
36 Advanced Statistical Methods - Logistic Regression/248 Testing the Model.en.srt
7.0 kB
38 Advanced Statistical Methods - K-Means Clustering/265 Market-segmentation-example-Part2-with-comments.ipynb
7.0 kB
12 Probability - Distributions/058 Discrete Distributions_ The Poisson Distribution.en.srt
7.0 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/298 Minimal-example-Part-3.ipynb
7.0 kB
36 Advanced Statistical Methods - Logistic Regression/249 Testing-the-Model-Exercise.ipynb
7.0 kB
50 Deep Learning - Classifying on the MNIST Dataset/351 TensorFlow-MNIST-complete.ipynb
6.9 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/455 Testing the Model We Created.en.srt
6.9 kB
04 The Field of Data Science - The Benefits of Each Discipline/010 The Reason Behind These Disciplines.en.srt
6.9 kB
52 Deep Learning - Conclusion/367 An overview of CNNs.en.srt
6.8 kB
09 Part 2_ Probability/027 Frequency.en.srt
6.8 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/301 How to Install TensorFlow 2.0.en.srt
6.8 kB
38 Advanced Statistical Methods - K-Means Clustering/266 How is Clustering Useful_.en.srt
6.8 kB
60 Case Study - Loading the 'absenteeism_module'/460 absenteeism-module.py
6.8 kB
39 Advanced Statistical Methods - Other Types of Clustering/271 Heatmaps.en.srt
6.8 kB
01 Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course.en.srt
6.8 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/189 How to Interpret the Regression Table.en.srt
6.7 kB
51 Deep Learning - Business Case Example/359 Business Case_ Learning and Interpreting the Result.en.srt
6.7 kB
15 Statistics - Descriptive Statistics/073 Categorical Variables - Visualization Techniques.en.srt
6.7 kB
50 Deep Learning - Classifying on the MNIST Dataset/343 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.en.srt
6.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/213 Calculating the Adjusted R-Squared in sklearn.en.srt
6.7 kB
37 Advanced Statistical Methods - Cluster Analysis/251 Some Examples of Clusters.en.srt
6.6 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/307 Interpreting the Result and Extracting the Weights and Bias.en.srt
6.6 kB
20 Statistics - Hypothesis Testing/129 Test for the Mean. Dependent Samples.en.srt
6.6 kB
50 Deep Learning - Classifying on the MNIST Dataset/344 TensorFlow-MNIST-Part2-with-comments.ipynb
6.5 kB
40 Part 6_ Mathematics/275 Arrays in Python - A Convenient Way To Represent Matrices.en.srt
6.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/110 Margin of Error.en.srt
6.5 kB
30 Python - Advanced Python Tools/177 Object Oriented Programming.en.srt
6.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/113 Confidence intervals. Two means. Independent Samples (Part 1).en.srt
6.5 kB
62 Appendix - Additional Python Tools/471 Iterating Over Range Objects.en.srt
6.4 kB
50 Deep Learning - Classifying on the MNIST Dataset/351 MNIST_ Testing the Model.en.srt
6.4 kB
36 Advanced Statistical Methods - Logistic Regression/238 Example-bank-data.csv
6.4 kB
49 Deep Learning - Preprocessing/337 Standardization.en.srt
6.3 kB
15 Statistics - Descriptive Statistics/071 Types of Data.en.srt
6.3 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/376 5.4.TensorFlow-Minimal-example-Part-2.ipynb
6.3 kB
56 Software Integration/403 What are Data, Servers, Clients, Requests, and Responses.en.srt
6.3 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/331 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.en.srt
6.3 kB
28 Python - Sequences/170 Dictionaries-Solution-Py3.ipynb
6.3 kB
29 Python - Iterations/172 While Loops and Incrementing.en.srt
6.3 kB
42 Deep Learning - Introduction to Neural Networks/284 Introduction to Neural Networks.en.srt
6.3 kB
38 Advanced Statistical Methods - K-Means Clustering/262 To Standardize or not to Standardize.en.srt
6.3 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/383 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb
6.2 kB
17 Statistics - Inferential Statistics Fundamentals/096 What is a Distribution.en.srt
6.2 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/420 Analyzing the Reasons for Absence.en.srt
6.2 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/222 sklearn-Feature-Scaling-Exercise.ipynb
6.2 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/208 sklearn-Simple-Linear-Regression-with-comments.ipynb
6.2 kB
36 Advanced Statistical Methods - Logistic Regression/235 A Simple Example in Python.en.srt
6.2 kB
25 Python - Other Python Operators/154 Logical and Identity Operators.en.srt
6.2 kB
15 Statistics - Descriptive Statistics/081 Mean, median and mode.en.srt
6.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/108 Confidence Intervals; Population Variance Unknown; T-score.en.srt
6.1 kB
20 Statistics - Hypothesis Testing/127 Test for the Mean. Population Variance Unknown.en.srt
6.1 kB
20 Statistics - Hypothesis Testing/123 Type I Error and Type II Error.en.srt
6.0 kB
38 Advanced Statistical Methods - K-Means Clustering/264 Market-segmentation-example-with-comments.ipynb
6.0 kB
05 The Field of Data Science - Popular Data Science Techniques/013 Techniques for Working with Big Data.en.srt
6.0 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/441 Working on _Education_, _Children_, and _Pets_.en.srt
6.0 kB
25 Python - Other Python Operators/154 Logical-and-Identity-Operators-Lecture-Py3.ipynb
6.0 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/185 Python Packages Installation.en.srt
6.0 kB
17 Statistics - Inferential Statistics Fundamentals/100 Central Limit Theorem.en.srt
6.0 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/459 Preparing the Deployment of the Model through a Module.en.srt
6.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/221 Predicting with the Standardized Coefficients.en.srt
5.9 kB
10 Probability - Combinatorics/034 Solving Combinations.en.srt
5.9 kB
38 Advanced Statistical Methods - K-Means Clustering/255 Country-clusters-with-comments.ipynb
5.9 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/456 Saving the Model and Preparing it for Deployment.en.srt
5.9 kB
36 Advanced Statistical Methods - Logistic Regression/240 Understanding Logistic Regression Tables.en.srt
5.9 kB
46 Deep Learning - Overfitting/319 What is Overfitting_.en.srt
5.9 kB
28 Python - Sequences/168 List Slicing.en.srt
5.9 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/205 Making-predictions.ipynb
5.9 kB
36 Advanced Statistical Methods - Logistic Regression/248 Testing-the-model.ipynb
5.9 kB
11 Probability - Bayesian Inference/043 Union of Sets.en.srt
5.8 kB
20 Statistics - Hypothesis Testing/131 Test for the mean. Independent Samples (Part 1).en.srt
5.8 kB
56 Software Integration/406 Communication between Software Products through Text Files.en.srt
5.8 kB
14 Part 3_ Statistics/070 Population and Sample.en.srt
5.8 kB
42 Deep Learning - Introduction to Neural Networks/289 The Linear model with Multiple Inputs and Multiple Outputs.en.srt
5.8 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/218 sklearn-Multiple-Linear-Regression-Exercise.ipynb
5.8 kB
57 Case Study - What's Next in the Course_/408 Game Plan for this Python, SQL, and Tableau Business Exercise.en.srt
5.8 kB
36 Advanced Statistical Methods - Logistic Regression/243 Binary Predictors in a Logistic Regression.en.srt
5.8 kB
38 Advanced Statistical Methods - K-Means Clustering/257 Categorical-data-with-comments.ipynb
5.8 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/106 Confidence Interval Clarifications.en.srt
5.7 kB
40 Part 6_ Mathematics/279 Transpose of a Matrix.en.srt
5.7 kB
51 Deep Learning - Business Case Example/355 TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/394 TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
38 Advanced Statistical Methods - K-Means Clustering/260 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb
5.7 kB
27 Python - Python Functions/165 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb
5.7 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/401 Business Case_ A Comment on the Homework.en.srt
5.6 kB
08 The Field of Data Science - Debunking Common Misconceptions/024 Debunking Common Misconceptions.en.srt
5.6 kB
42 Deep Learning - Introduction to Neural Networks/293 Common Objective Functions_ Cross-Entropy Loss.en.srt
5.6 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/314 Activation Functions.en.srt
5.6 kB
12 Probability - Distributions/061 Continuous Distributions_ The Standard Normal Distribution.en.srt
5.6 kB
23 Python - Variables and Data Types/145 Strings-Solution-Py3.ipynb
5.6 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/199 A2_ No Endogeneity.en.srt
5.6 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/454 Backward Elimination or How to Simplify Your Model.en.srt
5.6 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/302 TensorFlow Outline and Comparison with Other Libraries.en.srt
5.6 kB
42 Deep Learning - Introduction to Neural Networks/286 Types of Machine Learning.en.srt
5.6 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/333 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).en.srt
5.5 kB
52 Deep Learning - Conclusion/364 Summary on What You've Learned.en.srt
5.5 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/385 Calculating the Accuracy of the Model.en.srt
5.5 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/373 TensorFlow Intro.en.srt
5.5 kB
36 Advanced Statistical Methods - Logistic Regression/246 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb
5.5 kB
20 Statistics - Hypothesis Testing/133 Test for the mean. Independent Samples (Part 2).en.srt
5.5 kB
36 Advanced Statistical Methods - Logistic Regression/235 Admittance-with-comments.ipynb
5.4 kB
02 The Field of Data Science - The Various Data Science Disciplines/008 A Breakdown of our Data Science Infographic.en.srt
5.4 kB
52 Deep Learning - Conclusion/369 An Overview of non-NN Approaches.en.srt
5.4 kB
02 The Field of Data Science - The Various Data Science Disciplines/005 What is the difference between Analysis and Analytics.en.srt
5.4 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/427 Using .concat() in Python.en.srt
5.4 kB
01 Part 1_ Introduction/002 What Does the Course Cover.en.srt
5.4 kB
11 Probability - Bayesian Inference/040 Sets and Events.en.srt
5.4 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/452 Standardizing only the Numerical Variables (Creating a Custom Scaler).en.srt
5.3 kB
20 Statistics - Hypothesis Testing/126 p-value.en.srt
5.3 kB
12 Probability - Distributions/065 Continuous Distributions_ The Logistic Distribution.en.srt
5.3 kB
36 Advanced Statistical Methods - Logistic Regression/247 Underfitting and Overfitting.en.srt
5.3 kB
15 Statistics - Descriptive Statistics/089 Covariance.en.srt
5.2 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/201 A4_ No Autocorrelation.en.srt
5.2 kB
46 Deep Learning - Overfitting/321 What is Validation_.en.srt
5.2 kB
11 Probability - Bayesian Inference/046 The Conditional Probability Formula.en.srt
5.2 kB
17 Statistics - Inferential Statistics Fundamentals/097 The Normal Distribution.en.srt
5.2 kB
36 Advanced Statistical Methods - Logistic Regression/236 Logistic vs Logit Function.en.srt
5.2 kB
28 Python - Sequences/168 List-Slicing-Lecture-Py3.ipynb
5.1 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/377 Basic NN Example with TF_ Loss Function and Gradient Descent.en.srt
5.1 kB
30 Python - Advanced Python Tools/180 Importing Modules in Python.en.srt
5.1 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/328 Stochastic Gradient Descent.en.srt
5.1 kB
49 Deep Learning - Preprocessing/339 Binary and One-Hot Encoding.en.srt
5.1 kB
37 Advanced Statistical Methods - Cluster Analysis/250 Introduction to Cluster Analysis.en.srt
5.1 kB
36 Advanced Statistical Methods - Logistic Regression/242 What do the Odds Actually Mean.en.srt
5.1 kB
12 Probability - Distributions/060 Continuous Distributions_ The Normal Distribution.en.srt
5.1 kB
60 Case Study - Loading the 'absenteeism_module'/461 Deploying the 'absenteeism_module' - Part I.en.srt
5.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/208 sklearn-Simple-Linear-Regression.ipynb
5.0 kB
38 Advanced Statistical Methods - K-Means Clustering/258 Clustering-Categorical-Data-Solution.ipynb
5.0 kB
15 Statistics - Descriptive Statistics/091 Correlation Coefficient.en.srt
5.0 kB
51 Deep Learning - Business Case Example/357 Business Case_ Load the Preprocessed Data.en.srt
5.0 kB
39 Advanced Statistical Methods - Other Types of Clustering/269 Types of Clustering.en.srt
4.9 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/433 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb
4.9 kB
41 Part 7_ Deep Learning/283 What to Expect from this Part_.en.srt
4.9 kB
22 Part 4_ Introduction to Python/139 Why Jupyter_.en.srt
4.9 kB
38 Advanced Statistical Methods - K-Means Clustering/261 Pros and Cons of K-Means Clustering.en.srt
4.9 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/202 A5_ No Multicollinearity.en.srt
4.9 kB
36 Advanced Statistical Methods - Logistic Regression/241 Understanding-Logistic-Regression-Tables-Solution.ipynb
4.9 kB
11 Probability - Bayesian Inference/049 The Multiplication Law.en.srt
4.9 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/444 Exploring the Problem with a Machine Learning Mindset.en.srt
4.9 kB
15 Statistics - Descriptive Statistics/072 Levels of Measurement.en.srt
4.8 kB
23 Python - Variables and Data Types/143 Variables.en.srt
4.8 kB
10 Probability - Combinatorics/033 Solving Variations without Repetition.en.srt
4.8 kB
38 Advanced Statistical Methods - K-Means Clustering/265 Market-segmentation-example-Part2.ipynb
4.8 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/115 Confidence intervals. Two means. Independent Samples (Part 2).en.srt
4.8 kB
51 Deep Learning - Business Case Example/354 Business Case_ Balancing the Dataset.en.srt
4.8 kB
07 The Field of Data Science - Careers in Data Science/023 Finding the Job - What to Expect and What to Look for.en.srt
4.8 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/393 The Importance of Working with a Balanced Dataset.en.srt
4.8 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/438 Extracting the Day of the Week from the _Date_ Column.en.srt
4.8 kB
38 Advanced Statistical Methods - K-Means Clustering/256 A-Simple-Example-of-Clustering-Solution.ipynb
4.8 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/298 Basic NN Example (Part 3).en.srt
4.8 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/316 Backpropagation.en.srt
4.8 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/296 Basic NN Example (Part 1).en.srt
4.7 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/315 Activation Functions_ Softmax Activation.en.srt
4.7 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/205 Making Predictions with the Linear Regression.en.srt
4.7 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/203 Dummy-Variables.ipynb
4.7 kB
51 Deep Learning - Business Case Example/358 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb
4.7 kB
28 Python - Sequences/169 Tuples-Solution-Py3.ipynb
4.7 kB
11 Probability - Bayesian Inference/041 Ways Sets Can Interact.en.srt
4.7 kB
40 Part 6_ Mathematics/275 Scalars-Vectors-and-Matrices.ipynb
4.7 kB
38 Advanced Statistical Methods - K-Means Clustering/259 Selecting-the-number-of-clusters.ipynb
4.6 kB
15 Statistics - Descriptive Statistics/075 Numerical Variables - Frequency Distribution Table.en.srt
4.6 kB
40 Part 6_ Mathematics/272 What is a Matrix_.en.srt
4.6 kB
27 Python - Python Functions/165 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb
4.6 kB
36 Advanced Statistical Methods - Logistic Regression/244 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb
4.6 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/440 Analyzing Several _Straightforward_ Columns for this Exercise.en.srt
4.6 kB
27 Python - Python Functions/160 How to Create a Function with a Parameter.en.srt
4.6 kB
10 Probability - Combinatorics/035 Symmetry of Combinations.en.srt
4.6 kB
38 Advanced Statistical Methods - K-Means Clustering/267 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb
4.6 kB
40 Part 6_ Mathematics/280 Dot Product.en.srt
4.6 kB
36 Advanced Statistical Methods - Logistic Regression/238 Building-a-Logistic-Regression-Solution.ipynb
4.5 kB
42 Deep Learning - Introduction to Neural Networks/285 Training the Model.en.srt
4.5 kB
28 Python - Sequences/167 Help-Yourself-with-Methods-Lecture-Py3.ipynb
4.5 kB
27 Python - Python Functions/165 Built-in Functions in Python.en.srt
4.5 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/447 Standardizing the Data.en.srt
4.5 kB
28 Python - Sequences/170 Dictionaries-Lecture-Py3.ipynb
4.5 kB
46 Deep Learning - Overfitting/323 N-Fold Cross Validation.en.srt
4.4 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/212 Multiple Linear Regression with sklearn.en.srt
4.4 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/190 Decomposition of Variability.en.srt
4.4 kB
10 Probability - Combinatorics/037 Combinatorics in Real-Life_ The Lottery.en.srt
4.4 kB
57 Case Study - What's Next in the Course_/410 Introducing the Data Set.en.srt
4.4 kB
36 Advanced Statistical Methods - Logistic Regression/245 Calculating the Accuracy of the Model.en.srt
4.4 kB
12 Probability - Distributions/064 Continuous Distributions_ The Exponential Distribution.en.srt
4.4 kB
24 Python - Basic Python Syntax/146 Using Arithmetic Operators in Python.en.srt
4.4 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/107 Student's T Distribution.en.srt
4.4 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/308 Customizing a TensorFlow 2 Model.en.srt
4.4 kB
40 Part 6_ Mathematics/274 Linear Algebra and Geometry.en.srt
4.4 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/228 Practical Example_ Linear Regression (Part 3).en.srt
4.4 kB
28 Python - Sequences/168 List-Slicing-Solution-Py3.ipynb
4.4 kB
24 Python - Basic Python Syntax/146 Arithmetic-Operators-Solution-Py3.ipynb
4.3 kB
40 Part 6_ Mathematics/277 Addition and Subtraction of Matrices.en.srt
4.3 kB
37 Advanced Statistical Methods - Cluster Analysis/253 Math Prerequisites.en.srt
4.3 kB
10 Probability - Combinatorics/030 Permutations and How to Use Them.en.srt
4.3 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/414 Introduction to Terms with Multiple Meanings.en.srt
4.3 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/412 Importing the Absenteeism Data in Python.en.srt
4.2 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/317 Backpropagation Picture.en.srt
4.2 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/442 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb
4.2 kB
36 Advanced Statistical Methods - Logistic Regression/237 Admittance-regression-tables-fixed-error.ipynb
4.2 kB
17 Statistics - Inferential Statistics Fundamentals/098 The Standard Normal Distribution.en.srt
4.2 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/186 Simple-linear-regression-with-comments.ipynb
4.2 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/313 Non-Linearities and their Purpose.en.srt
4.1 kB
42 Deep Learning - Introduction to Neural Networks/287 The Linear Model (Linear Algebraic Version).en.srt
4.1 kB
49 Deep Learning - Preprocessing/335 Preprocessing Introduction.en.srt
4.1 kB
12 Probability - Distributions/056 Discrete Distributions_ The Bernoulli Distribution.en.srt
4.1 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/191 What is the OLS_.en.srt
4.1 kB
50 Deep Learning - Classifying on the MNIST Dataset/342 TensorFlow-MNIST-Part1-with-comments.ipynb
4.1 kB
40 Part 6_ Mathematics/273 Scalars and Vectors.en.srt
4.0 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/382 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb
4.0 kB
22 Part 4_ Introduction to Python/141 Understanding Jupyter's Interface - the Notebook Dashboard.en.srt
4.0 kB
57 Case Study - What's Next in the Course_/409 The Business Task.en.srt
4.0 kB
10 Probability - Combinatorics/038 A Recap of Combinatorics.en.srt
4.0 kB
10 Probability - Combinatorics/036 Solving Combinations with Separate Sample Spaces.en.srt
4.0 kB
47 Deep Learning - Initialization/327 State-of-the-Art Method - (Xavier) Glorot Initialization.en.srt
3.9 kB
17 Statistics - Inferential Statistics Fundamentals/102 Estimators and Estimates.en.srt
3.9 kB
23 Python - Variables and Data Types/144 Numbers and Boolean Values in Python.en.srt
3.9 kB
52 Deep Learning - Conclusion/368 An Overview of RNNs.en.srt
3.9 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/446 Selecting the Inputs for the Logistic Regression.en.srt
3.9 kB
47 Deep Learning - Initialization/326 Types of Simple Initializations.en.srt
3.9 kB
38 Advanced Statistical Methods - K-Means Clustering/264 Market-segmentation-example.ipynb
3.9 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/186 Simple-linear-regression.ipynb
3.9 kB
23 Python - Variables and Data Types/143 Variables-Solution-Py3.ipynb
3.9 kB
38 Advanced Statistical Methods - K-Means Clustering/258 Clustering-Categorical-Data-Exercise.ipynb
3.9 kB
15 Statistics - Descriptive Statistics/083 Skewness.en.srt
3.9 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/433 Creating Checkpoints while Coding in Jupyter.en.srt
3.9 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/303 TensorFlow 1 vs TensorFlow 2.en.srt
3.9 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/381 MNIST_ How to Tackle the MNIST.en.srt
3.9 kB
46 Deep Learning - Overfitting/322 Training, Validation, and Test Datasets.en.srt
3.8 kB
40 Part 6_ Mathematics/276 What is a Tensor_.en.srt
3.8 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/415 What's Regression Analysis - a Quick Refresher.html
3.8 kB
05 The Field of Data Science - Popular Data Science Techniques/018 Real Life Examples of Traditional Methods.en.srt
3.8 kB
50 Deep Learning - Classifying on the MNIST Dataset/340 MNIST_ The Dataset.en.srt
3.8 kB
30 Python - Advanced Python Tools/179 What is the Standard Library_.en.srt
3.8 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/384 MNIST_ Loss and Optimization Algorithm.en.srt
3.8 kB
26 Python - Conditional Statements/155 The IF Statement.en.srt
3.8 kB
27 Python - Python Functions/165 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb
3.7 kB
27 Python - Python Functions/163 Conditional Statements and Functions.en.srt
3.7 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/297 Minimal-example-Part-2.ipynb
3.7 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/305 Types of File Formats Supporting TensorFlow.en.srt
3.7 kB
50 Deep Learning - Classifying on the MNIST Dataset/341 MNIST_ How to Tackle the MNIST.en.srt
3.7 kB
47 Deep Learning - Initialization/325 What is Initialization_.en.srt
3.7 kB
36 Advanced Statistical Methods - Logistic Regression/245 Accuracy.ipynb
3.7 kB
38 Advanced Statistical Methods - K-Means Clustering/268 iris-with-answers.csv
3.7 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/380 MNIST_ What is the MNIST Dataset_.en.srt
3.7 kB
38 Advanced Statistical Methods - K-Means Clustering/256 A-Simple-Example-of-Clustering-Exercise.ipynb
3.7 kB
11 Probability - Bayesian Inference/047 The Law of Total Probability.en.srt
3.7 kB
23 Python - Variables and Data Types/143 Variables-Lecture-Py3.ipynb
3.7 kB
40 Part 6_ Mathematics/281 Dot-product-Part-2.ipynb
3.7 kB
11 Probability - Bayesian Inference/045 Dependence and Independence of Sets.en.srt
3.7 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/375 Types of File Formats, supporting Tensors.en.srt
3.7 kB
10 Probability - Combinatorics/032 Solving Variations with Repetition.en.srt
3.7 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/223 Underfitting and Overfitting.en.srt
3.7 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/330 Momentum.en.srt
3.7 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/187 Simple-Linear-Regression-Exercise-Solution.ipynb
3.7 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/371 How to Install TensorFlow 1.en.srt
3.6 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/206 What is sklearn and How is it Different from Other Packages.en.srt
3.6 kB
36 Advanced Statistical Methods - Logistic Regression/235 Admittance.ipynb
3.6 kB
24 Python - Basic Python Syntax/146 Arithmetic-Operators-Lecture-Py3.ipynb
3.6 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/193 Multiple Linear Regression.en.srt
3.6 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/334 Adam (Adaptive Moment Estimation).en.srt
3.5 kB
25 Python - Other Python Operators/154 Logical-and-Identity-Operators-Solution-Py3.ipynb
3.5 kB
63 Bonus Lecture/476 Bonus Lecture_ Next Steps.html
3.5 kB
36 Advanced Statistical Methods - Logistic Regression/237 Building a Logistic Regression.en.srt
3.5 kB
37 Advanced Statistical Methods - Cluster Analysis/252 Difference between Classification and Clustering.en.srt
3.5 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/103 What are Confidence Intervals_.en.srt
3.5 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/204 real-estate-price-size-year-view.csv
3.5 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/411 What to Expect from the Following Sections_.html
3.5 kB
10 Probability - Combinatorics/031 Simple Operations with Factorials.en.srt
3.5 kB
38 Advanced Statistical Methods - K-Means Clustering/257 Clustering Categorical Data.en.srt
3.5 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/311 What is a Deep Net_.en.srt
3.4 kB
23 Python - Variables and Data Types/144 Numbers-and-Boolean-Values-Lecture-Py3.ipynb
3.4 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/375 5.3.TensorFlow-Minimal-example-Part-1.ipynb
3.4 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/372 A Note on Installing Packages in Anaconda.html
3.4 kB
38 Advanced Statistical Methods - K-Means Clustering/257 Categorical-data.ipynb
3.4 kB
36 Advanced Statistical Methods - Logistic Regression/239 An Invaluable Coding Tip.en.srt
3.4 kB
38 Advanced Statistical Methods - K-Means Clustering/255 Country-clusters.ipynb
3.4 kB
27 Python - Python Functions/161 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb
3.4 kB
26 Python - Conditional Statements/157 Else-If-for-Brief-Elif-Lecture-Py3.ipynb
3.3 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/424 Dropping a Dummy Variable from the Data Set.html
3.3 kB
26 Python - Conditional Statements/156 The ELSE Statement.en.srt
3.3 kB
23 Python - Variables and Data Types/144 Numbers-and-Boolean-Values-Solution-Py3.ipynb
3.3 kB
40 Part 6_ Mathematics/277 Adding-and-subtracting-matrices.ipynb
3.3 kB
42 Deep Learning - Introduction to Neural Networks/288 The Linear Model with Multiple Inputs.en.srt
3.3 kB
50 Deep Learning - Classifying on the MNIST Dataset/342 MNIST_ Importing the Relevant Packages and Loading the Data.en.srt
3.3 kB
20 Statistics - Hypothesis Testing/121 Further Reading on Null and Alternative Hypothesis.html
3.3 kB
28 Python - Sequences/166 Lists-Solution-Py3.ipynb
3.3 kB
40 Part 6_ Mathematics/278 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb
3.2 kB
36 Advanced Statistical Methods - Logistic Regression/241 Understanding-Logistic-Regression-Tables-Exercise.ipynb
3.2 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/197 OLS Assumptions.en.srt
3.2 kB
50 Deep Learning - Classifying on the MNIST Dataset/348 MNIST_ Select the Loss and the Optimizer.en.srt
3.2 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/217 Creating a Summary Table with P-values.en.srt
3.2 kB
15 Statistics - Descriptive Statistics/077 The Histogram.en.srt
3.2 kB
24 Python - Basic Python Syntax/148 Reassign-Values-Lecture-Py3.ipynb
3.2 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/390 MNIST_ Solutions.html
3.1 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/399 Business Case_ Interpretation.en.srt
3.1 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/386 MNIST_ Batching and Early Stopping.en.srt
3.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/207 How are we Going to Approach this Section_.en.srt
3.1 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/457 ARTICLE - A Note on 'pickling'.html
3.1 kB
26 Python - Conditional Statements/158 A Note on Boolean Values.en.srt
3.1 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/204 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb
3.1 kB
05 The Field of Data Science - Popular Data Science Techniques/021 Real Life Examples of Machine Learning (ML).en.srt
3.1 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/389 MNIST_ Exercises.html
3.1 kB
27 Python - Python Functions/161 Defining a Function in Python - Part II.en.srt
3.1 kB
29 Python - Iterations/174 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb
3.0 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/329 Problems with Gradient Descent.en.srt
3.0 kB
28 Python - Sequences/170 Dictionaries-Exercise-Py3.ipynb
3.0 kB
36 Advanced Statistical Methods - Logistic Regression/238 Building-a-Logistic-Regression-Exercise.ipynb
3.0 kB
28 Python - Sequences/169 Tuples-Lecture-Py3.ipynb
3.0 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/416 Using a Statistical Approach towards the Solution to the Exercise.en.srt
3.0 kB
40 Part 6_ Mathematics/279 Tranpose-of-a-matrix.ipynb
3.0 kB
12 Probability - Distributions/062 Continuous Distributions_ The Students' T Distribution.en.srt
2.9 kB
42 Deep Learning - Introduction to Neural Networks/292 Common Objective Functions_ L2-norm Loss.en.srt
2.9 kB
49 Deep Learning - Preprocessing/338 Preprocessing Categorical Data.en.srt
2.9 kB
29 Python - Iterations/176 Iterating-over-Dictionaries-Solution-Py3.ipynb
2.9 kB
12 Probability - Distributions/063 Continuous Distributions_ The Chi-Squared Distribution.en.srt
2.9 kB
50 Deep Learning - Classifying on the MNIST Dataset/350 MNIST - Exercises.html
2.9 kB
11 Probability - Bayesian Inference/048 The Additive Rule.en.srt
2.9 kB
12 Probability - Distributions/055 Discrete Distributions_ The Uniform Distribution.en.srt
2.9 kB
28 Python - Sequences/167 Help-Yourself-with-Methods-Solution-Py3.ipynb
2.9 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/400 Business Case_ Testing the Model.en.srt
2.9 kB
42 Deep Learning - Introduction to Neural Networks/290 Graphical Representation of Simple Neural Networks.en.srt
2.9 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/194 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb
2.9 kB
28 Python - Sequences/168 List-Slicing-Exercise-Py3.ipynb
2.9 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/187 Simple-Linear-Regression-Exercise.ipynb
2.8 kB
46 Deep Learning - Overfitting/320 Underfitting and Overfitting for Classification.en.srt
2.8 kB
28 Python - Sequences/166 Lists-Lecture-Py3.ipynb
2.8 kB
40 Part 6_ Mathematics/278 Errors when Adding Matrices.en.srt
2.7 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/196 Test for Significance of the Model (F-Test).en.srt
2.7 kB
52 Deep Learning - Conclusion/365 What's Further out there in terms of Machine Learning.en.srt
2.7 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/392 Business Case_ Outlining the Solution.en.srt
2.7 kB
24 Python - Basic Python Syntax/146 Arithmetic-Operators-Exercise-Py3.ipynb
2.7 kB
23 Python - Variables and Data Types/145 Strings-Exercise-Py3.ipynb
2.7 kB
11 Probability - Bayesian Inference/044 Mutually Exclusive Sets.en.srt
2.7 kB
25 Python - Other Python Operators/153 Comparison Operators.en.srt
2.6 kB
36 Advanced Statistical Methods - Logistic Regression/243 2.02.Binary-predictors.csv
2.6 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/442 Final Remarks of this Section.en.srt
2.6 kB
11 Probability - Bayesian Inference/042 Intersection of Sets.en.srt
2.6 kB
12 Probability - Distributions/054 Characteristics of Discrete Distributions.en.srt
2.6 kB
36 Advanced Statistical Methods - Logistic Regression/244 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb
2.6 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/300 Basic NN Example Exercises.html
2.6 kB
25 Python - Other Python Operators/153 Comparison-Operators-Lecture-Py3.ipynb
2.6 kB
27 Python - Python Functions/159 Defining a Function in Python.en.srt
2.6 kB
29 Python - Iterations/175 Conditional Statements, Functions, and Loops.en.srt
2.6 kB
36 Advanced Statistical Methods - Logistic Regression/237 Admittance-regression-summary-error.ipynb
2.5 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/379 Basic NN Example with TF Exercises.html
2.5 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/310 What is a Layer_.en.srt
2.5 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/195 Multiple-Linear-Regression-Exercise.ipynb
2.5 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/198 A1_ Linearity.en.srt
2.5 kB
36 Advanced Statistical Methods - Logistic Regression/243 Binary-predictors.ipynb
2.5 kB
25 Python - Other Python Operators/153 Comparison-Operators-Solution-Py3.ipynb
2.5 kB
38 Advanced Statistical Methods - K-Means Clustering/267 iris-dataset.csv
2.5 kB
38 Advanced Statistical Methods - K-Means Clustering/268 iris-dataset.csv
2.5 kB
26 Python - Conditional Statements/157 Else-If-for-Brief-Elif-Solution-Py3.ipynb
2.5 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/195 real-estate-price-size-year.csv
2.4 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/218 real-estate-price-size-year.csv
2.4 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/222 real-estate-price-size-year.csv
2.4 kB
05 The Field of Data Science - Popular Data Science Techniques/012 Real Life Examples of Traditional Data.en.srt
2.4 kB
31 Part 5_ Advanced Statistical Methods in Python/181 Introduction to Regression Analysis.en.srt
2.3 kB
23 Python - Variables and Data Types/144 Numbers-and-Boolean-Values-Exercise-Py3.ipynb
2.3 kB
38 Advanced Statistical Methods - K-Means Clustering/263 Relationship between Clustering and Regression.en.srt
2.3 kB
24 Python - Basic Python Syntax/152 Structuring with Indentation.en.srt
2.3 kB
29 Python - Iterations/173 Create-Lists-with-the-range-Function-Solution-Py3.ipynb
2.3 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/374 Actual Introduction to TensorFlow.en.srt
2.3 kB
48 Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/332 Learning Rate Schedules Visualized.en.srt
2.3 kB
23 Python - Variables and Data Types/143 Variables-Exercise-Py3.ipynb
2.3 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/187 First Regression in Python Exercise.html
2.3 kB
05 The Field of Data Science - Popular Data Science Techniques/016 Real Life Examples of Business Intelligence (BI).en.srt
2.3 kB
42 Deep Learning - Introduction to Neural Networks/291 What is the Objective Function_.en.srt
2.3 kB
26 Python - Conditional Statements/155 Introduction-to-the-If-Statement-Solution-Py3.ipynb
2.2 kB
29 Python - Iterations/176 Iterating-over-Dictionaries-Exercise-Py3.ipynb
2.2 kB
54 Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/382 MNIST_ Relevant Packages.en.srt
2.2 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/183 Correlation vs Regression.en.srt
2.2 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/309 Basic NN with TensorFlow_ Exercises.html
2.2 kB
24 Python - Basic Python Syntax/151 Indexing-Elements-Solution-Py3.ipynb
2.2 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/194 Multiple-linear-regression-and-Adjusted-R-squared.ipynb
2.2 kB
28 Python - Sequences/166 Lists-Exercise-Py3.ipynb
2.2 kB
40 Part 6_ Mathematics/280 Dot-product.ipynb
2.2 kB
51 Deep Learning - Business Case Example/362 Business Case_ Testing the Model.en.srt
2.2 kB
24 Python - Basic Python Syntax/148 Reassign-Values-Solution-Py3.ipynb
2.2 kB
27 Python - Python Functions/162 How to Use a Function within a Function.en.srt
2.2 kB
17 Statistics - Inferential Statistics Fundamentals/101 Standard error.en.srt
2.2 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/464 Absenteeism-predictions.csv
2.2 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/465 Absenteeism-predictions.csv
2.2 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/439 EXERCISE - Removing the _Date_ Column.html
2.2 kB
29 Python - Iterations/174 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb
2.1 kB
36 Advanced Statistical Methods - Logistic Regression/237 Admittance-regression.ipynb
2.1 kB
51 Deep Learning - Business Case Example/353 Business Case_ Outlining the Solution.en.srt
2.1 kB
40 Part 6_ Mathematics/276 Tensors.ipynb
2.1 kB
28 Python - Sequences/169 Tuples-Exercise-Py3.ipynb
2.1 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/117 Confidence intervals. Two means. Independent Samples (Part 3).en.srt
2.1 kB
27 Python - Python Functions/161 Another-Way-to-Define-a-Function-Solution-Py3.ipynb
2.0 kB
05 The Field of Data Science - Popular Data Science Techniques/014 Real Life Examples of Big Data.en.srt
2.0 kB
29 Python - Iterations/174 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb
2.0 kB
52 Deep Learning - Conclusion/366 DeepMind and Deep Learning.html
2.0 kB
28 Python - Sequences/167 Help-Yourself-with-Methods-Exercise-Py3.ipynb
2.0 kB
24 Python - Basic Python Syntax/147 The Double Equality Sign.en.srt
1.9 kB
29 Python - Iterations/175 All-In-Solution-Py3.ipynb
1.9 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/430 Reordering Columns in a Pandas DataFrame in Python.en.srt
1.9 kB
60 Case Study - Loading the 'absenteeism_module'/460 Absenteeism-new-data.csv
1.9 kB
24 Python - Basic Python Syntax/149 Add Comments.en.srt
1.9 kB
60 Case Study - Loading the 'absenteeism_module'/463 Exporting the Obtained Data Set as a _.csv.html
1.9 kB
60 Case Study - Loading the 'absenteeism_module'/460 scaler
1.9 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/187 real-estate-price-size.csv
1.9 kB
39 Advanced Statistical Methods - Other Types of Clustering/271 Heatmaps.ipynb
1.9 kB
29 Python - Iterations/171 For-Loops-Solution-Py3.ipynb
1.8 kB
27 Python - Python Functions/160 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb
1.8 kB
24 Python - Basic Python Syntax/151 Indexing Elements.en.srt
1.8 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/425 More on Dummy Variables_ A Statistical Perspective.en.srt
1.8 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/443 A Note on Exporting Your Data as a _.csv File.html
1.8 kB
26 Python - Conditional Statements/156 Add-an-Else-Statement-Lecture-Py3.ipynb
1.8 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/418 EXERCISE - Dropping a Column from a DataFrame in Python.html
1.8 kB
26 Python - Conditional Statements/157 Else-If-for-Brief-Elif-Exercise-Py3.ipynb
1.8 kB
29 Python - Iterations/172 While-Loops-and-Incrementing-Solution-Py3.ipynb
1.8 kB
27 Python - Python Functions/164 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb
1.8 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/227 A Note on Multicollinearity.html
1.8 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/184 Geometrical Representation of the Linear Regression Model.en.srt
1.7 kB
49 Deep Learning - Preprocessing/336 Types of Basic Preprocessing.en.srt
1.7 kB
17 Statistics - Inferential Statistics Fundamentals/095 Introduction.en.srt
1.7 kB
24 Python - Basic Python Syntax/148 Reassign-Values-Exercise-Py3.ipynb
1.7 kB
36 Advanced Statistical Methods - Logistic Regression/234 Introduction to Logistic Regression.en.srt
1.7 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/305 TensorFlow-Minimal-example-Part1.ipynb
1.7 kB
27 Python - Python Functions/163 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb
1.7 kB
29 Python - Iterations/175 All-In-Lecture-Py3.ipynb
1.7 kB
25 Python - Other Python Operators/153 Comparison-Operators-Exercise-Py3.ipynb
1.6 kB
27 Python - Python Functions/162 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb
1.6 kB
27 Python - Python Functions/160 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb
1.6 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/210 A Note on Normalization.html
1.6 kB
36 Advanced Statistical Methods - Logistic Regression/235 2.01.Admittance.csv
1.6 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/231 Dummy Variables - Exercise.html
1.6 kB
32 Advanced Statistical Methods - Linear Regression with StatsModels/188 Using Seaborn for Graphs.en.srt
1.6 kB
26 Python - Conditional Statements/155 Introduction-to-the-If-Statement-Exercise-Py3.ipynb
1.6 kB
24 Python - Basic Python Syntax/150 Line-Continuation-Solution-Py3.ipynb
1.5 kB
24 Python - Basic Python Syntax/152 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb
1.5 kB
29 Python - Iterations/173 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb
1.5 kB
24 Python - Basic Python Syntax/147 The-Double-Equality-Sign-Lecture-Py3.ipynb
1.5 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/468 EXERCISE - Transportation Expense vs Probability.html
1.5 kB
45 Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/318 Backpropagation - A Peek into the Mathematics of Optimization.html
1.5 kB
53 Appendix_ Deep Learning - TensorFlow 1_ Introduction/370 READ ME!!!!.html
1.4 kB
44 Deep Learning - TensorFlow 2.0_ Introduction/304 A Note on TensorFlow 2 Syntax.en.srt
1.4 kB
26 Python - Conditional Statements/156 Add-an-Else-Statement-Solution-Py3.ipynb
1.4 kB
27 Python - Python Functions/164 Functions Containing a Few Arguments.en.srt
1.4 kB
60 Case Study - Loading the 'absenteeism_module'/460 Are You Sure You're All Set_.html
1.4 kB
15 Statistics - Descriptive Statistics/086 Variance Exercise.html
1.4 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/432 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
1.4 kB
35 Advanced Statistical Methods - Practical Example_ Linear Regression/233 Linear Regression - Exercise.html
1.4 kB
24 Python - Basic Python Syntax/148 How to Reassign Values.en.srt
1.4 kB
24 Python - Basic Python Syntax/151 Indexing-Elements-Exercise-Py3.ipynb
1.4 kB
10 Probability - Combinatorics/029 Fundamentals of Combinatorics.en.srt
1.4 kB
29 Python - Iterations/173 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb
1.4 kB
24 Python - Basic Python Syntax/151 Indexing-Elements-Lecture-Py3.ipynb
1.3 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/402 Business Case_ Final Exercise.html
1.3 kB
51 Deep Learning - Business Case Example/363 Business Case_ Final Exercise.html
1.3 kB
29 Python - Iterations/175 All-In-Exercise-Py3.ipynb
1.3 kB
30 Python - Advanced Python Tools/178 Modules and Packages.en.srt
1.3 kB
27 Python - Python Functions/163 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb
1.3 kB
29 Python - Iterations/171 For-Loops-Exercise-Py3.ipynb
1.3 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/466 EXERCISE - Reasons vs Probability.html
1.3 kB
29 Python - Iterations/171 For-Loops-Lecture-Py3.ipynb
1.3 kB
55 Appendix_ Deep Learning - TensorFlow 1_ Business Case/395 Business Case_ Preprocessing Exercise.html
1.3 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/216 A Note on Calculation of P-values with sklearn.html
1.3 kB
51 Deep Learning - Business Case Example/356 Business Case_ Preprocessing the Data - Exercise.html
1.3 kB
61 Case Study - Analyzing the Predicted Outputs in Tableau/464 EXERCISE - Age vs Probability.html
1.3 kB
27 Python - Python Functions/161 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb
1.3 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/203 1.03.Dummies.csv
1.2 kB
43 Deep Learning - How to Build a Neural Network from Scratch with NumPy/296 Minimal-example-Part-1.ipynb
1.2 kB
24 Python - Basic Python Syntax/150 Understanding Line Continuation.en.srt
1.2 kB
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/458 EXERCISE - Saving the Model (and Scaler).html
1.2 kB
27 Python - Python Functions/160 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb
1.2 kB
26 Python - Conditional Statements/155 Introduction-to-the-If-Statement-Lecture-Py3.ipynb
1.2 kB
24 Python - Basic Python Syntax/147 The-Double-Equality-Sign-Solution-Py3.ipynb
1.2 kB
24 Python - Basic Python Syntax/150 Line-Continuation-Exercise-Py3.ipynb
1.2 kB
29 Python - Iterations/172 While-Loops-and-Incrementing-Exercise-Py3.ipynb
1.1 kB
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/194 1.02.Multiple-linear-regression.csv
1.1 kB
51 Deep Learning - Business Case Example/361 Setting an Early Stopping Mechanism - Exercise.html
1.1 kB
29 Python - Iterations/172 While-Loops-and-Incrementing-Lecture-Py3.ipynb
1.1 kB
29 Python - Iterations/176 Iterating-over-Dictionaries-Lecture-Py3.ipynb
1.1 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/431 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/212 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/213 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/214 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/215 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/216 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/217 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/219 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/220 1.02.Multiple-linear-regression.csv
1.1 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/221 1.02.Multiple-linear-regression.csv
1.1 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/428 EXERCISE - Using .concat() in Python.html
1.1 kB
27 Python - Python Functions/163 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb
1.1 kB
27 Python - Python Functions/162 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb
1.1 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/434 EXERCISE - Creating Checkpoints while Coding in Jupyter.html
1.1 kB
24 Python - Basic Python Syntax/149 Add-Comments-Lecture-Py3.ipynb
1.1 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/422 EXERCISE - Obtaining Dummies from a Single Feature.html
1.1 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/429 SOLUTION - Using .concat() in Python.html
1.1 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/435 SOLUTION - Creating Checkpoints while Coding in Jupyter.html
1.0 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/419 SOLUTION - Dropping a Column from a DataFrame in Python.html
1.0 kB
58 Case Study - Preprocessing the 'Absenteeism_data'/423 SOLUTION - Obtaining Dummies from a Single Feature.html
1.0 kB
26 Python - Conditional Statements/156 Add-an-Else-Statement-Exercise-Py3.ipynb
1.0 kB
60 Case Study - Loading the 'absenteeism_module'/460 model
1.0 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/114 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
1.0 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/116 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
1.0 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/109 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
1.0 kB
38 Advanced Statistical Methods - K-Means Clustering/267 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html
1.0 kB
38 Advanced Statistical Methods - K-Means Clustering/268 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html
1.0 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/105 Confidence Intervals; Population Variance Known; Z-score; Exercise.html
1.0 kB
18 Statistics - Inferential Statistics_ Confidence Intervals/112 Confidence intervals. Two means. Dependent samples Exercise.html
1.0 kB
27 Python - Python Functions/162 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb
1.0 kB
36 Advanced Statistical Methods - Logistic Regression/244 Binary Predictors in a Logistic Regression - Exercise.html
1.0 kB
20 Statistics - Hypothesis Testing/132 Test for the mean. Independent Samples (Part 1). Exercise.html
1.0 kB
20 Statistics - Hypothesis Testing/134 Test for the mean. Independent Samples (Part 2). Exercise.html
1.0 kB
36 Advanced Statistical Methods - Logistic Regression/241 Understanding Logistic Regression Tables - Exercise.html
1.0 kB
50 Deep Learning - Classifying on the MNIST Dataset/344 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html
1.0 kB
15 Statistics - Descriptive Statistics/088 Standard Deviation and Coefficient of Variation Exercise.html
1.0 kB
20 Statistics - Hypothesis Testing/128 Test for the Mean. Population Variance Unknown Exercise.html
1.0 kB
50 Deep Learning - Classifying on the MNIST Dataset/346 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html
1.0 kB
20 Statistics - Hypothesis Testing/125 Test for the Mean. Population Variance Known Exercise.html
1.0 kB
38 Advanced Statistical Methods - K-Means Clustering/260 How to Choose the Number of Clusters - Exercise.html
1.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/214 Calculating the Adjusted R-Squared in sklearn - Exercise.html
1.0 kB
16 Statistics - Practical Example_ Descriptive Statistics/094 Practical Example_ Descriptive Statistics Exercise.html
1.0 kB
19 Statistics - Practical Example_ Inferential Statistics/119 Practical Example_ Inferential Statistics Exercise.html
1.0 kB
51 Deep Learning - Business Case Example/358 Business Case_ Load the Preprocessed Data - Exercise.html
1.0 kB
36 Advanced Statistical Methods - Logistic Regression/238 Building a Logistic Regression - Exercise.html
1.0 kB
38 Advanced Statistical Methods - K-Means Clustering/256 A Simple Example of Clustering - Exercise.html
1.0 kB
21 Statistics - Practical Example_ Hypothesis Testing/136 Practical Example_ Hypothesis Testing Exercise.html
1.0 kB
20 Statistics - Hypothesis Testing/130 Test for the Mean. Dependent Samples Exercise.html
1.0 kB
38 Advanced Statistical Methods - K-Means Clustering/258 Clustering Categorical Data - Exercise.html
1.0 kB
34 Advanced Statistical Methods - Linear Regression with sklearn/211 Simple Linear Regression with sklearn - Exercise.html
999 Bytes
35 Advanced Statistical Methods - Practical Example_ Linear Regression/229 Dummies and Variance Inflation Factor - Exercise.html
999 Bytes
36 Advanced Statistical Methods - Logistic Regression/246 Calculating the Accuracy of the Model.html
999 Bytes
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/204 Dealing with Categorical Data - Dummy Variables.html
998 Bytes
17 Statistics - Inferential Statistics Fundamentals/099 The Standard Normal Distribution Exercise.html
997 Bytes
15 Statistics - Descriptive Statistics/080 Cross Tables and Scatter Plots Exercise.html
995 Bytes
34 Advanced Statistical Methods - Linear Regression with sklearn/222 Feature Scaling (Standardization) - Exercise.html
995 Bytes
36 Advanced Statistical Methods - Logistic Regression/249 Testing the Model - Exercise.html
990 Bytes
15 Statistics - Descriptive Statistics/092 Correlation Coefficient Exercise.html
988 Bytes
34 Advanced Statistical Methods - Linear Regression with sklearn/218 Multiple Linear Regression - Exercise.html
988 Bytes
15 Statistics - Descriptive Statistics/074 Categorical Variables Exercise.html
986 Bytes
15 Statistics - Descriptive Statistics/082 Mean, Median and Mode Exercise.html
986 Bytes
33 Advanced Statistical Methods - Multiple Linear Regression with StatsModels/195 Multiple Linear Regression Exercise.html
986 Bytes
15 Statistics - Descriptive Statistics/076 Numerical Variables Exercise.html
984 Bytes
15 Statistics - Descriptive Statistics/090 Covariance Exercise.html
975 Bytes
15 Statistics - Descriptive Statistics/078 Histogram Exercise.html
974 Bytes
15 Statistics - Descriptive Statistics/084 Skewness Exercise.html
973 Bytes
60 Case Study - Loading the 'absenteeism_module'/463 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb
973 Bytes
24 Python - Basic Python Syntax/152 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb
958 Bytes
24 Python - Basic Python Syntax/152 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb
956 Bytes
32 Advanced Statistical Methods - Linear Regression with StatsModels/186 1.01.Simple-linear-regression.csv
922 Bytes
34 Advanced Statistical Methods - Linear Regression with sklearn/208 1.01.Simple-linear-regression.csv
922 Bytes
34 Advanced Statistical Methods - Linear Regression with sklearn/209 1.01.Simple-linear-regression.csv
922 Bytes
34 Advanced Statistical Methods - Linear Regression with sklearn/211 1.01.Simple-linear-regression.csv
922 Bytes
27 Python - Python Functions/159 Defining-a-Function-in-Python-Lecture-Py3.ipynb
868 Bytes
24 Python - Basic Python Syntax/147 The-Double-Equality-Sign-Exercise-Py3.ipynb
838 Bytes
26 Python - Conditional Statements/158 A-Note-on-Boolean-Values-Lecture-Py3.ipynb
791 Bytes
59 Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-assets-links.txt
790 Bytes
24 Python - Basic Python Syntax/150 Line-Continuation-Lecture-Py3.ipynb
779 Bytes
36 Advanced Statistical Methods - Logistic Regression/248 2.03.Test-dataset.csv
322 Bytes
38 Advanced Statistical Methods - K-Means Clustering/264 3.12.Example.csv
283 Bytes
39 Advanced Statistical Methods - Other Types of Clustering/271 Country-clusters-standardized.csv
244 Bytes
38 Advanced Statistical Methods - K-Means Clustering/255 3.01.Country-clusters.csv
200 Bytes
35 Advanced Statistical Methods - Practical Example_ Linear Regression/external-assets-links.txt
134 Bytes
01 Part 1_ Introduction/external-assets-links.txt
105 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>