搜索
[UdemyCourseDownloader] Machine Learning A-Z™ Hands-On Python & R In Data Science
磁力链接/BT种子名称
[UdemyCourseDownloader] Machine Learning A-Z™ Hands-On Python & R In Data Science
磁力链接/BT种子简介
种子哈希:
2bc1b318098cf07a4735c1267e9a6daab90860fe
文件大小:
6.84G
已经下载:
688
次
下载速度:
极快
收录时间:
2022-01-09
最近下载:
2024-12-31
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:2BC1B318098CF07A4735C1267E9A6DAAB90860FE
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
the sunset
玩腿
한국년
多乙献肉体
约个黑长直清纯
20.2
90后清纯妹子岳x如
桃一
娜娜街
2024年新作,约炮大神,【超级赛亚人】原创,露脸才是王道,约炮茶楼老板娘
689
the coral
야동 진성네토 대리운전
fc2-ppv-4171913
czech intimacy
start-034
[jav]
巅峰之夜,极品女神
2024.
1-65
媚药吉
来足浴店找老板娘泻火
大屁股+摇
特黑人博主kano coxx 杭州约炮国内美女
fc2ppv 4511976
狠台北黑丝嫩模极品身材把她当做人脸飞机杯肥臀大奶要干到爆射
美丽在唱歌
换妻大奶
dear zachary: a letter to a son about his father
jufe264c
文件列表
12 Logistic Regression/096 Logistic Regression in R - Step 5.mp4
98.3 MB
31 Artificial Neural Networks/225 ANN in Python - Step 2.mp4
89.0 MB
17 Decision Tree Classification/123 Decision Tree Classification in R.mp4
71.5 MB
14 Support Vector Machine (SVM)/105 SVM in R.mp4
68.5 MB
18 Random Forest Classification/127 Random Forest Classification in R.mp4
67.2 MB
32 Convolutional Neural Networks/256 CNN in Python - Step 9.mp4
65.4 MB
18 Random Forest Classification/126 Random Forest Classification in Python.mp4
65.1 MB
07 Support Vector Regression (SVR)/068 SVR in Python.mp4
63.1 MB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK.mp4
62.0 MB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3.mp4
60.6 MB
36 Kernel PCA/274 Kernel PCA in R.mp4
59.3 MB
24 Apriori/161 Apriori in R - Step 3.mp4
59.3 MB
08 Decision Tree Regression/073 Decision Tree Regression in R.mp4
59.0 MB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R.mp4
58.5 MB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1.mp4
58.2 MB
15 Kernel SVM/111 Kernel SVM in Python.mp4
57.5 MB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3.mp4
57.5 MB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3.mp4
57.1 MB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4
56.9 MB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10.mp4
56.8 MB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3.mp4
56.3 MB
12 Logistic Regression/090 Logistic Regression in Python - Step 5.mp4
55.7 MB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data.mp4
55.4 MB
24 Apriori/159 Apriori in R - Step 1.mp4
55.4 MB
15 Kernel SVM/112 Kernel SVM in R.mp4
55.4 MB
09 Random Forest Regression/076 Random Forest Regression in Python.mp4
55.3 MB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1.mp4
54.7 MB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8.mp4
54.5 MB
09 Random Forest Regression/077 Random Forest Regression in R.mp4
54.4 MB
35 Linear Discriminant Analysis (LDA)/271 LDA in R.mp4
53.8 MB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1.mp4
53.7 MB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1.mp4
53.5 MB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set.mp4
53.4 MB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp4
53.3 MB
16 Naive Bayes/113 Bayes Theorem.mp4
52.9 MB
31 Artificial Neural Networks/234 ANN in R - Step 1.mp4
52.3 MB
21 K-Means Clustering/139 K-Means Clustering in Python.mp4
52.2 MB
16 Naive Bayes/119 Naive Bayes in R.mp4
52.2 MB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4.mp4
51.5 MB
24 Apriori/162 Apriori in Python - Step 1.mp4
49.7 MB
39 XGBoost/285 XGBoost in R.mp4
49.6 MB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python.mp4
49.3 MB
07 Support Vector Regression (SVR)/067 SVR Intuition.mp4
48.9 MB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1.mp4
48.3 MB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python.mp4
47.6 MB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2.mp4
47.4 MB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling.mp4
46.8 MB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2.mp4
46.7 MB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step).mp4
45.9 MB
38 Model Selection/278 k-Fold Cross Validation in R.mp4
45.8 MB
08 Decision Tree Regression/072 Decision Tree Regression in Python.mp4
45.5 MB
32 Convolutional Neural Networks/244 Step 4 - Full Connection.mp4
44.8 MB
14 Support Vector Machine (SVM)/104 SVM in Python.mp4
43.7 MB
32 Convolutional Neural Networks/242 Step 2 - Pooling.mp4
42.2 MB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4.mp4
41.3 MB
31 Artificial Neural Networks/228 ANN in Python - Step 5.mp4
41.3 MB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1.mp4
40.9 MB
17 Decision Tree Classification/122 Decision Tree Classification in Python.mp4
40.7 MB
24 Apriori/160 Apriori in R - Step 2.mp4
40.7 MB
38 Model Selection/279 Grid Search in Python - Step 1.mp4
40.1 MB
31 Artificial Neural Networks/236 ANN in R - Step 3.mp4
39.7 MB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9.mp4
39.5 MB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras.mp4
39.3 MB
24 Apriori/163 Apriori in Python - Step 2.mp4
39.1 MB
28 Thompson Sampling/180 Thompson Sampling Intuition.mp4
39.1 MB
21 K-Means Clustering/140 K-Means Clustering in R.mp4
38.7 MB
06 Polynomial Regression/060 Python Regression Template.mp4
38.6 MB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3.mp4
38.5 MB
38 Model Selection/281 Grid Search in R.mp4
37.3 MB
24 Apriori/164 Apriori in Python - Step 3.mp4
37.0 MB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2.mp4
36.8 MB
24 Apriori/157 Apriori Intuition.mp4
36.7 MB
15 Kernel SVM/108 The Kernel Trick.mp4
36.4 MB
32 Convolutional Neural Networks/251 CNN in Python - Step 4.mp4
36.3 MB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2.mp4
35.8 MB
31 Artificial Neural Networks/231 ANN in Python - Step 8.mp4
35.7 MB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1.mp4
35.7 MB
07 Support Vector Regression (SVR)/069 SVR in R.mp4
35.4 MB
36 Kernel PCA/273 Kernel PCA in Python.mp4
35.0 MB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy.mp4
34.8 MB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10.mp4
34.5 MB
38 Model Selection/277 k-Fold Cross Validation in Python.mp4
34.4 MB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5.mp4
34.4 MB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2.mp4
33.9 MB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data.mp4
33.7 MB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition.mp4
33.7 MB
39 XGBoost/284 XGBoost in Python - Step 2.mp4
33.5 MB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1.mp4
33.5 MB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1.mp4
33.2 MB
06 Polynomial Regression/065 R Regression Template.mp4
32.9 MB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning.mp4
32.8 MB
16 Naive Bayes/118 Naive Bayes in Python.mp4
32.7 MB
16 Naive Bayes/114 Naive Bayes Intuition.mp4
32.6 MB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation.mp4
32.5 MB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1.mp4
32.1 MB
32 Convolutional Neural Networks/248 CNN in Python - Step 1.mp4
32.1 MB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem.mp4
31.7 MB
21 K-Means Clustering/135 K-Means Clustering Intuition.mp4
31.4 MB
31 Artificial Neural Networks/215 The Neuron.mp4
31.3 MB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4.mp4
31.2 MB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition.mp4
31.1 MB
38 Model Selection/280 Grid Search in Python - Step 2.mp4
30.9 MB
32 Convolutional Neural Networks/239 What are convolutional neural networks.mp4
30.9 MB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition.mp4
30.7 MB
31 Artificial Neural Networks/223 Business Problem Description.mp4
30.7 MB
12 Logistic Regression/084 Logistic Regression Intuition.mp4
30.6 MB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2.mp4
30.4 MB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset.mp4
30.0 MB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4.mp4
29.9 MB
31 Artificial Neural Networks/232 ANN in Python - Step 9.mp4
29.9 MB
31 Artificial Neural Networks/233 ANN in Python - Step 10.mp4
29.8 MB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part.mp4
29.7 MB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1.mp4
29.3 MB
32 Convolutional Neural Networks/257 CNN in Python - Step 10.mp4
29.1 MB
12 Logistic Regression/094 Logistic Regression in R - Step 3.mp4
28.8 MB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2.mp4
28.8 MB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients.mp4
28.7 MB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition.mp4
28.3 MB
31 Artificial Neural Networks/218 How do Neural Networks learn.mp4
27.8 MB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template.mp4
27.1 MB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters.mp4
26.9 MB
18 Random Forest Classification/124 Random Forest Classification Intuition.mp4
26.9 MB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3.mp4
26.7 MB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3.mp4
26.7 MB
08 Decision Tree Regression/070 Decision Tree Regression Intuition.mp4
26.6 MB
25 Eclat/167 Eclat in R.mp4
26.5 MB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2.mp4
26.1 MB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2.mp4
25.8 MB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows).mp4
25.1 MB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4
25.0 MB
31 Artificial Neural Networks/217 How do Neural Networks work.mp4
24.7 MB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1.mp4
24.6 MB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows).mp4
24.3 MB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms.mp4
23.9 MB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7.mp4
23.2 MB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2.mp4
23.1 MB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4
23.0 MB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2.mp4
22.7 MB
17 Decision Tree Classification/120 Decision Tree Classification Intuition.mp4
22.7 MB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition.mp4
22.5 MB
39 XGBoost/283 XGBoost in Python - Step 1.mp4
22.4 MB
22 Hierarchical Clustering/148 HC in Python - Step 4.mp4
22.4 MB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1.mp4
22.2 MB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset.mp4
22.2 MB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3.mp4
21.5 MB
19 Evaluating Classification Models Performance/131 CAP Curve.mp4
21.3 MB
14 Support Vector Machine (SVM)/102 SVM Intuition.mp4
20.9 MB
16 Naive Bayes/116 Naive Bayes Intuition (Extras).mp4
19.9 MB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9.mp4
19.8 MB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5.mp4
19.7 MB
31 Artificial Neural Networks/219 Gradient Descent.mp4
19.4 MB
31 Artificial Neural Networks/235 ANN in R - Step 2.mp4
19.1 MB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4.mp4
18.5 MB
12 Logistic Regression/091 Python Classification Template.mp4
18.4 MB
12 Logistic Regression/097 R Classification Template.mp4
18.4 MB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work.mp4
18.3 MB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8.mp4
18.1 MB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3.mp4
17.7 MB
12 Logistic Regression/086 Logistic Regression in Python - Step 1.mp4
17.7 MB
31 Artificial Neural Networks/220 Stochastic Gradient Descent.mp4
17.6 MB
32 Convolutional Neural Networks/254 CNN in Python - Step 7.mp4
17.5 MB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3.mp4
17.4 MB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition.mp4
17.3 MB
22 Hierarchical Clustering/147 HC in Python - Step 3.mp4
17.0 MB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6.mp4
16.9 MB
12 Logistic Regression/092 Logistic Regression in R - Step 1.mp4
16.5 MB
15 Kernel SVM/109 Types of Kernel Functions.mp4
16.5 MB
09 Random Forest Regression/074 Random Forest Regression Intuition.mp4
16.4 MB
22 Hierarchical Clustering/146 HC in Python - Step 2.mp4
16.3 MB
15 Kernel SVM/107 Mapping to a higher dimension.mp4
16.1 MB
21 K-Means Clustering/136 K-Means Random Initialization Trap.mp4
16.1 MB
19 Evaluating Classification Models Performance/128 False Positives False Negatives.mp4
15.9 MB
31 Artificial Neural Networks/230 ANN in Python - Step 7.mp4
15.6 MB
12 Logistic Regression/093 Logistic Regression in R - Step 2.mp4
15.6 MB
31 Artificial Neural Networks/216 The Activation Function.mp4
15.5 MB
31 Artificial Neural Networks/226 ANN in Python - Step 3.mp4
15.3 MB
01 Welcome to the course/002 Why Machine Learning is the Future.mp4
15.2 MB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer.mp4
14.8 MB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling.mp4
14.8 MB
12 Logistic Regression/089 Logistic Regression in Python - Step 4.mp4
14.5 MB
22 Hierarchical Clustering/151 HC in R - Step 2.mp4
14.5 MB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3.mp4
14.5 MB
22 Hierarchical Clustering/145 HC in Python - Step 1.mp4
14.4 MB
22 Hierarchical Clustering/154 HC in R - Step 5.mp4
14.3 MB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries.mp4
14.2 MB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal).mp4
13.9 MB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis.mp4
13.6 MB
05 Multiple Linear Regression/034 Dataset Business Problem Description.mp4
13.2 MB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4.mp4
13.0 MB
32 Convolutional Neural Networks/252 CNN in Python - Step 5.mp4
13.0 MB
32 Convolutional Neural Networks/253 CNN in Python - Step 6.mp4
12.5 MB
31 Artificial Neural Networks/229 ANN in Python - Step 6.mp4
12.5 MB
12 Logistic Regression/095 Logistic Regression in R - Step 4.mp4
12.3 MB
04 Simple Linear Regression/021 How to get the dataset.mp4
12.3 MB
05 Multiple Linear Regression/033 How to get the dataset.mp4
12.3 MB
06 Polynomial Regression/055 How to get the dataset.mp4
12.3 MB
07 Support Vector Regression (SVR)/066 How to get the dataset.mp4
12.3 MB
08 Decision Tree Regression/071 How to get the dataset.mp4
12.3 MB
09 Random Forest Regression/075 How to get the dataset.mp4
12.3 MB
12 Logistic Regression/085 How to get the dataset.mp4
12.3 MB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset.mp4
12.3 MB
14 Support Vector Machine (SVM)/103 How to get the dataset.mp4
12.3 MB
15 Kernel SVM/110 How to get the dataset.mp4
12.3 MB
16 Naive Bayes/117 How to get the dataset.mp4
12.3 MB
17 Decision Tree Classification/121 How to get the dataset.mp4
12.3 MB
18 Random Forest Classification/125 How to get the dataset.mp4
12.3 MB
21 K-Means Clustering/138 How to get the dataset.mp4
12.3 MB
22 Hierarchical Clustering/144 How to get the dataset.mp4
12.3 MB
24 Apriori/158 How to get the dataset.mp4
12.3 MB
25 Eclat/166 How to get the dataset.mp4
12.3 MB
27 Upper Confidence Bound (UCB)/171 How to get the dataset.mp4
12.3 MB
28 Thompson Sampling/182 How to get the dataset.mp4
12.3 MB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset.mp4
12.3 MB
31 Artificial Neural Networks/222 How to get the dataset.mp4
12.3 MB
32 Convolutional Neural Networks/247 How to get the dataset.mp4
12.3 MB
34 Principal Component Analysis (PCA)/261 How to get the dataset.mp4
12.3 MB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset.mp4
12.3 MB
36 Kernel PCA/272 How to get the dataset.mp4
12.3 MB
38 Model Selection/276 How to get the dataset.mp4
12.3 MB
39 XGBoost/282 How to get the dataset.mp4
12.3 MB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1.mp4
12.1 MB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3.mp4
12.0 MB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2.mp4
11.8 MB
12 Logistic Regression/087 Logistic Regression in Python - Step 2.mp4
11.6 MB
31 Artificial Neural Networks/221 Backpropagation.mp4
11.5 MB
25 Eclat/165 Eclat Intuition.mp4
11.2 MB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1.mp4
11.0 MB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition.mp4
11.0 MB
22 Hierarchical Clustering/153 HC in R - Step 4.mp4
10.7 MB
22 Hierarchical Clustering/152 HC in R - Step 3.mp4
10.4 MB
22 Hierarchical Clustering/149 HC in Python - Step 5.mp4
10.4 MB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2.mp4
10.3 MB
01 Welcome to the course/001 Applications of Machine Learning.mp4
10.3 MB
10 Evaluating Regression Models Performance/078 R-Squared Intuition.mp4
10.3 MB
31 Artificial Neural Networks/227 ANN in Python - Step 4.mp4
10.2 MB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7.mp4
10.1 MB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2.mp4
10.0 MB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4.mp4
10.0 MB
06 Polynomial Regression/054 Polynomial Regression Intuition.mp4
9.9 MB
32 Convolutional Neural Networks/255 CNN in Python - Step 8.mp4
9.4 MB
19 Evaluating Classification Models Performance/129 Confusion Matrix.mp4
9.3 MB
22 Hierarchical Clustering/150 HC in R - Step 1.mp4
9.0 MB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6.mp4
8.7 MB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4.mp4
8.6 MB
12 Logistic Regression/088 Logistic Regression in Python - Step 3.mp4
8.4 MB
32 Convolutional Neural Networks/245 Summary.mp4
8.3 MB
04 Simple Linear Regression/022 Dataset Business Problem Description.mp4
8.1 MB
32 Convolutional Neural Networks/249 CNN in Python - Step 2.mp4
7.6 MB
15 Kernel SVM/106 Kernel SVM Intuition.mp4
6.7 MB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2.mp4
6.3 MB
32 Convolutional Neural Networks/238 Plan of attack.mp4
6.2 MB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5.mp4
6.1 MB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4.mp4
5.6 MB
31 Artificial Neural Networks/214 Plan of attack.mp4
5.0 MB
19 Evaluating Classification Models Performance/130 Accuracy Paradox.mp4
4.4 MB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3.mp4
4.4 MB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing.mp4
3.7 MB
32 Convolutional Neural Networks/243 Step 3 - Flattening.mp4
3.4 MB
32 Convolutional Neural Networks/250 CNN in Python - Step 3.mp4
2.9 MB
01 Welcome to the course/004 Machine-Learning-A-Z-Q-A.pdf
2.4 MB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2.mp4
2.1 MB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1.mp4
2.1 MB
25 Eclat/167 Eclat.zip
49.7 kB
16 Naive Bayes/113 Bayes Theorem-ja.srt
38.2 kB
18 Random Forest Classification/127 Random Forest Classification in R-ja.srt
38.2 kB
36 Kernel PCA/274 Kernel PCA in R-ja.srt
37.7 kB
08 Decision Tree Regression/073 Decision Tree Regression in R-ja.srt
37.5 kB
32 Convolutional Neural Networks/256 CNN in Python - Step 9-ja.srt
36.5 kB
24 Apriori/161 Apriori in R - Step 3-ja.srt
36.5 kB
35 Linear Discriminant Analysis (LDA)/271 LDA in R-ja.srt
36.4 kB
18 Random Forest Classification/126 Random Forest Classification in Python-ja.srt
36.3 kB
31 Artificial Neural Networks/225 ANN in Python - Step 2-ja.srt
36.3 kB
07 Support Vector Regression (SVR)/068 SVR in Python-ja.srt
36.3 kB
24 Apriori/159 Apriori in R - Step 1-ja.srt
36.0 kB
16 Naive Bayes/113 Bayes Theorem-es.srt
35.5 kB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-ja.srt
35.2 kB
16 Naive Bayes/113 Bayes Theorem-pt.srt
34.8 kB
16 Naive Bayes/113 Bayes Theorem-it.srt
34.8 kB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-ja.srt
34.8 kB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3-ja.srt
34.5 kB
32 Convolutional Neural Networks/244 Step 4 - Full Connection-ja.srt
34.4 kB
17 Decision Tree Classification/123 Decision Tree Classification in R-ja.srt
34.3 kB
18 Random Forest Classification/127 Random Forest Classification in R-es.srt
34.2 kB
12 Logistic Regression/090 Logistic Regression in Python - Step 5-ja.srt
34.1 kB
36 Kernel PCA/274 Kernel PCA in R-es.srt
34.1 kB
18 Random Forest Classification/127 Random Forest Classification in R-pt.srt
34.0 kB
16 Naive Bayes/113 Bayes Theorem-en.srt
33.9 kB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1-ja.srt
33.8 kB
38 Model Selection/278 k-Fold Cross Validation in R-ja.srt
33.8 kB
15 Kernel SVM/111 Kernel SVM in Python-ja.srt
33.8 kB
18 Random Forest Classification/127 Random Forest Classification in R-it.srt
33.7 kB
36 Kernel PCA/274 Kernel PCA in R-pt.srt
33.7 kB
28 Thompson Sampling/180 Thompson Sampling Intuition-ja.srt
33.7 kB
08 Decision Tree Regression/073 Decision Tree Regression in R-pt.srt
33.6 kB
08 Decision Tree Regression/073 Decision Tree Regression in R-es.srt
33.6 kB
36 Kernel PCA/274 Kernel PCA in R-it.srt
33.5 kB
12 Logistic Regression/096 Logistic Regression in R - Step 5-ja.srt
33.4 kB
21 K-Means Clustering/139 K-Means Clustering in Python-ja.srt
33.3 kB
08 Decision Tree Regression/073 Decision Tree Regression in R-it.srt
33.3 kB
16 Naive Bayes/113 Bayes Theorem-tr.srt
33.1 kB
31 Artificial Neural Networks/234 ANN in R - Step 1-ja.srt
33.0 kB
18 Random Forest Classification/127 Random Forest Classification in R-tr.srt
33.0 kB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-ja.srt
33.0 kB
32 Convolutional Neural Networks/256 CNN in Python - Step 9-es.srt
32.8 kB
35 Linear Discriminant Analysis (LDA)/271 LDA in R-es.srt
32.8 kB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-es.srt
32.7 kB
36 Kernel PCA/274 Kernel PCA in R-tr.srt
32.7 kB
24 Apriori/162 Apriori in Python - Step 1-ja.srt
32.7 kB
18 Random Forest Classification/126 Random Forest Classification in Python-es.srt
32.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-ja.srt
32.5 kB
24 Apriori/161 Apriori in R - Step 3-es.srt
32.5 kB
39 XGBoost/285 XGBoost in R-ja.srt
32.4 kB
09 Random Forest Regression/077 Random Forest Regression in R-ja.srt
32.4 kB
09 Random Forest Regression/076 Random Forest Regression in Python-ja.srt
32.4 kB
18 Random Forest Classification/126 Random Forest Classification in Python-pt.srt
32.4 kB
24 Apriori/159 Apriori in R - Step 1-es.srt
32.3 kB
35 Linear Discriminant Analysis (LDA)/271 LDA in R-pt.srt
32.3 kB
07 Support Vector Regression (SVR)/068 SVR in Python-es.srt
32.3 kB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-it.srt
32.2 kB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-pt.srt
32.2 kB
32 Convolutional Neural Networks/256 CNN in Python - Step 9-pt.srt
32.2 kB
35 Linear Discriminant Analysis (LDA)/271 LDA in R-it.srt
32.1 kB
32 Convolutional Neural Networks/256 CNN in Python - Step 9-it.srt
32.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-ja.srt
32.0 kB
08 Decision Tree Regression/073 Decision Tree Regression in R-tr.srt
32.0 kB
18 Random Forest Classification/126 Random Forest Classification in Python-it.srt
32.0 kB
24 Apriori/161 Apriori in R - Step 3-it.srt
32.0 kB
24 Apriori/161 Apriori in R - Step 3-pt.srt
31.9 kB
18 Random Forest Classification/127 Random Forest Classification in R-en.srt
31.9 kB
24 Apriori/159 Apriori in R - Step 1-pt.srt
31.8 kB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3-es.srt
31.8 kB
31 Artificial Neural Networks/225 ANN in Python - Step 2-es.srt
31.8 kB
07 Support Vector Regression (SVR)/068 SVR in Python-it.srt
31.8 kB
07 Support Vector Regression (SVR)/068 SVR in Python-pt.srt
31.8 kB
18 Random Forest Classification/126 Random Forest Classification in Python-tr.srt
31.7 kB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-es.srt
31.7 kB
08 Decision Tree Regression/073 Decision Tree Regression in R-en.srt
31.6 kB
24 Apriori/159 Apriori in R - Step 1-it.srt
31.6 kB
36 Kernel PCA/274 Kernel PCA in R-en.srt
31.5 kB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3-pt.srt
31.5 kB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy-ja.srt
31.5 kB
31 Artificial Neural Networks/225 ANN in Python - Step 2-pt.srt
31.4 kB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-it.srt
31.4 kB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-pt.srt
31.4 kB
35 Linear Discriminant Analysis (LDA)/271 LDA in R-tr.srt
31.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-ja.srt
31.4 kB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3-it.srt
31.3 kB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-tr.srt
31.3 kB
31 Artificial Neural Networks/225 ANN in Python - Step 2-it.srt
31.2 kB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python-ja.srt
31.1 kB
32 Convolutional Neural Networks/256 CNN in Python - Step 9-tr.srt
31.1 kB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-ja.srt
30.9 kB
06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-en.srt
30.9 kB
12 Logistic Regression/090 Logistic Regression in Python - Step 5-es.srt
30.9 kB
07 Support Vector Regression (SVR)/068 SVR in Python-tr.srt
30.8 kB
38 Model Selection/278 k-Fold Cross Validation in R-es.srt
30.8 kB
24 Apriori/161 Apriori in R - Step 3-tr.srt
30.8 kB
12 Logistic Regression/090 Logistic Regression in Python - Step 5-pt.srt
30.7 kB
24 Apriori/161 Apriori in R - Step 3-en.srt
30.7 kB
17 Decision Tree Classification/123 Decision Tree Classification in R-es.srt
30.7 kB
31 Artificial Neural Networks/225 ANN in Python - Step 2-tr.srt
30.6 kB
24 Apriori/159 Apriori in R - Step 1-en.srt
30.6 kB
24 Apriori/157 Apriori Intuition-ja.srt
30.5 kB
12 Logistic Regression/090 Logistic Regression in Python - Step 5-it.srt
30.5 kB
17 Decision Tree Classification/123 Decision Tree Classification in R-pt.srt
30.5 kB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1-es.srt
30.4 kB
07 Support Vector Regression (SVR)/068 SVR in Python-en.srt
30.4 kB
32 Convolutional Neural Networks/244 Step 4 - Full Connection-pt.srt
30.4 kB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3-en.srt
30.4 kB
35 Linear Discriminant Analysis (LDA)/271 LDA in R-en.srt
30.4 kB
24 Apriori/159 Apriori in R - Step 1-tr.srt
30.3 kB
32 Convolutional Neural Networks/244 Step 4 - Full Connection-it.srt
30.3 kB
18 Random Forest Classification/126 Random Forest Classification in Python-en.srt
30.3 kB
38 Model Selection/278 k-Fold Cross Validation in R-it.srt
30.3 kB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1-pt.srt
30.3 kB
12 Logistic Regression/096 Logistic Regression in R - Step 5-es.srt
30.3 kB
12 Logistic Regression/090 Logistic Regression in Python - Step 5-tr.srt
30.3 kB
32 Convolutional Neural Networks/244 Step 4 - Full Connection-es.srt
30.2 kB
15 Kernel SVM/112 Kernel SVM in R-ja.srt
30.2 kB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1-it.srt
30.2 kB
31 Artificial Neural Networks/215 The Neuron-ja.srt
30.2 kB
38 Model Selection/278 k-Fold Cross Validation in R-pt.srt
30.2 kB
17 Decision Tree Classification/123 Decision Tree Classification in R-it.srt
30.2 kB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-ja.srt
30.1 kB
06 Polynomial Regression/063 Polynomial Regression in R - Step 3-tr.srt
30.1 kB
32 Convolutional Neural Networks/256 CNN in Python - Step 9-en.srt
30.1 kB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-ja.srt
30.0 kB
12 Logistic Regression/096 Logistic Regression in R - Step 5-pt.srt
30.0 kB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-tr.srt
29.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-ja.srt
29.9 kB
21 K-Means Clustering/139 K-Means Clustering in Python-es.srt
29.8 kB
12 Logistic Regression/096 Logistic Regression in R - Step 5-it.srt
29.8 kB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-es.srt
29.8 kB
17 Decision Tree Classification/123 Decision Tree Classification in R-tr.srt
29.7 kB
31 Artificial Neural Networks/225 ANN in Python - Step 2-en.srt
29.6 kB
31 Artificial Neural Networks/234 ANN in R - Step 1-es.srt
29.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-es.srt
29.6 kB
28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-en.srt
29.6 kB
28 Thompson Sampling/180 Thompson Sampling Intuition-es.srt
29.5 kB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-pt.srt
29.4 kB
21 K-Means Clustering/139 K-Means Clustering in Python-pt.srt
29.4 kB
09 Random Forest Regression/077 Random Forest Regression in R-es.srt
29.4 kB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-it.srt
29.3 kB
15 Kernel SVM/111 Kernel SVM in Python-es.srt
29.3 kB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python-es.srt
29.3 kB
12 Logistic Regression/090 Logistic Regression in Python - Step 5-en.srt
29.3 kB
32 Convolutional Neural Networks/244 Step 4 - Full Connection-en.srt
29.3 kB
38 Model Selection/278 k-Fold Cross Validation in R-tr.srt
29.2 kB
12 Logistic Regression/096 Logistic Regression in R - Step 5-tr.srt
29.2 kB
21 K-Means Clustering/139 K-Means Clustering in Python-it.srt
29.2 kB
32 Convolutional Neural Networks/244 Step 4 - Full Connection-tr.srt
29.2 kB
28 Thompson Sampling/180 Thompson Sampling Intuition-pt.srt
29.2 kB
15 Kernel SVM/111 Kernel SVM in Python-pt.srt
29.1 kB
31 Artificial Neural Networks/234 ANN in R - Step 1-pt.srt
29.1 kB
09 Random Forest Regression/077 Random Forest Regression in R-pt.srt
29.1 kB
24 Apriori/162 Apriori in Python - Step 1-es.srt
29.1 kB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1-tr.srt
29.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-ja.srt
29.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-pt.srt
29.0 kB
28 Thompson Sampling/180 Thompson Sampling Intuition-it.srt
29.0 kB
09 Random Forest Regression/077 Random Forest Regression in R-it.srt
29.0 kB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-es.srt
29.0 kB
31 Artificial Neural Networks/234 ANN in R - Step 1-it.srt
28.9 kB
39 XGBoost/285 XGBoost in R-es.srt
28.9 kB
09 Random Forest Regression/076 Random Forest Regression in Python-es.srt
28.8 kB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python-pt.srt
28.8 kB
15 Kernel SVM/111 Kernel SVM in Python-tr.srt
28.8 kB
15 Kernel SVM/111 Kernel SVM in Python-it.srt
28.8 kB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-pt.srt
28.7 kB
12 Logistic Regression/096 Logistic Regression in R - Step 5-en.srt
28.7 kB
17 Decision Tree Classification/123 Decision Tree Classification in R-en.srt
28.7 kB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python-it.srt
28.6 kB
09 Random Forest Regression/076 Random Forest Regression in Python-pt.srt
28.6 kB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-ja.srt
28.6 kB
38 Model Selection/278 k-Fold Cross Validation in R-en.srt
28.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-it.srt
28.6 kB
28 Thompson Sampling/185 Thompson Sampling in R - Step 1-en.srt
28.5 kB
39 XGBoost/285 XGBoost in R-it.srt
28.5 kB
24 Apriori/162 Apriori in Python - Step 1-it.srt
28.5 kB
24 Apriori/162 Apriori in Python - Step 1-pt.srt
28.5 kB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-pt.srt
28.5 kB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-es.srt
28.4 kB
39 XGBoost/285 XGBoost in R-pt.srt
28.4 kB
12 Logistic Regression/084 Logistic Regression Intuition-ja.srt
28.4 kB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-it.srt
28.4 kB
09 Random Forest Regression/076 Random Forest Regression in Python-it.srt
28.3 kB
21 K-Means Clustering/139 K-Means Clustering in Python-tr.srt
28.3 kB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-ja.srt
28.2 kB
28 Thompson Sampling/180 Thompson Sampling Intuition-en.srt
28.2 kB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-tr.srt
28.1 kB
09 Random Forest Regression/077 Random Forest Regression in R-tr.srt
28.1 kB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-ja.srt
28.1 kB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-es.srt
28.0 kB
28 Thompson Sampling/180 Thompson Sampling Intuition-tr.srt
28.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-tr.srt
27.9 kB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-es.srt
27.9 kB
21 K-Means Clustering/139 K-Means Clustering in Python-en.srt
27.8 kB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-es.srt
27.8 kB
31 Artificial Neural Networks/234 ANN in R - Step 1-tr.srt
27.8 kB
15 Kernel SVM/111 Kernel SVM in Python-en.srt
27.8 kB
09 Random Forest Regression/077 Random Forest Regression in R-en.srt
27.7 kB
24 Apriori/157 Apriori Intuition-es.srt
27.7 kB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-pt.srt
27.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-it.srt
27.6 kB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-pt.srt
27.6 kB
09 Random Forest Regression/076 Random Forest Regression in Python-tr.srt
27.6 kB
27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-en.srt
27.6 kB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R-ja.srt
27.6 kB
39 XGBoost/285 XGBoost in R-tr.srt
27.6 kB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-ja.srt
27.6 kB
24 Apriori/162 Apriori in Python - Step 1-en.srt
27.5 kB
24 Apriori/157 Apriori Intuition-pt.srt
27.5 kB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-it.srt
27.5 kB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-ja.srt
27.4 kB
31 Artificial Neural Networks/234 ANN in R - Step 1-en.srt
27.4 kB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python-tr.srt
27.4 kB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-pt.srt
27.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-it.srt
27.3 kB
38 Model Selection/279 Grid Search in Python - Step 1-ja.srt
27.3 kB
24 Apriori/162 Apriori in Python - Step 1-tr.srt
27.3 kB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-ja.srt
27.3 kB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-tr.srt
27.2 kB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-tr.srt
27.2 kB
21 K-Means Clustering/135 K-Means Clustering Intuition-ja.srt
27.2 kB
08 Decision Tree Regression/072 Decision Tree Regression in Python-ja.srt
27.1 kB
24 Apriori/157 Apriori Intuition-it.srt
27.1 kB
35 Linear Discriminant Analysis (LDA)/270 LDA in Python-en.srt
27.1 kB
05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-en.srt
27.1 kB
09 Random Forest Regression/076 Random Forest Regression in Python-en.srt
27.1 kB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-ja.srt
27.0 kB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-it.srt
27.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-es.srt
27.0 kB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy-es.srt
27.0 kB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-ja.srt
26.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-en.srt
26.9 kB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-tr.srt
26.9 kB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy-pt.srt
26.8 kB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy-it.srt
26.8 kB
15 Kernel SVM/112 Kernel SVM in R-es.srt
26.7 kB
32 Convolutional Neural Networks/239 What are convolutional neural networks-ja.srt
26.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-pt.srt
26.7 kB
39 XGBoost/285 XGBoost in R-en.srt
26.6 kB
24 Apriori/157 Apriori Intuition-tr.srt
26.6 kB
02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-en.srt
26.5 kB
24 Apriori/157 Apriori Intuition-en.srt
26.5 kB
31 Artificial Neural Networks/215 The Neuron-pt.srt
26.5 kB
15 Kernel SVM/112 Kernel SVM in R-pt.srt
26.5 kB
02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-en.srt
26.5 kB
24 Apriori/163 Apriori in Python - Step 2-ja.srt
26.4 kB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy-tr.srt
26.4 kB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-ja.srt
26.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-it.srt
26.3 kB
24 Apriori/160 Apriori in R - Step 2-ja.srt
26.3 kB
15 Kernel SVM/112 Kernel SVM in R-it.srt
26.3 kB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-tr.srt
26.3 kB
36 Kernel PCA/273 Kernel PCA in Python-ja.srt
26.2 kB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-ja.srt
26.2 kB
31 Artificial Neural Networks/215 The Neuron-es.srt
26.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-es.srt
26.1 kB
38 Model Selection/281 Grid Search in R-ja.srt
26.1 kB
16 Naive Bayes/119 Naive Bayes in R-ja.srt
26.0 kB
31 Artificial Neural Networks/215 The Neuron-it.srt
25.9 kB
27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-en.srt
25.9 kB
16 Naive Bayes/114 Naive Bayes Intuition-ja.srt
25.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-pt.srt
25.9 kB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-tr.srt
25.9 kB
32 Convolutional Neural Networks/246 Softmax Cross-Entropy-en.srt
25.9 kB
15 Kernel SVM/112 Kernel SVM in R-tr.srt
25.9 kB
27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-en.srt
25.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-it.srt
25.8 kB
32 Convolutional Neural Networks/242 Step 2 - Pooling-ja.srt
25.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-tr.srt
25.7 kB
31 Artificial Neural Networks/215 The Neuron-en.srt
25.6 kB
12 Logistic Regression/084 Logistic Regression Intuition-es.srt
25.6 kB
12 Logistic Regression/084 Logistic Regression Intuition-pt.srt
25.6 kB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-es.srt
25.6 kB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-ja.srt
25.6 kB
12 Logistic Regression/084 Logistic Regression Intuition-it.srt
25.5 kB
31 Artificial Neural Networks/215 The Neuron-tr.srt
25.3 kB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-ja.srt
25.3 kB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-pt.srt
25.3 kB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-es.srt
25.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-tr.srt
25.1 kB
15 Kernel SVM/112 Kernel SVM in R-en.srt
25.1 kB
38 Model Selection/277 k-Fold Cross Validation in Python-ja.srt
25.0 kB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-it.srt
25.0 kB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-es.srt
25.0 kB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-it.srt
24.9 kB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-pt.srt
24.8 kB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-ja.srt
24.7 kB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-pt.srt
24.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-es.srt
24.6 kB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-ja.srt
24.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-en.srt
24.6 kB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-tr.srt
24.6 kB
12 Logistic Regression/084 Logistic Regression Intuition-tr.srt
24.5 kB
12 Logistic Regression/084 Logistic Regression Intuition-en.srt
24.5 kB
08 Decision Tree Regression/072 Decision Tree Regression in Python-es.srt
24.5 kB
08 Decision Tree Regression/072 Decision Tree Regression in Python-pt.srt
24.4 kB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-es.srt
24.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-pt.srt
24.4 kB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R-es.srt
24.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-en.srt
24.4 kB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-pt.srt
24.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-es.srt
24.3 kB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-ja.srt
24.3 kB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-pt.srt
24.3 kB
08 Decision Tree Regression/072 Decision Tree Regression in Python-it.srt
24.3 kB
21 K-Means Clustering/135 K-Means Clustering Intuition-pt.srt
24.3 kB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-tr.srt
24.2 kB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-it.srt
24.1 kB
21 K-Means Clustering/135 K-Means Clustering Intuition-es.srt
24.1 kB
16 Naive Bayes/114 Naive Bayes Intuition-pt.srt
24.1 kB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R-pt.srt
24.1 kB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-pt.srt
24.0 kB
05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-en.srt
24.0 kB
16 Naive Bayes/114 Naive Bayes Intuition-es.srt
24.0 kB
38 Model Selection/279 Grid Search in Python - Step 1-es.srt
24.0 kB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-it.srt
23.9 kB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-es.srt
23.9 kB
38 Model Selection/279 Grid Search in Python - Step 1-pt.srt
23.9 kB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-es.srt
23.8 kB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-it.srt
23.8 kB
32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-en.srt
23.8 kB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-ja.srt
23.8 kB
21 K-Means Clustering/135 K-Means Clustering Intuition-it.srt
23.8 kB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-pt.srt
23.8 kB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R-it.srt
23.8 kB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-it.srt
23.8 kB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-pt.srt
23.8 kB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-it.srt
23.7 kB
38 Model Selection/279 Grid Search in Python - Step 1-it.srt
23.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-tr.srt
23.7 kB
21 K-Means Clustering/135 K-Means Clustering Intuition-tr.srt
23.7 kB
36 Kernel PCA/273 Kernel PCA in Python-es.srt
23.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-tr.srt
23.6 kB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R-tr.srt
23.6 kB
24 Apriori/160 Apriori in R - Step 2-es.srt
23.6 kB
16 Naive Bayes/114 Naive Bayes Intuition-it.srt
23.6 kB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-es.srt
23.6 kB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-it.srt
23.5 kB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-en.srt
23.5 kB
31 Artificial Neural Networks/218 How do Neural Networks learn-ja.srt
23.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-ja.srt
23.5 kB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-tr.srt
23.5 kB
08 Decision Tree Regression/072 Decision Tree Regression in Python-tr.srt
23.5 kB
04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-tr.srt
23.5 kB
36 Kernel PCA/273 Kernel PCA in Python-pt.srt
23.4 kB
39 XGBoost/284 XGBoost in Python - Step 2-ja.srt
23.4 kB
38 Model Selection/279 Grid Search in Python - Step 1-tr.srt
23.4 kB
08 Decision Tree Regression/072 Decision Tree Regression in Python-en.srt
23.4 kB
24 Apriori/160 Apriori in R - Step 2-pt.srt
23.4 kB
24 Apriori/163 Apriori in Python - Step 2-es.srt
23.3 kB
36 Kernel PCA/273 Kernel PCA in Python-it.srt
23.3 kB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-pt.srt
23.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-ja.srt
23.2 kB
05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-en.srt
23.2 kB
24 Apriori/160 Apriori in R - Step 2-it.srt
23.2 kB
02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-en.srt
23.2 kB
32 Convolutional Neural Networks/251 CNN in Python - Step 4-ja.srt
23.2 kB
32 Convolutional Neural Networks/239 What are convolutional neural networks-es.srt
23.2 kB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-es.srt
23.2 kB
21 K-Means Clustering/140 K-Means Clustering in R-ja.srt
23.1 kB
31 Artificial Neural Networks/228 ANN in Python - Step 5-ja.srt
23.1 kB
31 Artificial Neural Networks/217 How do Neural Networks work-ja.srt
23.1 kB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-it.srt
23.1 kB
32 Convolutional Neural Networks/239 What are convolutional neural networks-pt.srt
23.1 kB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-pt.srt
23.1 kB
02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-en.srt
23.1 kB
32 Convolutional Neural Networks/239 What are convolutional neural networks-it.srt
23.1 kB
21 K-Means Clustering/135 K-Means Clustering Intuition-en.srt
23.0 kB
16 Naive Bayes/114 Naive Bayes Intuition-en.srt
23.0 kB
24 Apriori/163 Apriori in Python - Step 2-pt.srt
23.0 kB
16 Naive Bayes/119 Naive Bayes in R-es.srt
23.0 kB
38 Model Selection/281 Grid Search in R-es.srt
23.0 kB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-es.srt
23.0 kB
31 Artificial Neural Networks/236 ANN in R - Step 3-ja.srt
23.0 kB
16 Naive Bayes/114 Naive Bayes Intuition-tr.srt
23.0 kB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-tr.srt
23.0 kB
13 K-Nearest Neighbors (K-NN)/101 K-NN in R-en.srt
23.0 kB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-it.srt
23.0 kB
24 Apriori/163 Apriori in Python - Step 2-it.srt
22.9 kB
17 Decision Tree Classification/122 Decision Tree Classification in Python-ja.srt
22.9 kB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-ja.srt
22.9 kB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-en.srt
22.8 kB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-it.srt
22.8 kB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-tr.srt
22.8 kB
38 Model Selection/281 Grid Search in R-pt.srt
22.8 kB
27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-tr.srt
22.7 kB
32 Convolutional Neural Networks/239 What are convolutional neural networks-tr.srt
22.7 kB
36 Kernel PCA/273 Kernel PCA in Python-tr.srt
22.7 kB
24 Apriori/160 Apriori in R - Step 2-en.srt
22.7 kB
27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-en.srt
22.7 kB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-es.srt
22.7 kB
38 Model Selection/281 Grid Search in R-it.srt
22.7 kB
24 Apriori/164 Apriori in Python - Step 3-ja.srt
22.7 kB
38 Model Selection/277 k-Fold Cross Validation in Python-es.srt
22.6 kB
16 Naive Bayes/119 Naive Bayes in R-pt.srt
22.6 kB
32 Convolutional Neural Networks/248 CNN in Python - Step 1-ja.srt
22.6 kB
32 Convolutional Neural Networks/239 What are convolutional neural networks-en.srt
22.6 kB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-tr.srt
22.6 kB
38 Model Selection/279 Grid Search in Python - Step 1-en.srt
22.6 kB
32 Convolutional Neural Networks/242 Step 2 - Pooling-es.srt
22.6 kB
24 Apriori/160 Apriori in R - Step 2-tr.srt
22.5 kB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-ja.srt
22.5 kB
32 Convolutional Neural Networks/242 Step 2 - Pooling-pt.srt
22.5 kB
16 Naive Bayes/119 Naive Bayes in R-tr.srt
22.5 kB
27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-en.srt
22.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-ja.srt
22.4 kB
27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-en.srt
22.4 kB
14 Support Vector Machine (SVM)/104 SVM in Python-ja.srt
22.3 kB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-es.srt
22.3 kB
16 Naive Bayes/119 Naive Bayes in R-it.srt
22.3 kB
32 Convolutional Neural Networks/242 Step 2 - Pooling-it.srt
22.3 kB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-ja.srt
22.3 kB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-tr.srt
22.2 kB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-pt.srt
22.2 kB
24 Apriori/163 Apriori in Python - Step 2-en.srt
22.2 kB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-pt.srt
22.2 kB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-it.srt
22.2 kB
38 Model Selection/277 k-Fold Cross Validation in Python-pt.srt
22.2 kB
38 Model Selection/277 k-Fold Cross Validation in Python-it.srt
22.2 kB
04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-en.srt
22.1 kB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-it.srt
22.1 kB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-ja.srt
22.0 kB
36 Kernel PCA/273 Kernel PCA in Python-en.srt
22.0 kB
24 Apriori/163 Apriori in Python - Step 2-tr.srt
22.0 kB
38 Model Selection/281 Grid Search in R-tr.srt
21.9 kB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-es.srt
21.9 kB
07 Support Vector Regression (SVR)/069 SVR in R-ja.srt
21.9 kB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-es.srt
21.9 kB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-es.srt
21.8 kB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-pt.srt
21.8 kB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-pt.srt
21.6 kB
32 Convolutional Neural Networks/242 Step 2 - Pooling-tr.srt
21.6 kB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-pt.srt
21.6 kB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-it.srt
21.6 kB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-it.srt
21.6 kB
38 Model Selection/277 k-Fold Cross Validation in Python-tr.srt
21.6 kB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-tr.srt
21.6 kB
16 Naive Bayes/119 Naive Bayes in R-en.srt
21.5 kB
32 Convolutional Neural Networks/242 Step 2 - Pooling-en.srt
21.5 kB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-ja.srt
21.5 kB
32 Convolutional Neural Networks/251 CNN in Python - Step 4-es.srt
21.5 kB
38 Model Selection/281 Grid Search in R-en.srt
21.4 kB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-tr.srt
21.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-es.srt
21.4 kB
14 Support Vector Machine (SVM)/105 SVM in R-ja.srt
21.3 kB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-it.srt
21.3 kB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-tr.srt
21.3 kB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-ja.srt
21.2 kB
31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-en.srt
21.2 kB
32 Convolutional Neural Networks/251 CNN in Python - Step 4-it.srt
21.2 kB
06 Polynomial Regression/065 R Regression Template-ja.srt
21.1 kB
27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-en.srt
21.0 kB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-ja.srt
21.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-pt.srt
20.9 kB
31 Artificial Neural Networks/228 ANN in Python - Step 5-es.srt
20.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-it.srt
20.9 kB
32 Convolutional Neural Networks/251 CNN in Python - Step 4-pt.srt
20.9 kB
32 Convolutional Neural Networks/248 CNN in Python - Step 1-es.srt
20.9 kB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-es.srt
20.9 kB
13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-en.srt
20.9 kB
31 Artificial Neural Networks/228 ANN in Python - Step 5-pt.srt
20.8 kB
39 XGBoost/284 XGBoost in Python - Step 2-es.srt
20.8 kB
31 Artificial Neural Networks/228 ANN in Python - Step 5-it.srt
20.8 kB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-tr.srt
20.7 kB
38 Model Selection/277 k-Fold Cross Validation in Python-en.srt
20.7 kB
31 Artificial Neural Networks/236 ANN in R - Step 3-es.srt
20.7 kB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-tr.srt
20.6 kB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-es.srt
20.6 kB
39 XGBoost/284 XGBoost in Python - Step 2-pt.srt
20.6 kB
21 K-Means Clustering/140 K-Means Clustering in R-es.srt
20.5 kB
31 Artificial Neural Networks/236 ANN in R - Step 3-pt.srt
20.5 kB
31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-en.srt
20.5 kB
31 Artificial Neural Networks/236 ANN in R - Step 3-it.srt
20.5 kB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-it.srt
20.4 kB
39 XGBoost/284 XGBoost in Python - Step 2-it.srt
20.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-es.srt
20.4 kB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-pt.srt
20.4 kB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-pt.srt
20.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-tr.srt
20.4 kB
24 Apriori/164 Apriori in Python - Step 3-es.srt
20.4 kB
32 Convolutional Neural Networks/251 CNN in Python - Step 4-tr.srt
20.4 kB
32 Convolutional Neural Networks/248 CNN in Python - Step 1-pt.srt
20.3 kB
17 Decision Tree Classification/122 Decision Tree Classification in Python-es.srt
20.3 kB
24 Apriori/164 Apriori in Python - Step 3-pt.srt
20.3 kB
31 Artificial Neural Networks/218 How do Neural Networks learn-es.srt
20.3 kB
17 Decision Tree Classification/122 Decision Tree Classification in Python-pt.srt
20.3 kB
32 Convolutional Neural Networks/248 CNN in Python - Step 1-it.srt
20.3 kB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-it.srt
20.3 kB
21 K-Means Clustering/140 K-Means Clustering in R-pt.srt
20.2 kB
34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-en.srt
20.2 kB
31 Artificial Neural Networks/217 How do Neural Networks work-es.srt
20.2 kB
31 Artificial Neural Networks/217 How do Neural Networks work-pt.srt
20.2 kB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-ja.srt
20.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-pt.srt
20.1 kB
31 Artificial Neural Networks/218 How do Neural Networks learn-pt.srt
20.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-en.srt
20.1 kB
21 K-Means Clustering/140 K-Means Clustering in R-it.srt
20.1 kB
31 Artificial Neural Networks/218 How do Neural Networks learn-it.srt
20.0 kB
31 Artificial Neural Networks/217 How do Neural Networks work-it.srt
20.0 kB
24 Apriori/164 Apriori in Python - Step 3-it.srt
20.0 kB
31 Artificial Neural Networks/228 ANN in Python - Step 5-tr.srt
20.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-it.srt
20.0 kB
31 Artificial Neural Networks/228 ANN in Python - Step 5-en.srt
20.0 kB
38 Model Selection/280 Grid Search in Python - Step 2-ja.srt
19.9 kB
17 Decision Tree Classification/122 Decision Tree Classification in Python-it.srt
19.9 kB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-ja.srt
19.9 kB
39 XGBoost/284 XGBoost in Python - Step 2-tr.srt
19.9 kB
17 Decision Tree Classification/122 Decision Tree Classification in Python-tr.srt
19.9 kB
15 Kernel SVM/108 The Kernel Trick-ja.srt
19.8 kB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-ja.srt
19.8 kB
14 Support Vector Machine (SVM)/104 SVM in Python-es.srt
19.8 kB
32 Convolutional Neural Networks/251 CNN in Python - Step 4-en.srt
19.7 kB
31 Artificial Neural Networks/218 How do Neural Networks learn-tr.srt
19.7 kB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-tr.srt
19.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-es.srt
19.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-ja.srt
19.7 kB
14 Support Vector Machine (SVM)/104 SVM in Python-pt.srt
19.7 kB
31 Artificial Neural Networks/236 ANN in R - Step 3-tr.srt
19.7 kB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-es.srt
19.6 kB
32 Convolutional Neural Networks/248 CNN in Python - Step 1-tr.srt
19.6 kB
31 Artificial Neural Networks/217 How do Neural Networks work-en.srt
19.6 kB
21 K-Means Clustering/140 K-Means Clustering in R-tr.srt
19.6 kB
31 Artificial Neural Networks/217 How do Neural Networks work-tr.srt
19.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-tr.srt
19.5 kB
14 Support Vector Machine (SVM)/104 SVM in Python-it.srt
19.5 kB
24 Apriori/164 Apriori in Python - Step 3-tr.srt
19.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-pt.srt
19.4 kB
31 Artificial Neural Networks/218 How do Neural Networks learn-en.srt
19.4 kB
05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-en.srt
19.4 kB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-pt.srt
19.4 kB
06 Polynomial Regression/065 R Regression Template-es.srt
19.4 kB
07 Support Vector Regression (SVR)/069 SVR in R-es.srt
19.4 kB
08 Decision Tree Regression/070 Decision Tree Regression Intuition-ja.srt
19.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-es.srt
19.3 kB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-tr.srt
19.3 kB
39 XGBoost/284 XGBoost in Python - Step 2-en.srt
19.3 kB
31 Artificial Neural Networks/236 ANN in R - Step 3-en.srt
19.3 kB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-es.srt
19.3 kB
14 Support Vector Machine (SVM)/104 SVM in Python-tr.srt
19.3 kB
07 Support Vector Regression (SVR)/069 SVR in R-pt.srt
19.3 kB
24 Apriori/164 Apriori in Python - Step 3-en.srt
19.3 kB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-pt.srt
19.3 kB
21 K-Means Clustering/140 K-Means Clustering in R-en.srt
19.2 kB
34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-en.srt
19.1 kB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-it.srt
19.1 kB
06 Polynomial Regression/065 R Regression Template-pt.srt
19.1 kB
17 Decision Tree Classification/122 Decision Tree Classification in Python-en.srt
19.1 kB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-it.srt
19.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-it.srt
19.1 kB
14 Support Vector Machine (SVM)/105 SVM in R-es.srt
19.0 kB
06 Polynomial Regression/065 R Regression Template-it.srt
19.0 kB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-es.srt
19.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-pt.srt
19.0 kB
07 Support Vector Regression (SVR)/069 SVR in R-it.srt
19.0 kB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-it.srt
19.0 kB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-tr.srt
19.0 kB
14 Support Vector Machine (SVM)/105 SVM in R-pt.srt
18.9 kB
32 Convolutional Neural Networks/248 CNN in Python - Step 1-en.srt
18.8 kB
14 Support Vector Machine (SVM)/104 SVM in Python-en.srt
18.8 kB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-pt.srt
18.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-en.srt
18.8 kB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-pt.srt
18.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-tr.srt
18.7 kB
07 Support Vector Regression (SVR)/069 SVR in R-tr.srt
18.6 kB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-es.srt
18.6 kB
06 Polynomial Regression/065 R Regression Template-tr.srt
18.6 kB
06 Polynomial Regression/060 Python Regression Template-ja.srt
18.6 kB
30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-en.srt
18.6 kB
25 Eclat/167 Eclat in R-ja.srt
18.5 kB
14 Support Vector Machine (SVM)/105 SVM in R-it.srt
18.5 kB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-es.srt
18.5 kB
14 Support Vector Machine (SVM)/105 SVM in R-tr.srt
18.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-tr.srt
18.4 kB
07 Support Vector Regression (SVR)/069 SVR in R-en.srt
18.4 kB
06 Polynomial Regression/065 R Regression Template-en.srt
18.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-en.srt
18.4 kB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-pt.srt
18.3 kB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-it.srt
18.3 kB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-en.srt
18.2 kB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-ja.srt
18.2 kB
21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-tr.srt
18.2 kB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-it.srt
18.2 kB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-it.srt
18.1 kB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-tr.srt
18.1 kB
14 Support Vector Machine (SVM)/102 SVM Intuition-ja.srt
18.1 kB
14 Support Vector Machine (SVM)/105 SVM in R-en.srt
18.1 kB
34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-en.srt
18.1 kB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-es.srt
18.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-en.srt
17.9 kB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-pt.srt
17.9 kB
19 Evaluating Classification Models Performance/131 CAP Curve-ja.srt
17.9 kB
16 Naive Bayes/116 Naive Bayes Intuition (Extras)-ja.srt
17.8 kB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-tr.srt
17.7 kB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-it.srt
17.7 kB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-tr.srt
17.7 kB
15 Kernel SVM/108 The Kernel Trick-it.srt
17.7 kB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-it.srt
17.7 kB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-es.srt
17.6 kB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-pt.srt
17.6 kB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4-ja.srt
17.6 kB
15 Kernel SVM/108 The Kernel Trick-es.srt
17.5 kB
15 Kernel SVM/108 The Kernel Trick-pt.srt
17.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-ja.srt
17.4 kB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-en.srt
17.4 kB
08 Decision Tree Regression/070 Decision Tree Regression Intuition-pt.srt
17.3 kB
22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-tr.srt
17.3 kB
08 Decision Tree Regression/070 Decision Tree Regression Intuition-it.srt
17.3 kB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-ja.srt
17.3 kB
34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-en.srt
17.3 kB
06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-en.srt
17.3 kB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-ja.srt
17.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-es.srt
17.2 kB
06 Polynomial Regression/060 Python Regression Template-es.srt
17.2 kB
38 Model Selection/280 Grid Search in Python - Step 2-es.srt
17.2 kB
08 Decision Tree Regression/070 Decision Tree Regression Intuition-es.srt
17.1 kB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-tr.srt
17.1 kB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-ja.srt
17.1 kB
06 Polynomial Regression/060 Python Regression Template-pt.srt
17.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-pt.srt
17.0 kB
38 Model Selection/280 Grid Search in Python - Step 2-pt.srt
17.0 kB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-ja.srt
17.0 kB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2-ja.srt
17.0 kB
06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-en.srt
16.9 kB
38 Model Selection/280 Grid Search in Python - Step 2-it.srt
16.9 kB
15 Kernel SVM/108 The Kernel Trick-en.srt
16.9 kB
15 Kernel SVM/108 The Kernel Trick-tr.srt
16.9 kB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-ja.srt
16.9 kB
06 Polynomial Regression/060 Python Regression Template-it.srt
16.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-it.srt
16.8 kB
39 XGBoost/283 XGBoost in Python - Step 1-ja.srt
16.8 kB
08 Decision Tree Regression/070 Decision Tree Regression Intuition-en.srt
16.8 kB
31 Artificial Neural Networks/219 Gradient Descent-ja.srt
16.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-tr.srt
16.7 kB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-ja.srt
16.7 kB
08 Decision Tree Regression/070 Decision Tree Regression Intuition-tr.srt
16.6 kB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-ja.srt
16.6 kB
06 Polynomial Regression/060 Python Regression Template-tr.srt
16.5 kB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-es.srt
16.5 kB
16 Naive Bayes/118 Naive Bayes in Python-ja.srt
16.5 kB
16 Naive Bayes/116 Naive Bayes Intuition (Extras)-pt.srt
16.4 kB
19 Evaluating Classification Models Performance/131 CAP Curve-es.srt
16.4 kB
19 Evaluating Classification Models Performance/131 CAP Curve-it.srt
16.3 kB
19 Evaluating Classification Models Performance/131 CAP Curve-pt.srt
16.3 kB
16 Naive Bayes/116 Naive Bayes Intuition (Extras)-es.srt
16.3 kB
25 Eclat/167 Eclat in R-es.srt
16.3 kB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-es.srt
16.3 kB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-it.srt
16.3 kB
38 Model Selection/280 Grid Search in Python - Step 2-tr.srt
16.3 kB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-pt.srt
16.2 kB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-es.srt
16.2 kB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-ja.srt
16.2 kB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-pt.srt
16.2 kB
19 Evaluating Classification Models Performance/131 CAP Curve-tr.srt
16.2 kB
25 Eclat/167 Eclat in R-pt.srt
16.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-en.srt
16.2 kB
16 Naive Bayes/116 Naive Bayes Intuition (Extras)-it.srt
16.2 kB
06 Polynomial Regression/060 Python Regression Template-en.srt
16.1 kB
14 Support Vector Machine (SVM)/102 SVM Intuition-pt.srt
16.1 kB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1-ja.srt
16.1 kB
25 Eclat/167 Eclat in R-it.srt
16.1 kB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2-pt.srt
16.1 kB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-it.srt
16.1 kB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2-es.srt
16.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-ja.srt
16.0 kB
19 Evaluating Classification Models Performance/131 CAP Curve-en.srt
16.0 kB
14 Support Vector Machine (SVM)/102 SVM Intuition-es.srt
15.9 kB
14 Support Vector Machine (SVM)/102 SVM Intuition-it.srt
15.9 kB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-pt.srt
15.9 kB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2-it.srt
15.9 kB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-es.srt
15.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-es.srt
15.8 kB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-it.srt
15.8 kB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4-it.srt
15.8 kB
32 Convolutional Neural Networks/257 CNN in Python - Step 10-ja.srt
15.8 kB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-pt.srt
15.7 kB
16 Naive Bayes/116 Naive Bayes Intuition (Extras)-en.srt
15.7 kB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4-es.srt
15.7 kB
38 Model Selection/280 Grid Search in Python - Step 2-en.srt
15.7 kB
16 Naive Bayes/116 Naive Bayes Intuition (Extras)-tr.srt
15.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-it.srt
15.6 kB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-it.srt
15.6 kB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4-pt.srt
15.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-pt.srt
15.6 kB
25 Eclat/167 Eclat in R-en.srt
15.6 kB
14 Support Vector Machine (SVM)/102 SVM Intuition-en.srt
15.5 kB
14 Support Vector Machine (SVM)/102 SVM Intuition-tr.srt
15.5 kB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-tr.srt
15.5 kB
25 Eclat/167 Eclat in R-tr.srt
15.5 kB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-tr.srt
15.4 kB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-ja.srt
15.4 kB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2-tr.srt
15.3 kB
05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-en.srt
15.3 kB
04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-en.srt
15.3 kB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-tr.srt
15.2 kB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-en.srt
15.2 kB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4-en.srt
15.2 kB
34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-en.srt
15.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-tr.srt
15.1 kB
06 Polynomial Regression/064 Polynomial Regression in R - Step 4-tr.srt
15.1 kB
06 Polynomial Regression/062 Polynomial Regression in R - Step 2-en.srt
15.1 kB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-pt.srt
15.0 kB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1-es.srt
15.0 kB
05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-tr.srt
14.9 kB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1-pt.srt
14.9 kB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-it.srt
14.9 kB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1-it.srt
14.9 kB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-es.srt
14.9 kB
31 Artificial Neural Networks/219 Gradient Descent-es.srt
14.9 kB
39 XGBoost/283 XGBoost in Python - Step 1-es.srt
14.8 kB
31 Artificial Neural Networks/219 Gradient Descent-pt.srt
14.8 kB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-it.srt
14.8 kB
39 XGBoost/283 XGBoost in Python - Step 1-pt.srt
14.8 kB
21 K-Means Clustering/136 K-Means Random Initialization Trap-ja.srt
14.8 kB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-ja.srt
14.8 kB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-es.srt
14.8 kB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-ja.srt
14.7 kB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-es.srt
14.7 kB
31 Artificial Neural Networks/219 Gradient Descent-it.srt
14.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-en.srt
14.7 kB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-ja.srt
14.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-pt.srt
14.7 kB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-pt.srt
14.7 kB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-pt.srt
14.7 kB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-es.srt
14.7 kB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-es.srt
14.6 kB
17 Decision Tree Classification/120 Decision Tree Classification Intuition-ja.srt
14.6 kB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-pt.srt
14.6 kB
39 XGBoost/283 XGBoost in Python - Step 1-it.srt
14.6 kB
31 Artificial Neural Networks/220 Stochastic Gradient Descent-ja.srt
14.5 kB
16 Naive Bayes/118 Naive Bayes in Python-es.srt
14.4 kB
31 Artificial Neural Networks/219 Gradient Descent-tr.srt
14.4 kB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-it.srt
14.4 kB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-en.srt
14.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-it.srt
14.4 kB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-it.srt
14.4 kB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-tr.srt
14.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-tr.srt
14.4 kB
31 Artificial Neural Networks/219 Gradient Descent-en.srt
14.4 kB
22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-tr.srt
14.4 kB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-tr.srt
14.3 kB
31 Artificial Neural Networks/216 The Activation Function-ja.srt
14.3 kB
16 Naive Bayes/118 Naive Bayes in Python-pt.srt
14.3 kB
10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-en.srt
14.3 kB
39 XGBoost/283 XGBoost in Python - Step 1-tr.srt
14.2 kB
32 Convolutional Neural Networks/257 CNN in Python - Step 10-es.srt
14.2 kB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-en.srt
14.1 kB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1-tr.srt
14.1 kB
16 Naive Bayes/118 Naive Bayes in Python-it.srt
14.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-es.srt
14.1 kB
32 Convolutional Neural Networks/257 CNN in Python - Step 10-it.srt
14.1 kB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-ja.srt
14.0 kB
16 Naive Bayes/118 Naive Bayes in Python-tr.srt
14.0 kB
39 XGBoost/283 XGBoost in Python - Step 1-en.srt
14.0 kB
05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-en.srt
14.0 kB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-ja.srt
14.0 kB
02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-en.srt
13.9 kB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-it.srt
13.9 kB
06 Polynomial Regression/061 Polynomial Regression in R - Step 1-en.srt
13.9 kB
22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-tr.srt
13.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-pt.srt
13.9 kB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-ja.srt
13.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-it.srt
13.9 kB
32 Convolutional Neural Networks/257 CNN in Python - Step 10-pt.srt
13.9 kB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-pt.srt
13.7 kB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-es.srt
13.6 kB
32 Convolutional Neural Networks/257 CNN in Python - Step 10-tr.srt
13.6 kB
16 Naive Bayes/118 Naive Bayes in Python-en.srt
13.5 kB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-ja.srt
13.4 kB
31 Artificial Neural Networks/231 ANN in Python - Step 8-ja.srt
13.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-tr.srt
13.3 kB
32 Convolutional Neural Networks/257 CNN in Python - Step 10-en.srt
13.3 kB
17 Decision Tree Classification/120 Decision Tree Classification Intuition-es.srt
13.3 kB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-tr.srt
13.3 kB
17 Decision Tree Classification/120 Decision Tree Classification Intuition-pt.srt
13.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-ja.srt
13.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-en.srt
13.2 kB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-ja.srt
13.2 kB
10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-en.srt
13.2 kB
31 Artificial Neural Networks/220 Stochastic Gradient Descent-es.srt
13.1 kB
21 K-Means Clustering/136 K-Means Random Initialization Trap-es.srt
13.1 kB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-es.srt
13.1 kB
21 K-Means Clustering/136 K-Means Random Initialization Trap-pt.srt
13.1 kB
31 Artificial Neural Networks/220 Stochastic Gradient Descent-pt.srt
13.0 kB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-pt.srt
13.0 kB
21 K-Means Clustering/136 K-Means Random Initialization Trap-it.srt
13.0 kB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-pt.srt
12.9 kB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-es.srt
12.9 kB
17 Decision Tree Classification/120 Decision Tree Classification Intuition-tr.srt
12.9 kB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-it.srt
12.9 kB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-es.srt
12.9 kB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-it.srt
12.9 kB
17 Decision Tree Classification/120 Decision Tree Classification Intuition-it.srt
12.9 kB
31 Artificial Neural Networks/220 Stochastic Gradient Descent-it.srt
12.9 kB
31 Artificial Neural Networks/235 ANN in R - Step 2-ja.srt
12.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-ja.srt
12.8 kB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-pt.srt
12.8 kB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-tr.srt
12.8 kB
19 Evaluating Classification Models Performance/128 False Positives False Negatives-ja.srt
12.8 kB
21 K-Means Clustering/136 K-Means Random Initialization Trap-en.srt
12.8 kB
10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-en.srt
12.7 kB
17 Decision Tree Classification/120 Decision Tree Classification Intuition-en.srt
12.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-ja.srt
12.7 kB
31 Artificial Neural Networks/216 The Activation Function-pt.srt
12.6 kB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-pt.srt
12.6 kB
21 K-Means Clustering/136 K-Means Random Initialization Trap-tr.srt
12.6 kB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-it.srt
12.6 kB
31 Artificial Neural Networks/216 The Activation Function-es.srt
12.6 kB
15 Kernel SVM/107 Mapping to a higher dimension-ja.srt
12.6 kB
31 Artificial Neural Networks/220 Stochastic Gradient Descent-tr.srt
12.5 kB
31 Artificial Neural Networks/216 The Activation Function-it.srt
12.5 kB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-es.srt
12.5 kB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-es.srt
12.4 kB
31 Artificial Neural Networks/220 Stochastic Gradient Descent-en.srt
12.4 kB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-es.srt
12.4 kB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-tr.srt
12.4 kB
31 Artificial Neural Networks/233 ANN in Python - Step 10-ja.srt
12.4 kB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-it.srt
12.4 kB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-pt.srt
12.4 kB
31 Artificial Neural Networks/216 The Activation Function-en.srt
12.3 kB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-it.srt
12.3 kB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-ja.srt
12.3 kB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-tr.srt
12.3 kB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-tr.srt
12.3 kB
31 Artificial Neural Networks/216 The Activation Function-tr.srt
12.2 kB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-pt.srt
12.2 kB
04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-en.srt
12.2 kB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-tr.srt
12.1 kB
01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-en.srt
12.1 kB
34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-en.srt
12.1 kB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-it.srt
12.1 kB
31 Artificial Neural Networks/231 ANN in Python - Step 8-es.srt
11.9 kB
31 Artificial Neural Networks/231 ANN in Python - Step 8-pt.srt
11.8 kB
19 Evaluating Classification Models Performance/128 False Positives False Negatives-es.srt
11.7 kB
19 Evaluating Classification Models Performance/128 False Positives False Negatives-it.srt
11.7 kB
05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-en.srt
11.7 kB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-ja.srt
11.7 kB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-tr.srt
11.6 kB
05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-en.srt
11.6 kB
07 Support Vector Regression (SVR)/067 SVR Intuition-en.srt
11.6 kB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-pt.srt
11.6 kB
31 Artificial Neural Networks/231 ANN in Python - Step 8-it.srt
11.6 kB
31 Artificial Neural Networks/232 ANN in Python - Step 9-ja.srt
11.6 kB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-es.srt
11.5 kB
19 Evaluating Classification Models Performance/128 False Positives False Negatives-pt.srt
11.5 kB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-es.srt
11.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-es.srt
11.5 kB
09 Random Forest Regression/074 Random Forest Regression Intuition-ja.srt
11.5 kB
15 Kernel SVM/107 Mapping to a higher dimension-pt.srt
11.5 kB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-it.srt
11.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-pt.srt
11.4 kB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-en.srt
11.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-it.srt
11.4 kB
28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-tr.srt
11.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-tr.srt
11.3 kB
31 Artificial Neural Networks/231 ANN in Python - Step 8-en.srt
11.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-pt.srt
11.3 kB
15 Kernel SVM/107 Mapping to a higher dimension-es.srt
11.3 kB
31 Artificial Neural Networks/233 ANN in Python - Step 10-es.srt
11.3 kB
15 Kernel SVM/107 Mapping to a higher dimension-it.srt
11.2 kB
15 Kernel SVM/107 Mapping to a higher dimension-tr.srt
11.2 kB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-it.srt
11.2 kB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-pt.srt
11.2 kB
19 Evaluating Classification Models Performance/128 False Positives False Negatives-en.srt
11.1 kB
32 Convolutional Neural Networks/254 CNN in Python - Step 7-ja.srt
11.1 kB
31 Artificial Neural Networks/233 ANN in Python - Step 10-it.srt
11.1 kB
31 Artificial Neural Networks/235 ANN in R - Step 2-es.srt
11.1 kB
31 Artificial Neural Networks/231 ANN in Python - Step 8-tr.srt
11.1 kB
19 Evaluating Classification Models Performance/128 False Positives False Negatives-tr.srt
11.1 kB
31 Artificial Neural Networks/235 ANN in R - Step 2-pt.srt
11.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-es.srt
11.1 kB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-it.srt
11.0 kB
22 Hierarchical Clustering/146 HC in Python - Step 2-ja.srt
11.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-es.srt
11.0 kB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-ja.srt
11.0 kB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-es.srt
11.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-pt.srt
11.0 kB
31 Artificial Neural Networks/233 ANN in Python - Step 10-pt.srt
11.0 kB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-tr.srt
11.0 kB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-ja.srt
11.0 kB
01 Welcome to the course/002 Why Machine Learning is the Future-ja.srt
11.0 kB
31 Artificial Neural Networks/233 ANN in Python - Step 10-tr.srt
10.9 kB
02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-en.srt
10.9 kB
31 Artificial Neural Networks/235 ANN in R - Step 2-it.srt
10.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-it.srt
10.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-en.srt
10.9 kB
12 Logistic Regression/092 Logistic Regression in R - Step 1-ja.srt
10.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-pt.srt
10.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-it.srt
10.8 kB
15 Kernel SVM/107 Mapping to a higher dimension-en.srt
10.8 kB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-tr.srt
10.8 kB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-ja.srt
10.8 kB
09 Random Forest Regression/074 Random Forest Regression Intuition-pt.srt
10.8 kB
31 Artificial Neural Networks/235 ANN in R - Step 2-tr.srt
10.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-ja.srt
10.6 kB
31 Artificial Neural Networks/233 ANN in Python - Step 10-en.srt
10.6 kB
05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-en.srt
10.6 kB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis-ja.srt
10.6 kB
12 Logistic Regression/086 Logistic Regression in Python - Step 1-ja.srt
10.6 kB
09 Random Forest Regression/074 Random Forest Regression Intuition-it.srt
10.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-tr.srt
10.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-tr.srt
10.4 kB
31 Artificial Neural Networks/232 ANN in Python - Step 9-es.srt
10.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-en.srt
10.4 kB
31 Artificial Neural Networks/235 ANN in R - Step 2-en.srt
10.4 kB
09 Random Forest Regression/074 Random Forest Regression Intuition-es.srt
10.4 kB
09 Random Forest Regression/074 Random Forest Regression Intuition-tr.srt
10.3 kB
31 Artificial Neural Networks/232 ANN in Python - Step 9-it.srt
10.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-ja.srt
10.2 kB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-ja.srt
10.2 kB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-es.srt
10.2 kB
09 Random Forest Regression/074 Random Forest Regression Intuition-en.srt
10.1 kB
31 Artificial Neural Networks/232 ANN in Python - Step 9-pt.srt
10.1 kB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-ja.srt
10.1 kB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-it.srt
10.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-ja.srt
10.1 kB
32 Convolutional Neural Networks/254 CNN in Python - Step 7-it.srt
10.1 kB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-pt.srt
10.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-en.srt
10.0 kB
32 Convolutional Neural Networks/254 CNN in Python - Step 7-es.srt
10.0 kB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-pt.srt
10.0 kB
01 Welcome to the course/002 Why Machine Learning is the Future-pt.srt
10.0 kB
01 Welcome to the course/002 Why Machine Learning is the Future-es.srt
9.9 kB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-ja.srt
9.9 kB
32 Convolutional Neural Networks/254 CNN in Python - Step 7-pt.srt
9.9 kB
22 Hierarchical Clustering/146 HC in Python - Step 2-es.srt
9.9 kB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-es.srt
9.9 kB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-pt.srt
9.9 kB
25 Eclat/165 Eclat Intuition-ja.srt
9.9 kB
01 Welcome to the course/002 Why Machine Learning is the Future-it.srt
9.9 kB
22 Hierarchical Clustering/146 HC in Python - Step 2-it.srt
9.8 kB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-es.srt
9.8 kB
31 Artificial Neural Networks/232 ANN in Python - Step 9-tr.srt
9.7 kB
31 Artificial Neural Networks/232 ANN in Python - Step 9-en.srt
9.7 kB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-en.srt
9.7 kB
04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-tr.srt
9.7 kB
22 Hierarchical Clustering/146 HC in Python - Step 2-pt.srt
9.7 kB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-it.srt
9.7 kB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-it.srt
9.7 kB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-tr.srt
9.6 kB
32 Convolutional Neural Networks/254 CNN in Python - Step 7-tr.srt
9.6 kB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-pt.srt
9.6 kB
12 Logistic Regression/092 Logistic Regression in R - Step 1-es.srt
9.5 kB
01 Welcome to the course/002 Why Machine Learning is the Future-tr.srt
9.5 kB
01 Welcome to the course/002 Why Machine Learning is the Future-en.srt
9.5 kB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis-pt.srt
9.4 kB
32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-en.srt
9.4 kB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-es.srt
9.4 kB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis-es.srt
9.4 kB
22 Hierarchical Clustering/146 HC in Python - Step 2-en.srt
9.4 kB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-en.srt
9.4 kB
32 Convolutional Neural Networks/252 CNN in Python - Step 5-ja.srt
9.4 kB
32 Convolutional Neural Networks/254 CNN in Python - Step 7-en.srt
9.3 kB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis-it.srt
9.3 kB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-it.srt
9.3 kB
22 Hierarchical Clustering/146 HC in Python - Step 2-tr.srt
9.3 kB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis-tr.srt
9.3 kB
22 Hierarchical Clustering/151 HC in R - Step 2-ja.srt
9.3 kB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-tr.srt
9.2 kB
12 Logistic Regression/092 Logistic Regression in R - Step 1-pt.srt
9.2 kB
22 Hierarchical Clustering/147 HC in Python - Step 3-ja.srt
9.2 kB
12 Logistic Regression/092 Logistic Regression in R - Step 1-it.srt
9.2 kB
12 Logistic Regression/086 Logistic Regression in Python - Step 1-es.srt
9.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-es.srt
9.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-es.srt
9.2 kB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-es.srt
9.2 kB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-ja.srt
9.2 kB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-pt.srt
9.1 kB
16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-tr.srt
9.1 kB
19 Evaluating Classification Models Performance/132 CAP Curve Analysis-en.srt
9.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-it.srt
9.1 kB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-ja.srt
9.1 kB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-es.srt
9.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-pt.srt
9.1 kB
22 Hierarchical Clustering/145 HC in Python - Step 1-ja.srt
9.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-it.srt
9.1 kB
12 Logistic Regression/086 Logistic Regression in Python - Step 1-pt.srt
9.1 kB
12 Logistic Regression/086 Logistic Regression in Python - Step 1-it.srt
9.0 kB
01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-en.srt
9.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-pt.srt
9.0 kB
32 Convolutional Neural Networks/253 CNN in Python - Step 6-ja.srt
9.0 kB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-it.srt
9.0 kB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-ja.srt
9.0 kB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-it.srt
8.9 kB
12 Logistic Regression/092 Logistic Regression in R - Step 1-tr.srt
8.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-tr.srt
8.9 kB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-pt.srt
8.9 kB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-es.srt
8.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-es.srt
8.9 kB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-pt.srt
8.9 kB
12 Logistic Regression/086 Logistic Regression in Python - Step 1-tr.srt
8.9 kB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-tr.srt
8.8 kB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-ja.srt
8.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-tr.srt
8.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-it.srt
8.8 kB
25 Eclat/165 Eclat Intuition-es.srt
8.8 kB
25 Eclat/165 Eclat Intuition-pt.srt
8.8 kB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-en.srt
8.8 kB
12 Logistic Regression/092 Logistic Regression in R - Step 1-en.srt
8.8 kB
04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-tr.srt
8.7 kB
06 Polynomial Regression/054 Polynomial Regression Intuition-ja.srt
8.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-pt.srt
8.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-it.srt
8.6 kB
19 Evaluating Classification Models Performance/129 Confusion Matrix-ja.srt
8.6 kB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-tr.srt
8.6 kB
12 Logistic Regression/086 Logistic Regression in Python - Step 1-en.srt
8.6 kB
25 Eclat/165 Eclat Intuition-it.srt
8.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-en.srt
8.6 kB
31 Artificial Neural Networks/223 Business Problem Description-ja.srt
8.5 kB
06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-en.srt
8.5 kB
31 Artificial Neural Networks/221 Backpropagation-ja.srt
8.5 kB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-es.srt
8.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-tr.srt
8.5 kB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-es.srt
8.5 kB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-it.srt
8.5 kB
32 Convolutional Neural Networks/252 CNN in Python - Step 5-es.srt
8.5 kB
22 Hierarchical Clustering/151 HC in R - Step 2-es.srt
8.5 kB
14 Support Vector Machine (SVM)/105 SVM.zip
8.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-en.srt
8.4 kB
10 Evaluating Regression Models Performance/078 R-Squared Intuition-ja.srt
8.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-ja.srt
8.4 kB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-pt.srt
8.4 kB
32 Convolutional Neural Networks/252 CNN in Python - Step 5-it.srt
8.4 kB
32 Convolutional Neural Networks/253 CNN in Python - Step 6-it.srt
8.4 kB
18 Random Forest Classification/124 Random Forest Classification Intuition-ja.srt
8.4 kB
32 Convolutional Neural Networks/253 CNN in Python - Step 6-es.srt
8.4 kB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-es.srt
8.3 kB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-pt.srt
8.3 kB
25 Eclat/165 Eclat Intuition-en.srt
8.3 kB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-pt.srt
8.3 kB
22 Hierarchical Clustering/147 HC in Python - Step 3-es.srt
8.3 kB
02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-en.srt
8.3 kB
22 Hierarchical Clustering/151 HC in R - Step 2-pt.srt
8.3 kB
22 Hierarchical Clustering/151 HC in R - Step 2-it.srt
8.2 kB
12 Logistic Regression/094 Logistic Regression in R - Step 3-ja.srt
8.2 kB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-es.srt
8.2 kB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-tr.srt
8.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-en.srt
8.2 kB
04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-en.srt
8.2 kB
25 Eclat/165 Eclat Intuition-tr.srt
8.2 kB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-it.srt
8.2 kB
32 Convolutional Neural Networks/252 CNN in Python - Step 5-pt.srt
8.2 kB
32 Convolutional Neural Networks/253 CNN in Python - Step 6-pt.srt
8.2 kB
12 Logistic Regression/089 Logistic Regression in Python - Step 4-ja.srt
8.2 kB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-en.srt
8.1 kB
05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-tr.srt
8.1 kB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-pt.srt
8.1 kB
22 Hierarchical Clustering/145 HC in Python - Step 1-es.srt
8.1 kB
06 Polynomial Regression/054 Polynomial Regression Intuition-es.srt
8.1 kB
22 Hierarchical Clustering/147 HC in Python - Step 3-pt.srt
8.1 kB
06 Polynomial Regression/054 Polynomial Regression Intuition-pt.srt
8.0 kB
32 Convolutional Neural Networks/253 CNN in Python - Step 6-tr.srt
8.0 kB
22 Hierarchical Clustering/151 HC in R - Step 2-en.srt
8.0 kB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-it.srt
8.0 kB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-ja.srt
8.0 kB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-it.srt
8.0 kB
06 Polynomial Regression/054 Polynomial Regression Intuition-it.srt
8.0 kB
32 Convolutional Neural Networks/252 CNN in Python - Step 5-tr.srt
8.0 kB
22 Hierarchical Clustering/145 HC in Python - Step 1-pt.srt
8.0 kB
12 Logistic Regression/097 R Classification Template-ja.srt
8.0 kB
22 Hierarchical Clustering/147 HC in Python - Step 3-it.srt
7.9 kB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-en.srt
7.9 kB
22 Hierarchical Clustering/149 HC in Python - Step 5-ja.srt
7.9 kB
22 Hierarchical Clustering/151 HC in R - Step 2-tr.srt
7.9 kB
31 Artificial Neural Networks/223 Business Problem Description-es.srt
7.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-es.srt
7.9 kB
13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-tr.srt
7.9 kB
22 Hierarchical Clustering/145 HC in Python - Step 1-it.srt
7.8 kB
31 Artificial Neural Networks/223 Business Problem Description-pt.srt
7.8 kB
32 Convolutional Neural Networks/253 CNN in Python - Step 6-en.srt
7.8 kB
31 Artificial Neural Networks/223 Business Problem Description-it.srt
7.8 kB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-tr.srt
7.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-pt.srt
7.8 kB
22 Hierarchical Clustering/148 HC in Python - Step 4-ja.srt
7.8 kB
06 Polynomial Regression/054 Polynomial Regression Intuition-en.srt
7.7 kB
06 Polynomial Regression/054 Polynomial Regression Intuition-tr.srt
7.7 kB
12 Logistic Regression/094 Logistic Regression in R - Step 3-es.srt
7.7 kB
31 Artificial Neural Networks/223 Business Problem Description-tr.srt
7.7 kB
32 Convolutional Neural Networks/252 CNN in Python - Step 5-en.srt
7.7 kB
22 Hierarchical Clustering/145 HC in Python - Step 1-tr.srt
7.6 kB
31 Artificial Neural Networks/221 Backpropagation-es.srt
7.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-tr.srt
7.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-it.srt
7.6 kB
31 Artificial Neural Networks/221 Backpropagation-pt.srt
7.6 kB
22 Hierarchical Clustering/147 HC in Python - Step 3-en.srt
7.6 kB
19 Evaluating Classification Models Performance/129 Confusion Matrix-pt.srt
7.6 kB
31 Artificial Neural Networks/221 Backpropagation-it.srt
7.6 kB
12 Logistic Regression/094 Logistic Regression in R - Step 3-pt.srt
7.6 kB
19 Evaluating Classification Models Performance/129 Confusion Matrix-es.srt
7.6 kB
04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-en.srt
7.6 kB
18 Random Forest Classification/124 Random Forest Classification Intuition-pt.srt
7.6 kB
12 Logistic Regression/094 Logistic Regression in R - Step 3-it.srt
7.6 kB
22 Hierarchical Clustering/147 HC in Python - Step 3-tr.srt
7.5 kB
22 Hierarchical Clustering/150 HC in R - Step 1-ja.srt
7.5 kB
31 Artificial Neural Networks/223 Business Problem Description-en.srt
7.5 kB
19 Evaluating Classification Models Performance/129 Confusion Matrix-it.srt
7.5 kB
22 Hierarchical Clustering/145 HC in Python - Step 1-en.srt
7.5 kB
12 Logistic Regression/091 Python Classification Template-ja.srt
7.4 kB
10 Evaluating Regression Models Performance/078 R-Squared Intuition-it.srt
7.4 kB
10 Evaluating Regression Models Performance/078 R-Squared Intuition-es.srt
7.4 kB
19 Evaluating Classification Models Performance/129 Confusion Matrix-en.srt
7.4 kB
12 Logistic Regression/094 Logistic Regression in R - Step 3-tr.srt
7.4 kB
31 Artificial Neural Networks/221 Backpropagation-tr.srt
7.4 kB
12 Logistic Regression/089 Logistic Regression in Python - Step 4-es.srt
7.4 kB
10 Evaluating Regression Models Performance/078 R-Squared Intuition-pt.srt
7.4 kB
18 Random Forest Classification/124 Random Forest Classification Intuition-es.srt
7.4 kB
32 Convolutional Neural Networks/245 Summary-ja.srt
7.3 kB
19 Evaluating Classification Models Performance/129 Confusion Matrix-tr.srt
7.3 kB
12 Logistic Regression/094 Logistic Regression in R - Step 3-en.srt
7.3 kB
31 Artificial Neural Networks/221 Backpropagation-en.srt
7.3 kB
10 Evaluating Regression Models Performance/078 R-Squared Intuition-tr.srt
7.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-en.srt
7.2 kB
12 Logistic Regression/089 Logistic Regression in Python - Step 4-pt.srt
7.2 kB
18 Random Forest Classification/124 Random Forest Classification Intuition-tr.srt
7.2 kB
18 Random Forest Classification/124 Random Forest Classification Intuition-it.srt
7.2 kB
12 Logistic Regression/089 Logistic Regression in Python - Step 4-it.srt
7.2 kB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-es.srt
7.2 kB
12 Logistic Regression/097 R Classification Template-tr.srt
7.1 kB
12 Logistic Regression/089 Logistic Regression in Python - Step 4-tr.srt
7.1 kB
10 Evaluating Regression Models Performance/078 R-Squared Intuition-en.srt
7.1 kB
22 Hierarchical Clustering/149 HC in Python - Step 5-es.srt
7.1 kB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-pt.srt
7.1 kB
12 Logistic Regression/097 R Classification Template-es.srt
7.0 kB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-tr.srt
7.0 kB
12 Logistic Regression/089 Logistic Regression in Python - Step 4-en.srt
7.0 kB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-it.srt
7.0 kB
18 Random Forest Classification/124 Random Forest Classification Intuition-en.srt
7.0 kB
12 Logistic Regression/097 R Classification Template-pt.srt
6.9 kB
22 Hierarchical Clustering/149 HC in Python - Step 5-pt.srt
6.9 kB
05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-en.srt
6.9 kB
22 Hierarchical Clustering/148 HC in Python - Step 4-es.srt
6.9 kB
22 Hierarchical Clustering/148 HC in Python - Step 4-pt.srt
6.9 kB
12 Logistic Regression/097 R Classification Template-it.srt
6.9 kB
22 Hierarchical Clustering/149 HC in Python - Step 5-it.srt
6.8 kB
22 Hierarchical Clustering/149 HC in Python - Step 5-tr.srt
6.8 kB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-ja.srt
6.8 kB
22 Hierarchical Clustering/148 HC in Python - Step 4-it.srt
6.8 kB
01 Welcome to the course/001 Applications of Machine Learning-ja.srt
6.7 kB
32 Convolutional Neural Networks/238 Plan of attack-ja.srt
6.7 kB
22 Hierarchical Clustering/149 HC in Python - Step 5-en.srt
6.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-ja.srt
6.7 kB
31 Artificial Neural Networks/230 ANN in Python - Step 7-ja.srt
6.7 kB
22 Hierarchical Clustering/150 HC in R - Step 1-es.srt
6.7 kB
22 Hierarchical Clustering/148 HC in Python - Step 4-tr.srt
6.7 kB
32 Convolutional Neural Networks/245 Summary-es.srt
6.6 kB
12 Logistic Regression/097 R Classification Template-en.srt
6.6 kB
22 Hierarchical Clustering/150 HC in R - Step 1-pt.srt
6.6 kB
32 Convolutional Neural Networks/245 Summary-pt.srt
6.6 kB
12 Logistic Regression/091 Python Classification Template-es.srt
6.6 kB
22 Hierarchical Clustering/150 HC in R - Step 1-it.srt
6.6 kB
32 Convolutional Neural Networks/245 Summary-it.srt
6.5 kB
22 Hierarchical Clustering/150 HC in R - Step 1-tr.srt
6.5 kB
05 Multiple Linear Regression/034 Dataset Business Problem Description-ja.srt
6.5 kB
12 Logistic Regression/091 Python Classification Template-it.srt
6.4 kB
12 Logistic Regression/091 Python Classification Template-pt.srt
6.4 kB
22 Hierarchical Clustering/148 HC in Python - Step 4-en.srt
6.4 kB
12 Logistic Regression/091 Python Classification Template-tr.srt
6.4 kB
32 Convolutional Neural Networks/245 Summary-tr.srt
6.3 kB
31 Artificial Neural Networks/226 ANN in Python - Step 3-ja.srt
6.3 kB
22 Hierarchical Clustering/150 HC in R - Step 1-en.srt
6.2 kB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-ja.srt
6.2 kB
15 Kernel SVM/109 Types of Kernel Functions-ja.srt
6.2 kB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2-ja.srt
6.2 kB
32 Convolutional Neural Networks/245 Summary-en.srt
6.2 kB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-es.srt
6.1 kB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-ja.srt
6.1 kB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-it.srt
6.1 kB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-pt.srt
6.0 kB
12 Logistic Regression/091 Python Classification Template-en.srt
6.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-es.srt
6.0 kB
01 Welcome to the course/001 Applications of Machine Learning-pt.srt
5.9 kB
31 Artificial Neural Networks/230 ANN in Python - Step 7-pt.srt
5.9 kB
01 Welcome to the course/001 Applications of Machine Learning-it.srt
5.8 kB
12 Logistic Regression/087 Logistic Regression in Python - Step 2-ja.srt
5.8 kB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-tr.srt
5.8 kB
31 Artificial Neural Networks/230 ANN in Python - Step 7-es.srt
5.8 kB
04 Simple Linear Regression/021 How to get the dataset-ja.srt
5.8 kB
05 Multiple Linear Regression/033 How to get the dataset-ja.srt
5.8 kB
06 Polynomial Regression/055 How to get the dataset-ja.srt
5.8 kB
07 Support Vector Regression (SVR)/066 How to get the dataset-ja.srt
5.8 kB
08 Decision Tree Regression/071 How to get the dataset-ja.srt
5.8 kB
09 Random Forest Regression/075 How to get the dataset-ja.srt
5.8 kB
12 Logistic Regression/085 How to get the dataset-ja.srt
5.8 kB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-ja.srt
5.8 kB
14 Support Vector Machine (SVM)/103 How to get the dataset-ja.srt
5.8 kB
15 Kernel SVM/110 How to get the dataset-ja.srt
5.8 kB
16 Naive Bayes/117 How to get the dataset-ja.srt
5.8 kB
17 Decision Tree Classification/121 How to get the dataset-ja.srt
5.8 kB
18 Random Forest Classification/125 How to get the dataset-ja.srt
5.8 kB
21 K-Means Clustering/138 How to get the dataset-ja.srt
5.8 kB
22 Hierarchical Clustering/144 How to get the dataset-ja.srt
5.8 kB
24 Apriori/158 How to get the dataset-ja.srt
5.8 kB
25 Eclat/166 How to get the dataset-ja.srt
5.8 kB
27 Upper Confidence Bound (UCB)/171 How to get the dataset-ja.srt
5.8 kB
28 Thompson Sampling/182 How to get the dataset-ja.srt
5.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-ja.srt
5.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-it.srt
5.8 kB
31 Artificial Neural Networks/222 How to get the dataset-ja.srt
5.8 kB
32 Convolutional Neural Networks/247 How to get the dataset-ja.srt
5.8 kB
34 Principal Component Analysis (PCA)/261 How to get the dataset-ja.srt
5.8 kB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-ja.srt
5.8 kB
36 Kernel PCA/272 How to get the dataset-ja.srt
5.8 kB
38 Model Selection/276 How to get the dataset-ja.srt
5.8 kB
39 XGBoost/282 How to get the dataset-ja.srt
5.8 kB
31 Artificial Neural Networks/230 ANN in Python - Step 7-it.srt
5.8 kB
05 Multiple Linear Regression/034 Dataset Business Problem Description-pt.srt
5.8 kB
32 Convolutional Neural Networks/255 CNN in Python - Step 8-ja.srt
5.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-pt.srt
5.8 kB
05 Multiple Linear Regression/034 Dataset Business Problem Description-es.srt
5.8 kB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-ja.srt
5.8 kB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-ja.srt
5.8 kB
05 Multiple Linear Regression/034 Dataset Business Problem Description-tr.srt
5.7 kB
40 Bonus Lectures/286 YOUR SPECIAL BONUS.html
5.7 kB
28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-en.srt
5.7 kB
01 Welcome to the course/001 Applications of Machine Learning-es.srt
5.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-tr.srt
5.7 kB
05 Multiple Linear Regression/034 Dataset Business Problem Description-it.srt
5.7 kB
31 Artificial Neural Networks/230 ANN in Python - Step 7-tr.srt
5.7 kB
32 Convolutional Neural Networks/249 CNN in Python - Step 2-ja.srt
5.7 kB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-es.srt
5.7 kB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-es.srt
5.6 kB
31 Artificial Neural Networks/230 ANN in Python - Step 7-en.srt
5.6 kB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-it.srt
5.6 kB
01 Welcome to the course/001 Applications of Machine Learning-tr.srt
5.6 kB
32 Convolutional Neural Networks/238 Plan of attack-tr.srt
5.6 kB
05 Multiple Linear Regression/034 Dataset Business Problem Description-en.srt
5.6 kB
32 Convolutional Neural Networks/238 Plan of attack-es.srt
5.6 kB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-pt.srt
5.6 kB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-it.srt
5.6 kB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2-es.srt
5.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-ja.srt
5.5 kB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2-it.srt
5.5 kB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-pt.srt
5.5 kB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-ja.srt
5.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-en.srt
5.5 kB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2-pt.srt
5.5 kB
22 Hierarchical Clustering/152 HC in R - Step 3-ja.srt
5.5 kB
32 Convolutional Neural Networks/238 Plan of attack-pt.srt
5.5 kB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-it.srt
5.5 kB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-pt.srt
5.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-ja.srt
5.4 kB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-es.srt
5.4 kB
31 Artificial Neural Networks/226 ANN in Python - Step 3-pt.srt
5.4 kB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-en.srt
5.4 kB
01 Welcome to the course/001 Applications of Machine Learning-en.srt
5.4 kB
31 Artificial Neural Networks/226 ANN in Python - Step 3-es.srt
5.4 kB
32 Convolutional Neural Networks/238 Plan of attack-it.srt
5.4 kB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-es.srt
5.4 kB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-it.srt
5.4 kB
32 Convolutional Neural Networks/238 Plan of attack-en.srt
5.4 kB
31 Artificial Neural Networks/226 ANN in Python - Step 3-tr.srt
5.3 kB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-tr.srt
5.3 kB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-pt.srt
5.3 kB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2-tr.srt
5.3 kB
31 Artificial Neural Networks/226 ANN in Python - Step 3-it.srt
5.3 kB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-tr.srt
5.3 kB
15 Kernel SVM/109 Types of Kernel Functions-es.srt
5.3 kB
15 Kernel SVM/109 Types of Kernel Functions-pt.srt
5.3 kB
15 Kernel SVM/106 Kernel SVM Intuition-ja.srt
5.2 kB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-en.srt
5.2 kB
35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-tr.srt
5.2 kB
31 Artificial Neural Networks/229 ANN in Python - Step 6-ja.srt
5.2 kB
28 Thompson Sampling/186 Thompson Sampling in R - Step 2-en.srt
5.2 kB
04 Simple Linear Regression/021 How to get the dataset-es.srt
5.2 kB
05 Multiple Linear Regression/033 How to get the dataset-es.srt
5.2 kB
06 Polynomial Regression/055 How to get the dataset-es.srt
5.2 kB
07 Support Vector Regression (SVR)/066 How to get the dataset-es.srt
5.2 kB
08 Decision Tree Regression/071 How to get the dataset-es.srt
5.2 kB
09 Random Forest Regression/075 How to get the dataset-es.srt
5.2 kB
12 Logistic Regression/085 How to get the dataset-es.srt
5.2 kB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-es.srt
5.2 kB
14 Support Vector Machine (SVM)/103 How to get the dataset-es.srt
5.2 kB
15 Kernel SVM/110 How to get the dataset-es.srt
5.2 kB
16 Naive Bayes/117 How to get the dataset-es.srt
5.2 kB
17 Decision Tree Classification/121 How to get the dataset-es.srt
5.2 kB
18 Random Forest Classification/125 How to get the dataset-es.srt
5.2 kB
21 K-Means Clustering/138 How to get the dataset-es.srt
5.2 kB
22 Hierarchical Clustering/144 How to get the dataset-es.srt
5.2 kB
24 Apriori/158 How to get the dataset-es.srt
5.2 kB
25 Eclat/166 How to get the dataset-es.srt
5.2 kB
27 Upper Confidence Bound (UCB)/171 How to get the dataset-es.srt
5.2 kB
28 Thompson Sampling/182 How to get the dataset-es.srt
5.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-es.srt
5.2 kB
31 Artificial Neural Networks/222 How to get the dataset-es.srt
5.2 kB
32 Convolutional Neural Networks/247 How to get the dataset-es.srt
5.2 kB
34 Principal Component Analysis (PCA)/261 How to get the dataset-es.srt
5.2 kB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-es.srt
5.2 kB
36 Kernel PCA/272 How to get the dataset-es.srt
5.2 kB
38 Model Selection/276 How to get the dataset-es.srt
5.2 kB
39 XGBoost/282 How to get the dataset-es.srt
5.2 kB
31 Artificial Neural Networks/214 Plan of attack-ja.srt
5.2 kB
15 Kernel SVM/109 Types of Kernel Functions-it.srt
5.2 kB
04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-tr.srt
5.2 kB
34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-en.srt
5.2 kB
15 Kernel SVM/109 Types of Kernel Functions-tr.srt
5.2 kB
04 Simple Linear Regression/021 How to get the dataset-pt.srt
5.2 kB
05 Multiple Linear Regression/033 How to get the dataset-pt.srt
5.2 kB
07 Support Vector Regression (SVR)/066 How to get the dataset-pt.srt
5.2 kB
08 Decision Tree Regression/071 How to get the dataset-pt.srt
5.2 kB
09 Random Forest Regression/075 How to get the dataset-pt.srt
5.2 kB
12 Logistic Regression/085 How to get the dataset-pt.srt
5.2 kB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-pt.srt
5.2 kB
14 Support Vector Machine (SVM)/103 How to get the dataset-pt.srt
5.2 kB
15 Kernel SVM/110 How to get the dataset-pt.srt
5.2 kB
16 Naive Bayes/117 How to get the dataset-pt.srt
5.2 kB
17 Decision Tree Classification/121 How to get the dataset-pt.srt
5.2 kB
18 Random Forest Classification/125 How to get the dataset-pt.srt
5.2 kB
21 K-Means Clustering/138 How to get the dataset-pt.srt
5.2 kB
22 Hierarchical Clustering/144 How to get the dataset-pt.srt
5.2 kB
24 Apriori/158 How to get the dataset-pt.srt
5.2 kB
25 Eclat/166 How to get the dataset-pt.srt
5.2 kB
27 Upper Confidence Bound (UCB)/171 How to get the dataset-pt.srt
5.2 kB
28 Thompson Sampling/182 How to get the dataset-pt.srt
5.2 kB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-pt.srt
5.2 kB
31 Artificial Neural Networks/222 How to get the dataset-pt.srt
5.2 kB
32 Convolutional Neural Networks/247 How to get the dataset-pt.srt
5.2 kB
34 Principal Component Analysis (PCA)/261 How to get the dataset-pt.srt
5.2 kB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-pt.srt
5.2 kB
36 Kernel PCA/272 How to get the dataset-pt.srt
5.2 kB
38 Model Selection/276 How to get the dataset-pt.srt
5.2 kB
39 XGBoost/282 How to get the dataset-pt.srt
5.2 kB
06 Polynomial Regression/055 How to get the dataset-pt.srt
5.1 kB
12 Logistic Regression/087 Logistic Regression in Python - Step 2-es.srt
5.1 kB
27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-en.srt
5.1 kB
31 Artificial Neural Networks/226 ANN in Python - Step 3-en.srt
5.1 kB
04 Simple Linear Regression/021 How to get the dataset-it.srt
5.1 kB
05 Multiple Linear Regression/033 How to get the dataset-it.srt
5.1 kB
06 Polynomial Regression/055 How to get the dataset-it.srt
5.1 kB
07 Support Vector Regression (SVR)/066 How to get the dataset-it.srt
5.1 kB
08 Decision Tree Regression/071 How to get the dataset-it.srt
5.1 kB
09 Random Forest Regression/075 How to get the dataset-it.srt
5.1 kB
12 Logistic Regression/085 How to get the dataset-it.srt
5.1 kB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-it.srt
5.1 kB
14 Support Vector Machine (SVM)/103 How to get the dataset-it.srt
5.1 kB
15 Kernel SVM/110 How to get the dataset-it.srt
5.1 kB
16 Naive Bayes/117 How to get the dataset-it.srt
5.1 kB
17 Decision Tree Classification/121 How to get the dataset-it.srt
5.1 kB
18 Random Forest Classification/125 How to get the dataset-it.srt
5.1 kB
21 K-Means Clustering/138 How to get the dataset-it.srt
5.1 kB
22 Hierarchical Clustering/144 How to get the dataset-it.srt
5.1 kB
24 Apriori/158 How to get the dataset-it.srt
5.1 kB
25 Eclat/166 How to get the dataset-it.srt
5.1 kB
27 Upper Confidence Bound (UCB)/171 How to get the dataset-it.srt
5.1 kB
28 Thompson Sampling/182 How to get the dataset-it.srt
5.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-it.srt
5.1 kB
31 Artificial Neural Networks/222 How to get the dataset-it.srt
5.1 kB
32 Convolutional Neural Networks/247 How to get the dataset-it.srt
5.1 kB
34 Principal Component Analysis (PCA)/261 How to get the dataset-it.srt
5.1 kB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-it.srt
5.1 kB
36 Kernel PCA/272 How to get the dataset-it.srt
5.1 kB
38 Model Selection/276 How to get the dataset-it.srt
5.1 kB
39 XGBoost/282 How to get the dataset-it.srt
5.1 kB
15 Kernel SVM/109 Types of Kernel Functions-en.srt
5.1 kB
12 Logistic Regression/093 Logistic Regression in R - Step 2-ja.srt
5.0 kB
12 Logistic Regression/087 Logistic Regression in Python - Step 2-pt.srt
5.0 kB
12 Logistic Regression/087 Logistic Regression in Python - Step 2-it.srt
5.0 kB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-es.srt
5.0 kB
32 Convolutional Neural Networks/255 CNN in Python - Step 8-pt.srt
5.0 kB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-it.srt
5.0 kB
32 Convolutional Neural Networks/255 CNN in Python - Step 8-it.srt
5.0 kB
32 Convolutional Neural Networks/255 CNN in Python - Step 8-es.srt
5.0 kB
04 Simple Linear Regression/021 How to get the dataset-tr.srt
5.0 kB
05 Multiple Linear Regression/033 How to get the dataset-tr.srt
5.0 kB
06 Polynomial Regression/055 How to get the dataset-tr.srt
5.0 kB
07 Support Vector Regression (SVR)/066 How to get the dataset-tr.srt
5.0 kB
08 Decision Tree Regression/071 How to get the dataset-tr.srt
5.0 kB
09 Random Forest Regression/075 How to get the dataset-tr.srt
5.0 kB
12 Logistic Regression/085 How to get the dataset-tr.srt
5.0 kB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-tr.srt
5.0 kB
14 Support Vector Machine (SVM)/103 How to get the dataset-tr.srt
5.0 kB
15 Kernel SVM/110 How to get the dataset-tr.srt
5.0 kB
16 Naive Bayes/117 How to get the dataset-tr.srt
5.0 kB
17 Decision Tree Classification/121 How to get the dataset-tr.srt
5.0 kB
18 Random Forest Classification/125 How to get the dataset-tr.srt
5.0 kB
21 K-Means Clustering/138 How to get the dataset-tr.srt
5.0 kB
22 Hierarchical Clustering/144 How to get the dataset-tr.srt
5.0 kB
24 Apriori/158 How to get the dataset-tr.srt
5.0 kB
25 Eclat/166 How to get the dataset-tr.srt
5.0 kB
27 Upper Confidence Bound (UCB)/171 How to get the dataset-tr.srt
5.0 kB
28 Thompson Sampling/182 How to get the dataset-tr.srt
5.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-tr.srt
5.0 kB
31 Artificial Neural Networks/222 How to get the dataset-tr.srt
5.0 kB
32 Convolutional Neural Networks/247 How to get the dataset-tr.srt
5.0 kB
34 Principal Component Analysis (PCA)/261 How to get the dataset-tr.srt
5.0 kB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-tr.srt
5.0 kB
36 Kernel PCA/272 How to get the dataset-tr.srt
5.0 kB
38 Model Selection/276 How to get the dataset-tr.srt
5.0 kB
39 XGBoost/282 How to get the dataset-tr.srt
5.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-es.srt
4.9 kB
22 Hierarchical Clustering/152 HC in R - Step 3-it.srt
4.9 kB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-pt.srt
4.9 kB
22 Hierarchical Clustering/152 HC in R - Step 3-es.srt
4.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-es.srt
4.9 kB
22 Hierarchical Clustering/152 HC in R - Step 3-pt.srt
4.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-it.srt
4.9 kB
12 Logistic Regression/087 Logistic Regression in Python - Step 2-tr.srt
4.9 kB
32 Convolutional Neural Networks/249 CNN in Python - Step 2-it.srt
4.9 kB
15 Kernel SVM/106 Kernel SVM Intuition-es.srt
4.9 kB
04 Simple Linear Regression/021 How to get the dataset-en.srt
4.9 kB
05 Multiple Linear Regression/033 How to get the dataset-en.srt
4.9 kB
06 Polynomial Regression/055 How to get the dataset-en.srt
4.9 kB
07 Support Vector Regression (SVR)/066 How to get the dataset-en.srt
4.9 kB
08 Decision Tree Regression/071 How to get the dataset-en.srt
4.9 kB
09 Random Forest Regression/075 How to get the dataset-en.srt
4.9 kB
12 Logistic Regression/085 How to get the dataset-en.srt
4.9 kB
13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-en.srt
4.9 kB
14 Support Vector Machine (SVM)/103 How to get the dataset-en.srt
4.9 kB
15 Kernel SVM/110 How to get the dataset-en.srt
4.9 kB
16 Naive Bayes/117 How to get the dataset-en.srt
4.9 kB
17 Decision Tree Classification/121 How to get the dataset-en.srt
4.9 kB
18 Random Forest Classification/125 How to get the dataset-en.srt
4.9 kB
21 K-Means Clustering/138 How to get the dataset-en.srt
4.9 kB
22 Hierarchical Clustering/144 How to get the dataset-en.srt
4.9 kB
24 Apriori/158 How to get the dataset-en.srt
4.9 kB
25 Eclat/166 How to get the dataset-en.srt
4.9 kB
27 Upper Confidence Bound (UCB)/171 How to get the dataset-en.srt
4.9 kB
28 Thompson Sampling/182 How to get the dataset-en.srt
4.9 kB
29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-en.srt
4.9 kB
31 Artificial Neural Networks/222 How to get the dataset-en.srt
4.9 kB
32 Convolutional Neural Networks/247 How to get the dataset-en.srt
4.9 kB
34 Principal Component Analysis (PCA)/261 How to get the dataset-en.srt
4.9 kB
35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-en.srt
4.9 kB
36 Kernel PCA/272 How to get the dataset-en.srt
4.9 kB
38 Model Selection/276 How to get the dataset-en.srt
4.9 kB
39 XGBoost/282 How to get the dataset-en.srt
4.9 kB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-ja.srt
4.9 kB
12 Logistic Regression/087 Logistic Regression in Python - Step 2-en.srt
4.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-pt.srt
4.8 kB
15 Kernel SVM/106 Kernel SVM Intuition-it.srt
4.8 kB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-ja.srt
4.8 kB
15 Kernel SVM/106 Kernel SVM Intuition-pt.srt
4.8 kB
32 Convolutional Neural Networks/249 CNN in Python - Step 2-es.srt
4.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-pt.srt
4.8 kB
12 Logistic Regression/088 Logistic Regression in Python - Step 3-ja.srt
4.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-tr.srt
4.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-it.srt
4.8 kB
32 Convolutional Neural Networks/249 CNN in Python - Step 2-pt.srt
4.8 kB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-tr.srt
4.7 kB
22 Hierarchical Clustering/152 HC in R - Step 3-tr.srt
4.7 kB
31 Artificial Neural Networks/227 ANN in Python - Step 4-ja.srt
4.7 kB
32 Convolutional Neural Networks/255 CNN in Python - Step 8-tr.srt
4.7 kB
31 Artificial Neural Networks/229 ANN in Python - Step 6-it.srt
4.7 kB
32 Convolutional Neural Networks/255 CNN in Python - Step 8-en.srt
4.7 kB
22 Hierarchical Clustering/152 HC in R - Step 3-en.srt
4.7 kB
22 Hierarchical Clustering/154 HC in R - Step 5-ja.srt
4.7 kB
19 Evaluating Classification Models Performance/133 Conclusion of Part 3 - Classification.html
4.6 kB
22 Hierarchical Clustering/153 HC in R - Step 4-ja.srt
4.6 kB
31 Artificial Neural Networks/229 ANN in Python - Step 6-es.srt
4.6 kB
12 Logistic Regression/093 Logistic Regression in R - Step 2-es.srt
4.6 kB
31 Artificial Neural Networks/229 ANN in Python - Step 6-pt.srt
4.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-en.srt
4.6 kB
12 Logistic Regression/093 Logistic Regression in R - Step 2-pt.srt
4.6 kB
32 Convolutional Neural Networks/249 CNN in Python - Step 2-en.srt
4.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-tr.srt
4.6 kB
32 Convolutional Neural Networks/249 CNN in Python - Step 2-tr.srt
4.6 kB
15 Kernel SVM/106 Kernel SVM Intuition-tr.srt
4.5 kB
27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-en.srt
4.5 kB
15 Kernel SVM/106 Kernel SVM Intuition-en.srt
4.5 kB
12 Logistic Regression/093 Logistic Regression in R - Step 2-it.srt
4.5 kB
04 Simple Linear Regression/022 Dataset Business Problem Description-ja.srt
4.5 kB
12 Logistic Regression/095 Logistic Regression in R - Step 4-ja.srt
4.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-en.srt
4.5 kB
31 Artificial Neural Networks/229 ANN in Python - Step 6-tr.srt
4.5 kB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-pt.srt
4.4 kB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-es.srt
4.4 kB
31 Artificial Neural Networks/229 ANN in Python - Step 6-en.srt
4.4 kB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-it.srt
4.4 kB
12 Logistic Regression/093 Logistic Regression in R - Step 2-tr.srt
4.4 kB
22 Hierarchical Clustering/154 HC in R - Step 5-es.srt
4.3 kB
12 Logistic Regression/093 Logistic Regression in R - Step 2-en.srt
4.3 kB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-en.srt
4.3 kB
12 Logistic Regression/088 Logistic Regression in Python - Step 3-es.srt
4.3 kB
01 Welcome to the course/003 Important notes tips tricks for this course.html
4.3 kB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-it.srt
4.2 kB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-es.srt
4.2 kB
04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-tr.srt
4.2 kB
31 Artificial Neural Networks/214 Plan of attack-es.srt
4.2 kB
22 Hierarchical Clustering/153 HC in R - Step 4-es.srt
4.2 kB
22 Hierarchical Clustering/154 HC in R - Step 5-it.srt
4.2 kB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-pt.srt
4.2 kB
04 Simple Linear Regression/022 Dataset Business Problem Description-pt.srt
4.2 kB
22 Hierarchical Clustering/154 HC in R - Step 5-pt.srt
4.2 kB
10 Evaluating Regression Models Performance/082 Conclusion of Part 2 - Regression.html
4.2 kB
12 Logistic Regression/088 Logistic Regression in Python - Step 3-pt.srt
4.2 kB
31 Artificial Neural Networks/214 Plan of attack-tr.srt
4.1 kB
31 Artificial Neural Networks/214 Plan of attack-pt.srt
4.1 kB
22 Hierarchical Clustering/153 HC in R - Step 4-pt.srt
4.1 kB
04 Simple Linear Regression/022 Dataset Business Problem Description-es.srt
4.1 kB
12 Logistic Regression/088 Logistic Regression in Python - Step 3-it.srt
4.1 kB
22 Hierarchical Clustering/153 HC in R - Step 4-it.srt
4.1 kB
31 Artificial Neural Networks/214 Plan of attack-en.srt
4.1 kB
31 Artificial Neural Networks/214 Plan of attack-it.srt
4.1 kB
12 Logistic Regression/095 Logistic Regression in R - Step 4-es.srt
4.1 kB
22 Hierarchical Clustering/154 HC in R - Step 5-tr.srt
4.1 kB
12 Logistic Regression/088 Logistic Regression in Python - Step 3-tr.srt
4.0 kB
04 Simple Linear Regression/022 Dataset Business Problem Description-en.srt
4.0 kB
12 Logistic Regression/088 Logistic Regression in Python - Step 3-en.srt
4.0 kB
12 Logistic Regression/095 Logistic Regression in R - Step 4-pt.srt
4.0 kB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-en.srt
4.0 kB
04 Simple Linear Regression/022 Dataset Business Problem Description-it.srt
4.0 kB
22 Hierarchical Clustering/153 HC in R - Step 4-tr.srt
4.0 kB
22 Hierarchical Clustering/154 HC in R - Step 5-en.srt
4.0 kB
31 Artificial Neural Networks/227 ANN in Python - Step 4-it.srt
4.0 kB
31 Artificial Neural Networks/227 ANN in Python - Step 4-pt.srt
4.0 kB
31 Artificial Neural Networks/227 ANN in Python - Step 4-es.srt
4.0 kB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-ja.srt
4.0 kB
04 Simple Linear Regression/022 Dataset Business Problem Description-tr.srt
4.0 kB
12 Logistic Regression/095 Logistic Regression in R - Step 4-it.srt
3.9 kB
12 Logistic Regression/095 Logistic Regression in R - Step 4-en.srt
3.9 kB
31 Artificial Neural Networks/227 ANN in Python - Step 4-tr.srt
3.9 kB
05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-tr.srt
3.9 kB
12 Logistic Regression/095 Logistic Regression in R - Step 4-tr.srt
3.8 kB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-ja.srt
3.8 kB
31 Artificial Neural Networks/227 ANN in Python - Step 4-en.srt
3.8 kB
22 Hierarchical Clustering/153 HC in R - Step 4-en.srt
3.8 kB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-pt.srt
3.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-es.srt
3.6 kB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-es.srt
3.5 kB
19 Evaluating Classification Models Performance/130 Accuracy Paradox-ja.srt
3.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-tr.srt
3.5 kB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-it.srt
3.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-pt.srt
3.5 kB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-en.srt
3.5 kB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-it.srt
3.4 kB
05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-tr.srt
3.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-en.srt
3.3 kB
19 Evaluating Classification Models Performance/130 Accuracy Paradox-es.srt
3.3 kB
19 Evaluating Classification Models Performance/130 Accuracy Paradox-it.srt
3.3 kB
32 Convolutional Neural Networks/258 CNN in R.html
3.3 kB
19 Evaluating Classification Models Performance/130 Accuracy Paradox-pt.srt
3.3 kB
19 Evaluating Classification Models Performance/130 Accuracy Paradox-en.srt
3.2 kB
19 Evaluating Classification Models Performance/130 Accuracy Paradox-tr.srt
3.2 kB
05 Multiple Linear Regression/047 Multiple Linear Regression in Python - Automatic Backward Elimination.html
3.1 kB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-ja.srt
3.0 kB
32 Convolutional Neural Networks/243 Step 3 - Flattening-ja.srt
3.0 kB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-ja.srt
3.0 kB
32 Convolutional Neural Networks/243 Step 3 - Flattening-es.srt
2.8 kB
32 Convolutional Neural Networks/243 Step 3 - Flattening-tr.srt
2.8 kB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-es.srt
2.7 kB
32 Convolutional Neural Networks/243 Step 3 - Flattening-pt.srt
2.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-it.srt
2.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-pt.srt
2.7 kB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-pt.srt
2.7 kB
32 Convolutional Neural Networks/243 Step 3 - Flattening-it.srt
2.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-es.srt
2.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-it.srt
2.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-tr.srt
2.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/187 Welcome to Part 7 - Natural Language Processing.html
2.6 kB
32 Convolutional Neural Networks/243 Step 3 - Flattening-en.srt
2.6 kB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-tr.srt
2.6 kB
29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-en.srt
2.5 kB
02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-en.srt
2.5 kB
01 Welcome to the course/004 This PDF resource will help you a lot.html
2.4 kB
02 -------------------- Part 1 Data Preprocessing --------------------/013 For Python learners summary of Object-oriented programming classes objects.html
2.4 kB
29 -------------------- Part 7 Natural Language Processing --------------------/211 Homework Challenge.html
2.3 kB
29 -------------------- Part 7 Natural Language Processing --------------------/200 Homework Challenge.html
2.3 kB
01 Welcome to the course/006 Update Recommended Anaconda Version.html
2.2 kB
33 -------------------- Part 9 Dimensionality Reduction --------------------/259 Welcome to Part 9 - Dimensionality Reduction.html
2.2 kB
32 Convolutional Neural Networks/250 CNN in Python - Step 3-ja.srt
2.0 kB
01 Welcome to the course/008 BONUS Meet your instructors.html
1.9 kB
37 -------------------- Part 10 Model Selection Boosting --------------------/275 Welcome to Part 10 - Model Selection Boosting.html
1.8 kB
32 Convolutional Neural Networks/250 CNN in Python - Step 3-tr.srt
1.8 kB
32 Convolutional Neural Networks/250 CNN in Python - Step 3-es.srt
1.8 kB
32 Convolutional Neural Networks/250 CNN in Python - Step 3-it.srt
1.8 kB
32 Convolutional Neural Networks/250 CNN in Python - Step 3-pt.srt
1.7 kB
30 -------------------- Part 8 Deep Learning --------------------/212 Welcome to Part 8 - Deep Learning.html
1.7 kB
03 -------------------- Part 2 Regression --------------------/020 Welcome to Part 2 - Regression.html
1.7 kB
11 -------------------- Part 3 Classification --------------------/083 Welcome to Part 3 - Classification.html
1.7 kB
32 Convolutional Neural Networks/250 CNN in Python - Step 3-en.srt
1.7 kB
26 -------------------- Part 6 Reinforcement Learning --------------------/168 Welcome to Part 6 - Reinforcement Learning.html
1.7 kB
02 -------------------- Part 1 Data Preprocessing --------------------/016 WARNING - Update.html
1.6 kB
05 Multiple Linear Regression/053 Multiple Linear Regression in R - Automatic Backward Elimination.html
1.6 kB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-ja.srt
1.6 kB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-es.srt
1.6 kB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-ja.srt
1.6 kB
20 -------------------- Part 4 Clustering --------------------/134 Welcome to Part 4 - Clustering.html
1.6 kB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-tr.srt
1.6 kB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-pt.srt
1.6 kB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-en.srt
1.6 kB
05 Multiple Linear Regression/039 Prerequisites What is the P-Value.html
1.5 kB
05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-it.srt
1.5 kB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-pt.srt
1.5 kB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-tr.srt
1.5 kB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-es.srt
1.5 kB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-it.srt
1.4 kB
05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-en.srt
1.4 kB
22 Hierarchical Clustering/155 Conclusion of Part 4 - Clustering.html
1.4 kB
23 -------------------- Part 5 Association Rule Learning --------------------/156 Welcome to Part 5 - Association Rule Learning.html
1.3 kB
udemycoursedownloader.com.url
132 Bytes
Udemy Course downloader.txt
94 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>