搜索
[Udemy] Deep Learning Recurrent Neural Networks in Python (06.2021)
磁力链接/BT种子名称
[Udemy] Deep Learning Recurrent Neural Networks in Python (06.2021)
磁力链接/BT种子简介
种子哈希:
2dd76f6f5972e094ca6f0c00d5e4ebea702a46b8
文件大小:
3.66G
已经下载:
3721
次
下载速度:
极快
收录时间:
2022-02-05
最近下载:
2025-02-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:2DD76F6F5972E094CA6F0C00D5E4EBEA702A46B8
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
抄底超短包臀裙
五等分
信哥
莹莹
顶级女神☀️重磅泄密
魔手。外购
抖音 熟
old lady
蜂腰美臀
援交
留学生
空档
foxy di
迷奸
字幕组+2018年合集
孕妇
麻豆传媒苏
抖硬
かわいいあゆみは独身で、今日は東京でのかわいい素人のセックスパートナーです。
wendy williams
良家女约炮
recordings
乐园
佐佐木明希+無修正
successor.2024
重磅稀缺国内洗浴中心偷拍
电影
小出遥
child fuck
录像曝光
文件列表
10. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018.mp4
323.9 MB
10. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
201.3 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem.mp4
150.0 MB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
142.9 MB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
141.5 MB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.mp4
113.7 MB
2. Google Colab/2. Uploading your own data to Google Colab.mp4
108.3 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3).mp4
104.2 MB
4. Feedforward Artificial Neural Networks/9. ANN for Regression.mp4
104.0 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.mp4
102.7 MB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).mp4
98.1 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.mp4
92.5 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.mp4
90.4 MB
3. Machine Learning and Neurons/5. Classification Notebook.mp4
81.4 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.mp4
79.9 MB
6. Natural Language Processing (NLP)/4. Text Classification with LSTMs.mp4
79.2 MB
2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.mp4
75.0 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.mp4
69.8 MB
3. Machine Learning and Neurons/11. How does a model learn.mp4
63.5 MB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
63.1 MB
4. Feedforward Artificial Neural Networks/4. Activation Functions.mp4
62.4 MB
4. Feedforward Artificial Neural Networks/8. ANN for Image Classification.mp4
61.7 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1).mp4
61.1 MB
8. In-Depth Gradient Descent/5. Adam (pt 1).mp4
57.8 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).mp4
57.8 MB
8. In-Depth Gradient Descent/6. Adam (pt 2).mp4
55.3 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.mp4
54.5 MB
3. Machine Learning and Neurons/8. Regression Notebook.mp4
51.3 MB
3. Machine Learning and Neurons/2. What is Machine Learning.mp4
50.1 MB
1. Welcome/3. How to Succeed in this Course.mp4
49.1 MB
3. Machine Learning and Neurons/10. The Neuron.mp4
47.6 MB
4. Feedforward Artificial Neural Networks/6. How to Represent Images.mp4
45.1 MB
3. Machine Learning and Neurons/13. Saving and Loading a Model.mp4
43.7 MB
6. Natural Language Processing (NLP)/2. Code Preparation (NLP).mp4
42.9 MB
13. Appendix FAQ Finale/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
39.6 MB
3. Machine Learning and Neurons/3. Code Preparation (Classification Theory).mp4
39.6 MB
6. Natural Language Processing (NLP)/1. Embeddings.mp4
34.5 MB
1. Welcome/2. Where to get the Code.mp4
34.0 MB
4. Feedforward Artificial Neural Networks/7. Code Preparation (ANN).mp4
33.9 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code).mp4
33.5 MB
1. Welcome/1. Introduction and Outline.mp4
33.0 MB
4. Feedforward Artificial Neural Networks/5. Multiclass Classification.mp4
32.3 MB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).mp4
30.7 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).mp4
30.7 MB
4. Feedforward Artificial Neural Networks/3. The Geometrical Picture.mp4
30.0 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2).mp4
28.8 MB
6. Natural Language Processing (NLP)/3. Text Preprocessing.mp4
27.7 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.mp4
27.5 MB
8. In-Depth Gradient Descent/3. Momentum.mp4
26.8 MB
4. Feedforward Artificial Neural Networks/2. Forward Propagation.mp4
26.8 MB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).mp4
26.1 MB
7. In-Depth Loss Functions/1. Mean Squared Error.mp4
25.2 MB
3. Machine Learning and Neurons/12. Making Predictions.mp4
24.7 MB
8. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.mp4
24.6 MB
2. Google Colab/3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4
24.5 MB
8. In-Depth Gradient Descent/1. Gradient Descent.mp4
21.8 MB
7. In-Depth Loss Functions/3. Categorical Cross Entropy.mp4
20.5 MB
3. Machine Learning and Neurons/14. Suggestion Box.mp4
20.2 MB
4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.mp4
19.3 MB
8. In-Depth Gradient Descent/2. Stochastic Gradient Descent.mp4
19.1 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory).mp4
19.0 MB
3. Machine Learning and Neurons/7. Code Preparation (Regression Theory).mp4
17.7 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/18. Other Ways to Forecast.mp4
16.6 MB
3. Machine Learning and Neurons/4. Beginner's Code Preamble.mp4
14.3 MB
7. In-Depth Loss Functions/2. Binary Cross Entropy.mp4
13.4 MB
3. Machine Learning and Neurons/6. Exercise Predicting Diabetes Onset.mp4
13.2 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.mp4
12.2 MB
4. Feedforward Artificial Neural Networks/10. Exercise E. Coli Protein Localization Sites.mp4
11.0 MB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.mp4
10.9 MB
5. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.mp4
10.4 MB
6. Natural Language Processing (NLP)/5. Exercise Sentiment Analysis.mp4
9.6 MB
13. Appendix FAQ Finale/1. What is the Appendix.mp4
9.3 MB
3. Machine Learning and Neurons/1. Review Section Introduction.mp4
7.9 MB
3. Machine Learning and Neurons/9. Exercise Real Estate Predictions.mp4
5.8 MB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced-en_US.srt
31.4 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks-en_US.srt
25.3 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data-en_US.srt
23.7 kB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2)-en_US.srt
23.2 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem-en_US.srt
22.8 kB
4. Feedforward Artificial Neural Networks/4. Activation Functions-en_US.srt
22.6 kB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1)-en_US.srt
22.2 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1)-en_US.srt
20.5 kB
3. Machine Learning and Neurons/3. Code Preparation (Classification Theory)-en_US.srt
20.2 kB
10. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018-en_US.srt
19.5 kB
3. Machine Learning and Neurons/2. What is Machine Learning-en_US.srt
18.7 kB
6. Natural Language Processing (NLP)/2. Code Preparation (NLP)-en_US.srt
16.6 kB
8. In-Depth Gradient Descent/5. Adam (pt 1)-en_US.srt
16.4 kB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1)-en_US.srt
16.4 kB
6. Natural Language Processing (NLP)/1. Embeddings-en_US.srt
16.3 kB
4. Feedforward Artificial Neural Networks/7. Code Preparation (ANN)-en_US.srt
16.2 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1)-en_US.srt
15.7 kB
4. Feedforward Artificial Neural Networks/6. How to Represent Images-en_US.srt
15.6 kB
8. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates-en_US.srt
15.0 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2)-en_US.srt
14.5 kB
12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version)-en_US.srt
14.5 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3)-en_US.srt
14.4 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction-en_US.srt
14.3 kB
8. In-Depth Gradient Descent/6. Adam (pt 2)-en_US.srt
14.3 kB
3. Machine Learning and Neurons/11. How does a model learn-en_US.srt
14.1 kB
10. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow-en_US.srt
14.0 kB
2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free-en_US.srt
14.0 kB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it-en_US.srt
13.8 kB
4. Feedforward Artificial Neural Networks/9. ANN for Regression-en_US.srt
13.1 kB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2)-en_US.srt
13.1 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting-en_US.srt
12.5 kB
3. Machine Learning and Neurons/10. The Neuron-en_US.srt
12.4 kB
4. Feedforward Artificial Neural Networks/2. Forward Propagation-en_US.srt
12.2 kB
1. Welcome/2. Where to get the Code-en_US.srt
12.2 kB
3. Machine Learning and Neurons/8. Regression Notebook-en_US.srt
12.2 kB
2. Google Colab/2. Uploading your own data to Google Colab-en_US.srt
11.8 kB
4. Feedforward Artificial Neural Networks/3. The Geometrical Picture-en_US.srt
11.6 kB
7. In-Depth Loss Functions/1. Mean Squared Error-en_US.srt
11.2 kB
2. Google Colab/3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn-en_US.srt
11.1 kB
4. Feedforward Artificial Neural Networks/5. Multiclass Classification-en_US.srt
10.9 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction-en_US.srt
10.9 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes-en_US.srt
9.8 kB
4. Feedforward Artificial Neural Networks/8. ANN for Image Classification-en_US.srt
9.8 kB
6. Natural Language Processing (NLP)/4. Text Classification with LSTMs-en_US.srt
9.8 kB
8. In-Depth Gradient Descent/1. Gradient Descent-en_US.srt
9.7 kB
7. In-Depth Loss Functions/3. Categorical Cross Entropy-en_US.srt
9.7 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence-en_US.srt
9.5 kB
3. Machine Learning and Neurons/5. Classification Notebook-en_US.srt
9.1 kB
3. Machine Learning and Neurons/7. Code Preparation (Regression Theory)-en_US.srt
8.7 kB
1. Welcome/3. How to Succeed in this Course-en_US.srt
8.1 kB
3. Machine Learning and Neurons/12. Making Predictions-en_US.srt
8.0 kB
4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction-en_US.srt
7.9 kB
13. Appendix FAQ Finale/2. BONUS Where to get Udemy coupons and FREE deep learning material-en_US.srt
7.7 kB
8. In-Depth Gradient Descent/3. Momentum-en_US.srt
7.7 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/18. Other Ways to Forecast-en_US.srt
7.1 kB
7. In-Depth Loss Functions/2. Binary Cross Entropy-en_US.srt
7.1 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation-en_US.srt
7.0 kB
3. Machine Learning and Neurons/4. Beginner's Code Preamble-en_US.srt
6.8 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2)-en_US.srt
6.4 kB
6. Natural Language Processing (NLP)/3. Text Preprocessing-en_US.srt
6.2 kB
11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3-en_US.srt
6.0 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory)-en_US.srt
5.8 kB
8. In-Depth Gradient Descent/2. Stochastic Gradient Descent-en_US.srt
5.4 kB
3. Machine Learning and Neurons/13. Saving and Loading a Model-en_US.srt
4.9 kB
3. Machine Learning and Neurons/14. Suggestion Box-en_US.srt
4.6 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code)-en_US.srt
4.6 kB
5. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works-en_US.srt
4.5 kB
1. Welcome/1. Introduction and Outline-en_US.srt
4.5 kB
9. Extras/Colab Notebooks.html
4.1 kB
13. Appendix FAQ Finale/1. What is the Appendix-en_US.srt
3.7 kB
3. Machine Learning and Neurons/1. Review Section Introduction-en_US.srt
3.6 kB
3. Machine Learning and Neurons/6. Exercise Predicting Diabetes Onset-en_US.srt
3.2 kB
4. Feedforward Artificial Neural Networks/10. Exercise E. Coli Protein Localization Sites-en_US.srt
2.8 kB
6. Natural Language Processing (NLP)/5. Exercise Sentiment Analysis-en_US.srt
2.6 kB
3. Machine Learning and Neurons/9. Exercise Real Estate Predictions-en_US.srt
1.6 kB
1. Welcome/2. External URLs.txt
75 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>