搜索
[FreeCourseSite.com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
磁力链接/BT种子简介
种子哈希:
328c8e2ee0b4328074c43ced13c942486b87b6fd
文件大小:
7.12G
已经下载:
1597
次
下载速度:
极快
收录时间:
2022-04-13
最近下载:
2024-11-29
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:328C8E2EE0B4328074C43CED13C942486B87B6FD
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
萌白酱女仆
猫先生小柳岩
中共内幕
公然做爱
homo
jessie rogers dredd
91原创
国模妮妮
the ninth gate 1999
hongkongdoll 2024
onlyfans白虎
blacked 480p
lost soul
出coser
北京天使全
choice awards 2010
powaqaatsi
称
hotkinkyjo2024
dedh bigha zameen
大片、
as panteras iso
1080p web-dl hevc x265 bone
】对话清晰
小宝寻花时装
自慰秀场
계단녀
24岁兼职小少妇
yua+mikami set01
喜欢你舔我
文件列表
54 - COURSE MATERIALS (DOWNLOADS)/001 PythonMachineLearning.zip
592.6 MB
33 - Q Learning Implementation (Tic Tac Toe)/006 Tic tac toe with Q learning implementation VI.mp4
104.3 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/005 YOLO algorithm implementation V.mp4
100.5 MB
05 - Linear Regression/004 Linear regression implementation I.mp4
95.2 MB
19 - Single Layer Networks Implementation/002 Simple neural network implementation - Iris dataset.mp4
89.1 MB
09 - Naive Bayes Classifier/006 Naive Bayes example - clustering news.mp4
82.7 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/003 Tic Tac Toe with deep Q learning implementation III.mp4
77.9 MB
40 - Face Detection with Viola-Jones Method Implementation/002 Face detection implementation II - CascadeClassifier.mp4
74.1 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/003 Bounding boxes and anchor boxes.mp4
74.0 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/004 YOLO algorithm implementation IV.mp4
73.1 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/005 Getting the useful region of the image - masking.mp4
67.9 MB
16 - Machine Learning Project I - Face Recognition/004 Understanding eigenfaces.mp4
66.0 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/002 Region proposals and convolutional neural networks (CNNs).mp4
63.6 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/004 Tuning the parameters - regularization.mp4
63.4 MB
06 - Logistic Regression/004 Logistic regression example II- credit scoring.mp4
61.4 MB
25 - Convolutional Neural Networks (CNNs) Implementation/002 Handwritten digit classification II.mp4
58.3 MB
25 - Convolutional Neural Networks (CNNs) Implementation/001 Handwritten digit classification I.mp4
57.0 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/001 Showing the HOG features programatically.mp4
56.0 MB
31 - Exploration vs. Exploitation Problem/003 N-armed bandit problem implementation.mp4
55.9 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/003 Face detection with HOG implementation II.mp4
54.9 MB
44 - You Only Look Once (YOLO) Algorithm Theory/003 YOLO algorithm - intersection over union.mp4
53.9 MB
47 - SSD Algorithm Implementation/004 SSD implementation IV.mp4
53.0 MB
33 - Q Learning Implementation (Tic Tac Toe)/008 Tic tac toe with Q learning implementation VIII.mp4
52.2 MB
33 - Q Learning Implementation (Tic Tac Toe)/007 Tic tac toe with Q learning implementation VII.mp4
52.2 MB
30 - Markov Decision Process (MDP) Theory/003 Markov decision processes - equations.mp4
52.1 MB
08 - K-Nearest Neighbor Classifier/006 K-nearest neighbor implementation II.mp4
50.9 MB
18 - Feed-Forward Neural Network Theory/010 Backpropagation explained.mp4
48.5 MB
33 - Q Learning Implementation (Tic Tac Toe)/004 Tic tac toe with Q learning implementation IV.mp4
48.4 MB
16 - Machine Learning Project I - Face Recognition/002 Understanding the dataset.mp4
48.1 MB
05 - Linear Regression/002 Linear regression theory - optimization.mp4
47.2 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/006 Detecting lines - what is Hough transformation.mp4
47.2 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/003 Fitting the model.mp4
45.8 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/002 Basic concept behind SSD algorithm (architecture).mp4
45.6 MB
09 - Naive Bayes Classifier/001 What is the naive Bayes classifier.mp4
44.4 MB
39 - Viola-Jones Face Detection Algorithm Theory/001 Viola-Jones algorithm.mp4
42.9 MB
11 - Decision Trees/002 Decision trees introduction - entropy.mp4
42.8 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/002 Tic Tac Toe with deep Q learning implementation II.mp4
42.6 MB
06 - Logistic Regression/001 What is logistic regression.mp4
42.2 MB
21 - Deep Neural Networks Theory/004 Gradient descent and stochastic gradient descent.mp4
42.0 MB
05 - Linear Regression/001 What is linear regression.mp4
41.9 MB
18 - Feed-Forward Neural Network Theory/008 Optimization with gradient descent.mp4
41.9 MB
05 - Linear Regression/003 Linear regression theory - gradient descent.mp4
41.4 MB
13 - Boosting/006 Boosting implementation II -wine classification.mp4
40.5 MB
09 - Naive Bayes Classifier/004 What is text clustering.mp4
40.4 MB
37 - Handling Images and Pixels/004 Why convolution is so important in image processing.mp4
40.3 MB
44 - You Only Look Once (YOLO) Algorithm Theory/002 YOLO algorithm - grid cells.mp4
40.2 MB
14 - Principal Component Analysis (PCA)/001 Principal component analysis (PCA) introduction.mp4
40.1 MB
11 - Decision Trees/003 Decision trees introduction - information gain.mp4
40.1 MB
23 - Machine Learning Project II - Smile Detector/003 Reading the images and constructing the dataset II.mp4
39.9 MB
15 - Clustering/003 K-means clustering - text clustering.mp4
39.5 MB
03 - Artificial Intelligence Basics/002 Types of artificial intelligence learning.mp4
38.8 MB
10 - Support Vector Machines (SVMs)/005 Support vector machine example I - simple.mp4
38.6 MB
13 - Boosting/004 Boosting introduction - final formula.mp4
38.6 MB
19 - Single Layer Networks Implementation/001 Simple neural network implementation - XOR problem.mp4
38.5 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/004 Face detection with HOG implementation III.mp4
37.8 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/001 What is the CIFAR-10 dataset.mp4
37.8 MB
25 - Convolutional Neural Networks (CNNs) Implementation/003 Handwritten digit classification III.mp4
36.9 MB
18 - Feed-Forward Neural Network Theory/005 Neural networks - the big picture.mp4
36.7 MB
37 - Handling Images and Pixels/002 Handling pixel intensities I.mp4
36.3 MB
10 - Support Vector Machines (SVMs)/004 Kernel functions.mp4
35.8 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/003 Histogram of oriented gradients - magnitude and angle.mp4
35.6 MB
06 - Logistic Regression/005 Logistic regression example III - credit scoring.mp4
35.1 MB
27 - Recurrent Neural Networks (RNNs) Theory/004 Long-short term memory (LSTM) model.mp4
35.0 MB
03 - Artificial Intelligence Basics/003 Fundamentals of statistics.mp4
34.8 MB
06 - Logistic Regression/003 Logistic regression example I - sigmoid function.mp4
34.8 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/008 Drawing lines on video frames.mp4
34.3 MB
11 - Decision Trees/008 Decision tree implementation III - identifying cancer.mp4
34.0 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/005 Face detection with HOG implementation IV.mp4
33.9 MB
12 - Random Forest Classifier/006 Random forests example III - OCR parameter tuning.mp4
33.5 MB
24 - Convolutional Neural Networks (CNNs) Theory/007 Convolutional neural networks - illustration.mp4
33.4 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/005 Tic Tac Toe with deep Q learning implementation V.mp4
32.8 MB
13 - Boosting/005 Boosting implementation I - iris dataset.mp4
32.6 MB
47 - SSD Algorithm Implementation/001 SSD implementation I.mp4
32.4 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/002 Histogram of oriented gradients - gradient kernel.mp4
32.0 MB
10 - Support Vector Machines (SVMs)/002 Linearly separable problems.mp4
31.8 MB
15 - Clustering/008 Hierarchical clustering - market segmentation.mp4
30.4 MB
27 - Recurrent Neural Networks (RNNs) Theory/002 Recurrent neural networks basics.mp4
30.0 MB
22 - Deep Neural Networks Implementation/004 Multiclass classification implementation I.mp4
29.9 MB
18 - Feed-Forward Neural Network Theory/004 Why to use activation functions.mp4
29.8 MB
30 - Markov Decision Process (MDP) Theory/004 Markov decision processes - illustration.mp4
29.6 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/007 YOLO algorithm implementation VII.mp4
29.3 MB
11 - Decision Trees/001 Decision trees introduction - basics.mp4
28.7 MB
27 - Recurrent Neural Networks (RNNs) Theory/003 Vanishing and exploding gradients problem.mp4
28.5 MB
21 - Deep Neural Networks Theory/005 Hyperparameters.mp4
28.2 MB
14 - Principal Component Analysis (PCA)/002 Principal component analysis example.mp4
28.1 MB
24 - Convolutional Neural Networks (CNNs) Theory/006 Convolutional neural networks - flattening.mp4
28.1 MB
22 - Deep Neural Networks Implementation/005 Multiclass classification implementation II.mp4
28.0 MB
33 - Q Learning Implementation (Tic Tac Toe)/003 Tic tac toe with Q learning implementation III.mp4
27.5 MB
21 - Deep Neural Networks Theory/002 Activation functions revisited.mp4
27.5 MB
22 - Deep Neural Networks Implementation/003 Deep neural network implementation III.mp4
27.4 MB
51 - Appendix #3 - Data Structures in Python/015 Sets in Python.mp4
27.3 MB
01 - Introduction/001 Introduction.mp4
27.1 MB
24 - Convolutional Neural Networks (CNNs) Theory/005 Convolutional neural networks - pooling.mp4
26.8 MB
07 - Cross Validation/002 Cross validation example.mp4
26.3 MB
23 - Machine Learning Project II - Smile Detector/002 Reading the images and constructing the dataset I.mp4
26.3 MB
44 - You Only Look Once (YOLO) Algorithm Theory/004 How to train the YOLO algorithm.mp4
26.3 MB
24 - Convolutional Neural Networks (CNNs) Theory/001 Convolutional neural networks basics.mp4
26.2 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/003 YOLO algorithm implementation III.mp4
25.9 MB
39 - Viola-Jones Face Detection Algorithm Theory/003 Integral images.mp4
25.7 MB
07 - Cross Validation/001 What is cross validation.mp4
25.6 MB
30 - Markov Decision Process (MDP) Theory/007 What is value iteration.mp4
25.4 MB
18 - Feed-Forward Neural Network Theory/009 Gradient descent with backpropagation.mp4
25.4 MB
18 - Feed-Forward Neural Network Theory/001 Artificial neural networks - inspiration.mp4
25.3 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/002 YOLO algorithm implementation II.mp4
24.9 MB
51 - Appendix #3 - Data Structures in Python/016 Sorting.mp4
24.9 MB
16 - Machine Learning Project I - Face Recognition/003 Finding optimal number of principal components (eigenvectors).mp4
24.8 MB
39 - Viola-Jones Face Detection Algorithm Theory/004 Boosting in computer vision.mp4
24.5 MB
30 - Markov Decision Process (MDP) Theory/001 Markov decision processes basics I.mp4
24.3 MB
19 - Single Layer Networks Implementation/003 Credit scoring with simple neural networks.mp4
24.3 MB
51 - Appendix #3 - Data Structures in Python/013 Hashing and O(1) running time complexity.mp4
24.2 MB
10 - Support Vector Machines (SVMs)/003 Non-linearly separable problems.mp4
24.1 MB
16 - Machine Learning Project I - Face Recognition/001 The Olivetti dataset.mp4
23.9 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/001 YOLO algorithm implementation I.mp4
23.9 MB
06 - Logistic Regression/002 Logistic regression and maximum likelihood estimation.mp4
23.8 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/004 Histogram of oriented gradients - normalization.mp4
23.7 MB
14 - Principal Component Analysis (PCA)/003 Principal component analysis example II.mp4
23.4 MB
50 - Appendix #2 - Functions/003 Positional arguments and keyword arguments.mp4
23.3 MB
39 - Viola-Jones Face Detection Algorithm Theory/002 Haar-features.mp4
23.2 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/003 Detecting bounding boxes with regression.mp4
23.2 MB
10 - Support Vector Machines (SVMs)/008 Support vector machine example IV - digit recognition.mp4
23.2 MB
16 - Machine Learning Project I - Face Recognition/006 Using cross-validation.mp4
23.0 MB
53 - Appendix #5 - NumPy/007 Stacking and merging arrays.mp4
23.0 MB
08 - K-Nearest Neighbor Classifier/003 Distance metrics - Euclidean-distance.mp4
22.8 MB
33 - Q Learning Implementation (Tic Tac Toe)/005 Tic tac toe with Q learning implementation V.mp4
22.8 MB
18 - Feed-Forward Neural Network Theory/003 Artificial neural networks - the model.mp4
22.6 MB
32 - Q Learning Theory/003 Q learning illustration.mp4
22.5 MB
27 - Recurrent Neural Networks (RNNs) Theory/001 Why do recurrent neural networks are important.mp4
22.3 MB
15 - Clustering/005 DBSCAN example.mp4
22.2 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/001 Tic Tac Toe with deep Q learning implementation I.mp4
22.1 MB
51 - Appendix #3 - Data Structures in Python/011 What are linked list data structures.mp4
21.8 MB
15 - Clustering/007 Hierarchical clustering example.mp4
21.3 MB
10 - Support Vector Machines (SVMs)/001 What are Support Vector Machines (SVMs).mp4
21.1 MB
11 - Decision Trees/004 The Gini-index approach.mp4
21.1 MB
28 - Recurrent Neural Networks (RNNs) Implementation/003 Time series analysis example III.mp4
21.0 MB
44 - You Only Look Once (YOLO) Algorithm Theory/007 Why to use the so-called anchor boxes.mp4
20.9 MB
33 - Q Learning Implementation (Tic Tac Toe)/002 Tic tac toe with Q learning implementation II.mp4
20.8 MB
31 - Exploration vs. Exploitation Problem/002 N-armed bandit problem introduction.mp4
20.5 MB
15 - Clustering/002 K-means clustering example.mp4
20.5 MB
51 - Appendix #3 - Data Structures in Python/014 Dictionaries in Python.mp4
20.4 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/001 Histogram of oriented gradients basics.mp4
20.2 MB
22 - Deep Neural Networks Implementation/002 Deep neural network implementation II.mp4
19.8 MB
40 - Face Detection with Viola-Jones Method Implementation/005 Face detection implementation V - detecting faces real-time.mp4
19.8 MB
47 - SSD Algorithm Implementation/003 SSD implementation III.mp4
19.8 MB
51 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations.mp4
19.5 MB
53 - Appendix #5 - NumPy/003 Dimension of arrays.mp4
19.3 MB
40 - Face Detection with Viola-Jones Method Implementation/003 Face detection implementation III - CascadeClassifier parameters.mp4
19.3 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/001 The standard convolutional neural network (CNN) way.mp4
19.2 MB
51 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms.mp4
19.2 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/001 What is the SSD algorithm.mp4
18.9 MB
40 - Face Detection with Viola-Jones Method Implementation/004 Face detection implementation IV - tuning the parameters.mp4
18.9 MB
10 - Support Vector Machines (SVMs)/007 Support vector machines example III - parameter tuning.mp4
18.7 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor.mp4
18.7 MB
50 - Appendix #2 - Functions/009 What is recursion.mp4
18.2 MB
22 - Deep Neural Networks Implementation/001 Deep neural network implementation I.mp4
18.2 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions.mp4
17.9 MB
53 - Appendix #5 - NumPy/006 Reshape.mp4
17.8 MB
33 - Q Learning Implementation (Tic Tac Toe)/001 Tic tac toe with Q learning implementation I.mp4
17.6 MB
53 - Appendix #5 - NumPy/002 Creating and updating arrays.mp4
17.6 MB
53 - Appendix #5 - NumPy/004 Indexes and slicing.mp4
17.5 MB
15 - Clustering/001 K-means clustering introduction.mp4
17.4 MB
15 - Clustering/006 Hierarchical clustering introduction.mp4
17.4 MB
08 - K-Nearest Neighbor Classifier/005 K-nearest neighbor implementation I.mp4
17.3 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/004 What is Canny edge detection.mp4
17.2 MB
44 - You Only Look Once (YOLO) Algorithm Theory/005 YOLO algorithm - loss function.mp4
17.1 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism.mp4
17.0 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/009 Testing lane detection algorithm.mp4
16.9 MB
12 - Random Forest Classifier/002 Bagging introduction.mp4
16.9 MB
49 - Appendix #1 - Python Basics/009 How to use multiple conditions.mp4
16.7 MB
13 - Boosting/001 Boosting introduction - basics.mp4
16.5 MB
12 - Random Forest Classifier/001 Pruning introduction.mp4
16.2 MB
32 - Q Learning Theory/002 Q learning introduction - the algorithm.mp4
16.2 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/002 Face detection with HOG implementation I.mp4
16.2 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/004 Tic Tac Toe with deep Q learning implementation IV.mp4
16.2 MB
30 - Markov Decision Process (MDP) Theory/005 Bellman-equation.mp4
16.2 MB
21 - Deep Neural Networks Theory/003 Loss functions.mp4
16.2 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling.mp4
16.0 MB
08 - K-Nearest Neighbor Classifier/002 Concept of lazy learning.mp4
16.0 MB
10 - Support Vector Machines (SVMs)/006 Support vector machine example II - iris dataset.mp4
15.8 MB
47 - SSD Algorithm Implementation/005 SSD implementation V.mp4
15.7 MB
08 - K-Nearest Neighbor Classifier/004 Bias and variance trade-off.mp4
15.4 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables.mp4
15.4 MB
09 - Naive Bayes Classifier/005 Text clustering - inverse document frequency (TF-IDF).mp4
15.3 MB
28 - Recurrent Neural Networks (RNNs) Implementation/005 Time series analysis example V.mp4
15.3 MB
37 - Handling Images and Pixels/006 Image processing - edge detection kernel.mp4
15.3 MB
49 - Appendix #1 - Python Basics/004 Strings.mp4
15.3 MB
10 - Support Vector Machines (SVMs)/009 Support vector machine example V - digit recognition.mp4
15.2 MB
30 - Markov Decision Process (MDP) Theory/002 Markov decision processes basics II.mp4
14.8 MB
11 - Decision Trees/007 Decision trees implementation II - parameter tuning.mp4
14.8 MB
28 - Recurrent Neural Networks (RNNs) Implementation/001 Time series analysis example I.mp4
14.8 MB
03 - Artificial Intelligence Basics/001 Why to learn artificial intelligence and machine learning.mp4
14.7 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/004 Feature maps and convolution layers.mp4
14.5 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example.mp4
14.4 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/002 Lane detection - handling videos.mp4
14.4 MB
08 - K-Nearest Neighbor Classifier/001 What is the k-nearest neighbor classifier.mp4
14.4 MB
12 - Random Forest Classifier/004 Random forests example I - iris dataset.mp4
14.2 MB
13 - Boosting/003 Boosting introduction - equations.mp4
14.1 MB
16 - Machine Learning Project I - Face Recognition/005 Constructing the machine learning models.mp4
14.0 MB
37 - Handling Images and Pixels/003 Handling pixel intensities II.mp4
13.9 MB
11 - Decision Trees/006 Decision trees implementation I.mp4
13.8 MB
28 - Recurrent Neural Networks (RNNs) Implementation/002 Time series analysis example II.mp4
13.7 MB
37 - Handling Images and Pixels/005 Image processing - blur operation.mp4
13.3 MB
49 - Appendix #1 - Python Basics/005 String slicing.mp4
13.3 MB
23 - Machine Learning Project II - Smile Detector/005 Evaluating and testing the model.mp4
13.1 MB
44 - You Only Look Once (YOLO) Algorithm Theory/001 What is the YOLO approach.mp4
13.0 MB
28 - Recurrent Neural Networks (RNNs) Implementation/006 Time series analysis example VI.mp4
13.0 MB
51 - Appendix #3 - Data Structures in Python/004 What are array data structures II.mp4
12.9 MB
12 - Random Forest Classifier/003 Random forest classifier introduction.mp4
12.9 MB
51 - Appendix #3 - Data Structures in Python/003 What are array data structures I.mp4
12.9 MB
05 - Linear Regression/005 Linear regression implementation II.mp4
12.8 MB
24 - Convolutional Neural Networks (CNNs) Theory/002 Feature selection.mp4
12.7 MB
31 - Exploration vs. Exploitation Problem/004 Applications AB testing in marketing.mp4
12.7 MB
18 - Feed-Forward Neural Network Theory/007 How to measure the error of the network.mp4
12.6 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/003 Lane detection - first transformations.mp4
12.5 MB
32 - Q Learning Theory/001 What is Q learning.mp4
12.4 MB
51 - Appendix #3 - Data Structures in Python/012 Doubly linked list implementation in Python.mp4
12.0 MB
51 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension.mp4
11.9 MB
15 - Clustering/004 DBSCAN introduction.mp4
11.9 MB
13 - Boosting/002 Boosting introduction - illustration.mp4
11.7 MB
09 - Naive Bayes Classifier/003 Naive Bayes classifier implementation.mp4
11.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules.mp4
11.6 MB
18 - Feed-Forward Neural Network Theory/002 Artificial neural networks - layers.mp4
11.6 MB
37 - Handling Images and Pixels/001 Images and pixel intensities.mp4
11.3 MB
49 - Appendix #1 - Python Basics/007 Operators.mp4
11.2 MB
08 - K-Nearest Neighbor Classifier/007 K-nearest neighbor implementation III.mp4
11.0 MB
51 - Appendix #3 - Data Structures in Python/005 Lists in Python.mp4
11.0 MB
12 - Random Forest Classifier/005 Random forests example II - credit scoring.mp4
10.4 MB
53 - Appendix #5 - NumPy/005 Types.mp4
10.4 MB
49 - Appendix #1 - Python Basics/015 Break and continue.mp4
10.4 MB
39 - Viola-Jones Face Detection Algorithm Theory/005 Cascading.mp4
10.4 MB
02 - Environment Setup/003 Installing TensorFlow and Keras.mp4
10.2 MB
50 - Appendix #2 - Functions/002 Defining functions.mp4
10.1 MB
49 - Appendix #1 - Python Basics/011 Loops - for loop.mp4
10.0 MB
23 - Machine Learning Project II - Smile Detector/004 Building the deep neural network model.mp4
10.0 MB
34 - Deep Q Learning Theory/001 What is deep Q learning.mp4
9.7 MB
21 - Deep Neural Networks Theory/001 Deep neural networks.mp4
9.7 MB
09 - Naive Bayes Classifier/002 Naive Bayes classifier illustration.mp4
9.7 MB
50 - Appendix #2 - Functions/006 Yield operator.mp4
9.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword.mp4
9.6 MB
44 - You Only Look Once (YOLO) Algorithm Theory/006 YOLO algorithm - non-max suppression.mp4
9.6 MB
37 - Handling Images and Pixels/007 Image processing - sharpen operation.mp4
9.5 MB
24 - Convolutional Neural Networks (CNNs) Theory/003 Convolutional neural networks - kernel.mp4
9.3 MB
24 - Convolutional Neural Networks (CNNs) Theory/004 Convolutional neural networks - kernel II.mp4
9.3 MB
51 - Appendix #3 - Data Structures in Python/010 Mutability and immutability.mp4
9.1 MB
36 - ### COMPUTER VISION ###/001 Evolution of computer vision related algorithms.mp4
9.1 MB
49 - Appendix #1 - Python Basics/008 Conditional statements.mp4
9.0 MB
28 - Recurrent Neural Networks (RNNs) Implementation/004 Time series analysis example IV.mp4
8.9 MB
49 - Appendix #1 - Python Basics/006 Type casting.mp4
8.6 MB
53 - Appendix #5 - NumPy/001 What is the key advantage of NumPy.mp4
8.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP.mp4
8.5 MB
50 - Appendix #2 - Functions/001 What are functions.mp4
8.5 MB
49 - Appendix #1 - Python Basics/010 Logical operators.mp4
8.4 MB
20 - Deep Learning/001 Types of neural networks.mp4
8.4 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/005 Histogram of oriented gradients - big picture.mp4
8.2 MB
50 - Appendix #2 - Functions/010 Local vs global variables.mp4
8.2 MB
49 - Appendix #1 - Python Basics/002 What are the basic data types.mp4
8.1 MB
49 - Appendix #1 - Python Basics/014 Enumerate.mp4
8.1 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function.mp4
8.0 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/002 Preprocessing the data.mp4
8.0 MB
53 - Appendix #5 - NumPy/008 Filter.mp4
8.0 MB
31 - Exploration vs. Exploitation Problem/001 Exploration vs exploitation problem.mp4
8.0 MB
40 - Face Detection with Viola-Jones Method Implementation/001 Face detection implementation I - installing OpenCV.mp4
8.0 MB
50 - Appendix #2 - Functions/008 What are the most relevant built-in functions.mp4
8.0 MB
49 - Appendix #1 - Python Basics/012 Loops - while loop.mp4
7.9 MB
51 - Appendix #3 - Data Structures in Python/009 What are tuples.mp4
7.9 MB
49 - Appendix #1 - Python Basics/001 First steps in Python.mp4
7.7 MB
50 - Appendix #2 - Functions/011 The __main__ function.mp4
7.7 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/006 YOLO algorithm implementation VI.mp4
7.7 MB
34 - Deep Q Learning Theory/003 Remember and replay.mp4
7.3 MB
30 - Markov Decision Process (MDP) Theory/008 What is policy iteration.mp4
7.3 MB
13 - Boosting/007 Boosting vs. bagging.mp4
7.2 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/006 Regularization (data augmentation) and non-max suppression during training.mp4
7.2 MB
51 - Appendix #3 - Data Structures in Python/002 Data structures introduction.mp4
7.0 MB
29 - ### REINFORCEMENT LEARNING ###/002 Applications of reinforcement learning.mp4
6.9 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override.mp4
6.8 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/004 What is the Fast R-CNN model.mp4
6.7 MB
27 - Recurrent Neural Networks (RNNs) Theory/005 Gated recurrent units (GRUs).mp4
6.7 MB
47 - SSD Algorithm Implementation/002 SSD implementation II.mp4
6.7 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/005 Hard negative mining during training.mp4
6.4 MB
50 - Appendix #2 - Functions/005 Returning multiple values.mp4
6.3 MB
10 - Support Vector Machines (SVMs)/010 Advantages and disadvantages.mp4
6.3 MB
49 - Appendix #1 - Python Basics/013 What are nested loops.mp4
6.2 MB
11 - Decision Trees/005 Decision trees introduction - pros and cons.mp4
6.0 MB
30 - Markov Decision Process (MDP) Theory/006 How to solve MDP problems.mp4
6.0 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics.mp4
5.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP).mp4
5.5 MB
23 - Machine Learning Project II - Smile Detector/001 Understanding the classification problem.mp4
5.0 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/001 Lane detection - the problem.mp4
4.6 MB
18 - Feed-Forward Neural Network Theory/006 Using bias nodes in the neural network.mp4
4.5 MB
50 - Appendix #2 - Functions/007 Local and global variables.mp4
4.5 MB
50 - Appendix #2 - Functions/004 Returning values.mp4
4.3 MB
49 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers.mp4
4.2 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/005 What is the Faster R-CNN model.mp4
4.2 MB
48 - ### PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction.mp4
4.2 MB
49 - Appendix #1 - Python Basics/003 Booleans.mp4
3.7 MB
09 - Naive Bayes Classifier/006 Naive Bayes example - clustering news_en.srt
18.9 kB
10 - Support Vector Machines (SVMs)/002 Linearly separable problems_en.srt
18.8 kB
05 - Linear Regression/004 Linear regression implementation I_en.srt
18.8 kB
19 - Single Layer Networks Implementation/001 Simple neural network implementation - XOR problem_en.srt
18.2 kB
19 - Single Layer Networks Implementation/002 Simple neural network implementation - Iris dataset_en.srt
18.2 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/005 Getting the useful region of the image - masking_en.srt
17.9 kB
37 - Handling Images and Pixels/004 Why convolution is so important in image processing_en.srt
17.4 kB
25 - Convolutional Neural Networks (CNNs) Implementation/002 Handwritten digit classification II_en.srt
17.2 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/003 Face detection with HOG implementation II_en.srt
17.2 kB
33 - Q Learning Implementation (Tic Tac Toe)/006 Tic tac toe with Q learning implementation VI_en.srt
16.6 kB
06 - Logistic Regression/001 What is logistic regression_en.srt
16.5 kB
18 - Feed-Forward Neural Network Theory/010 Backpropagation explained_en.srt
16.5 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/004 YOLO algorithm implementation IV_en.srt
16.3 kB
25 - Convolutional Neural Networks (CNNs) Implementation/001 Handwritten digit classification I_en.srt
15.8 kB
31 - Exploration vs. Exploitation Problem/003 N-armed bandit problem implementation_en.srt
15.5 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/006 Detecting lines - what is Hough transformation_en.srt
15.2 kB
39 - Viola-Jones Face Detection Algorithm Theory/001 Viola-Jones algorithm_en.srt
15.2 kB
13 - Boosting/006 Boosting implementation II -wine classification_en.srt
15.2 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/005 YOLO algorithm implementation V_en.srt
15.1 kB
06 - Logistic Regression/003 Logistic regression example I - sigmoid function_en.srt
15.1 kB
30 - Markov Decision Process (MDP) Theory/003 Markov decision processes - equations_en.srt
15.1 kB
32 - Q Learning Theory/003 Q learning illustration_en.srt
15.1 kB
15 - Clustering/001 K-means clustering introduction_en.srt
14.9 kB
10 - Support Vector Machines (SVMs)/005 Support vector machine example I - simple_en.srt
14.8 kB
51 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms_en.srt
14.7 kB
06 - Logistic Regression/004 Logistic regression example II- credit scoring_en.srt
14.6 kB
14 - Principal Component Analysis (PCA)/002 Principal component analysis example_en.srt
14.6 kB
09 - Naive Bayes Classifier/001 What is the naive Bayes classifier_en.srt
14.5 kB
27 - Recurrent Neural Networks (RNNs) Theory/004 Long-short term memory (LSTM) model_en.srt
14.3 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/003 Tic Tac Toe with deep Q learning implementation III_en.srt
14.3 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/001 Showing the HOG features programatically_en.srt
14.2 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/002 Region proposals and convolutional neural networks (CNNs)_en.srt
14.0 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/003 Bounding boxes and anchor boxes_en.srt
13.8 kB
15 - Clustering/003 K-means clustering - text clustering_en.srt
13.5 kB
12 - Random Forest Classifier/006 Random forests example III - OCR parameter tuning_en.srt
13.4 kB
10 - Support Vector Machines (SVMs)/004 Kernel functions_en.srt
13.3 kB
51 - Appendix #3 - Data Structures in Python/016 Sorting_en.srt
13.2 kB
50 - Appendix #2 - Functions/003 Positional arguments and keyword arguments_en.srt
13.1 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/004 Tuning the parameters - regularization_en.srt
13.1 kB
40 - Face Detection with Viola-Jones Method Implementation/002 Face detection implementation II - CascadeClassifier_en.srt
12.9 kB
15 - Clustering/008 Hierarchical clustering - market segmentation_en.srt
12.8 kB
21 - Deep Neural Networks Theory/002 Activation functions revisited_en.srt
12.7 kB
10 - Support Vector Machines (SVMs)/008 Support vector machine example IV - digit recognition_en.srt
12.7 kB
11 - Decision Trees/004 The Gini-index approach_en.srt
12.7 kB
05 - Linear Regression/001 What is linear regression_en.srt
12.6 kB
18 - Feed-Forward Neural Network Theory/005 Neural networks - the big picture_en.srt
12.6 kB
53 - Appendix #5 - NumPy/003 Dimension of arrays_en.srt
12.5 kB
14 - Principal Component Analysis (PCA)/003 Principal component analysis example II_en.srt
12.4 kB
51 - Appendix #3 - Data Structures in Python/014 Dictionaries in Python_en.srt
12.3 kB
44 - You Only Look Once (YOLO) Algorithm Theory/003 YOLO algorithm - intersection over union_en.srt
12.3 kB
27 - Recurrent Neural Networks (RNNs) Theory/003 Vanishing and exploding gradients problem_en.srt
12.2 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/002 YOLO algorithm implementation II_en.srt
12.2 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/008 Drawing lines on video frames_en.srt
12.1 kB
27 - Recurrent Neural Networks (RNNs) Theory/002 Recurrent neural networks basics_en.srt
12.1 kB
15 - Clustering/005 DBSCAN example_en.srt
12.1 kB
03 - Artificial Intelligence Basics/002 Types of artificial intelligence learning_en.srt
12.0 kB
51 - Appendix #3 - Data Structures in Python/011 What are linked list data structures_en.srt
12.0 kB
50 - Appendix #2 - Functions/009 What is recursion_en.srt
11.8 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/003 YOLO algorithm implementation III_en.srt
11.7 kB
18 - Feed-Forward Neural Network Theory/008 Optimization with gradient descent_en.srt
11.6 kB
05 - Linear Regression/002 Linear regression theory - optimization_en.srt
11.6 kB
08 - K-Nearest Neighbor Classifier/006 K-nearest neighbor implementation II_en.srt
11.4 kB
51 - Appendix #3 - Data Structures in Python/013 Hashing and O(1) running time complexity_en.srt
11.4 kB
14 - Principal Component Analysis (PCA)/001 Principal component analysis (PCA) introduction_en.srt
11.3 kB
09 - Naive Bayes Classifier/004 What is text clustering_en.srt
11.2 kB
51 - Appendix #3 - Data Structures in Python/015 Sets in Python_en.srt
11.2 kB
11 - Decision Trees/002 Decision trees introduction - entropy_en.srt
11.1 kB
31 - Exploration vs. Exploitation Problem/002 N-armed bandit problem introduction_en.srt
11.1 kB
22 - Deep Neural Networks Implementation/004 Multiclass classification implementation I_en.srt
11.0 kB
05 - Linear Regression/003 Linear regression theory - gradient descent_en.srt
11.0 kB
39 - Viola-Jones Face Detection Algorithm Theory/002 Haar-features_en.srt
10.9 kB
13 - Boosting/004 Boosting introduction - final formula_en.srt
10.8 kB
47 - SSD Algorithm Implementation/004 SSD implementation IV_en.srt
10.8 kB
15 - Clustering/007 Hierarchical clustering example_en.srt
10.8 kB
15 - Clustering/002 K-means clustering example_en.srt
10.8 kB
11 - Decision Trees/003 Decision trees introduction - information gain_en.srt
10.8 kB
53 - Appendix #5 - NumPy/004 Indexes and slicing_en.srt
10.8 kB
33 - Q Learning Implementation (Tic Tac Toe)/002 Tic tac toe with Q learning implementation II_en.srt
10.6 kB
11 - Decision Trees/001 Decision trees introduction - basics_en.srt
10.6 kB
03 - Artificial Intelligence Basics/003 Fundamentals of statistics_en.srt
10.6 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/003 Histogram of oriented gradients - magnitude and angle_en.srt
10.6 kB
16 - Machine Learning Project I - Face Recognition/001 The Olivetti dataset_en.srt
10.5 kB
16 - Machine Learning Project I - Face Recognition/004 Understanding eigenfaces_en.srt
10.4 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/002 Histogram of oriented gradients - gradient kernel_en.srt
10.4 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions_en.srt
10.4 kB
12 - Random Forest Classifier/002 Bagging introduction_en.srt
10.3 kB
53 - Appendix #5 - NumPy/006 Reshape_en.srt
10.3 kB
49 - Appendix #1 - Python Basics/009 How to use multiple conditions_en.srt
10.3 kB
44 - You Only Look Once (YOLO) Algorithm Theory/004 How to train the YOLO algorithm_en.srt
10.3 kB
33 - Q Learning Implementation (Tic Tac Toe)/004 Tic tac toe with Q learning implementation IV_en.srt
10.2 kB
49 - Appendix #1 - Python Basics/004 Strings_en.srt
10.1 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/002 Basic concept behind SSD algorithm (architecture)_en.srt
10.0 kB
51 - Appendix #3 - Data Structures in Python/004 What are array data structures II_en.srt
9.8 kB
15 - Clustering/006 Hierarchical clustering introduction_en.srt
9.8 kB
51 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations_en.srt
9.8 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/005 Face detection with HOG implementation IV_en.srt
9.8 kB
53 - Appendix #5 - NumPy/002 Creating and updating arrays_en.srt
9.8 kB
33 - Q Learning Implementation (Tic Tac Toe)/003 Tic tac toe with Q learning implementation III_en.srt
9.8 kB
10 - Support Vector Machines (SVMs)/007 Support vector machines example III - parameter tuning_en.srt
9.8 kB
21 - Deep Neural Networks Theory/004 Gradient descent and stochastic gradient descent_en.srt
9.7 kB
15 - Clustering/004 DBSCAN introduction_en.srt
9.7 kB
30 - Markov Decision Process (MDP) Theory/004 Markov decision processes - illustration_en.srt
9.6 kB
32 - Q Learning Theory/002 Q learning introduction - the algorithm_en.srt
9.5 kB
08 - K-Nearest Neighbor Classifier/003 Distance metrics - Euclidean-distance_en.srt
9.5 kB
10 - Support Vector Machines (SVMs)/003 Non-linearly separable problems_en.srt
9.4 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/003 Detecting bounding boxes with regression_en.srt
9.4 kB
51 - Appendix #3 - Data Structures in Python/003 What are array data structures I_en.srt
9.4 kB
18 - Feed-Forward Neural Network Theory/004 Why to use activation functions_en.srt
9.3 kB
08 - K-Nearest Neighbor Classifier/005 K-nearest neighbor implementation I_en.srt
9.3 kB
22 - Deep Neural Networks Implementation/001 Deep neural network implementation I_en.srt
9.2 kB
28 - Recurrent Neural Networks (RNNs) Implementation/003 Time series analysis example III_en.srt
9.2 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/004 What is Canny edge detection_en.srt
9.2 kB
13 - Boosting/003 Boosting introduction - equations_en.srt
9.2 kB
44 - You Only Look Once (YOLO) Algorithm Theory/002 YOLO algorithm - grid cells_en.srt
9.2 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/002 Tic Tac Toe with deep Q learning implementation II_en.srt
9.1 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/001 YOLO algorithm implementation I_en.srt
9.1 kB
33 - Q Learning Implementation (Tic Tac Toe)/008 Tic tac toe with Q learning implementation VIII_en.srt
9.0 kB
44 - You Only Look Once (YOLO) Algorithm Theory/007 Why to use the so-called anchor boxes_en.srt
9.0 kB
13 - Boosting/005 Boosting implementation I - iris dataset_en.srt
9.0 kB
12 - Random Forest Classifier/001 Pruning introduction_en.srt
9.0 kB
22 - Deep Neural Networks Implementation/002 Deep neural network implementation II_en.srt
8.9 kB
10 - Support Vector Machines (SVMs)/006 Support vector machine example II - iris dataset_en.srt
8.7 kB
53 - Appendix #5 - NumPy/007 Stacking and merging arrays_en.srt
8.6 kB
18 - Feed-Forward Neural Network Theory/009 Gradient descent with backpropagation_en.srt
8.6 kB
30 - Markov Decision Process (MDP) Theory/002 Markov decision processes basics II_en.srt
8.6 kB
30 - Markov Decision Process (MDP) Theory/007 What is value iteration_en.srt
8.5 kB
49 - Appendix #1 - Python Basics/005 String slicing_en.srt
8.4 kB
37 - Handling Images and Pixels/002 Handling pixel intensities I_en.srt
8.4 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/001 The standard convolutional neural network (CNN) way_en.srt
8.4 kB
39 - Viola-Jones Face Detection Algorithm Theory/004 Boosting in computer vision_en.srt
8.3 kB
33 - Q Learning Implementation (Tic Tac Toe)/007 Tic tac toe with Q learning implementation VII_en.srt
8.3 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/001 What is the CIFAR-10 dataset_en.srt
8.2 kB
39 - Viola-Jones Face Detection Algorithm Theory/003 Integral images_en.srt
8.2 kB
07 - Cross Validation/001 What is cross validation_en.srt
8.1 kB
08 - K-Nearest Neighbor Classifier/001 What is the k-nearest neighbor classifier_en.srt
8.1 kB
24 - Convolutional Neural Networks (CNNs) Theory/005 Convolutional neural networks - pooling_en.srt
8.1 kB
24 - Convolutional Neural Networks (CNNs) Theory/001 Convolutional neural networks basics_en.srt
8.1 kB
16 - Machine Learning Project I - Face Recognition/002 Understanding the dataset_en.srt
8.0 kB
16 - Machine Learning Project I - Face Recognition/003 Finding optimal number of principal components (eigenvectors)_en.srt
8.0 kB
49 - Appendix #1 - Python Basics/011 Loops - for loop_en.srt
7.9 kB
21 - Deep Neural Networks Theory/003 Loss functions_en.srt
7.9 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/002 Face detection with HOG implementation I_en.srt
7.9 kB
03 - Artificial Intelligence Basics/001 Why to learn artificial intelligence and machine learning_en.srt
7.9 kB
47 - SSD Algorithm Implementation/001 SSD implementation I_en.srt
7.8 kB
11 - Decision Trees/006 Decision trees implementation I_en.srt
7.8 kB
24 - Convolutional Neural Networks (CNNs) Theory/004 Convolutional neural networks - kernel II_en.srt
7.8 kB
23 - Machine Learning Project II - Smile Detector/002 Reading the images and constructing the dataset I_en.srt
7.8 kB
44 - You Only Look Once (YOLO) Algorithm Theory/001 What is the YOLO approach_en.srt
7.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor_en.srt
7.7 kB
22 - Deep Neural Networks Implementation/005 Multiclass classification implementation II_en.srt
7.7 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules_en.srt
7.7 kB
25 - Convolutional Neural Networks (CNNs) Implementation/003 Handwritten digit classification III_en.srt
7.7 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/002 Lane detection - handling videos_en.srt
7.7 kB
37 - Handling Images and Pixels/006 Image processing - edge detection kernel_en.srt
7.7 kB
28 - Recurrent Neural Networks (RNNs) Implementation/002 Time series analysis example II_en.srt
7.6 kB
10 - Support Vector Machines (SVMs)/001 What are Support Vector Machines (SVMs)_en.srt
7.6 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/003 Fitting the model_en.srt
7.6 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/004 Tic Tac Toe with deep Q learning implementation IV_en.srt
7.5 kB
13 - Boosting/002 Boosting introduction - illustration_en.srt
7.4 kB
51 - Appendix #3 - Data Structures in Python/005 Lists in Python_en.srt
7.4 kB
49 - Appendix #1 - Python Basics/001 First steps in Python_en.srt
7.4 kB
37 - Handling Images and Pixels/003 Handling pixel intensities II_en.srt
7.4 kB
21 - Deep Neural Networks Theory/005 Hyperparameters_en.srt
7.3 kB
30 - Markov Decision Process (MDP) Theory/001 Markov decision processes basics I_en.srt
7.3 kB
10 - Support Vector Machines (SVMs)/009 Support vector machine example V - digit recognition_en.srt
7.3 kB
30 - Markov Decision Process (MDP) Theory/005 Bellman-equation_en.srt
7.3 kB
18 - Feed-Forward Neural Network Theory/001 Artificial neural networks - inspiration_en.srt
7.3 kB
12 - Random Forest Classifier/003 Random forest classifier introduction_en.srt
7.3 kB
06 - Logistic Regression/005 Logistic regression example III - credit scoring_en.srt
7.3 kB
37 - Handling Images and Pixels/005 Image processing - blur operation_en.srt
7.2 kB
51 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension_en.srt
7.2 kB
49 - Appendix #1 - Python Basics/015 Break and continue_en.srt
7.2 kB
40 - Face Detection with Viola-Jones Method Implementation/005 Face detection implementation V - detecting faces real-time_en.srt
7.1 kB
07 - Cross Validation/002 Cross validation example_en.srt
7.1 kB
32 - Q Learning Theory/001 What is Q learning_en.srt
7.1 kB
37 - Handling Images and Pixels/001 Images and pixel intensities_en.srt
7.1 kB
50 - Appendix #2 - Functions/002 Defining functions_en.srt
7.1 kB
21 - Deep Neural Networks Theory/001 Deep neural networks_en.srt
7.0 kB
51 - Appendix #3 - Data Structures in Python/012 Doubly linked list implementation in Python_en.srt
7.0 kB
22 - Deep Neural Networks Implementation/003 Deep neural network implementation III_en.srt
7.0 kB
44 - You Only Look Once (YOLO) Algorithm Theory/005 YOLO algorithm - loss function_en.srt
6.9 kB
06 - Logistic Regression/002 Logistic regression and maximum likelihood estimation_en.srt
6.8 kB
18 - Feed-Forward Neural Network Theory/002 Artificial neural networks - layers_en.srt
6.8 kB
11 - Decision Trees/008 Decision tree implementation III - identifying cancer_en.srt
6.8 kB
47 - SSD Algorithm Implementation/003 SSD implementation III_en.srt
6.8 kB
49 - Appendix #1 - Python Basics/007 Operators_en.srt
6.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example_en.srt
6.8 kB
24 - Convolutional Neural Networks (CNNs) Theory/006 Convolutional neural networks - flattening_en.srt
6.8 kB
18 - Feed-Forward Neural Network Theory/003 Artificial neural networks - the model_en.srt
6.8 kB
18 - Feed-Forward Neural Network Theory/007 How to measure the error of the network_en.srt
6.7 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/004 Face detection with HOG implementation III_en.srt
6.6 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/004 Histogram of oriented gradients - normalization_en.srt
6.6 kB
09 - Naive Bayes Classifier/005 Text clustering - inverse document frequency (TF-IDF)_en.srt
6.6 kB
50 - Appendix #2 - Functions/006 Yield operator_en.srt
6.5 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/005 Tic Tac Toe with deep Q learning implementation V_en.srt
6.5 kB
49 - Appendix #1 - Python Basics/002 What are the basic data types_en.srt
6.5 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/004 Feature maps and convolution layers_en.srt
6.5 kB
33 - Q Learning Implementation (Tic Tac Toe)/005 Tic tac toe with Q learning implementation V_en.srt
6.4 kB
09 - Naive Bayes Classifier/002 Naive Bayes classifier illustration_en.srt
6.4 kB
40 - Face Detection with Viola-Jones Method Implementation/004 Face detection implementation IV - tuning the parameters_en.srt
6.4 kB
34 - Deep Q Learning Theory/001 What is deep Q learning_en.srt
6.3 kB
51 - Appendix #3 - Data Structures in Python/010 Mutability and immutability_en.srt
6.2 kB
11 - Decision Trees/007 Decision trees implementation II - parameter tuning_en.srt
6.0 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism_en.srt
6.0 kB
23 - Machine Learning Project II - Smile Detector/003 Reading the images and constructing the dataset II_en.srt
6.0 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/003 Lane detection - first transformations_en.srt
6.0 kB
13 - Boosting/001 Boosting introduction - basics_en.srt
6.0 kB
53 - Appendix #5 - NumPy/001 What is the key advantage of NumPy_en.srt
5.9 kB
53 - Appendix #5 - NumPy/005 Types_en.srt
5.9 kB
28 - Recurrent Neural Networks (RNNs) Implementation/006 Time series analysis example VI_en.srt
5.9 kB
50 - Appendix #2 - Functions/001 What are functions_en.srt
5.9 kB
28 - Recurrent Neural Networks (RNNs) Implementation/001 Time series analysis example I_en.srt
5.9 kB
27 - Recurrent Neural Networks (RNNs) Theory/001 Why do recurrent neural networks are important_en.srt
5.8 kB
28 - Recurrent Neural Networks (RNNs) Implementation/005 Time series analysis example V_en.srt
5.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables_en.srt
5.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling_en.srt
5.8 kB
05 - Linear Regression/005 Linear regression implementation II_en.srt
5.8 kB
31 - Exploration vs. Exploitation Problem/004 Applications AB testing in marketing_en.srt
5.8 kB
24 - Convolutional Neural Networks (CNNs) Theory/003 Convolutional neural networks - kernel_en.srt
5.8 kB
16 - Machine Learning Project I - Face Recognition/005 Constructing the machine learning models_en.srt
5.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword_en.srt
5.7 kB
12 - Random Forest Classifier/004 Random forests example I - iris dataset_en.srt
5.7 kB
39 - Viola-Jones Face Detection Algorithm Theory/005 Cascading_en.srt
5.7 kB
49 - Appendix #1 - Python Basics/012 Loops - while loop_en.srt
5.7 kB
19 - Single Layer Networks Implementation/003 Credit scoring with simple neural networks_en.srt
5.7 kB
50 - Appendix #2 - Functions/008 What are the most relevant built-in functions_en.srt
5.6 kB
24 - Convolutional Neural Networks (CNNs) Theory/002 Feature selection_en.srt
5.6 kB
08 - K-Nearest Neighbor Classifier/007 K-nearest neighbor implementation III_en.srt
5.5 kB
40 - Face Detection with Viola-Jones Method Implementation/003 Face detection implementation III - CascadeClassifier parameters_en.srt
5.5 kB
49 - Appendix #1 - Python Basics/008 Conditional statements_en.srt
5.5 kB
50 - Appendix #2 - Functions/010 Local vs global variables_en.srt
5.5 kB
49 - Appendix #1 - Python Basics/006 Type casting_en.srt
5.4 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/001 Tic Tac Toe with deep Q learning implementation I_en.srt
5.4 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/001 What is the SSD algorithm_en.srt
5.4 kB
09 - Naive Bayes Classifier/003 Naive Bayes classifier implementation_en.srt
5.3 kB
08 - K-Nearest Neighbor Classifier/004 Bias and variance trade-off_en.srt
5.3 kB
33 - Q Learning Implementation (Tic Tac Toe)/001 Tic tac toe with Q learning implementation I_en.srt
5.3 kB
30 - Markov Decision Process (MDP) Theory/008 What is policy iteration_en.srt
5.2 kB
08 - K-Nearest Neighbor Classifier/002 Concept of lazy learning_en.srt
5.2 kB
01 - Introduction/001 Introduction_en.srt
5.2 kB
36 - ### COMPUTER VISION ###/001 Evolution of computer vision related algorithms_en.srt
5.1 kB
51 - Appendix #3 - Data Structures in Python/009 What are tuples_en.srt
5.1 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/001 Histogram of oriented gradients basics_en.srt
5.1 kB
49 - Appendix #1 - Python Basics/014 Enumerate_en.srt
5.1 kB
20 - Deep Learning/001 Types of neural networks_en.srt
5.0 kB
23 - Machine Learning Project II - Smile Detector/005 Evaluating and testing the model_en.srt
4.9 kB
31 - Exploration vs. Exploitation Problem/001 Exploration vs exploitation problem_en.srt
4.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP_en.srt
4.8 kB
53 - Appendix #5 - NumPy/008 Filter_en.srt
4.8 kB
34 - Deep Q Learning Theory/003 Remember and replay_en.srt
4.8 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/007 YOLO algorithm implementation VII_en.srt
4.7 kB
47 - SSD Algorithm Implementation/005 SSD implementation V_en.srt
4.7 kB
37 - Handling Images and Pixels/007 Image processing - sharpen operation_en.srt
4.7 kB
50 - Appendix #2 - Functions/011 The __main__ function_en.srt
4.7 kB
27 - Recurrent Neural Networks (RNNs) Theory/005 Gated recurrent units (GRUs)_en.srt
4.6 kB
51 - Appendix #3 - Data Structures in Python/002 Data structures introduction_en.srt
4.6 kB
49 - Appendix #1 - Python Basics/010 Logical operators_en.srt
4.6 kB
12 - Random Forest Classifier/005 Random forests example II - credit scoring_en.srt
4.5 kB
23 - Machine Learning Project II - Smile Detector/004 Building the deep neural network model_en.srt
4.5 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/005 Histogram of oriented gradients - big picture_en.srt
4.5 kB
34 - Deep Q Learning Theory/002 Deep Q learning and ε-greedy strategy_en.srt
4.3 kB
44 - You Only Look Once (YOLO) Algorithm Theory/006 YOLO algorithm - non-max suppression_en.srt
4.2 kB
13 - Boosting/007 Boosting vs. bagging_en.srt
4.2 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function_en.srt
4.1 kB
50 - Appendix #2 - Functions/005 Returning multiple values_en.srt
3.9 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics_en.srt
3.8 kB
10 - Support Vector Machines (SVMs)/010 Advantages and disadvantages_en.srt
3.8 kB
16 - Machine Learning Project I - Face Recognition/006 Using cross-validation_en.srt
3.7 kB
29 - ### REINFORCEMENT LEARNING ###/002 Applications of reinforcement learning_en.srt
3.6 kB
24 - Convolutional Neural Networks (CNNs) Theory/007 Convolutional neural networks - illustration_en.srt
3.6 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/002 Preprocessing the data_en.srt
3.6 kB
49 - Appendix #1 - Python Basics/013 What are nested loops_en.srt
3.6 kB
28 - Recurrent Neural Networks (RNNs) Implementation/004 Time series analysis example IV_en.srt
3.6 kB
40 - Face Detection with Viola-Jones Method Implementation/001 Face detection implementation I - installing OpenCV_en.srt
3.6 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/004 What is the Fast R-CNN model_en.srt
3.5 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/005 Hard negative mining during training_en.srt
3.4 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/009 Testing lane detection algorithm_en.srt
3.4 kB
49 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers_en.srt
3.3 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP)_en.srt
3.3 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override_en.srt
3.2 kB
11 - Decision Trees/005 Decision trees introduction - pros and cons_en.srt
3.2 kB
48 - ### PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction_en.srt
3.2 kB
47 - SSD Algorithm Implementation/002 SSD implementation II_en.srt
3.2 kB
50 - Appendix #2 - Functions/004 Returning values_en.srt
3.1 kB
30 - Markov Decision Process (MDP) Theory/006 How to solve MDP problems_en.srt
3.1 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/006 Regularization (data augmentation) and non-max suppression during training_en.srt
3.1 kB
23 - Machine Learning Project II - Smile Detector/001 Understanding the classification problem_en.srt
3.1 kB
02 - Environment Setup/003 Installing TensorFlow and Keras_en.srt
2.9 kB
50 - Appendix #2 - Functions/007 Local and global variables_en.srt
2.7 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/006 YOLO algorithm implementation VI_en.srt
2.6 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/005 What is the Faster R-CNN model_en.srt
2.6 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/001 Lane detection - the problem_en.srt
2.5 kB
49 - Appendix #1 - Python Basics/003 Booleans_en.srt
2.5 kB
18 - Feed-Forward Neural Network Theory/006 Using bias nodes in the neural network_en.srt
2.3 kB
02 - Environment Setup/002 Installing PyCharm and Python on Mac.html
1.6 kB
02 - Environment Setup/001 Installing PyCharm and Python on Windows.html
1.6 kB
53 - Appendix #5 - NumPy/009 Running time comparison arrays and lists.html
1.4 kB
29 - ### REINFORCEMENT LEARNING ###/001 What is reinforcement learning.html
899 Bytes
15 - Clustering/009 Mathematical formulation of clustering.html
629 Bytes
51 - Appendix #3 - Data Structures in Python/008 (!!!) Python lists and arrays.html
628 Bytes
04 - ### MACHINE LEARNING ###/001 Machine learning section.html
471 Bytes
43 - Convolutional Neural Networks (CNNs) Based Approaches/006 Original academic research articles.html
453 Bytes
10 - Support Vector Machines (SVMs)/011 Mathematical formulation of Support Vector Machines (SVMs).html
419 Bytes
11 - Decision Trees/009 Mathematical formulation of decision trees.html
356 Bytes
17 - ### NEURAL NETWORKS AND DEEP LEARNING ###/001 Neural networks and deep learning section.html
346 Bytes
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/006 Original academic research article.html
318 Bytes
39 - Viola-Jones Face Detection Algorithm Theory/006 Original academic research articles.html
311 Bytes
13 - Boosting/008 Mathematical formulation of boosting.html
290 Bytes
21 - Deep Neural Networks Theory/006 Mathematical formulation of deep neural networks.html
290 Bytes
24 - Convolutional Neural Networks (CNNs) Theory/008 Mathematical formulation of convolution neural networks.html
290 Bytes
14 - Principal Component Analysis (PCA)/004 Mathematical formulation of principle component analysis (PCA).html
282 Bytes
08 - K-Nearest Neighbor Classifier/008 Mathematical formulation of k-nearest neighbor classifier.html
276 Bytes
05 - Linear Regression/006 Mathematical formulation of linear regression.html
275 Bytes
34 - Deep Q Learning Theory/004 Mathematical formulation of deep Q learning.html
272 Bytes
44 - You Only Look Once (YOLO) Algorithm Theory/008 Original academic research article.html
266 Bytes
06 - Logistic Regression/006 Mathematical formulation of logistic regression.html
263 Bytes
12 - Random Forest Classifier/007 Mathematical formulation of random forest classifiers.html
263 Bytes
32 - Q Learning Theory/004 Mathematical formulation of Q learning.html
262 Bytes
18 - Feed-Forward Neural Network Theory/011 Mathematical formulation of feed-forward neural networks.html
261 Bytes
27 - Recurrent Neural Networks (RNNs) Theory/006 Mathematical formulation of recurrent neural networks.html
258 Bytes
30 - Markov Decision Process (MDP) Theory/009 Mathematical formulation of reinforcement learning.html
255 Bytes
09 - Naive Bayes Classifier/007 Mathematical formulation of naive Bayes classifier.html
246 Bytes
46 - Single-Shot MultiBox Detector (SSD) Theory/007 Original academic research article.html
241 Bytes
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/007 Hough transformation illustration.html
191 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
54 - COURSE MATERIALS (DOWNLOADS)/001 Course materials (source code and slides).html
66 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>