搜索
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python
磁力链接/BT种子简介
种子哈希:
32b7bb017c4d88324beb30985a2197892d23a92e
文件大小:
1.12G
已经下载:
357
次
下载速度:
极快
收录时间:
2021-04-01
最近下载:
2024-12-10
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:32B7BB017C4D88324BEB30985A2197892D23A92E
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
会员群流出
cumeatingcuckolds jackie hoff
新娘的诱惑
轰动
x+level
【韩国探花】之小胖历险记
超嫩学
日日日
校内写生 女子高生はやめられない
snowmarie69
楼凤制服
媚sprtp
lost in beijing
采子涵
抽舌头
萝莉肛交
lena
佐藤希
bondage
muomishu
granny anal
恥ずかしいけど気持ち良すぎて止められない
2550569
爆操姐姐d奶
shaun of the dead
spa异
孕妇性欲
nazuko
julyjailbait
小马拉大车
文件列表
6. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018.mp4
195.3 MB
1. Welcome/4. Anyone Can Succeed in this Course.mp4
88.1 MB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
1. Welcome/5. Statistics vs. Machine Learning.mp4
58.2 MB
1. Welcome/1. Welcome.mp4
52.1 MB
6. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
8/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.8 MB
9. Appendix FAQ Finale/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
39.7 MB
8/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
39.4 MB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp4
37.8 MB
8/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
30.7 MB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp4
25.9 MB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).mp4
25.7 MB
4. Practical machine learning issues/17. Why Divide by Square Root of D.mp4
24.6 MB
4. Practical machine learning issues/11. Gradient Descent Tutorial.mp4
23.9 MB
2. 1-D Linear Regression Theory and Code/9. Moore's Law Derivation.mp4
21.2 MB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp4
20.3 MB
8/1. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. 1-D Linear Regression Theory and Code/8. Demonstrating Moore's Law in Code.mp4
18.4 MB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp4
18.1 MB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp4
17.2 MB
2. 1-D Linear Regression Theory and Code/11. Suggestion Box.mp4
16.9 MB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp4
15.6 MB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).mp4
15.5 MB
3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).mp4
15.1 MB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp4
15.1 MB
4. Practical machine learning issues/2. Interpreting the Weights.mp4
14.8 MB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp4
12.9 MB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp4
11.8 MB
4. Practical machine learning issues/1. What do all these letters mean.mp4
10.1 MB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp4
8.9 MB
1. Welcome/3. What is machine learning How does linear regression play a role.mp4
8.8 MB
4. Practical machine learning issues/15. L1 Regularization - Code.mp4
8.7 MB
4. Practical machine learning issues/5. Categorical inputs.mp4
8.6 MB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp4
8.5 MB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp4
8.5 MB
4. Practical machine learning issues/9. L2 Regularization - Code.mp4
8.5 MB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.mp4
8.2 MB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp4
7.5 MB
4. Practical machine learning issues/8. L2 Regularization - Theory.mp4
7.0 MB
1. Welcome/2. Introduction and Outline.mp4
6.6 MB
4. Practical machine learning issues/10. The Dummy Variable Trap.mp4
6.4 MB
9. Appendix FAQ Finale/1. What is the Appendix.mp4
5.7 MB
4. Practical machine learning issues/16. L1 vs L2 Regularization.mp4
5.0 MB
4. Practical machine learning issues/14. L1 Regularization - Theory.mp4
4.9 MB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp4
4.7 MB
2. 1-D Linear Regression Theory and Code/7. Introduction to Moore's Law Problem.mp4
4.6 MB
4. Practical machine learning issues/3. Generalization error, train and test sets.mp4
4.6 MB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp4
4.0 MB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp4
3.7 MB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp4
3.7 MB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp4
3.3 MB
2. 1-D Linear Regression Theory and Code/10. R-squared Quiz 1.mp4
2.9 MB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp4
1.1 MB
8/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
34.6 kB
8/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
25.8 kB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).srt
24.8 kB
6. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018.srt
22.2 kB
1. Welcome/4. Anyone Can Succeed in this Course.srt
19.5 kB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).srt
18.1 kB
8/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
17.6 kB
1. Welcome/5. Statistics vs. Machine Learning.srt
16.4 kB
6. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
15.9 kB
8/1. How to Succeed in this Course (Long Version).srt
15.6 kB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.srt
15.4 kB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).srt
14.3 kB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.srt
13.2 kB
3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).srt
12.8 kB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.srt
11.3 kB
4. Practical machine learning issues/17. Why Divide by Square Root of D.srt
9.6 kB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.srt
9.4 kB
4. Practical machine learning issues/1. What do all these letters mean.srt
8.7 kB
9. Appendix FAQ Finale/2. BONUS Where to get Udemy coupons and FREE deep learning material.srt
8.6 kB
2. 1-D Linear Regression Theory and Code/9. Moore's Law Derivation.srt
8.3 kB
2. 1-D Linear Regression Theory and Code/8. Demonstrating Moore's Law in Code.srt
7.1 kB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.srt
6.9 kB
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.srt
6.7 kB
4. Practical machine learning issues/8. L2 Regularization - Theory.srt
6.1 kB
4. Practical machine learning issues/11. Gradient Descent Tutorial.srt
6.1 kB
4. Practical machine learning issues/10. The Dummy Variable Trap.srt
6.0 kB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.srt
6.0 kB
1. Welcome/2. Introduction and Outline.srt
6.0 kB
1. Welcome/3. What is machine learning How does linear regression play a role.srt
6.0 kB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.srt
5.8 kB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.srt
5.6 kB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.srt
5.6 kB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.srt
5.5 kB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).srt
5.4 kB
2. 1-D Linear Regression Theory and Code/11. Suggestion Box.srt
5.0 kB
4. Practical machine learning issues/5. Categorical inputs.srt
4.9 kB
1. Welcome/1. Welcome.srt
4.9 kB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.srt
4.8 kB
4. Practical machine learning issues/2. Interpreting the Weights.srt
4.7 kB
4. Practical machine learning issues/14. L1 Regularization - Theory.srt
4.6 kB
4. Practical machine learning issues/16. L1 vs L2 Regularization.srt
4.6 kB
9. Appendix FAQ Finale/1. What is the Appendix.srt
4.0 kB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.srt
3.9 kB
4. Practical machine learning issues/15. L1 Regularization - Code.srt
3.9 kB
2. 1-D Linear Regression Theory and Code/7. Introduction to Moore's Law Problem.srt
3.8 kB
4. Practical machine learning issues/9. L2 Regularization - Code.srt
3.7 kB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.srt
3.5 kB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.srt
3.0 kB
4. Practical machine learning issues/3. Generalization error, train and test sets.srt
2.9 kB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.srt
2.8 kB
2. 1-D Linear Regression Theory and Code/10. R-squared Quiz 1.srt
2.4 kB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.srt
2.1 kB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.srt
1.9 kB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.srt
1.7 kB
1. Welcome/6. What can linear regression be used for.html
150 Bytes
1. Welcome/[Tutorialsplanet.NET].url
128 Bytes
4. Practical machine learning issues/[Tutorialsplanet.NET].url
128 Bytes
7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>