搜索
[FreeCourseSite.com] Udemy - Python for Machine Learning The Complete Beginner's Course
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Python for Machine Learning The Complete Beginner's Course
磁力链接/BT种子简介
种子哈希:
3571aa8bff21e9c64a09fb3709e896e869f06bf2
文件大小:
685.33M
已经下载:
615
次
下载速度:
极快
收录时间:
2024-04-12
最近下载:
2024-12-10
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:3571AA8BFF21E9C64A09FB3709E896E869F06BF2
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
sexy+set
burning 1080p
736-1pon
天命
my+wife+photo+shoot
人妻 真实
the+mask
各种淫荡对白
中村佳子
2024年6月,国模私拍,超人气学妹【禾禾】
榨精女神旗袍
白虎 女神
imcmovie
无美颜自慰
专老熟女
自慰
监控私拍
abbywinters sophie
多部未華子
玉足交
母爱情
麻豆哥哥妹妹
dass488
4-20
sf-001
面膜少妇
武神主宰
688
ファルコム
pleasureville+a+dp+xxx+parody
文件列表
3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.mp4
30.3 MB
4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.mp4
20.6 MB
8. Recommender System/6. Sorting by title and rating.mp4
20.3 MB
7. Clustering/6. Implementation in python.mp4
19.9 MB
3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.mp4
18.7 MB
5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.mp4
17.8 MB
1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.mp4
15.0 MB
6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.mp4
14.1 MB
3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.mp4
14.0 MB
8. Recommender System/13. Correlation between the most-rated movies.mp4
13.9 MB
2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.mp4
13.9 MB
6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.mp4
13.8 MB
7. Clustering/14. 3D Visualization of the predicted values.mp4
13.5 MB
7. Clustering/10. Importing the dataset.mp4
13.4 MB
8. Recommender System/17. Repeating the process for another movie.mp4
13.3 MB
4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.mp4
13.1 MB
7. Clustering/11. Visualizing the dataset.mp4
13.0 MB
3. Multiple Linear Regression/8. Root Mean Squared Error in Python.mp4
12.4 MB
8. Recommender System/10. Data pre-processing.mp4
11.3 MB
6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.mp4
11.3 MB
5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.mp4
10.9 MB
8. Recommender System/4. Implementation in python Importing libraries & datasets.mp4
10.8 MB
4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.mp4
10.1 MB
7. Clustering/15. Number of predicted clusters.mp4
9.9 MB
2. Simple Linear Regression/5. Implementation in python Distribution of the data.mp4
9.9 MB
4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.mp4
9.7 MB
2. Simple Linear Regression/1. Introduction to regression.mp4
9.4 MB
8. Recommender System/11. Sorting the most-rated movies.mp4
9.3 MB
3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.mp4
9.3 MB
3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.mp4
9.0 MB
6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.mp4
8.2 MB
7. Clustering/13. 3D Visualization of the clusters.mp4
8.2 MB
7. Clustering/8. Density-based clustering.mp4
8.2 MB
2. Simple Linear Regression/2. How Does Linear Regression Work.mp4
8.1 MB
7. Clustering/12. Defining the classifier.mp4
8.0 MB
2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.mp4
7.9 MB
8. Recommender System/1. Introduction.mp4
7.9 MB
1. Introduction to Machine Learning/1. What is Machine Learning.mp4
7.8 MB
7. Clustering/7. Hierarchical clustering.mp4
7.8 MB
8. Recommender System/9. Jointplot of the ratings and number of ratings.mp4
7.6 MB
6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.mp4
7.5 MB
7. Clustering/4. Elbow method.mp4
7.4 MB
8. Recommender System/16. Sorting values.mp4
7.2 MB
6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.mp4
7.2 MB
7. Clustering/3. K-Means Clustering Algorithm.mp4
6.9 MB
6. Classification Algorithms Logistic regression/1. Introduction.mp4
6.9 MB
1. Introduction to Machine Learning/2. Applications of Machine Learning.mp4
6.8 MB
5. Classification Algorithms Decision Tree/1. Introduction to decision trees.mp4
6.8 MB
5. Classification Algorithms Decision Tree/4. Decision tree structure.mp4
6.7 MB
3. Multiple Linear Regression/1. Understanding Multiple linear regression.mp4
6.6 MB
1. Introduction to Machine Learning/4. What is Supervised learning.mp4
6.5 MB
4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.mp4
6.4 MB
8. Recommender System/14. Sorting the data by correlation.mp4
6.4 MB
8. Recommender System/8. Frequency distribution.mp4
6.3 MB
4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.mp4
6.3 MB
3. Multiple Linear Regression/7. Evaluating the performance of the regression model.mp4
6.3 MB
5. Classification Algorithms Decision Tree/3. Exploring the dataset.mp4
6.2 MB
1. Introduction to Machine Learning/5. What is Unsupervised learning.mp4
6.2 MB
7. Clustering/5. Steps of the Elbow method.mp4
6.1 MB
4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.mp4
6.0 MB
8. Recommender System/7. Histogram showing number of ratings.mp4
5.9 MB
6. Classification Algorithms Logistic regression/2. Implementation steps.mp4
5.8 MB
8. Recommender System/12. Grabbing the ratings for two movies.mp4
5.7 MB
2. Simple Linear Regression/3. Line representation.mp4
5.7 MB
5. Classification Algorithms Decision Tree/2. What is Entropy.mp4
5.5 MB
4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.mp4
5.4 MB
5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.mp4
5.2 MB
8. Recommender System/3. Content-based Recommender System.mp4
5.1 MB
8. Recommender System/15. Filtering out movies.mp4
5.0 MB
4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.mp4
4.9 MB
5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.mp4
4.9 MB
7. Clustering/1. Introduction to clustering.mp4
4.5 MB
8. Recommender System/5. Merging datasets into one dataframe.mp4
4.4 MB
8. Recommender System/2. Collaborative Filtering in Recommender Systems.mp4
4.4 MB
7. Clustering/2. Use cases.mp4
4.2 MB
7. Clustering/9. Implementation of k-means clustering in python.mp4
4.1 MB
1. Introduction to Machine Learning/3. Machine learning Methods.mp4
3.9 MB
4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.mp4
3.7 MB
9. Conclusion/1. Conclusion.mp4
2.9 MB
1. Introduction to Machine Learning/7.14 u.data
2.1 MB
1. Introduction to Machine Learning/7.12 Recommender Systems with Python.ipynb
125.3 kB
1. Introduction to Machine Learning/7.4 K-means algorithm numpy&pandas clustering.ipynb
104.8 kB
1. Introduction to Machine Learning/7.10 Movie_Id_Titles.original
51.0 kB
1. Introduction to Machine Learning/7.5 KNN_Binary_Classification.ipynb
25.8 kB
1. Introduction to Machine Learning/7.6 linear_regression_houseprice.ipynb
16.7 kB
1. Introduction to Machine Learning/7.2 Decision_tree.ipynb
14.7 kB
1. Introduction to Machine Learning/7.15 user data.csv
10.9 kB
1. Introduction to Machine Learning/7.11 MultipleLinearRegression.ipynb
8.7 kB
8. Recommender System/6. Sorting by title and rating.srt
5.8 kB
3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.srt
5.8 kB
1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.srt
4.6 kB
1. Introduction to Machine Learning/7.8 mall customers data.csv
4.4 kB
1. Introduction to Machine Learning/7.9 mallCustomerData.txt
4.0 kB
7. Clustering/6. Implementation in python.srt
3.7 kB
3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.srt
3.6 kB
5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.srt
3.5 kB
7. Clustering/10. Importing the dataset.srt
3.3 kB
8. Recommender System/4. Implementation in python Importing libraries & datasets.srt
3.2 kB
7. Clustering/11. Visualizing the dataset.srt
2.9 kB
6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.srt
2.9 kB
4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.srt
2.9 kB
3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.srt
2.9 kB
2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.srt
2.9 kB
7. Clustering/14. 3D Visualization of the predicted values.srt
2.8 kB
1. Introduction to Machine Learning/7.7 logistic_regression_Binary_Classification.ipynb
2.8 kB
5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.srt
2.7 kB
8. Recommender System/17. Repeating the process for another movie.srt
2.6 kB
6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.srt
2.6 kB
1. Introduction to Machine Learning/7.1 50_Startups.csv
2.4 kB
3. Multiple Linear Regression/8. Root Mean Squared Error in Python.srt
2.3 kB
8. Recommender System/10. Data pre-processing.srt
2.2 kB
2. Simple Linear Regression/5. Implementation in python Distribution of the data.srt
2.2 kB
7. Clustering/15. Number of predicted clusters.srt
2.1 kB
1. Introduction to Machine Learning/1. What is Machine Learning.srt
2.1 kB
8. Recommender System/13. Correlation between the most-rated movies.srt
2.1 kB
4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.srt
2.0 kB
1. Introduction to Machine Learning/2. Applications of Machine Learning.srt
2.0 kB
6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.srt
1.9 kB
2. Simple Linear Regression/1. Introduction to regression.srt
1.9 kB
2. Simple Linear Regression/2. How Does Linear Regression Work.srt
1.9 kB
6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.srt
1.9 kB
7. Clustering/4. Elbow method.srt
1.8 kB
7. Clustering/8. Density-based clustering.srt
1.8 kB
7. Clustering/12. Defining the classifier.srt
1.7 kB
6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.srt
1.6 kB
7. Clustering/13. 3D Visualization of the clusters.srt
1.6 kB
8. Recommender System/1. Introduction.srt
1.6 kB
7. Clustering/3. K-Means Clustering Algorithm.srt
1.6 kB
3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.srt
1.6 kB
5. Classification Algorithms Decision Tree/1. Introduction to decision trees.srt
1.5 kB
8. Recommender System/12. Grabbing the ratings for two movies.srt
1.5 kB
8. Recommender System/14. Sorting the data by correlation.srt
1.5 kB
2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.srt
1.5 kB
3. Multiple Linear Regression/1. Understanding Multiple linear regression.srt
1.5 kB
5. Classification Algorithms Decision Tree/2. What is Entropy.srt
1.5 kB
6. Classification Algorithms Logistic regression/1. Introduction.srt
1.5 kB
4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.srt
1.4 kB
8. Recommender System/9. Jointplot of the ratings and number of ratings.srt
1.4 kB
5. Classification Algorithms Decision Tree/3. Exploring the dataset.srt
1.4 kB
5. Classification Algorithms Decision Tree/4. Decision tree structure.srt
1.4 kB
3. Multiple Linear Regression/7. Evaluating the performance of the regression model.srt
1.3 kB
1. Introduction to Machine Learning/4. What is Supervised learning.srt
1.3 kB
4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.srt
1.3 kB
7. Clustering/7. Hierarchical clustering.srt
1.3 kB
8. Recommender System/8. Frequency distribution.srt
1.3 kB
4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.srt
1.2 kB
6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.srt
1.2 kB
4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.srt
1.2 kB
8. Recommender System/16. Sorting values.srt
1.1 kB
7. Clustering/5. Steps of the Elbow method.srt
1.1 kB
1. Introduction to Machine Learning/5. What is Unsupervised learning.srt
1.0 kB
7. Clustering/2. Use cases.srt
1.0 kB
3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.srt
1.0 kB
6. Classification Algorithms Logistic regression/2. Implementation steps.srt
954 Bytes
4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.srt
921 Bytes
5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.srt
879 Bytes
8. Recommender System/11. Sorting the most-rated movies.srt
879 Bytes
5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.srt
869 Bytes
7. Clustering/9. Implementation of k-means clustering in python.srt
836 Bytes
7. Clustering/1. Introduction to clustering.srt
832 Bytes
2. Simple Linear Regression/3. Line representation.srt
828 Bytes
8. Recommender System/7. Histogram showing number of ratings.srt
779 Bytes
8. Recommender System/3. Content-based Recommender System.srt
765 Bytes
8. Recommender System/15. Filtering out movies.srt
726 Bytes
8. Recommender System/2. Collaborative Filtering in Recommender Systems.srt
674 Bytes
1. Introduction to Machine Learning/7.13 salaries.csv
657 Bytes
8. Recommender System/5. Merging datasets into one dataframe.srt
622 Bytes
1. Introduction to Machine Learning/3. Machine learning Methods.srt
437 Bytes
4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.srt
434 Bytes
9. Conclusion/1. Conclusion.srt
414 Bytes
4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.srt
380 Bytes
4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.srt
348 Bytes
8. Recommender System/18. Quiz Time.html
188 Bytes
1. Introduction to Machine Learning/7. Course Materials.html
148 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
1. Introduction to Machine Learning/7.3 homeprices.csv
77 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>