搜索
[Udemy] Machine Learning in Python with 5 Machine Learning Projects (04.2021)
磁力链接/BT种子名称
[Udemy] Machine Learning in Python with 5 Machine Learning Projects (04.2021)
磁力链接/BT种子简介
种子哈希:
36c15402f90efe9321553cef2808f4fdf12abdef
文件大小:
20.82G
已经下载:
2092
次
下载速度:
极快
收录时间:
2022-01-12
最近下载:
2024-11-30
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:36C15402F90EFE9321553CEF2808F4FDF12ABDEF
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
姐控
dave the diver
迷奸
男模小天舞蹈老师兼职
大响槻
会喷水的姐姐野
伊朗电影
假面舞团
ton-07
约操皮肤相当白皙的车模,呻吟声特别销魂
angry birds
迷奸三人组
娇妻四艳鬼
mt-009
+姐姐的身体被血气方刚的弟弟侵犯(夏雨荷)
一之瀬す
不穿内衣的性感
team russia valya
2024年9月约炮大神
studio+fow
편.mp4
royd-181-uc
舔脚
梦想双飞
女仆店
肌肉
61rmb作品
ben the men hindi
撸管 av
商场女厕绝佳视角偷拍+女神级的少妇人美b也美
文件列表
12. Tree Based Models/2. Attribute selection method- Gini Index and Entropy.mp4
229.3 MB
11. Introduction to KNN, SVM, Naive Bayes/6. Introduction to Naive Bayes.mp4
183.2 MB
13. Boosting Models/2. Intuition for Adaboost and Gradient Boosting.mp4
160.7 MB
10. Logistic Regression/8. Using ROC-AUC score to analyze the performance of model.mp4
154.8 MB
10. Logistic Regression/6. How to analyze performance of a classification model.mp4
153.3 MB
13. Boosting Models/7. Introudction to Ensembling techniques.mp4
140.5 MB
20. Predicting Health Expense of Customers/8. Applying Linear Regression Model.mp4
134.3 MB
2. Python for Data Analysis/17. Time Complexity.mp4
126.0 MB
2. Python for Data Analysis/21. Insertion and Selection Sort.mp4
125.8 MB
1. Python Fundamentals/4. Built in Data Types and Type Casting.mp4
125.7 MB
18. Time Series Forecasting/8. Handling Missing Values.mp4
122.1 MB
2. Python for Data Analysis/22. Merge Sort.mp4
121.0 MB
17. Recommendation Engines/19. Introduction to SVD.mp4
117.5 MB
2. Python for Data Analysis/19. Binary Search.mp4
114.9 MB
9. Linear Regression/6. Analyzing the performance of Regression models.mp4
114.3 MB
11. Introduction to KNN, SVM, Naive Bayes/1. Introduction to Support Vector machines.mp4
113.4 MB
9. Linear Regression/9. Applying real time prediction on our model.mp4
112.8 MB
9. Linear Regression/7. R2 score and adjuted R2 score intuition.mp4
112.2 MB
10. Logistic Regression/1. Introduction to Logistic Regression.mp4
111.6 MB
5. Data Cleaning/24. Data Cleaning on Naukri Dataset.mp4
111.4 MB
9. Linear Regression/5. Applying Cross Validation.mp4
110.8 MB
11. Introduction to KNN, SVM, Naive Bayes/4. Introduction to K nearest neighbors.mp4
109.4 MB
20. Predicting Health Expense of Customers/2. Understanding the Dataset.mp4
109.1 MB
1. Python Fundamentals/3. Naming Convention for Variables.mp4
107.2 MB
16. Dimensionality Reduction/3. Solving a Real World Problem.mp4
103.6 MB
15. Introduction to Clustering Analysis/9. Using Silhouette Score to analyze the clusters.mp4
101.0 MB
19. Employee Promotion Prediction/2. Understanding the Dataset.mp4
100.5 MB
2. Python for Data Analysis/18. Linear Search.mp4
100.2 MB
20. Predicting Health Expense of Customers/7. Preparing the data for Modelling.mp4
95.3 MB
13. Boosting Models/3. Implementing AdaBoost using sklearn.mp4
95.2 MB
18. Time Series Forecasting/10. Time Series Decomposition.mp4
94.3 MB
20. Predicting Health Expense of Customers/4. Performing Univariate Analysis.mp4
94.1 MB
15. Introduction to Clustering Analysis/12. Introduction to Hierarchal Clustering.mp4
92.8 MB
10. Logistic Regression/2. Implementing Logistic Regression using Sklearn.mp4
91.2 MB
20. Predicting Health Expense of Customers/6. Performing Multivariate Analysis.mp4
90.1 MB
9. Linear Regression/3. Feature Selection using RFECV.mp4
90.1 MB
18. Time Series Forecasting/3. Regression Vs Time Series.mp4
87.0 MB
5. Data Cleaning/6. Imputing Missing Values in a real-time scenario.mp4
86.6 MB
12. Tree Based Models/1. Intuition for decision trees.mp4
86.0 MB
16. Dimensionality Reduction/18. Introduction to t-SNE.mp4
85.2 MB
9. Linear Regression/1. Introduction to Linear Regression.mp4
85.2 MB
17. Recommendation Engines/12. Introduction to Collaborative Filtering.mp4
84.8 MB
3. Python Functions Deep Dive/9. Filter, Map, and Zip Functions.mp4
83.7 MB
5. Data Cleaning/3. When should we delete the Missing values.mp4
83.5 MB
16. Dimensionality Reduction/1. Why High Dimensional Datasets are a Problem.mp4
83.1 MB
18. Time Series Forecasting/14. Metrics for Time series Forecasting.mp4
82.5 MB
1. Python Fundamentals/8. Arithmetic and Assignment Operators.mp4
81.8 MB
19. Employee Promotion Prediction/15. Performance Analysis.mp4
80.9 MB
1. Python Fundamentals/5. Scope of Variables.mp4
80.9 MB
18. Time Series Forecasting/25. Auto Correlation and Partial Correlation.mp4
80.6 MB
17. Recommendation Engines/6. Preprocessing the Data for Content Based Filtering.mp4
80.4 MB
4. Python for Data Science/21. Merging and Concatenating DataFrames.mp4
80.3 MB
2. Python for Data Analysis/20. Bubble Sort.mp4
79.2 MB
2. Python for Data Analysis/8. Introduction to Sets.mp4
79.2 MB
18. Time Series Forecasting/21. Checking for Stationarity using Statistical Methods Part 2.mp4
79.1 MB
21. Determining Whether a Person should be Granted Loan/4. Performing Descriptive Statistics.mp4
79.0 MB
10. Logistic Regression/9. Real time prediction using logistic regression.mp4
78.3 MB
4. Python for Data Science/7. Meta Characters for Regular Expressions.mp4
77.6 MB
5. Data Cleaning/4. Imputing the Missing Values using the Business Logic.mp4
77.5 MB
16. Dimensionality Reduction/16. Introduction to Principal Component Analysis.mp4
77.4 MB
22. Optimizing Agricultural Production/4. Performing Descriptive Statistics.mp4
77.1 MB
9. Linear Regression/2. Implementing Linear Regression using Sklearn.mp4
77.0 MB
2. Python for Data Analysis/24. Quiz Solution.mp4
76.8 MB
18. Time Series Forecasting/17. Holt and Holt Winter Exponential Smoothing.mp4
76.7 MB
7. Feature Engineering/9. Finding the Length, Polarity and Subjectivity.mp4
76.6 MB
17. Recommendation Engines/13. Preprocessing the Data for Collaborative Filtering.mp4
75.9 MB
15. Introduction to Clustering Analysis/8. Implementing K Means on the Mall Dataset.mp4
75.0 MB
20. Predicting Health Expense of Customers/5. Performing Bivariate Analysis.mp4
74.9 MB
16. Dimensionality Reduction/5. Introduction to Correlation using Heatmap.mp4
74.9 MB
14. Imbalanced Machine Learning/5. Applying Logistic Regression using Sklearn.mp4
74.6 MB
18. Time Series Forecasting/7. Getting Time Series data.mp4
74.5 MB
15. Introduction to Clustering Analysis/7. Solving a Real World Problem.mp4
74.5 MB
6. Data Visualizations/3. Multivariate Analysis.mp4
74.3 MB
14. Imbalanced Machine Learning/2. Using Resampling Techniques to Balance the Data.mp4
74.0 MB
20. Predicting Health Expense of Customers/10. Applying Gradient Boosting Model.mp4
73.8 MB
11. Introduction to KNN, SVM, Naive Bayes/2. The kermel trick for support vector machine.mp4
73.8 MB
21. Determining Whether a Person should be Granted Loan/7. Bivariate Data Analysis.mp4
73.6 MB
18. Time Series Forecasting/36. Understanding SARIMA Model.mp4
73.3 MB
11. Introduction to KNN, SVM, Naive Bayes/8. When should we apply SVM, KNN and Naive bayes.mp4
73.2 MB
5. Data Cleaning/9. How Outliers can be harmful for Machine Learning Models.mp4
72.4 MB
4. Python for Data Science/20. Indexing, Selecting, and Filtering Data using Pandas.mp4
72.3 MB
21. Determining Whether a Person should be Granted Loan/2. Setting up the Environment.mp4
71.9 MB
12. Tree Based Models/6. Introduction to Random forest.mp4
71.4 MB
19. Employee Promotion Prediction/12. Data Processing.mp4
70.9 MB
11. Introduction to KNN, SVM, Naive Bayes/3. Implementing support vector machine using sklearn.mp4
70.7 MB
15. Introduction to Clustering Analysis/5. Using the Elbow Method for Choosing the Best Value for K.mp4
70.3 MB
21. Determining Whether a Person should be Granted Loan/5. Data Cleaning.mp4
70.2 MB
13. Boosting Models/4. Implementing Gradient Boosting using sklearn.mp4
70.2 MB
2. Python for Data Analysis/6. Introduction to Dictionaries.mp4
70.1 MB
18. Time Series Forecasting/16. Simple Exponential Smoothing.mp4
69.9 MB
18. Time Series Forecasting/39. Understanding ARIMAX Model.mp4
69.7 MB
12. Tree Based Models/5. Understanding the concept of Bagging.mp4
69.2 MB
1. Python Fundamentals/18. If, elif, and else.mp4
69.1 MB
4. Python for Data Science/18. Reading Datasets using Pandas.mp4
68.9 MB
1. Python Fundamentals/1. Why should you learn Python.mp4
68.9 MB
15. Introduction to Clustering Analysis/2. Types of Clustering.mp4
68.4 MB
21. Determining Whether a Person should be Granted Loan/6. Univariate Data Visualizations.mp4
68.3 MB
13. Boosting Models/6. Implementing XGBoost using sklearn.mp4
68.3 MB
18. Time Series Forecasting/20. Checking for Stationarity Part 1.mp4
68.2 MB
18. Time Series Forecasting/28. The Simple Auto Regressive Model Implementation.mp4
68.1 MB
7. Feature Engineering/26. Quiz Solution.mp4
68.0 MB
16. Dimensionality Reduction/22. Difference between PCA, t-SNE, and LDA.mp4
67.9 MB
18. Time Series Forecasting/9. Handling Outlier Values.mp4
67.6 MB
5. Data Cleaning/1. Causes and Impact of Missing Values.mp4
67.5 MB
14. Imbalanced Machine Learning/11. Implementing Neighbors based Sampling using Imblearn.mp4
67.1 MB
22. Optimizing Agricultural Production/6. Clustering Similar Crops.mp4
66.7 MB
17. Recommendation Engines/15. Interpreting the Results obtained from User Based Filtering.mp4
66.7 MB
17. Recommendation Engines/16. Implementation of Item Based Collaborative Filtering.mp4
66.6 MB
18. Time Series Forecasting/11. Splitting Time Series Data.mp4
66.6 MB
18. Time Series Forecasting/27. The Simple Auto Regressive Model.mp4
66.5 MB
17. Recommendation Engines/8. Introduction to Transactional Encoder.mp4
66.5 MB
5. Data Cleaning/10. Finding out Outliers from the Data.mp4
66.3 MB
3. Python Functions Deep Dive/18. Solving the Fibonacci Problem using Recursion.mp4
65.7 MB
1. Python Fundamentals/9. Comparison, Logical, and Bitwise Operators.mp4
65.4 MB
3. Python Functions Deep Dive/23. Encapsulation.mp4
65.2 MB
17. Recommendation Engines/14. Implementation of User Based Collaborative Filtering.mp4
65.2 MB
17. Recommendation Engines/22. Comparing Content, and Collaborative Based Filtering.mp4
65.0 MB
11. Introduction to KNN, SVM, Naive Bayes/7. Implementing Naive Bayes using sklearn.mp4
65.0 MB
5. Data Cleaning/2. Types of Missing Values.mp4
64.8 MB
20. Predicting Health Expense of Customers/3. Understanding the Problem Statement.mp4
64.8 MB
19. Employee Promotion Prediction/4. Performing Descriptive Statistics.mp4
64.7 MB
8. Data Processing/1. Types of Encoding Techniques.mp4
63.9 MB
5. Data Cleaning/12. Deleting and Capping the Outliers.mp4
63.7 MB
2. Python for Data Analysis/7. Nested Dictionaries.mp4
63.5 MB
7. Feature Engineering/1. Introduction to Feature Engineering.mp4
63.0 MB
18. Time Series Forecasting/42. Implementing SARIMAX Model.mp4
62.9 MB
10. Logistic Regression/10. Industry Relevance of Logistic Regression.mp4
62.8 MB
19. Employee Promotion Prediction/3. Understanding the Problem Statement.mp4
62.7 MB
7. Feature Engineering/5. Binning Numerical Features.mp4
62.2 MB
17. Recommendation Engines/5. Introduction to Content Based Filtering.mp4
61.9 MB
10. Logistic Regression/4. Hyperparameter tuning using Grid search.mp4
61.6 MB
17. Recommendation Engines/7. Filtering Movies Based on Genres.mp4
61.6 MB
7. Feature Engineering/23. Feature Engineering on Marketing Data.mp4
61.4 MB
2. Python for Data Analysis/9. Set Operations.mp4
61.4 MB
17. Recommendation Engines/26. Case Study for Youtube.mp4
61.0 MB
14. Imbalanced Machine Learning/4. Preparing the Data for Predictive Modelling.mp4
60.7 MB
15. Introduction to Clustering Analysis/1. Introduction to Clustering.mp4
60.6 MB
20. Predicting Health Expense of Customers/14. Major Takeaways from the Project.mp4
60.4 MB
4. Python for Data Science/17. Quiz Solution.mp4
60.4 MB
14. Imbalanced Machine Learning/9. Implementing Random Under Sampling using Imblearn.mp4
60.3 MB
9. Linear Regression/4. Data Transformation with Linear Regression.mp4
60.3 MB
14. Imbalanced Machine Learning/10. Implementing Synthetic Sampling using Imblearn.mp4
60.2 MB
16. Dimensionality Reduction/2. Methods to solve the problem of High Dimensionality.mp4
59.9 MB
13. Boosting Models/1. Understading the concept of boosting.mp4
59.9 MB
7. Feature Engineering/20. Feature Engineering on Employee Data.mp4
59.9 MB
20. Predicting Health Expense of Customers/11. Creating Ensembles of Models.mp4
59.8 MB
6. Data Visualizations/1. Univariate Analysis.mp4
59.8 MB
14. Imbalanced Machine Learning/3. Solving a Real World Problem.mp4
59.7 MB
21. Determining Whether a Person should be Granted Loan/9. Applying Resampling.mp4
59.7 MB
7. Feature Engineering/6. Aggregating Features.mp4
59.6 MB
7. Feature Engineering/2. Removing Unnecessary Columns.mp4
59.6 MB
18. Time Series Forecasting/32. Understanding ARMA Model.mp4
59.5 MB
10. Logistic Regression/5. Applying Cross Validation.mp4
59.5 MB
16. Dimensionality Reduction/11. Introduction to Recursive Feature Selection.mp4
59.4 MB
17. Recommendation Engines/3. Types of Recommender Systems.mp4
59.3 MB
17. Recommendation Engines/25. Case Study for Netflix.mp4
59.1 MB
17. Recommendation Engines/9. Recommending Similar Movies to Watch.mp4
59.0 MB
4. Python for Data Science/10. Sets for Regular Expressions.mp4
58.9 MB
5. Data Cleaning/15. Quiz Solution.mp4
58.8 MB
5. Data Cleaning/5. Imputing Missing Values using MeanMedianMode.mp4
58.7 MB
15. Introduction to Clustering Analysis/3. Applications of Clustering.mp4
58.7 MB
18. Time Series Forecasting/34. Understanding ARIMA Model.mp4
58.6 MB
14. Imbalanced Machine Learning/12. Combination of Oversampling and Under sampling.mp4
58.5 MB
17. Recommendation Engines/18. Quiz Solution.mp4
58.3 MB
10. Logistic Regression/7. Using accuracy score to analyze the performance of model.mp4
58.2 MB
16. Dimensionality Reduction/17. Implementing PCA.mp4
58.2 MB
18. Time Series Forecasting/13. Basic Forecasting Techniques.mp4
58.2 MB
3. Python Functions Deep Dive/17. Solving the Factorial Problem using Recursion.mp4
58.1 MB
22. Optimizing Agricultural Production/2. Understanding the Dataset.mp4
57.9 MB
14. Imbalanced Machine Learning/13. Implementing Ensemble Models for Imbalanced Data.mp4
57.5 MB
4. Python for Data Science/24. Quiz Solution.mp4
57.4 MB
3. Python Functions Deep Dive/10. List, set, and Dictionary Comprehensions.mp4
57.2 MB
14. Imbalanced Machine Learning/8. Implementing Random Over Sampling using Imblearn.mp4
57.1 MB
20. Predicting Health Expense of Customers/9. Applying Random Forest Model.mp4
57.0 MB
3. Python Functions Deep Dive/2. Default Parameters in Functions.mp4
56.6 MB
6. Data Visualizations/29. Quiz Solution.mp4
56.4 MB
12. Tree Based Models/7. Understanding the parameters of Random forest.mp4
56.3 MB
14. Imbalanced Machine Learning/1. Why Imbalanced Data needs extra attention.mp4
56.2 MB
12. Tree Based Models/3. Advantages and Issues with Decision trees.mp4
56.0 MB
17. Recommendation Engines/4. Evaluating Recommender Systems.mp4
55.7 MB
3. Python Functions Deep Dive/8. Lambda Functions.mp4
55.7 MB
19. Employee Promotion Prediction/7. Univariate Analysis.mp4
55.7 MB
1. Python Fundamentals/17. Quiz Solution.mp4
55.7 MB
1. Python Fundamentals/19. For and While.mp4
55.6 MB
18. Time Series Forecasting/50. Mean Forecast Error.mp4
55.5 MB
16. Dimensionality Reduction/13. Introduction the Boruta Algorithm.mp4
55.0 MB
21. Determining Whether a Person should be Granted Loan/10. Applying Logistic Regression.mp4
54.9 MB
15. Introduction to Clustering Analysis/15. Introduction to DBSCAN Clustering.mp4
54.9 MB
15. Introduction to Clustering Analysis/14. Implementing Hierarchial Clustering.mp4
54.9 MB
18. Time Series Forecasting/45. Choosing the Right for Model Smaller Datasets.mp4
54.8 MB
18. Time Series Forecasting/5. Components of Time Series.mp4
54.5 MB
1. Python Fundamentals/13. String Formatting.mp4
53.8 MB
7. Feature Engineering/19. Quiz Solution.mp4
53.7 MB
16. Dimensionality Reduction/12. Implementing Recursive Feature Selection.mp4
53.4 MB
4. Python for Data Science/13. Array Creation using Numpy.mp4
53.4 MB
5. Data Cleaning/13. Dealing with Outliers in a real-world scenario.mp4
53.4 MB
5. Data Cleaning/11. Using Winsorization to deal with Outliers.mp4
53.0 MB
19. Employee Promotion Prediction/10. Feature Engineering.mp4
52.9 MB
20. Predicting Health Expense of Customers/1. Setting up the Environment.mp4
52.6 MB
18. Time Series Forecasting/15. Simple Moving Averages.mp4
52.5 MB
15. Introduction to Clustering Analysis/10. Clustering Multiple Dimensions.mp4
52.4 MB
9. Linear Regression/10. Industry relevance of linear regression.mp4
52.3 MB
7. Feature Engineering/24. Feature Engineering on Titanic Data.mp4
52.0 MB
15. Introduction to Clustering Analysis/6. Introduction to K Means Clustering.mp4
51.7 MB
5. Data Cleaning/8. Quiz Solution.mp4
51.5 MB
1. Python Fundamentals/22. Quiz Solution.mp4
51.4 MB
9. Linear Regression/8. MAE, RMSE, R2 and Adjusted R2 in code.mp4
51.4 MB
16. Dimensionality Reduction/20. Introduction to Linear Discriminant Analysis.mp4
51.3 MB
16. Dimensionality Reduction/6. Removing Highly Correlated Columns using Correlation.mp4
51.2 MB
6. Data Visualizations/17. Quiz Solution.mp4
51.2 MB
2. Python for Data Analysis/12. Introduction to Stacks and Queues.mp4
51.1 MB
20. Predicting Health Expense of Customers/13. More things to Try.mp4
51.1 MB
16. Dimensionality Reduction/8. Introduction to Variance Inflation Filtering.mp4
51.0 MB
2. Python for Data Analysis/1. Differences between Lists and Tuples.mp4
51.0 MB
6. Data Visualizations/8. Bar, Line, and Area Charts.mp4
50.9 MB
17. Recommendation Engines/11. Quiz Solution.mp4
50.9 MB
18. Time Series Forecasting/33. Implementing ARMA Model.mp4
50.6 MB
18. Time Series Forecasting/24. Converting Non-Stationary Series into Stationary Implementation.mp4
50.5 MB
18. Time Series Forecasting/23. Converting Non-Stationary Series into Stationary.mp4
50.4 MB
17. Recommendation Engines/24. Quiz Solution.mp4
50.3 MB
12. Tree Based Models/8. Implementing random forest using Sklearn.mp4
50.2 MB
15. Introduction to Clustering Analysis/16. Implementing DBSCAN Clustering.mp4
50.2 MB
16. Dimensionality Reduction/9. Implementing VIF using statsmodel.mp4
50.2 MB
6. Data Visualizations/18. Animation with Bubbleplot.mp4
50.1 MB
3. Python Functions Deep Dive/7. Quiz Solution.mp4
50.0 MB
18. Time Series Forecasting/4. Applications of Time Series.mp4
49.6 MB
6. Data Visualizations/5. Quiz Solution.mp4
49.4 MB
1. Python Fundamentals/7. Quiz Solution.mp4
48.8 MB
22. Optimizing Agricultural Production/1. Setting up the Environment.mp4
48.7 MB
3. Python Functions Deep Dive/24. Polymorphism.mp4
48.5 MB
17. Recommendation Engines/21. Interpreting Results Obtained from SVD.mp4
48.2 MB
21. Determining Whether a Person should be Granted Loan/1. Understanding the Problem Statement.mp4
47.7 MB
18. Time Series Forecasting/2. Types of Forecasting.mp4
47.5 MB
6. Data Visualizations/6. Scatter Plots.mp4
47.4 MB
17. Recommendation Engines/2. What are it's Use Cases.mp4
47.2 MB
6. Data Visualizations/2. Bivariate Analysis.mp4
47.2 MB
7. Feature Engineering/21. Feature Engineering on FIFA Data.mp4
46.9 MB
18. Time Series Forecasting/40. Implementing ARIMAX Model.mp4
46.9 MB
5. Data Cleaning/16. Introduction to reindex, set_index, reset_index, and sort_index Functions.mp4
46.9 MB
19. Employee Promotion Prediction/14. Predictive Modelling.mp4
46.8 MB
2. Python for Data Analysis/2. Operations on Lists.mp4
46.6 MB
8. Data Processing/13. Train, Test and Validation Split.mp4
46.4 MB
21. Determining Whether a Person should be Granted Loan/12. Summary.mp4
46.3 MB
4. Python for Data Science/6. Quiz Solution.mp4
46.2 MB
18. Time Series Forecasting/41. Understanding SARIMAX Model.mp4
46.0 MB
14. Imbalanced Machine Learning/14. Introduction to XG Boost for Imbalanced Data.mp4
45.7 MB
1. Python Fundamentals/14. String Methods.mp4
45.4 MB
16. Dimensionality Reduction/14. Implementing the Boruta Algorithm.mp4
45.3 MB
18. Time Series Forecasting/47. Best Practices while Choosing a Time series Model..mp4
45.1 MB
21. Determining Whether a Person should be Granted Loan/8. Preparing the Data for Modelling.mp4
44.9 MB
3. Python Functions Deep Dive/5. Python Modules.mp4
44.8 MB
14. Imbalanced Machine Learning/6. Applying Random Forest using Sklearn.mp4
44.7 MB
19. Employee Promotion Prediction/6. Outlier Values Treatment.mp4
44.6 MB
19. Employee Promotion Prediction/13. Feature Scaling.mp4
44.3 MB
10. Logistic Regression/3. Feature Selection using RFECV.mp4
44.2 MB
5. Data Cleaning/23. Data Cleaning on Melbourne Housing Dataset.mp4
44.2 MB
19. Employee Promotion Prediction/16. Improvements Possible.mp4
43.9 MB
15. Introduction to Clustering Analysis/13. Introduction to Dendrograms.mp4
43.8 MB
19. Employee Promotion Prediction/1. Setting up the Environment.mp4
43.7 MB
2. Python for Data Analysis/14. Implementing Stacks and Queues using Deque.mp4
43.6 MB
14. Imbalanced Machine Learning/15. Comparing the Results.mp4
43.5 MB
5. Data Cleaning/20. Introduction to Melt, Explode, and Squeeze Functions.mp4
43.4 MB
21. Determining Whether a Person should be Granted Loan/3. Understanding the Dataset.mp4
43.1 MB
13. Boosting Models/5. Getting High level intuition for XGBoost.mp4
43.1 MB
1. Python Fundamentals/15. User Input.mp4
43.0 MB
4. Python for Data Science/9. Special Characters for Regular Expressions.mp4
42.9 MB
1. Python Fundamentals/20. Break and Continue.mp4
42.7 MB
17. Recommendation Engines/20. Implementing SVD using Surprise.mp4
42.6 MB
17. Recommendation Engines/1. Introduction to Recommender systems.mp4
42.5 MB
3. Python Functions Deep Dive/26. Quiz Solution.mp4
42.4 MB
22. Optimizing Agricultural Production/10. Summarizing the Key-Points.mp4
42.4 MB
22. Optimizing Agricultural Production/8. Predictive Modelling.mp4
42.3 MB
3. Python Functions Deep Dive/12. Quiz Solution.mp4
42.2 MB
3. Python Functions Deep Dive/1. Introduction to Functions.mp4
42.2 MB
4. Python for Data Science/15. Built-in Functions in Numpy.mp4
41.9 MB
19. Employee Promotion Prediction/9. Multivariate Analysis.mp4
41.9 MB
6. Data Visualizations/36. Network Charts.mp4
41.7 MB
8. Data Processing/14. Standardization and Normalization.mp4
41.6 MB
3. Python Functions Deep Dive/21. Introduction to Classes and Objects.mp4
41.5 MB
2. Python for Data Analysis/16. Quiz Solution.mp4
41.4 MB
8. Data Processing/9. Square and Cube Root Transformation.mp4
41.3 MB
1. Python Fundamentals/10. Identity and Membership Operators.mp4
41.1 MB
22. Optimizing Agricultural Production/5. Analyzing Agricultural Conditions.mp4
41.1 MB
6. Data Visualizations/32. Funnel Charts.mp4
41.0 MB
19. Employee Promotion Prediction/5. Missing Values Treatment.mp4
40.5 MB
21. Determining Whether a Person should be Granted Loan/11. Applying Gradient Boosting.mp4
40.5 MB
6. Data Visualizations/24. Introduction to Ipywidgets.mp4
40.4 MB
6. Data Visualizations/38. Quiz Solution.mp4
40.4 MB
18. Time Series Forecasting/26. Auto Correlation and Partial Correlation Implementation.mp4
40.3 MB
6. Data Visualizations/10. Statistical Charts.mp4
40.2 MB
5. Data Cleaning/21. Data Cleaning on Big Mart Dataset.mp4
40.2 MB
7. Feature Engineering/3. Decomposing Time and Date Features.mp4
40.2 MB
7. Feature Engineering/4. Decomposing Categorical Features.mp4
40.1 MB
2. Python for Data Analysis/11. Quiz Solution.mp4
40.1 MB
3. Python Functions Deep Dive/16. Quiz Solution.mp4
40.0 MB
18. Time Series Forecasting/37. Implementing SARIMA Model.mp4
40.0 MB
18. Time Series Forecasting/22. Checking for Stationary Implementation.mp4
40.0 MB
3. Python Functions Deep Dive/20. Quiz Solution.mp4
39.9 MB
6. Data Visualizations/9. Facet Grids.mp4
39.8 MB
5. Data Cleaning/18. Introduction to Split and Strip Function.mp4
39.7 MB
4. Python for Data Science/8. Built-in Functions for Regular Expressions.mp4
39.4 MB
8. Data Processing/8. Introduction to Skewness and Normal Distribution.mp4
39.4 MB
4. Python for Data Science/1. Introduction to datetime.mp4
39.3 MB
19. Employee Promotion Prediction/11. Categorical Encoding.mp4
39.3 MB
5. Data Cleaning/22. Data Cleaning on Movie Dataset.mp4
39.1 MB
4. Python for Data Science/22. Lambda, Map, and Apply Functions.mp4
39.0 MB
19. Employee Promotion Prediction/8. Bivariate Analysis.mp4
39.0 MB
2. Python for Data Analysis/5. Quiz Solution.mp4
38.9 MB
16. Dimensionality Reduction/21. Implementing LDA.mp4
38.5 MB
20. Predicting Health Expense of Customers/12. Comparing Performance of these Models.mp4
38.3 MB
2. Python for Data Analysis/13. Implementing Stacks and Queues using Lists.mp4
38.3 MB
4. Python for Data Science/14. Mathematical Operations using Numpy.mp4
38.2 MB
18. Time Series Forecasting/46. Choosing the Right Model for Larger Datasets.mp4
38.1 MB
7. Feature Engineering/10. Finding the Words, Characters, and Punctuation Count.mp4
38.1 MB
3. Python Functions Deep Dive/4. Keyword Arguments.mp4
38.0 MB
7. Feature Engineering/13. Introduction to Assign and Update Functions.mp4
37.9 MB
16. Dimensionality Reduction/19. Implementing t-SNE.mp4
37.9 MB
12. Tree Based Models/4. Implementing Decision tree using Sklearn.mp4
37.5 MB
4. Python for Data Science/19. Plotting Data in Pandas.mp4
37.5 MB
18. Time Series Forecasting/51. Mean Absolute Error.mp4
37.3 MB
22. Optimizing Agricultural Production/3. Understanding the Problem Statement.mp4
37.1 MB
7. Feature Engineering/15. Introduction to nlargest and nsmallest Functions.mp4
37.0 MB
18. Time Series Forecasting/29. Moving Average Model.mp4
37.0 MB
18. Time Series Forecasting/44. How to Choose the Right Model.mp4
36.9 MB
7. Feature Engineering/22. Feature Engineering on Hotel Reviews.mp4
36.8 MB
18. Time Series Forecasting/1. What is a Time Series Data.mp4
36.6 MB
6. Data Visualizations/12. Subplots.mp4
36.5 MB
18. Time Series Forecasting/19. Introduction to Auto Regressive Models.mp4
36.4 MB
3. Python Functions Deep Dive/14. Introduction to Analytical Functions.mp4
36.4 MB
6. Data Visualizations/23. Quiz Solution.mp4
36.3 MB
8. Data Processing/4. OneHot Encoding.mp4
36.3 MB
1. Python Fundamentals/12. Quiz Solution.mp4
35.9 MB
6. Data Visualizations/26. Interactive Bivariate Analysis.mp4
35.5 MB
7. Feature Engineering/7. Introduction to Feature Engineering on Text Data.mp4
35.5 MB
4. Python for Data Science/2. The date and time class.mp4
35.2 MB
8. Data Processing/2. Label Encoding.mp4
35.2 MB
1. Python Fundamentals/2. Installing Python and Jupyter Notebook.mp4
35.1 MB
11. Introduction to KNN, SVM, Naive Bayes/5. Implementing KNN using Sklearn.mp4
34.8 MB
8. Data Processing/5. Binary and BaseN Encoding.mp4
34.8 MB
18. Time Series Forecasting/35. Implementing ARIMA Model.mp4
34.8 MB
6. Data Visualizations/30. Sunburst Charts.mp4
34.8 MB
5. Data Cleaning/17. Introduction to Replace and Droplevel Function.mp4
34.6 MB
4. Python for Data Science/12. Quiz Solution.mp4
34.4 MB
8. Data Processing/11. BoxCox transformation.mp4
34.1 MB
3. Python Functions Deep Dive/22. Inheritance.mp4
34.1 MB
3. Python Functions Deep Dive/3. Positional Arguments.mp4
33.7 MB
6. Data Visualizations/7. Charts with Colorscale.mp4
33.4 MB
18. Time Series Forecasting/49. Why do we Evaluate Performance.mp4
33.3 MB
7. Feature Engineering/11. Counting Nouns and Verbs in the Text.mp4
32.9 MB
7. Feature Engineering/17. Introduction to Cumulative Functions.mp4
32.6 MB
6. Data Visualizations/15. Maps.mp4
32.2 MB
3. Python Functions Deep Dive/13. Introduction to Aggregate Functions.mp4
32.1 MB
6. Data Visualizations/21. Animation with Choropleth Maps.mp4
32.1 MB
7. Feature Engineering/8. Reading and Summarizing the Text.mp4
32.0 MB
7. Feature Engineering/14. Introduction to at_time and between_time Functions.mp4
31.7 MB
6. Data Visualizations/25. Interactive Univariate Analysis.mp4
31.3 MB
18. Time Series Forecasting/52. Mean Absolute Percentage Error.mp4
31.2 MB
6. Data Visualizations/14. Waffle Charts.mp4
30.8 MB
18. Time Series Forecasting/53. Root Mean Squared Error.mp4
30.8 MB
6. Data Visualizations/11. Polar Charts.mp4
30.7 MB
6. Data Visualizations/27. Interactive Multivariate Analysis.mp4
30.6 MB
8. Data Processing/3. Feature Mapping for Ordinal Variables.mp4
30.4 MB
19. Employee Promotion Prediction/17. Major Takeaways from the Project.mp4
30.4 MB
7. Feature Engineering/16. Introduction to Expanding Function.mp4
29.8 MB
8. Data Processing/10. Log transformation.mp4
29.4 MB
22. Optimizing Agricultural Production/7. Visualizing the Hidden Patterns.mp4
29.1 MB
22. Optimizing Agricultural Production/9. Real Time Predictions.mp4
29.0 MB
2. Python for Data Analysis/3. Operations on Tuples.mp4
28.8 MB
6. Data Visualizations/19. Animation with Facets.mp4
28.0 MB
5. Data Cleaning/19. Introduction to Stack, and Unstack Functions.mp4
26.6 MB
6. Data Visualizations/33. Gantt Charts.mp4
26.3 MB
6. Data Visualizations/13. 3D Charts.mp4
25.8 MB
7. Feature Engineering/12. Counting Adjectives, Adverb, and Pronouns.mp4
24.9 MB
18. Time Series Forecasting/30. Moving Average Model Implementation.mp4
24.4 MB
6. Data Visualizations/31. Parallel Co-ordinate Charts.mp4
24.1 MB
8. Data Processing/6. Mean and Frequency Encoding.mp4
23.9 MB
6. Data Visualizations/20. Animation with Scatter Maps.mp4
23.8 MB
4. Python for Data Science/3. The datetime class.mp4
23.7 MB
6. Data Visualizations/35. Tree Maps.mp4
22.5 MB
6. Data Visualizations/34. Ternary Charts.mp4
21.4 MB
4. Python for Data Science/4. The timedelta class.mp4
20.3 MB
12. Tree Based Models/2. Attribute selection method- Gini Index and Entropy.srt
13.6 kB
5. Data Cleaning/24. Data Cleaning on Naukri Dataset.srt
13.2 kB
9. Linear Regression/2. Implementing Linear Regression using Sklearn.srt
10.9 kB
11. Introduction to KNN, SVM, Naive Bayes/6. Introduction to Naive Bayes.srt
10.7 kB
9. Linear Regression/9. Applying real time prediction on our model.srt
9.9 kB
10. Logistic Regression/8. Using ROC-AUC score to analyze the performance of model.srt
9.7 kB
18. Time Series Forecasting/8. Handling Missing Values.srt
9.6 kB
13. Boosting Models/3. Implementing AdaBoost using sklearn.srt
9.6 kB
10. Logistic Regression/2. Implementing Logistic Regression using Sklearn.srt
9.4 kB
10. Logistic Regression/6. How to analyze performance of a classification model.srt
8.9 kB
13. Boosting Models/2. Intuition for Adaboost and Gradient Boosting.srt
8.8 kB
16. Dimensionality Reduction/3. Solving a Real World Problem.srt
8.6 kB
20. Predicting Health Expense of Customers/8. Applying Linear Regression Model.srt
8.3 kB
1. Python Fundamentals/8. Arithmetic and Assignment Operators.srt
8.2 kB
5. Data Cleaning/10. Finding out Outliers from the Data.srt
8.2 kB
13. Boosting Models/7. Introudction to Ensembling techniques.srt
8.0 kB
18. Time Series Forecasting/10. Time Series Decomposition.srt
7.8 kB
2. Python for Data Analysis/24. Quiz Solution.srt
7.7 kB
1. Python Fundamentals/9. Comparison, Logical, and Bitwise Operators.srt
7.6 kB
11. Introduction to KNN, SVM, Naive Bayes/3. Implementing support vector machine using sklearn.srt
7.6 kB
2. Python for Data Analysis/21. Insertion and Selection Sort.srt
7.4 kB
20. Predicting Health Expense of Customers/7. Preparing the data for Modelling.srt
7.2 kB
10. Logistic Regression/9. Real time prediction using logistic regression.srt
7.2 kB
20. Predicting Health Expense of Customers/6. Performing Multivariate Analysis.srt
7.1 kB
15. Introduction to Clustering Analysis/9. Using Silhouette Score to analyze the clusters.srt
7.1 kB
10. Logistic Regression/1. Introduction to Logistic Regression.srt
7.0 kB
9. Linear Regression/4. Data Transformation with Linear Regression.srt
7.0 kB
5. Data Cleaning/6. Imputing Missing Values in a real-time scenario.srt
6.9 kB
3. Python Functions Deep Dive/9. Filter, Map, and Zip Functions.srt
6.9 kB
20. Predicting Health Expense of Customers/2. Understanding the Dataset.srt
6.8 kB
17. Recommendation Engines/6. Preprocessing the Data for Content Based Filtering.srt
6.8 kB
20. Predicting Health Expense of Customers/4. Performing Univariate Analysis.srt
6.8 kB
18. Time Series Forecasting/28. The Simple Auto Regressive Model Implementation.srt
6.7 kB
1. Python Fundamentals/4. Built in Data Types and Type Casting.srt
6.7 kB
18. Time Series Forecasting/7. Getting Time Series data.srt
6.6 kB
19. Employee Promotion Prediction/2. Understanding the Dataset.srt
6.5 kB
7. Feature Engineering/23. Feature Engineering on Marketing Data.srt
6.5 kB
2. Python for Data Analysis/17. Time Complexity.srt
6.4 kB
22. Optimizing Agricultural Production/4. Performing Descriptive Statistics.srt
6.4 kB
9. Linear Regression/3. Feature Selection using RFECV.srt
6.4 kB
15. Introduction to Clustering Analysis/8. Implementing K Means on the Mall Dataset.srt
6.4 kB
2. Python for Data Analysis/22. Merge Sort.srt
6.4 kB
18. Time Series Forecasting/17. Holt and Holt Winter Exponential Smoothing.srt
6.3 kB
1. Python Fundamentals/3. Naming Convention for Variables.srt
6.2 kB
7. Feature Engineering/20. Feature Engineering on Employee Data.srt
6.2 kB
21. Determining Whether a Person should be Granted Loan/4. Performing Descriptive Statistics.srt
6.2 kB
17. Recommendation Engines/19. Introduction to SVD.srt
6.1 kB
1. Python Fundamentals/14. String Methods.srt
6.1 kB
9. Linear Regression/7. R2 score and adjuted R2 score intuition.srt
6.0 kB
17. Recommendation Engines/7. Filtering Movies Based on Genres.srt
6.0 kB
7. Feature Engineering/9. Finding the Length, Polarity and Subjectivity.srt
5.9 kB
11. Introduction to KNN, SVM, Naive Bayes/1. Introduction to Support Vector machines.srt
5.9 kB
17. Recommendation Engines/13. Preprocessing the Data for Collaborative Filtering.srt
5.8 kB
2. Python for Data Analysis/19. Binary Search.srt
5.7 kB
17. Recommendation Engines/15. Interpreting the Results obtained from User Based Filtering.srt
5.7 kB
6. Data Visualizations/3. Multivariate Analysis.srt
5.6 kB
9. Linear Regression/8. MAE, RMSE, R2 and Adjusted R2 in code.srt
5.6 kB
20. Predicting Health Expense of Customers/5. Performing Bivariate Analysis.srt
5.6 kB
17. Recommendation Engines/21. Interpreting Results Obtained from SVD.srt
5.5 kB
16. Dimensionality Reduction/5. Introduction to Correlation using Heatmap.srt
5.5 kB
11. Introduction to KNN, SVM, Naive Bayes/4. Introduction to K nearest neighbors.srt
5.5 kB
1. Python Fundamentals/7. Quiz Solution.srt
5.4 kB
1. Python Fundamentals/19. For and While.srt
5.4 kB
7. Feature Engineering/24. Feature Engineering on Titanic Data.srt
5.4 kB
9. Linear Regression/5. Applying Cross Validation.srt
5.4 kB
2. Python for Data Analysis/11. Quiz Solution.srt
5.3 kB
19. Employee Promotion Prediction/15. Performance Analysis.srt
5.2 kB
4. Python for Data Science/7. Meta Characters for Regular Expressions.srt
5.2 kB
14. Imbalanced Machine Learning/5. Applying Logistic Regression using Sklearn.srt
5.2 kB
10. Logistic Regression/4. Hyperparameter tuning using Grid search.srt
5.1 kB
19. Employee Promotion Prediction/12. Data Processing.srt
5.1 kB
9. Linear Regression/6. Analyzing the performance of Regression models.srt
5.1 kB
4. Python for Data Science/21. Merging and Concatenating DataFrames.srt
5.1 kB
15. Introduction to Clustering Analysis/7. Solving a Real World Problem.srt
5.1 kB
21. Determining Whether a Person should be Granted Loan/5. Data Cleaning.srt
5.0 kB
3. Python Functions Deep Dive/7. Quiz Solution.srt
5.0 kB
19. Employee Promotion Prediction/7. Univariate Analysis.srt
5.0 kB
6. Data Visualizations/8. Bar, Line, and Area Charts.srt
5.0 kB
6. Data Visualizations/10. Statistical Charts.srt
5.0 kB
5. Data Cleaning/8. Quiz Solution.srt
4.9 kB
18. Time Series Forecasting/14. Metrics for Time series Forecasting.srt
4.9 kB
1. Python Fundamentals/13. String Formatting.srt
4.9 kB
14. Imbalanced Machine Learning/4. Preparing the Data for Predictive Modelling.srt
4.9 kB
13. Boosting Models/4. Implementing Gradient Boosting using sklearn.srt
4.9 kB
17. Recommendation Engines/12. Introduction to Collaborative Filtering.srt
4.9 kB
15. Introduction to Clustering Analysis/12. Introduction to Hierarchal Clustering.srt
4.9 kB
21. Determining Whether a Person should be Granted Loan/7. Bivariate Data Analysis.srt
4.9 kB
6. Data Visualizations/1. Univariate Analysis.srt
4.9 kB
21. Determining Whether a Person should be Granted Loan/2. Setting up the Environment.srt
4.8 kB
9. Linear Regression/1. Introduction to Linear Regression.srt
4.8 kB
13. Boosting Models/6. Implementing XGBoost using sklearn.srt
4.8 kB
2. Python for Data Analysis/9. Set Operations.srt
4.8 kB
20. Predicting Health Expense of Customers/10. Applying Gradient Boosting Model.srt
4.8 kB
10. Logistic Regression/7. Using accuracy score to analyze the performance of model.srt
4.8 kB
2. Python for Data Analysis/6. Introduction to Dictionaries.srt
4.7 kB
17. Recommendation Engines/14. Implementation of User Based Collaborative Filtering.srt
4.7 kB
2. Python for Data Analysis/18. Linear Search.srt
4.7 kB
5. Data Cleaning/16. Introduction to reindex, set_index, reset_index, and sort_index Functions.srt
4.7 kB
18. Time Series Forecasting/13. Basic Forecasting Techniques.srt
4.7 kB
12. Tree Based Models/1. Intuition for decision trees.srt
4.7 kB
14. Imbalanced Machine Learning/11. Implementing Neighbors based Sampling using Imblearn.srt
4.7 kB
17. Recommendation Engines/18. Quiz Solution.srt
4.7 kB
18. Time Series Forecasting/3. Regression Vs Time Series.srt
4.6 kB
20. Predicting Health Expense of Customers/11. Creating Ensembles of Models.srt
4.6 kB
7. Feature Engineering/26. Quiz Solution.srt
4.6 kB
7. Feature Engineering/5. Binning Numerical Features.srt
4.6 kB
18. Time Series Forecasting/9. Handling Outlier Values.srt
4.6 kB
2. Python for Data Analysis/8. Introduction to Sets.srt
4.6 kB
4. Python for Data Science/20. Indexing, Selecting, and Filtering Data using Pandas.srt
4.6 kB
16. Dimensionality Reduction/14. Implementing the Boruta Algorithm.srt
4.6 kB
16. Dimensionality Reduction/18. Introduction to t-SNE.srt
4.6 kB
4. Python for Data Science/24. Quiz Solution.srt
4.6 kB
20. Predicting Health Expense of Customers/9. Applying Random Forest Model.srt
4.6 kB
3. Python Functions Deep Dive/2. Default Parameters in Functions.srt
4.6 kB
17. Recommendation Engines/16. Implementation of Item Based Collaborative Filtering.srt
4.5 kB
6. Data Visualizations/29. Quiz Solution.srt
4.5 kB
19. Employee Promotion Prediction/4. Performing Descriptive Statistics.srt
4.5 kB
5. Data Cleaning/15. Quiz Solution.srt
4.5 kB
17. Recommendation Engines/11. Quiz Solution.srt
4.5 kB
4. Python for Data Science/17. Quiz Solution.srt
4.5 kB
7. Feature Engineering/21. Feature Engineering on FIFA Data.srt
4.5 kB
1. Python Fundamentals/17. Quiz Solution.srt
4.5 kB
12. Tree Based Models/8. Implementing random forest using Sklearn.srt
4.5 kB
21. Determining Whether a Person should be Granted Loan/6. Univariate Data Visualizations.srt
4.4 kB
16. Dimensionality Reduction/1. Why High Dimensional Datasets are a Problem.srt
4.4 kB
7. Feature Engineering/2. Removing Unnecessary Columns.srt
4.4 kB
16. Dimensionality Reduction/17. Implementing PCA.srt
4.4 kB
6. Data Visualizations/6. Scatter Plots.srt
4.4 kB
18. Time Series Forecasting/21. Checking for Stationarity using Statistical Methods Part 2.srt
4.4 kB
2. Python for Data Analysis/2. Operations on Lists.srt
4.4 kB
1. Python Fundamentals/22. Quiz Solution.srt
4.4 kB
12. Tree Based Models/7. Understanding the parameters of Random forest.srt
4.4 kB
14. Imbalanced Machine Learning/2. Using Resampling Techniques to Balance the Data.srt
4.4 kB
16. Dimensionality Reduction/12. Implementing Recursive Feature Selection.srt
4.3 kB
14. Imbalanced Machine Learning/8. Implementing Random Over Sampling using Imblearn.srt
4.3 kB
5. Data Cleaning/3. When should we delete the Missing values.srt
4.3 kB
6. Data Visualizations/17. Quiz Solution.srt
4.3 kB
14. Imbalanced Machine Learning/3. Solving a Real World Problem.srt
4.3 kB
8. Data Processing/1. Types of Encoding Techniques.srt
4.2 kB
16. Dimensionality Reduction/16. Introduction to Principal Component Analysis.srt
4.2 kB
22. Optimizing Agricultural Production/6. Clustering Similar Crops.srt
4.2 kB
6. Data Visualizations/38. Quiz Solution.srt
4.2 kB
7. Feature Engineering/10. Finding the Words, Characters, and Punctuation Count.srt
4.2 kB
1. Python Fundamentals/5. Scope of Variables.srt
4.2 kB
2. Python for Data Analysis/7. Nested Dictionaries.srt
4.2 kB
18. Time Series Forecasting/25. Auto Correlation and Partial Correlation.srt
4.2 kB
18. Time Series Forecasting/11. Splitting Time Series Data.srt
4.2 kB
3. Python Functions Deep Dive/10. List, set, and Dictionary Comprehensions.srt
4.2 kB
6. Data Visualizations/5. Quiz Solution.srt
4.1 kB
14. Imbalanced Machine Learning/10. Implementing Synthetic Sampling using Imblearn.srt
4.1 kB
18. Time Series Forecasting/16. Simple Exponential Smoothing.srt
4.1 kB
15. Introduction to Clustering Analysis/10. Clustering Multiple Dimensions.srt
4.1 kB
1. Python Fundamentals/12. Quiz Solution.srt
4.1 kB
14. Imbalanced Machine Learning/9. Implementing Random Under Sampling using Imblearn.srt
4.1 kB
17. Recommendation Engines/9. Recommending Similar Movies to Watch.srt
4.1 kB
11. Introduction to KNN, SVM, Naive Bayes/8. When should we apply SVM, KNN and Naive bayes.srt
4.1 kB
3. Python Functions Deep Dive/20. Quiz Solution.srt
4.1 kB
3. Python Functions Deep Dive/12. Quiz Solution.srt
4.1 kB
12. Tree Based Models/6. Introduction to Random forest.srt
4.1 kB
5. Data Cleaning/21. Data Cleaning on Big Mart Dataset.srt
4.1 kB
16. Dimensionality Reduction/6. Removing Highly Correlated Columns using Correlation.srt
4.1 kB
5. Data Cleaning/20. Introduction to Melt, Explode, and Squeeze Functions.srt
4.0 kB
19. Employee Promotion Prediction/6. Outlier Values Treatment.srt
4.0 kB
2. Python for Data Analysis/20. Bubble Sort.srt
4.0 kB
5. Data Cleaning/18. Introduction to Split and Strip Function.srt
4.0 kB
15. Introduction to Clustering Analysis/13. Introduction to Dendrograms.srt
4.0 kB
7. Feature Engineering/6. Aggregating Features.srt
4.0 kB
5. Data Cleaning/9. How Outliers can be harmful for Machine Learning Models.srt
4.0 kB
7. Feature Engineering/19. Quiz Solution.srt
4.0 kB
3. Python Functions Deep Dive/23. Encapsulation.srt
4.0 kB
5. Data Cleaning/23. Data Cleaning on Melbourne Housing Dataset.srt
4.0 kB
15. Introduction to Clustering Analysis/2. Types of Clustering.srt
4.0 kB
18. Time Series Forecasting/24. Converting Non-Stationary Series into Stationary Implementation.srt
4.0 kB
4. Python for Data Science/6. Quiz Solution.srt
3.9 kB
5. Data Cleaning/13. Dealing with Outliers in a real-world scenario.srt
3.9 kB
4. Python for Data Science/10. Sets for Regular Expressions.srt
3.9 kB
5. Data Cleaning/4. Imputing the Missing Values using the Business Logic.srt
3.9 kB
2. Python for Data Analysis/16. Quiz Solution.srt
3.9 kB
17. Recommendation Engines/20. Implementing SVD using Surprise.srt
3.9 kB
10. Logistic Regression/5. Applying Cross Validation.srt
3.9 kB
18. Time Series Forecasting/36. Understanding SARIMA Model.srt
3.9 kB
15. Introduction to Clustering Analysis/6. Introduction to K Means Clustering.srt
3.9 kB
11. Introduction to KNN, SVM, Naive Bayes/2. The kermel trick for support vector machine.srt
3.9 kB
3. Python Functions Deep Dive/14. Introduction to Analytical Functions.srt
3.9 kB
1. Python Fundamentals/18. If, elif, and else.srt
3.8 kB
3. Python Functions Deep Dive/21. Introduction to Classes and Objects.srt
3.8 kB
18. Time Series Forecasting/15. Simple Moving Averages.srt
3.8 kB
14. Imbalanced Machine Learning/13. Implementing Ensemble Models for Imbalanced Data.srt
3.8 kB
17. Recommendation Engines/22. Comparing Content, and Collaborative Based Filtering.srt
3.8 kB
4. Python for Data Science/18. Reading Datasets using Pandas.srt
3.8 kB
18. Time Series Forecasting/50. Mean Forecast Error.srt
3.8 kB
17. Recommendation Engines/5. Introduction to Content Based Filtering.srt
3.7 kB
19. Employee Promotion Prediction/1. Setting up the Environment.srt
3.7 kB
15. Introduction to Clustering Analysis/5. Using the Elbow Method for Choosing the Best Value for K.srt
3.7 kB
2. Python for Data Analysis/5. Quiz Solution.srt
3.7 kB
18. Time Series Forecasting/23. Converting Non-Stationary Series into Stationary.srt
3.7 kB
5. Data Cleaning/1. Causes and Impact of Missing Values.srt
3.7 kB
15. Introduction to Clustering Analysis/14. Implementing Hierarchial Clustering.srt
3.7 kB
15. Introduction to Clustering Analysis/15. Introduction to DBSCAN Clustering.srt
3.7 kB
6. Data Visualizations/2. Bivariate Analysis.srt
3.7 kB
12. Tree Based Models/4. Implementing Decision tree using Sklearn.srt
3.7 kB
12. Tree Based Models/5. Understanding the concept of Bagging.srt
3.7 kB
14. Imbalanced Machine Learning/12. Combination of Oversampling and Under sampling.srt
3.7 kB
17. Recommendation Engines/24. Quiz Solution.srt
3.7 kB
20. Predicting Health Expense of Customers/1. Setting up the Environment.srt
3.7 kB
8. Data Processing/13. Train, Test and Validation Split.srt
3.7 kB
15. Introduction to Clustering Analysis/16. Implementing DBSCAN Clustering.srt
3.7 kB
16. Dimensionality Reduction/9. Implementing VIF using statsmodel.srt
3.7 kB
18. Time Series Forecasting/26. Auto Correlation and Partial Correlation Implementation.srt
3.7 kB
21. Determining Whether a Person should be Granted Loan/9. Applying Resampling.srt
3.6 kB
6. Data Visualizations/24. Introduction to Ipywidgets.srt
3.6 kB
7. Feature Engineering/15. Introduction to nlargest and nsmallest Functions.srt
3.6 kB
18. Time Series Forecasting/42. Implementing SARIMAX Model.srt
3.6 kB
14. Imbalanced Machine Learning/14. Introduction to XG Boost for Imbalanced Data.srt
3.6 kB
3. Python Functions Deep Dive/26. Quiz Solution.srt
3.6 kB
6. Data Visualizations/26. Interactive Bivariate Analysis.srt
3.6 kB
18. Time Series Forecasting/39. Understanding ARIMAX Model.srt
3.6 kB
7. Feature Engineering/1. Introduction to Feature Engineering.srt
3.6 kB
20. Predicting Health Expense of Customers/3. Understanding the Problem Statement.srt
3.5 kB
21. Determining Whether a Person should be Granted Loan/1. Understanding the Problem Statement.srt
3.5 kB
11. Introduction to KNN, SVM, Naive Bayes/7. Implementing Naive Bayes using sklearn.srt
3.5 kB
2. Python for Data Analysis/1. Differences between Lists and Tuples.srt
3.5 kB
17. Recommendation Engines/3. Types of Recommender Systems.srt
3.5 kB
19. Employee Promotion Prediction/3. Understanding the Problem Statement.srt
3.5 kB
8. Data Processing/5. Binary and BaseN Encoding.srt
3.5 kB
5. Data Cleaning/12. Deleting and Capping the Outliers.srt
3.5 kB
6. Data Visualizations/23. Quiz Solution.srt
3.4 kB
16. Dimensionality Reduction/22. Difference between PCA, t-SNE, and LDA.srt
3.4 kB
10. Logistic Regression/10. Industry Relevance of Logistic Regression.srt
3.4 kB
18. Time Series Forecasting/40. Implementing ARIMAX Model.srt
3.4 kB
16. Dimensionality Reduction/2. Methods to solve the problem of High Dimensionality.srt
3.4 kB
4. Python for Data Science/12. Quiz Solution.srt
3.4 kB
1. Python Fundamentals/1. Why should you learn Python.srt
3.4 kB
19. Employee Promotion Prediction/11. Categorical Encoding.srt
3.4 kB
21. Determining Whether a Person should be Granted Loan/10. Applying Logistic Regression.srt
3.4 kB
5. Data Cleaning/2. Types of Missing Values.srt
3.4 kB
3. Python Functions Deep Dive/16. Quiz Solution.srt
3.4 kB
15. Introduction to Clustering Analysis/3. Applications of Clustering.srt
3.4 kB
19. Employee Promotion Prediction/10. Feature Engineering.srt
3.4 kB
18. Time Series Forecasting/20. Checking for Stationarity Part 1.srt
3.4 kB
8. Data Processing/9. Square and Cube Root Transformation.srt
3.3 kB
7. Feature Engineering/22. Feature Engineering on Hotel Reviews.srt
3.3 kB
7. Feature Engineering/13. Introduction to Assign and Update Functions.srt
3.3 kB
19. Employee Promotion Prediction/8. Bivariate Analysis.srt
3.3 kB
18. Time Series Forecasting/27. The Simple Auto Regressive Model.srt
3.3 kB
4. Python for Data Science/13. Array Creation using Numpy.srt
3.3 kB
20. Predicting Health Expense of Customers/14. Major Takeaways from the Project.srt
3.3 kB
17. Recommendation Engines/8. Introduction to Transactional Encoder.srt
3.3 kB
22. Optimizing Agricultural Production/8. Predictive Modelling.srt
3.3 kB
14. Imbalanced Machine Learning/1. Why Imbalanced Data needs extra attention.srt
3.3 kB
22. Optimizing Agricultural Production/2. Understanding the Dataset.srt
3.3 kB
7. Feature Engineering/17. Introduction to Cumulative Functions.srt
3.2 kB
22. Optimizing Agricultural Production/1. Setting up the Environment.srt
3.2 kB
15. Introduction to Clustering Analysis/1. Introduction to Clustering.srt
3.2 kB
18. Time Series Forecasting/22. Checking for Stationary Implementation.srt
3.2 kB
14. Imbalanced Machine Learning/6. Applying Random Forest using Sklearn.srt
3.2 kB
16. Dimensionality Reduction/11. Introduction to Recursive Feature Selection.srt
3.2 kB
5. Data Cleaning/22. Data Cleaning on Movie Dataset.srt
3.2 kB
6. Data Visualizations/32. Funnel Charts.srt
3.2 kB
3. Python Functions Deep Dive/17. Solving the Factorial Problem using Recursion.srt
3.2 kB
3. Python Functions Deep Dive/18. Solving the Fibonacci Problem using Recursion.srt
3.2 kB
7. Feature Engineering/8. Reading and Summarizing the Text.srt
3.2 kB
18. Time Series Forecasting/33. Implementing ARMA Model.srt
3.2 kB
18. Time Series Forecasting/34. Understanding ARIMA Model.srt
3.1 kB
13. Boosting Models/1. Understading the concept of boosting.srt
3.1 kB
21. Determining Whether a Person should be Granted Loan/8. Preparing the Data for Modelling.srt
3.1 kB
19. Employee Promotion Prediction/14. Predictive Modelling.srt
3.1 kB
10. Logistic Regression/3. Feature Selection using RFECV.srt
3.1 kB
17. Recommendation Engines/26. Case Study for Youtube.srt
3.1 kB
17. Recommendation Engines/4. Evaluating Recommender Systems.srt
3.1 kB
8. Data Processing/4. OneHot Encoding.srt
3.0 kB
17. Recommendation Engines/25. Case Study for Netflix.srt
3.0 kB
4. Python for Data Science/2. The date and time class.srt
3.0 kB
16. Dimensionality Reduction/13. Introduction the Boruta Algorithm.srt
3.0 kB
18. Time Series Forecasting/5. Components of Time Series.srt
3.0 kB
12. Tree Based Models/3. Advantages and Issues with Decision trees.srt
3.0 kB
7. Feature Engineering/14. Introduction to at_time and between_time Functions.srt
3.0 kB
18. Time Series Forecasting/45. Choosing the Right for Model Smaller Datasets.srt
3.0 kB
3. Python Functions Deep Dive/5. Python Modules.srt
3.0 kB
21. Determining Whether a Person should be Granted Loan/11. Applying Gradient Boosting.srt
3.0 kB
18. Time Series Forecasting/32. Understanding ARMA Model.srt
3.0 kB
8. Data Processing/2. Label Encoding.srt
3.0 kB
5. Data Cleaning/5. Imputing Missing Values using MeanMedianMode.srt
3.0 kB
22. Optimizing Agricultural Production/5. Analyzing Agricultural Conditions.srt
3.0 kB
20. Predicting Health Expense of Customers/12. Comparing Performance of these Models.srt
3.0 kB
1. Python Fundamentals/15. User Input.srt
2.9 kB
6. Data Visualizations/12. Subplots.srt
2.9 kB
1. Python Fundamentals/20. Break and Continue.srt
2.9 kB
5. Data Cleaning/11. Using Winsorization to deal with Outliers.srt
2.9 kB
1. Python Fundamentals/10. Identity and Membership Operators.srt
2.9 kB
3. Python Functions Deep Dive/8. Lambda Functions.srt
2.9 kB
3. Python Functions Deep Dive/4. Keyword Arguments.srt
2.9 kB
8. Data Processing/8. Introduction to Skewness and Normal Distribution.srt
2.9 kB
6. Data Visualizations/18. Animation with Bubbleplot.srt
2.9 kB
2. Python for Data Analysis/13. Implementing Stacks and Queues using Lists.srt
2.8 kB
4. Python for Data Science/15. Built-in Functions in Numpy.srt
2.8 kB
4. Python for Data Science/9. Special Characters for Regular Expressions.srt
2.8 kB
20. Predicting Health Expense of Customers/13. More things to Try.srt
2.8 kB
9. Linear Regression/10. Industry relevance of linear regression.srt
2.8 kB
7. Feature Engineering/4. Decomposing Categorical Features.srt
2.8 kB
16. Dimensionality Reduction/21. Implementing LDA.srt
2.8 kB
16. Dimensionality Reduction/20. Introduction to Linear Discriminant Analysis.srt
2.8 kB
19. Employee Promotion Prediction/9. Multivariate Analysis.srt
2.7 kB
6. Data Visualizations/9. Facet Grids.srt
2.7 kB
2. Python for Data Analysis/14. Implementing Stacks and Queues using Deque.srt
2.7 kB
19. Employee Promotion Prediction/5. Missing Values Treatment.srt
2.7 kB
3. Python Functions Deep Dive/24. Polymorphism.srt
2.7 kB
6. Data Visualizations/11. Polar Charts.srt
2.7 kB
18. Time Series Forecasting/37. Implementing SARIMA Model.srt
2.7 kB
6. Data Visualizations/25. Interactive Univariate Analysis.srt
2.7 kB
7. Feature Engineering/11. Counting Nouns and Verbs in the Text.srt
2.7 kB
6. Data Visualizations/36. Network Charts.srt
2.7 kB
18. Time Series Forecasting/2. Types of Forecasting.srt
2.7 kB
3. Python Functions Deep Dive/22. Inheritance.srt
2.7 kB
6. Data Visualizations/15. Maps.srt
2.6 kB
4. Python for Data Science/8. Built-in Functions for Regular Expressions.srt
2.6 kB
22. Optimizing Agricultural Production/7. Visualizing the Hidden Patterns.srt
2.6 kB
4. Python for Data Science/14. Mathematical Operations using Numpy.srt
2.6 kB
3. Python Functions Deep Dive/13. Introduction to Aggregate Functions.srt
2.6 kB
18. Time Series Forecasting/4. Applications of Time Series.srt
2.6 kB
6. Data Visualizations/30. Sunburst Charts.srt
2.6 kB
5. Data Cleaning/17. Introduction to Replace and Droplevel Function.srt
2.6 kB
8. Data Processing/10. Log transformation.srt
2.6 kB
3. Python Functions Deep Dive/1. Introduction to Functions.srt
2.6 kB
18. Time Series Forecasting/51. Mean Absolute Error.srt
2.5 kB
6. Data Visualizations/33. Gantt Charts.srt
2.5 kB
19. Employee Promotion Prediction/16. Improvements Possible.srt
2.5 kB
1. Python Fundamentals/2. Installing Python and Jupyter Notebook.srt
2.5 kB
8. Data Processing/14. Standardization and Normalization.srt
2.5 kB
19. Employee Promotion Prediction/13. Feature Scaling.srt
2.5 kB
21. Determining Whether a Person should be Granted Loan/12. Summary.srt
2.5 kB
17. Recommendation Engines/2. What are it's Use Cases.srt
2.5 kB
18. Time Series Forecasting/47. Best Practices while Choosing a Time series Model..srt
2.5 kB
6. Data Visualizations/7. Charts with Colorscale.srt
2.5 kB
8. Data Processing/11. BoxCox transformation.srt
2.5 kB
7. Feature Engineering/3. Decomposing Time and Date Features.srt
2.4 kB
4. Python for Data Science/19. Plotting Data in Pandas.srt
2.4 kB
7. Feature Engineering/16. Introduction to Expanding Function.srt
2.4 kB
16. Dimensionality Reduction/19. Implementing t-SNE.srt
2.4 kB
16. Dimensionality Reduction/8. Introduction to Variance Inflation Filtering.srt
2.4 kB
2. Python for Data Analysis/3. Operations on Tuples.srt
2.3 kB
22. Optimizing Agricultural Production/10. Summarizing the Key-Points.srt
2.3 kB
18. Time Series Forecasting/35. Implementing ARIMA Model.srt
2.3 kB
18. Time Series Forecasting/41. Understanding SARIMAX Model.srt
2.3 kB
2. Python for Data Analysis/12. Introduction to Stacks and Queues.srt
2.3 kB
4. Python for Data Science/22. Lambda, Map, and Apply Functions.srt
2.3 kB
8. Data Processing/3. Feature Mapping for Ordinal Variables.srt
2.3 kB
21. Determining Whether a Person should be Granted Loan/3. Understanding the Dataset.srt
2.3 kB
3. Python Functions Deep Dive/3. Positional Arguments.srt
2.3 kB
17. Recommendation Engines/1. Introduction to Recommender systems.srt
2.2 kB
8. Data Processing/6. Mean and Frequency Encoding.srt
2.2 kB
6. Data Visualizations/27. Interactive Multivariate Analysis.srt
2.2 kB
14. Imbalanced Machine Learning/15. Comparing the Results.srt
2.2 kB
22. Optimizing Agricultural Production/9. Real Time Predictions.srt
2.2 kB
5. Data Cleaning/19. Introduction to Stack, and Unstack Functions.srt
2.1 kB
7. Feature Engineering/12. Counting Adjectives, Adverb, and Pronouns.srt
2.1 kB
13. Boosting Models/5. Getting High level intuition for XGBoost.srt
2.1 kB
11. Introduction to KNN, SVM, Naive Bayes/5. Implementing KNN using Sklearn.srt
2.1 kB
18. Time Series Forecasting/29. Moving Average Model.srt
2.0 kB
18. Time Series Forecasting/52. Mean Absolute Percentage Error.srt
2.0 kB
18. Time Series Forecasting/53. Root Mean Squared Error.srt
2.0 kB
6. Data Visualizations/21. Animation with Choropleth Maps.srt
2.0 kB
18. Time Series Forecasting/19. Introduction to Auto Regressive Models.srt
2.0 kB
18. Time Series Forecasting/1. What is a Time Series Data.srt
2.0 kB
6. Data Visualizations/13. 3D Charts.srt
2.0 kB
6. Data Visualizations/14. Waffle Charts.srt
2.0 kB
4. Python for Data Science/1. Introduction to datetime.srt
1.9 kB
22. Optimizing Agricultural Production/3. Understanding the Problem Statement.srt
1.9 kB
18. Time Series Forecasting/46. Choosing the Right Model for Larger Datasets.srt
1.9 kB
18. Time Series Forecasting/30. Moving Average Model Implementation.srt
1.9 kB
6. Data Visualizations/35. Tree Maps.srt
1.8 kB
18. Time Series Forecasting/44. How to Choose the Right Model.srt
1.8 kB
6. Data Visualizations/19. Animation with Facets.srt
1.8 kB
6. Data Visualizations/34. Ternary Charts.srt
1.8 kB
7. Feature Engineering/7. Introduction to Feature Engineering on Text Data.srt
1.8 kB
18. Time Series Forecasting/49. Why do we Evaluate Performance.srt
1.8 kB
6. Data Visualizations/31. Parallel Co-ordinate Charts.srt
1.7 kB
6. Data Visualizations/20. Animation with Scatter Maps.srt
1.6 kB
19. Employee Promotion Prediction/17. Major Takeaways from the Project.srt
1.6 kB
4. Python for Data Science/3. The datetime class.srt
1.5 kB
4. Python for Data Science/4. The timedelta class.srt
1.2 kB
1. Python Fundamentals/11. Quiz on Operators.html
147 Bytes
1. Python Fundamentals/16. Quiz on Strings.html
147 Bytes
1. Python Fundamentals/21. Quiz on Loops and Conditionals.html
147 Bytes
1. Python Fundamentals/6. Quiz on Variables and Data Types.html
147 Bytes
10. Logistic Regression/11. Quiz on Modelling with Logistic Regression.html
147 Bytes
11. Introduction to KNN, SVM, Naive Bayes/9. Quiz on Other classification models.html
147 Bytes
12. Tree Based Models/9. Quiz on Tree based models.html
147 Bytes
13. Boosting Models/8. Quiz on Boosting Models.html
147 Bytes
14. Imbalanced Machine Learning/16. Quiz on Handling Imbalanced Datasets.html
147 Bytes
14. Imbalanced Machine Learning/7. Quiz on Introduction to Imbalanced Machine Learning.html
147 Bytes
15. Introduction to Clustering Analysis/11. Quiz on K Means Clustering.html
147 Bytes
15. Introduction to Clustering Analysis/17. Quiz on Advanced Clustering Techniques.html
147 Bytes
15. Introduction to Clustering Analysis/4. Quiz on Introduction to Clustering.html
147 Bytes
16. Dimensionality Reduction/10. Quiz on Variance Filtering.html
147 Bytes
16. Dimensionality Reduction/15. Quiz on Feature Selection.html
147 Bytes
16. Dimensionality Reduction/23. Quiz on Machine Learning.html
147 Bytes
16. Dimensionality Reduction/4. Quiz on Introduction.html
147 Bytes
16. Dimensionality Reduction/7. Quiz on Correlation Filtering.html
147 Bytes
17. Recommendation Engines/10. Quiz on Content Based Filtering.html
147 Bytes
17. Recommendation Engines/17. Quiz on Collaborative Based Filtering.html
147 Bytes
17. Recommendation Engines/23. Quiz on Singular Value Decomposition.html
147 Bytes
18. Time Series Forecasting/12. Quiz on Time Series Analysis.html
147 Bytes
18. Time Series Forecasting/18. Quiz on Smoothing Techniques.html
147 Bytes
18. Time Series Forecasting/31. Quiz on AR Models.html
147 Bytes
18. Time Series Forecasting/38. Quiz on Advanced AR Models.html
147 Bytes
18. Time Series Forecasting/43. Quiz on ARIMAX and SARIMAX Models.html
147 Bytes
18. Time Series Forecasting/48. Quiz on Choosing the Right Model.html
147 Bytes
18. Time Series Forecasting/54. Quiz on Why do we Evaluate Performance.html
147 Bytes
18. Time Series Forecasting/6. Quiz on Introduction to Time Series.html
147 Bytes
19. Employee Promotion Prediction/18. Quiz on Employee Promotion Prediction.html
147 Bytes
2. Python for Data Analysis/10. Quiz on Sets and Dictionaries.html
147 Bytes
2. Python for Data Analysis/15. Quiz on Stacks and Queues.html
147 Bytes
2. Python for Data Analysis/23. Quiz on Searching, Sorting, and Time Complexity.html
147 Bytes
2. Python for Data Analysis/4. Quiz on Lists and Tuples.html
147 Bytes
20. Predicting Health Expense of Customers/15. Quiz on Predicting Health Expense of Customers.html
147 Bytes
21. Determining Whether a Person should be Granted Loan/13. Quiz on Determining Whether a Person should be Granted Loan.html
147 Bytes
22. Optimizing Agricultural Production/11. Quiz on Optimizing Agricultural Production.html
147 Bytes
3. Python Functions Deep Dive/11. Quiz on Anonymous Functions.html
147 Bytes
3. Python Functions Deep Dive/15. Quiz on In Built Functions.html
147 Bytes
3. Python Functions Deep Dive/19. Quiz on Recursions.html
147 Bytes
3. Python Functions Deep Dive/25. Quiz on Classes and Objects.html
147 Bytes
3. Python Functions Deep Dive/6. Quiz on Introduction to Functions.html
147 Bytes
4. Python for Data Science/11. Quiz on Regular Expressions.html
147 Bytes
4. Python for Data Science/16. Quiz on Introduction to Numpy.html
147 Bytes
4. Python for Data Science/23. Quiz on Introduction to Pandas.html
147 Bytes
4. Python for Data Science/5. Quiz on Dates and Times.html
147 Bytes
5. Data Cleaning/14. Quiz on Outliers Treatment.html
147 Bytes
5. Data Cleaning/7. Quiz on Missing Values Imputation.html
147 Bytes
6. Data Visualizations/16. Quiz on Advanced Visualizations.html
147 Bytes
6. Data Visualizations/22. Quiz on Animated Visualizations.html
147 Bytes
6. Data Visualizations/28. Quiz on Interactive Visualizations.html
147 Bytes
6. Data Visualizations/37. Quiz on Miscellaneous Charts.html
147 Bytes
6. Data Visualizations/4. Quiz on Basics of Visualization.html
147 Bytes
7. Feature Engineering/18. Quiz on Feature Engineering Functions.html
147 Bytes
7. Feature Engineering/25. Quiz on Feature Engineering on Real World Datasets.html
147 Bytes
8. Data Processing/12. Quiz on Data Transformation.html
147 Bytes
8. Data Processing/15. Quiz on Data Splitting and Feature Scaling.html
147 Bytes
8. Data Processing/7. Quiz on Dealing with Categorical data.html
147 Bytes
9. Linear Regression/11. Quiz on Modelling with Linear Regression.html
147 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>