搜索
[Udemy] Machine Learning in Python with 5 Machine Learning Projects (04.2021)
磁力链接/BT种子名称
[Udemy] Machine Learning in Python with 5 Machine Learning Projects (04.2021)
磁力链接/BT种子简介
种子哈希:
36c15402f90efe9321553cef2808f4fdf12abdef
文件大小:
20.82G
已经下载:
2061
次
下载速度:
极快
收录时间:
2022-01-12
最近下载:
2024-11-10
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:36C15402F90EFE9321553CEF2808F4FDF12ABDEF
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
母乳喂养
mtvq18
顶级专业团体深夜多人
the mandalorian
疯狂喷奶水
黑客破解医院摄像头偷拍
fc2-ppv-3119569
重口肛交
%e7%be%8e%e4%b9%83%e3%81%99%e3%81%9a%e3%82%81
翘脚
十八线
地铁偷
海角社区
노예
明日香ルイ
夜盗珍妃墓
【家庭摄像头】偷拍纹身男操苗条老婆
88
清凉写真
睡神
爹的遗产
姪子物語完全版日本叔和侄女
完美身材大长腿
sector 36 4k
海角社区大神
楪祈
2024-03-13
juq
若涵
friday.the.13th.2009.1080p
文件列表
12. Tree Based Models/2. Attribute selection method- Gini Index and Entropy.mp4
229.3 MB
11. Introduction to KNN, SVM, Naive Bayes/6. Introduction to Naive Bayes.mp4
183.2 MB
13. Boosting Models/2. Intuition for Adaboost and Gradient Boosting.mp4
160.7 MB
10. Logistic Regression/8. Using ROC-AUC score to analyze the performance of model.mp4
154.8 MB
10. Logistic Regression/6. How to analyze performance of a classification model.mp4
153.3 MB
13. Boosting Models/7. Introudction to Ensembling techniques.mp4
140.5 MB
20. Predicting Health Expense of Customers/8. Applying Linear Regression Model.mp4
134.3 MB
2. Python for Data Analysis/17. Time Complexity.mp4
126.0 MB
2. Python for Data Analysis/21. Insertion and Selection Sort.mp4
125.8 MB
1. Python Fundamentals/4. Built in Data Types and Type Casting.mp4
125.7 MB
18. Time Series Forecasting/8. Handling Missing Values.mp4
122.1 MB
2. Python for Data Analysis/22. Merge Sort.mp4
121.0 MB
17. Recommendation Engines/19. Introduction to SVD.mp4
117.5 MB
2. Python for Data Analysis/19. Binary Search.mp4
114.9 MB
9. Linear Regression/6. Analyzing the performance of Regression models.mp4
114.3 MB
11. Introduction to KNN, SVM, Naive Bayes/1. Introduction to Support Vector machines.mp4
113.4 MB
9. Linear Regression/9. Applying real time prediction on our model.mp4
112.8 MB
9. Linear Regression/7. R2 score and adjuted R2 score intuition.mp4
112.2 MB
10. Logistic Regression/1. Introduction to Logistic Regression.mp4
111.6 MB
5. Data Cleaning/24. Data Cleaning on Naukri Dataset.mp4
111.4 MB
9. Linear Regression/5. Applying Cross Validation.mp4
110.8 MB
11. Introduction to KNN, SVM, Naive Bayes/4. Introduction to K nearest neighbors.mp4
109.4 MB
20. Predicting Health Expense of Customers/2. Understanding the Dataset.mp4
109.1 MB
1. Python Fundamentals/3. Naming Convention for Variables.mp4
107.2 MB
16. Dimensionality Reduction/3. Solving a Real World Problem.mp4
103.6 MB
15. Introduction to Clustering Analysis/9. Using Silhouette Score to analyze the clusters.mp4
101.0 MB
19. Employee Promotion Prediction/2. Understanding the Dataset.mp4
100.5 MB
2. Python for Data Analysis/18. Linear Search.mp4
100.2 MB
20. Predicting Health Expense of Customers/7. Preparing the data for Modelling.mp4
95.3 MB
13. Boosting Models/3. Implementing AdaBoost using sklearn.mp4
95.2 MB
18. Time Series Forecasting/10. Time Series Decomposition.mp4
94.3 MB
20. Predicting Health Expense of Customers/4. Performing Univariate Analysis.mp4
94.1 MB
15. Introduction to Clustering Analysis/12. Introduction to Hierarchal Clustering.mp4
92.8 MB
10. Logistic Regression/2. Implementing Logistic Regression using Sklearn.mp4
91.2 MB
20. Predicting Health Expense of Customers/6. Performing Multivariate Analysis.mp4
90.1 MB
9. Linear Regression/3. Feature Selection using RFECV.mp4
90.1 MB
18. Time Series Forecasting/3. Regression Vs Time Series.mp4
87.0 MB
5. Data Cleaning/6. Imputing Missing Values in a real-time scenario.mp4
86.6 MB
12. Tree Based Models/1. Intuition for decision trees.mp4
86.0 MB
16. Dimensionality Reduction/18. Introduction to t-SNE.mp4
85.2 MB
9. Linear Regression/1. Introduction to Linear Regression.mp4
85.2 MB
17. Recommendation Engines/12. Introduction to Collaborative Filtering.mp4
84.8 MB
3. Python Functions Deep Dive/9. Filter, Map, and Zip Functions.mp4
83.7 MB
5. Data Cleaning/3. When should we delete the Missing values.mp4
83.5 MB
16. Dimensionality Reduction/1. Why High Dimensional Datasets are a Problem.mp4
83.1 MB
18. Time Series Forecasting/14. Metrics for Time series Forecasting.mp4
82.5 MB
1. Python Fundamentals/8. Arithmetic and Assignment Operators.mp4
81.8 MB
19. Employee Promotion Prediction/15. Performance Analysis.mp4
80.9 MB
1. Python Fundamentals/5. Scope of Variables.mp4
80.9 MB
18. Time Series Forecasting/25. Auto Correlation and Partial Correlation.mp4
80.6 MB
17. Recommendation Engines/6. Preprocessing the Data for Content Based Filtering.mp4
80.4 MB
4. Python for Data Science/21. Merging and Concatenating DataFrames.mp4
80.3 MB
2. Python for Data Analysis/20. Bubble Sort.mp4
79.2 MB
2. Python for Data Analysis/8. Introduction to Sets.mp4
79.2 MB
18. Time Series Forecasting/21. Checking for Stationarity using Statistical Methods Part 2.mp4
79.1 MB
21. Determining Whether a Person should be Granted Loan/4. Performing Descriptive Statistics.mp4
79.0 MB
10. Logistic Regression/9. Real time prediction using logistic regression.mp4
78.3 MB
4. Python for Data Science/7. Meta Characters for Regular Expressions.mp4
77.6 MB
5. Data Cleaning/4. Imputing the Missing Values using the Business Logic.mp4
77.5 MB
16. Dimensionality Reduction/16. Introduction to Principal Component Analysis.mp4
77.4 MB
22. Optimizing Agricultural Production/4. Performing Descriptive Statistics.mp4
77.1 MB
9. Linear Regression/2. Implementing Linear Regression using Sklearn.mp4
77.0 MB
2. Python for Data Analysis/24. Quiz Solution.mp4
76.8 MB
18. Time Series Forecasting/17. Holt and Holt Winter Exponential Smoothing.mp4
76.7 MB
7. Feature Engineering/9. Finding the Length, Polarity and Subjectivity.mp4
76.6 MB
17. Recommendation Engines/13. Preprocessing the Data for Collaborative Filtering.mp4
75.9 MB
15. Introduction to Clustering Analysis/8. Implementing K Means on the Mall Dataset.mp4
75.0 MB
20. Predicting Health Expense of Customers/5. Performing Bivariate Analysis.mp4
74.9 MB
16. Dimensionality Reduction/5. Introduction to Correlation using Heatmap.mp4
74.9 MB
14. Imbalanced Machine Learning/5. Applying Logistic Regression using Sklearn.mp4
74.6 MB
18. Time Series Forecasting/7. Getting Time Series data.mp4
74.5 MB
15. Introduction to Clustering Analysis/7. Solving a Real World Problem.mp4
74.5 MB
6. Data Visualizations/3. Multivariate Analysis.mp4
74.3 MB
14. Imbalanced Machine Learning/2. Using Resampling Techniques to Balance the Data.mp4
74.0 MB
20. Predicting Health Expense of Customers/10. Applying Gradient Boosting Model.mp4
73.8 MB
11. Introduction to KNN, SVM, Naive Bayes/2. The kermel trick for support vector machine.mp4
73.8 MB
21. Determining Whether a Person should be Granted Loan/7. Bivariate Data Analysis.mp4
73.6 MB
18. Time Series Forecasting/36. Understanding SARIMA Model.mp4
73.3 MB
11. Introduction to KNN, SVM, Naive Bayes/8. When should we apply SVM, KNN and Naive bayes.mp4
73.2 MB
5. Data Cleaning/9. How Outliers can be harmful for Machine Learning Models.mp4
72.4 MB
4. Python for Data Science/20. Indexing, Selecting, and Filtering Data using Pandas.mp4
72.3 MB
21. Determining Whether a Person should be Granted Loan/2. Setting up the Environment.mp4
71.9 MB
12. Tree Based Models/6. Introduction to Random forest.mp4
71.4 MB
19. Employee Promotion Prediction/12. Data Processing.mp4
70.9 MB
11. Introduction to KNN, SVM, Naive Bayes/3. Implementing support vector machine using sklearn.mp4
70.7 MB
15. Introduction to Clustering Analysis/5. Using the Elbow Method for Choosing the Best Value for K.mp4
70.3 MB
21. Determining Whether a Person should be Granted Loan/5. Data Cleaning.mp4
70.2 MB
13. Boosting Models/4. Implementing Gradient Boosting using sklearn.mp4
70.2 MB
2. Python for Data Analysis/6. Introduction to Dictionaries.mp4
70.1 MB
18. Time Series Forecasting/16. Simple Exponential Smoothing.mp4
69.9 MB
18. Time Series Forecasting/39. Understanding ARIMAX Model.mp4
69.7 MB
12. Tree Based Models/5. Understanding the concept of Bagging.mp4
69.2 MB
1. Python Fundamentals/18. If, elif, and else.mp4
69.1 MB
4. Python for Data Science/18. Reading Datasets using Pandas.mp4
68.9 MB
1. Python Fundamentals/1. Why should you learn Python.mp4
68.9 MB
15. Introduction to Clustering Analysis/2. Types of Clustering.mp4
68.4 MB
21. Determining Whether a Person should be Granted Loan/6. Univariate Data Visualizations.mp4
68.3 MB
13. Boosting Models/6. Implementing XGBoost using sklearn.mp4
68.3 MB
18. Time Series Forecasting/20. Checking for Stationarity Part 1.mp4
68.2 MB
18. Time Series Forecasting/28. The Simple Auto Regressive Model Implementation.mp4
68.1 MB
7. Feature Engineering/26. Quiz Solution.mp4
68.0 MB
16. Dimensionality Reduction/22. Difference between PCA, t-SNE, and LDA.mp4
67.9 MB
18. Time Series Forecasting/9. Handling Outlier Values.mp4
67.6 MB
5. Data Cleaning/1. Causes and Impact of Missing Values.mp4
67.5 MB
14. Imbalanced Machine Learning/11. Implementing Neighbors based Sampling using Imblearn.mp4
67.1 MB
22. Optimizing Agricultural Production/6. Clustering Similar Crops.mp4
66.7 MB
17. Recommendation Engines/15. Interpreting the Results obtained from User Based Filtering.mp4
66.7 MB
17. Recommendation Engines/16. Implementation of Item Based Collaborative Filtering.mp4
66.6 MB
18. Time Series Forecasting/11. Splitting Time Series Data.mp4
66.6 MB
18. Time Series Forecasting/27. The Simple Auto Regressive Model.mp4
66.5 MB
17. Recommendation Engines/8. Introduction to Transactional Encoder.mp4
66.5 MB
5. Data Cleaning/10. Finding out Outliers from the Data.mp4
66.3 MB
3. Python Functions Deep Dive/18. Solving the Fibonacci Problem using Recursion.mp4
65.7 MB
1. Python Fundamentals/9. Comparison, Logical, and Bitwise Operators.mp4
65.4 MB
3. Python Functions Deep Dive/23. Encapsulation.mp4
65.2 MB
17. Recommendation Engines/14. Implementation of User Based Collaborative Filtering.mp4
65.2 MB
17. Recommendation Engines/22. Comparing Content, and Collaborative Based Filtering.mp4
65.0 MB
11. Introduction to KNN, SVM, Naive Bayes/7. Implementing Naive Bayes using sklearn.mp4
65.0 MB
5. Data Cleaning/2. Types of Missing Values.mp4
64.8 MB
20. Predicting Health Expense of Customers/3. Understanding the Problem Statement.mp4
64.8 MB
19. Employee Promotion Prediction/4. Performing Descriptive Statistics.mp4
64.7 MB
8. Data Processing/1. Types of Encoding Techniques.mp4
63.9 MB
5. Data Cleaning/12. Deleting and Capping the Outliers.mp4
63.7 MB
2. Python for Data Analysis/7. Nested Dictionaries.mp4
63.5 MB
7. Feature Engineering/1. Introduction to Feature Engineering.mp4
63.0 MB
18. Time Series Forecasting/42. Implementing SARIMAX Model.mp4
62.9 MB
10. Logistic Regression/10. Industry Relevance of Logistic Regression.mp4
62.8 MB
19. Employee Promotion Prediction/3. Understanding the Problem Statement.mp4
62.7 MB
7. Feature Engineering/5. Binning Numerical Features.mp4
62.2 MB
17. Recommendation Engines/5. Introduction to Content Based Filtering.mp4
61.9 MB
10. Logistic Regression/4. Hyperparameter tuning using Grid search.mp4
61.6 MB
17. Recommendation Engines/7. Filtering Movies Based on Genres.mp4
61.6 MB
7. Feature Engineering/23. Feature Engineering on Marketing Data.mp4
61.4 MB
2. Python for Data Analysis/9. Set Operations.mp4
61.4 MB
17. Recommendation Engines/26. Case Study for Youtube.mp4
61.0 MB
14. Imbalanced Machine Learning/4. Preparing the Data for Predictive Modelling.mp4
60.7 MB
15. Introduction to Clustering Analysis/1. Introduction to Clustering.mp4
60.6 MB
20. Predicting Health Expense of Customers/14. Major Takeaways from the Project.mp4
60.4 MB
4. Python for Data Science/17. Quiz Solution.mp4
60.4 MB
14. Imbalanced Machine Learning/9. Implementing Random Under Sampling using Imblearn.mp4
60.3 MB
9. Linear Regression/4. Data Transformation with Linear Regression.mp4
60.3 MB
14. Imbalanced Machine Learning/10. Implementing Synthetic Sampling using Imblearn.mp4
60.2 MB
16. Dimensionality Reduction/2. Methods to solve the problem of High Dimensionality.mp4
59.9 MB
13. Boosting Models/1. Understading the concept of boosting.mp4
59.9 MB
7. Feature Engineering/20. Feature Engineering on Employee Data.mp4
59.9 MB
20. Predicting Health Expense of Customers/11. Creating Ensembles of Models.mp4
59.8 MB
6. Data Visualizations/1. Univariate Analysis.mp4
59.8 MB
14. Imbalanced Machine Learning/3. Solving a Real World Problem.mp4
59.7 MB
21. Determining Whether a Person should be Granted Loan/9. Applying Resampling.mp4
59.7 MB
7. Feature Engineering/6. Aggregating Features.mp4
59.6 MB
7. Feature Engineering/2. Removing Unnecessary Columns.mp4
59.6 MB
18. Time Series Forecasting/32. Understanding ARMA Model.mp4
59.5 MB
10. Logistic Regression/5. Applying Cross Validation.mp4
59.5 MB
16. Dimensionality Reduction/11. Introduction to Recursive Feature Selection.mp4
59.4 MB
17. Recommendation Engines/3. Types of Recommender Systems.mp4
59.3 MB
17. Recommendation Engines/25. Case Study for Netflix.mp4
59.1 MB
17. Recommendation Engines/9. Recommending Similar Movies to Watch.mp4
59.0 MB
4. Python for Data Science/10. Sets for Regular Expressions.mp4
58.9 MB
5. Data Cleaning/15. Quiz Solution.mp4
58.8 MB
5. Data Cleaning/5. Imputing Missing Values using MeanMedianMode.mp4
58.7 MB
15. Introduction to Clustering Analysis/3. Applications of Clustering.mp4
58.7 MB
18. Time Series Forecasting/34. Understanding ARIMA Model.mp4
58.6 MB
14. Imbalanced Machine Learning/12. Combination of Oversampling and Under sampling.mp4
58.5 MB
17. Recommendation Engines/18. Quiz Solution.mp4
58.3 MB
10. Logistic Regression/7. Using accuracy score to analyze the performance of model.mp4
58.2 MB
16. Dimensionality Reduction/17. Implementing PCA.mp4
58.2 MB
18. Time Series Forecasting/13. Basic Forecasting Techniques.mp4
58.2 MB
3. Python Functions Deep Dive/17. Solving the Factorial Problem using Recursion.mp4
58.1 MB
22. Optimizing Agricultural Production/2. Understanding the Dataset.mp4
57.9 MB
14. Imbalanced Machine Learning/13. Implementing Ensemble Models for Imbalanced Data.mp4
57.5 MB
4. Python for Data Science/24. Quiz Solution.mp4
57.4 MB
3. Python Functions Deep Dive/10. List, set, and Dictionary Comprehensions.mp4
57.2 MB
14. Imbalanced Machine Learning/8. Implementing Random Over Sampling using Imblearn.mp4
57.1 MB
20. Predicting Health Expense of Customers/9. Applying Random Forest Model.mp4
57.0 MB
3. Python Functions Deep Dive/2. Default Parameters in Functions.mp4
56.6 MB
6. Data Visualizations/29. Quiz Solution.mp4
56.4 MB
12. Tree Based Models/7. Understanding the parameters of Random forest.mp4
56.3 MB
14. Imbalanced Machine Learning/1. Why Imbalanced Data needs extra attention.mp4
56.2 MB
12. Tree Based Models/3. Advantages and Issues with Decision trees.mp4
56.0 MB
17. Recommendation Engines/4. Evaluating Recommender Systems.mp4
55.7 MB
3. Python Functions Deep Dive/8. Lambda Functions.mp4
55.7 MB
19. Employee Promotion Prediction/7. Univariate Analysis.mp4
55.7 MB
1. Python Fundamentals/17. Quiz Solution.mp4
55.7 MB
1. Python Fundamentals/19. For and While.mp4
55.6 MB
18. Time Series Forecasting/50. Mean Forecast Error.mp4
55.5 MB
16. Dimensionality Reduction/13. Introduction the Boruta Algorithm.mp4
55.0 MB
21. Determining Whether a Person should be Granted Loan/10. Applying Logistic Regression.mp4
54.9 MB
15. Introduction to Clustering Analysis/15. Introduction to DBSCAN Clustering.mp4
54.9 MB
15. Introduction to Clustering Analysis/14. Implementing Hierarchial Clustering.mp4
54.9 MB
18. Time Series Forecasting/45. Choosing the Right for Model Smaller Datasets.mp4
54.8 MB
18. Time Series Forecasting/5. Components of Time Series.mp4
54.5 MB
1. Python Fundamentals/13. String Formatting.mp4
53.8 MB
7. Feature Engineering/19. Quiz Solution.mp4
53.7 MB
16. Dimensionality Reduction/12. Implementing Recursive Feature Selection.mp4
53.4 MB
4. Python for Data Science/13. Array Creation using Numpy.mp4
53.4 MB
5. Data Cleaning/13. Dealing with Outliers in a real-world scenario.mp4
53.4 MB
5. Data Cleaning/11. Using Winsorization to deal with Outliers.mp4
53.0 MB
19. Employee Promotion Prediction/10. Feature Engineering.mp4
52.9 MB
20. Predicting Health Expense of Customers/1. Setting up the Environment.mp4
52.6 MB
18. Time Series Forecasting/15. Simple Moving Averages.mp4
52.5 MB
15. Introduction to Clustering Analysis/10. Clustering Multiple Dimensions.mp4
52.4 MB
9. Linear Regression/10. Industry relevance of linear regression.mp4
52.3 MB
7. Feature Engineering/24. Feature Engineering on Titanic Data.mp4
52.0 MB
15. Introduction to Clustering Analysis/6. Introduction to K Means Clustering.mp4
51.7 MB
5. Data Cleaning/8. Quiz Solution.mp4
51.5 MB
1. Python Fundamentals/22. Quiz Solution.mp4
51.4 MB
9. Linear Regression/8. MAE, RMSE, R2 and Adjusted R2 in code.mp4
51.4 MB
16. Dimensionality Reduction/20. Introduction to Linear Discriminant Analysis.mp4
51.3 MB
16. Dimensionality Reduction/6. Removing Highly Correlated Columns using Correlation.mp4
51.2 MB
6. Data Visualizations/17. Quiz Solution.mp4
51.2 MB
2. Python for Data Analysis/12. Introduction to Stacks and Queues.mp4
51.1 MB
20. Predicting Health Expense of Customers/13. More things to Try.mp4
51.1 MB
16. Dimensionality Reduction/8. Introduction to Variance Inflation Filtering.mp4
51.0 MB
2. Python for Data Analysis/1. Differences between Lists and Tuples.mp4
51.0 MB
6. Data Visualizations/8. Bar, Line, and Area Charts.mp4
50.9 MB
17. Recommendation Engines/11. Quiz Solution.mp4
50.9 MB
18. Time Series Forecasting/33. Implementing ARMA Model.mp4
50.6 MB
18. Time Series Forecasting/24. Converting Non-Stationary Series into Stationary Implementation.mp4
50.5 MB
18. Time Series Forecasting/23. Converting Non-Stationary Series into Stationary.mp4
50.4 MB
17. Recommendation Engines/24. Quiz Solution.mp4
50.3 MB
12. Tree Based Models/8. Implementing random forest using Sklearn.mp4
50.2 MB
15. Introduction to Clustering Analysis/16. Implementing DBSCAN Clustering.mp4
50.2 MB
16. Dimensionality Reduction/9. Implementing VIF using statsmodel.mp4
50.2 MB
6. Data Visualizations/18. Animation with Bubbleplot.mp4
50.1 MB
3. Python Functions Deep Dive/7. Quiz Solution.mp4
50.0 MB
18. Time Series Forecasting/4. Applications of Time Series.mp4
49.6 MB
6. Data Visualizations/5. Quiz Solution.mp4
49.4 MB
1. Python Fundamentals/7. Quiz Solution.mp4
48.8 MB
22. Optimizing Agricultural Production/1. Setting up the Environment.mp4
48.7 MB
3. Python Functions Deep Dive/24. Polymorphism.mp4
48.5 MB
17. Recommendation Engines/21. Interpreting Results Obtained from SVD.mp4
48.2 MB
21. Determining Whether a Person should be Granted Loan/1. Understanding the Problem Statement.mp4
47.7 MB
18. Time Series Forecasting/2. Types of Forecasting.mp4
47.5 MB
6. Data Visualizations/6. Scatter Plots.mp4
47.4 MB
17. Recommendation Engines/2. What are it's Use Cases.mp4
47.2 MB
6. Data Visualizations/2. Bivariate Analysis.mp4
47.2 MB
7. Feature Engineering/21. Feature Engineering on FIFA Data.mp4
46.9 MB
18. Time Series Forecasting/40. Implementing ARIMAX Model.mp4
46.9 MB
5. Data Cleaning/16. Introduction to reindex, set_index, reset_index, and sort_index Functions.mp4
46.9 MB
19. Employee Promotion Prediction/14. Predictive Modelling.mp4
46.8 MB
2. Python for Data Analysis/2. Operations on Lists.mp4
46.6 MB
8. Data Processing/13. Train, Test and Validation Split.mp4
46.4 MB
21. Determining Whether a Person should be Granted Loan/12. Summary.mp4
46.3 MB
4. Python for Data Science/6. Quiz Solution.mp4
46.2 MB
18. Time Series Forecasting/41. Understanding SARIMAX Model.mp4
46.0 MB
14. Imbalanced Machine Learning/14. Introduction to XG Boost for Imbalanced Data.mp4
45.7 MB
1. Python Fundamentals/14. String Methods.mp4
45.4 MB
16. Dimensionality Reduction/14. Implementing the Boruta Algorithm.mp4
45.3 MB
18. Time Series Forecasting/47. Best Practices while Choosing a Time series Model..mp4
45.1 MB
21. Determining Whether a Person should be Granted Loan/8. Preparing the Data for Modelling.mp4
44.9 MB
3. Python Functions Deep Dive/5. Python Modules.mp4
44.8 MB
14. Imbalanced Machine Learning/6. Applying Random Forest using Sklearn.mp4
44.7 MB
19. Employee Promotion Prediction/6. Outlier Values Treatment.mp4
44.6 MB
19. Employee Promotion Prediction/13. Feature Scaling.mp4
44.3 MB
10. Logistic Regression/3. Feature Selection using RFECV.mp4
44.2 MB
5. Data Cleaning/23. Data Cleaning on Melbourne Housing Dataset.mp4
44.2 MB
19. Employee Promotion Prediction/16. Improvements Possible.mp4
43.9 MB
15. Introduction to Clustering Analysis/13. Introduction to Dendrograms.mp4
43.8 MB
19. Employee Promotion Prediction/1. Setting up the Environment.mp4
43.7 MB
2. Python for Data Analysis/14. Implementing Stacks and Queues using Deque.mp4
43.6 MB
14. Imbalanced Machine Learning/15. Comparing the Results.mp4
43.5 MB
5. Data Cleaning/20. Introduction to Melt, Explode, and Squeeze Functions.mp4
43.4 MB
21. Determining Whether a Person should be Granted Loan/3. Understanding the Dataset.mp4
43.1 MB
13. Boosting Models/5. Getting High level intuition for XGBoost.mp4
43.1 MB
1. Python Fundamentals/15. User Input.mp4
43.0 MB
4. Python for Data Science/9. Special Characters for Regular Expressions.mp4
42.9 MB
1. Python Fundamentals/20. Break and Continue.mp4
42.7 MB
17. Recommendation Engines/20. Implementing SVD using Surprise.mp4
42.6 MB
17. Recommendation Engines/1. Introduction to Recommender systems.mp4
42.5 MB
3. Python Functions Deep Dive/26. Quiz Solution.mp4
42.4 MB
22. Optimizing Agricultural Production/10. Summarizing the Key-Points.mp4
42.4 MB
22. Optimizing Agricultural Production/8. Predictive Modelling.mp4
42.3 MB
3. Python Functions Deep Dive/12. Quiz Solution.mp4
42.2 MB
3. Python Functions Deep Dive/1. Introduction to Functions.mp4
42.2 MB
4. Python for Data Science/15. Built-in Functions in Numpy.mp4
41.9 MB
19. Employee Promotion Prediction/9. Multivariate Analysis.mp4
41.9 MB
6. Data Visualizations/36. Network Charts.mp4
41.7 MB
8. Data Processing/14. Standardization and Normalization.mp4
41.6 MB
3. Python Functions Deep Dive/21. Introduction to Classes and Objects.mp4
41.5 MB
2. Python for Data Analysis/16. Quiz Solution.mp4
41.4 MB
8. Data Processing/9. Square and Cube Root Transformation.mp4
41.3 MB
1. Python Fundamentals/10. Identity and Membership Operators.mp4
41.1 MB
22. Optimizing Agricultural Production/5. Analyzing Agricultural Conditions.mp4
41.1 MB
6. Data Visualizations/32. Funnel Charts.mp4
41.0 MB
19. Employee Promotion Prediction/5. Missing Values Treatment.mp4
40.5 MB
21. Determining Whether a Person should be Granted Loan/11. Applying Gradient Boosting.mp4
40.5 MB
6. Data Visualizations/24. Introduction to Ipywidgets.mp4
40.4 MB
6. Data Visualizations/38. Quiz Solution.mp4
40.4 MB
18. Time Series Forecasting/26. Auto Correlation and Partial Correlation Implementation.mp4
40.3 MB
6. Data Visualizations/10. Statistical Charts.mp4
40.2 MB
5. Data Cleaning/21. Data Cleaning on Big Mart Dataset.mp4
40.2 MB
7. Feature Engineering/3. Decomposing Time and Date Features.mp4
40.2 MB
7. Feature Engineering/4. Decomposing Categorical Features.mp4
40.1 MB
2. Python for Data Analysis/11. Quiz Solution.mp4
40.1 MB
3. Python Functions Deep Dive/16. Quiz Solution.mp4
40.0 MB
18. Time Series Forecasting/37. Implementing SARIMA Model.mp4
40.0 MB
18. Time Series Forecasting/22. Checking for Stationary Implementation.mp4
40.0 MB
3. Python Functions Deep Dive/20. Quiz Solution.mp4
39.9 MB
6. Data Visualizations/9. Facet Grids.mp4
39.8 MB
5. Data Cleaning/18. Introduction to Split and Strip Function.mp4
39.7 MB
4. Python for Data Science/8. Built-in Functions for Regular Expressions.mp4
39.4 MB
8. Data Processing/8. Introduction to Skewness and Normal Distribution.mp4
39.4 MB
4. Python for Data Science/1. Introduction to datetime.mp4
39.3 MB
19. Employee Promotion Prediction/11. Categorical Encoding.mp4
39.3 MB
5. Data Cleaning/22. Data Cleaning on Movie Dataset.mp4
39.1 MB
4. Python for Data Science/22. Lambda, Map, and Apply Functions.mp4
39.0 MB
19. Employee Promotion Prediction/8. Bivariate Analysis.mp4
39.0 MB
2. Python for Data Analysis/5. Quiz Solution.mp4
38.9 MB
16. Dimensionality Reduction/21. Implementing LDA.mp4
38.5 MB
20. Predicting Health Expense of Customers/12. Comparing Performance of these Models.mp4
38.3 MB
2. Python for Data Analysis/13. Implementing Stacks and Queues using Lists.mp4
38.3 MB
4. Python for Data Science/14. Mathematical Operations using Numpy.mp4
38.2 MB
18. Time Series Forecasting/46. Choosing the Right Model for Larger Datasets.mp4
38.1 MB
7. Feature Engineering/10. Finding the Words, Characters, and Punctuation Count.mp4
38.1 MB
3. Python Functions Deep Dive/4. Keyword Arguments.mp4
38.0 MB
7. Feature Engineering/13. Introduction to Assign and Update Functions.mp4
37.9 MB
16. Dimensionality Reduction/19. Implementing t-SNE.mp4
37.9 MB
12. Tree Based Models/4. Implementing Decision tree using Sklearn.mp4
37.5 MB
4. Python for Data Science/19. Plotting Data in Pandas.mp4
37.5 MB
18. Time Series Forecasting/51. Mean Absolute Error.mp4
37.3 MB
22. Optimizing Agricultural Production/3. Understanding the Problem Statement.mp4
37.1 MB
7. Feature Engineering/15. Introduction to nlargest and nsmallest Functions.mp4
37.0 MB
18. Time Series Forecasting/29. Moving Average Model.mp4
37.0 MB
18. Time Series Forecasting/44. How to Choose the Right Model.mp4
36.9 MB
7. Feature Engineering/22. Feature Engineering on Hotel Reviews.mp4
36.8 MB
18. Time Series Forecasting/1. What is a Time Series Data.mp4
36.6 MB
6. Data Visualizations/12. Subplots.mp4
36.5 MB
18. Time Series Forecasting/19. Introduction to Auto Regressive Models.mp4
36.4 MB
3. Python Functions Deep Dive/14. Introduction to Analytical Functions.mp4
36.4 MB
6. Data Visualizations/23. Quiz Solution.mp4
36.3 MB
8. Data Processing/4. OneHot Encoding.mp4
36.3 MB
1. Python Fundamentals/12. Quiz Solution.mp4
35.9 MB
6. Data Visualizations/26. Interactive Bivariate Analysis.mp4
35.5 MB
7. Feature Engineering/7. Introduction to Feature Engineering on Text Data.mp4
35.5 MB
4. Python for Data Science/2. The date and time class.mp4
35.2 MB
8. Data Processing/2. Label Encoding.mp4
35.2 MB
1. Python Fundamentals/2. Installing Python and Jupyter Notebook.mp4
35.1 MB
11. Introduction to KNN, SVM, Naive Bayes/5. Implementing KNN using Sklearn.mp4
34.8 MB
8. Data Processing/5. Binary and BaseN Encoding.mp4
34.8 MB
18. Time Series Forecasting/35. Implementing ARIMA Model.mp4
34.8 MB
6. Data Visualizations/30. Sunburst Charts.mp4
34.8 MB
5. Data Cleaning/17. Introduction to Replace and Droplevel Function.mp4
34.6 MB
4. Python for Data Science/12. Quiz Solution.mp4
34.4 MB
8. Data Processing/11. BoxCox transformation.mp4
34.1 MB
3. Python Functions Deep Dive/22. Inheritance.mp4
34.1 MB
3. Python Functions Deep Dive/3. Positional Arguments.mp4
33.7 MB
6. Data Visualizations/7. Charts with Colorscale.mp4
33.4 MB
18. Time Series Forecasting/49. Why do we Evaluate Performance.mp4
33.3 MB
7. Feature Engineering/11. Counting Nouns and Verbs in the Text.mp4
32.9 MB
7. Feature Engineering/17. Introduction to Cumulative Functions.mp4
32.6 MB
6. Data Visualizations/15. Maps.mp4
32.2 MB
3. Python Functions Deep Dive/13. Introduction to Aggregate Functions.mp4
32.1 MB
6. Data Visualizations/21. Animation with Choropleth Maps.mp4
32.1 MB
7. Feature Engineering/8. Reading and Summarizing the Text.mp4
32.0 MB
7. Feature Engineering/14. Introduction to at_time and between_time Functions.mp4
31.7 MB
6. Data Visualizations/25. Interactive Univariate Analysis.mp4
31.3 MB
18. Time Series Forecasting/52. Mean Absolute Percentage Error.mp4
31.2 MB
6. Data Visualizations/14. Waffle Charts.mp4
30.8 MB
18. Time Series Forecasting/53. Root Mean Squared Error.mp4
30.8 MB
6. Data Visualizations/11. Polar Charts.mp4
30.7 MB
6. Data Visualizations/27. Interactive Multivariate Analysis.mp4
30.6 MB
8. Data Processing/3. Feature Mapping for Ordinal Variables.mp4
30.4 MB
19. Employee Promotion Prediction/17. Major Takeaways from the Project.mp4
30.4 MB
7. Feature Engineering/16. Introduction to Expanding Function.mp4
29.8 MB
8. Data Processing/10. Log transformation.mp4
29.4 MB
22. Optimizing Agricultural Production/7. Visualizing the Hidden Patterns.mp4
29.1 MB
22. Optimizing Agricultural Production/9. Real Time Predictions.mp4
29.0 MB
2. Python for Data Analysis/3. Operations on Tuples.mp4
28.8 MB
6. Data Visualizations/19. Animation with Facets.mp4
28.0 MB
5. Data Cleaning/19. Introduction to Stack, and Unstack Functions.mp4
26.6 MB
6. Data Visualizations/33. Gantt Charts.mp4
26.3 MB
6. Data Visualizations/13. 3D Charts.mp4
25.8 MB
7. Feature Engineering/12. Counting Adjectives, Adverb, and Pronouns.mp4
24.9 MB
18. Time Series Forecasting/30. Moving Average Model Implementation.mp4
24.4 MB
6. Data Visualizations/31. Parallel Co-ordinate Charts.mp4
24.1 MB
8. Data Processing/6. Mean and Frequency Encoding.mp4
23.9 MB
6. Data Visualizations/20. Animation with Scatter Maps.mp4
23.8 MB
4. Python for Data Science/3. The datetime class.mp4
23.7 MB
6. Data Visualizations/35. Tree Maps.mp4
22.5 MB
6. Data Visualizations/34. Ternary Charts.mp4
21.4 MB
4. Python for Data Science/4. The timedelta class.mp4
20.3 MB
12. Tree Based Models/2. Attribute selection method- Gini Index and Entropy.srt
13.6 kB
5. Data Cleaning/24. Data Cleaning on Naukri Dataset.srt
13.2 kB
9. Linear Regression/2. Implementing Linear Regression using Sklearn.srt
10.9 kB
11. Introduction to KNN, SVM, Naive Bayes/6. Introduction to Naive Bayes.srt
10.7 kB
9. Linear Regression/9. Applying real time prediction on our model.srt
9.9 kB
10. Logistic Regression/8. Using ROC-AUC score to analyze the performance of model.srt
9.7 kB
18. Time Series Forecasting/8. Handling Missing Values.srt
9.6 kB
13. Boosting Models/3. Implementing AdaBoost using sklearn.srt
9.6 kB
10. Logistic Regression/2. Implementing Logistic Regression using Sklearn.srt
9.4 kB
10. Logistic Regression/6. How to analyze performance of a classification model.srt
8.9 kB
13. Boosting Models/2. Intuition for Adaboost and Gradient Boosting.srt
8.8 kB
16. Dimensionality Reduction/3. Solving a Real World Problem.srt
8.6 kB
20. Predicting Health Expense of Customers/8. Applying Linear Regression Model.srt
8.3 kB
1. Python Fundamentals/8. Arithmetic and Assignment Operators.srt
8.2 kB
5. Data Cleaning/10. Finding out Outliers from the Data.srt
8.2 kB
13. Boosting Models/7. Introudction to Ensembling techniques.srt
8.0 kB
18. Time Series Forecasting/10. Time Series Decomposition.srt
7.8 kB
2. Python for Data Analysis/24. Quiz Solution.srt
7.7 kB
1. Python Fundamentals/9. Comparison, Logical, and Bitwise Operators.srt
7.6 kB
11. Introduction to KNN, SVM, Naive Bayes/3. Implementing support vector machine using sklearn.srt
7.6 kB
2. Python for Data Analysis/21. Insertion and Selection Sort.srt
7.4 kB
20. Predicting Health Expense of Customers/7. Preparing the data for Modelling.srt
7.2 kB
10. Logistic Regression/9. Real time prediction using logistic regression.srt
7.2 kB
20. Predicting Health Expense of Customers/6. Performing Multivariate Analysis.srt
7.1 kB
15. Introduction to Clustering Analysis/9. Using Silhouette Score to analyze the clusters.srt
7.1 kB
10. Logistic Regression/1. Introduction to Logistic Regression.srt
7.0 kB
9. Linear Regression/4. Data Transformation with Linear Regression.srt
7.0 kB
5. Data Cleaning/6. Imputing Missing Values in a real-time scenario.srt
6.9 kB
3. Python Functions Deep Dive/9. Filter, Map, and Zip Functions.srt
6.9 kB
20. Predicting Health Expense of Customers/2. Understanding the Dataset.srt
6.8 kB
17. Recommendation Engines/6. Preprocessing the Data for Content Based Filtering.srt
6.8 kB
20. Predicting Health Expense of Customers/4. Performing Univariate Analysis.srt
6.8 kB
18. Time Series Forecasting/28. The Simple Auto Regressive Model Implementation.srt
6.7 kB
1. Python Fundamentals/4. Built in Data Types and Type Casting.srt
6.7 kB
18. Time Series Forecasting/7. Getting Time Series data.srt
6.6 kB
19. Employee Promotion Prediction/2. Understanding the Dataset.srt
6.5 kB
7. Feature Engineering/23. Feature Engineering on Marketing Data.srt
6.5 kB
2. Python for Data Analysis/17. Time Complexity.srt
6.4 kB
22. Optimizing Agricultural Production/4. Performing Descriptive Statistics.srt
6.4 kB
9. Linear Regression/3. Feature Selection using RFECV.srt
6.4 kB
15. Introduction to Clustering Analysis/8. Implementing K Means on the Mall Dataset.srt
6.4 kB
2. Python for Data Analysis/22. Merge Sort.srt
6.4 kB
18. Time Series Forecasting/17. Holt and Holt Winter Exponential Smoothing.srt
6.3 kB
1. Python Fundamentals/3. Naming Convention for Variables.srt
6.2 kB
7. Feature Engineering/20. Feature Engineering on Employee Data.srt
6.2 kB
21. Determining Whether a Person should be Granted Loan/4. Performing Descriptive Statistics.srt
6.2 kB
17. Recommendation Engines/19. Introduction to SVD.srt
6.1 kB
1. Python Fundamentals/14. String Methods.srt
6.1 kB
9. Linear Regression/7. R2 score and adjuted R2 score intuition.srt
6.0 kB
17. Recommendation Engines/7. Filtering Movies Based on Genres.srt
6.0 kB
7. Feature Engineering/9. Finding the Length, Polarity and Subjectivity.srt
5.9 kB
11. Introduction to KNN, SVM, Naive Bayes/1. Introduction to Support Vector machines.srt
5.9 kB
17. Recommendation Engines/13. Preprocessing the Data for Collaborative Filtering.srt
5.8 kB
2. Python for Data Analysis/19. Binary Search.srt
5.7 kB
17. Recommendation Engines/15. Interpreting the Results obtained from User Based Filtering.srt
5.7 kB
6. Data Visualizations/3. Multivariate Analysis.srt
5.6 kB
9. Linear Regression/8. MAE, RMSE, R2 and Adjusted R2 in code.srt
5.6 kB
20. Predicting Health Expense of Customers/5. Performing Bivariate Analysis.srt
5.6 kB
17. Recommendation Engines/21. Interpreting Results Obtained from SVD.srt
5.5 kB
16. Dimensionality Reduction/5. Introduction to Correlation using Heatmap.srt
5.5 kB
11. Introduction to KNN, SVM, Naive Bayes/4. Introduction to K nearest neighbors.srt
5.5 kB
1. Python Fundamentals/7. Quiz Solution.srt
5.4 kB
1. Python Fundamentals/19. For and While.srt
5.4 kB
7. Feature Engineering/24. Feature Engineering on Titanic Data.srt
5.4 kB
9. Linear Regression/5. Applying Cross Validation.srt
5.4 kB
2. Python for Data Analysis/11. Quiz Solution.srt
5.3 kB
19. Employee Promotion Prediction/15. Performance Analysis.srt
5.2 kB
4. Python for Data Science/7. Meta Characters for Regular Expressions.srt
5.2 kB
14. Imbalanced Machine Learning/5. Applying Logistic Regression using Sklearn.srt
5.2 kB
10. Logistic Regression/4. Hyperparameter tuning using Grid search.srt
5.1 kB
19. Employee Promotion Prediction/12. Data Processing.srt
5.1 kB
9. Linear Regression/6. Analyzing the performance of Regression models.srt
5.1 kB
4. Python for Data Science/21. Merging and Concatenating DataFrames.srt
5.1 kB
15. Introduction to Clustering Analysis/7. Solving a Real World Problem.srt
5.1 kB
21. Determining Whether a Person should be Granted Loan/5. Data Cleaning.srt
5.0 kB
3. Python Functions Deep Dive/7. Quiz Solution.srt
5.0 kB
19. Employee Promotion Prediction/7. Univariate Analysis.srt
5.0 kB
6. Data Visualizations/8. Bar, Line, and Area Charts.srt
5.0 kB
6. Data Visualizations/10. Statistical Charts.srt
5.0 kB
5. Data Cleaning/8. Quiz Solution.srt
4.9 kB
18. Time Series Forecasting/14. Metrics for Time series Forecasting.srt
4.9 kB
1. Python Fundamentals/13. String Formatting.srt
4.9 kB
14. Imbalanced Machine Learning/4. Preparing the Data for Predictive Modelling.srt
4.9 kB
13. Boosting Models/4. Implementing Gradient Boosting using sklearn.srt
4.9 kB
17. Recommendation Engines/12. Introduction to Collaborative Filtering.srt
4.9 kB
15. Introduction to Clustering Analysis/12. Introduction to Hierarchal Clustering.srt
4.9 kB
21. Determining Whether a Person should be Granted Loan/7. Bivariate Data Analysis.srt
4.9 kB
6. Data Visualizations/1. Univariate Analysis.srt
4.9 kB
21. Determining Whether a Person should be Granted Loan/2. Setting up the Environment.srt
4.8 kB
9. Linear Regression/1. Introduction to Linear Regression.srt
4.8 kB
13. Boosting Models/6. Implementing XGBoost using sklearn.srt
4.8 kB
2. Python for Data Analysis/9. Set Operations.srt
4.8 kB
20. Predicting Health Expense of Customers/10. Applying Gradient Boosting Model.srt
4.8 kB
10. Logistic Regression/7. Using accuracy score to analyze the performance of model.srt
4.8 kB
2. Python for Data Analysis/6. Introduction to Dictionaries.srt
4.7 kB
17. Recommendation Engines/14. Implementation of User Based Collaborative Filtering.srt
4.7 kB
2. Python for Data Analysis/18. Linear Search.srt
4.7 kB
5. Data Cleaning/16. Introduction to reindex, set_index, reset_index, and sort_index Functions.srt
4.7 kB
18. Time Series Forecasting/13. Basic Forecasting Techniques.srt
4.7 kB
12. Tree Based Models/1. Intuition for decision trees.srt
4.7 kB
14. Imbalanced Machine Learning/11. Implementing Neighbors based Sampling using Imblearn.srt
4.7 kB
17. Recommendation Engines/18. Quiz Solution.srt
4.7 kB
18. Time Series Forecasting/3. Regression Vs Time Series.srt
4.6 kB
20. Predicting Health Expense of Customers/11. Creating Ensembles of Models.srt
4.6 kB
7. Feature Engineering/26. Quiz Solution.srt
4.6 kB
7. Feature Engineering/5. Binning Numerical Features.srt
4.6 kB
18. Time Series Forecasting/9. Handling Outlier Values.srt
4.6 kB
2. Python for Data Analysis/8. Introduction to Sets.srt
4.6 kB
4. Python for Data Science/20. Indexing, Selecting, and Filtering Data using Pandas.srt
4.6 kB
16. Dimensionality Reduction/14. Implementing the Boruta Algorithm.srt
4.6 kB
16. Dimensionality Reduction/18. Introduction to t-SNE.srt
4.6 kB
4. Python for Data Science/24. Quiz Solution.srt
4.6 kB
20. Predicting Health Expense of Customers/9. Applying Random Forest Model.srt
4.6 kB
3. Python Functions Deep Dive/2. Default Parameters in Functions.srt
4.6 kB
17. Recommendation Engines/16. Implementation of Item Based Collaborative Filtering.srt
4.5 kB
6. Data Visualizations/29. Quiz Solution.srt
4.5 kB
19. Employee Promotion Prediction/4. Performing Descriptive Statistics.srt
4.5 kB
5. Data Cleaning/15. Quiz Solution.srt
4.5 kB
17. Recommendation Engines/11. Quiz Solution.srt
4.5 kB
4. Python for Data Science/17. Quiz Solution.srt
4.5 kB
7. Feature Engineering/21. Feature Engineering on FIFA Data.srt
4.5 kB
1. Python Fundamentals/17. Quiz Solution.srt
4.5 kB
12. Tree Based Models/8. Implementing random forest using Sklearn.srt
4.5 kB
21. Determining Whether a Person should be Granted Loan/6. Univariate Data Visualizations.srt
4.4 kB
16. Dimensionality Reduction/1. Why High Dimensional Datasets are a Problem.srt
4.4 kB
7. Feature Engineering/2. Removing Unnecessary Columns.srt
4.4 kB
16. Dimensionality Reduction/17. Implementing PCA.srt
4.4 kB
6. Data Visualizations/6. Scatter Plots.srt
4.4 kB
18. Time Series Forecasting/21. Checking for Stationarity using Statistical Methods Part 2.srt
4.4 kB
2. Python for Data Analysis/2. Operations on Lists.srt
4.4 kB
1. Python Fundamentals/22. Quiz Solution.srt
4.4 kB
12. Tree Based Models/7. Understanding the parameters of Random forest.srt
4.4 kB
14. Imbalanced Machine Learning/2. Using Resampling Techniques to Balance the Data.srt
4.4 kB
16. Dimensionality Reduction/12. Implementing Recursive Feature Selection.srt
4.3 kB
14. Imbalanced Machine Learning/8. Implementing Random Over Sampling using Imblearn.srt
4.3 kB
5. Data Cleaning/3. When should we delete the Missing values.srt
4.3 kB
6. Data Visualizations/17. Quiz Solution.srt
4.3 kB
14. Imbalanced Machine Learning/3. Solving a Real World Problem.srt
4.3 kB
8. Data Processing/1. Types of Encoding Techniques.srt
4.2 kB
16. Dimensionality Reduction/16. Introduction to Principal Component Analysis.srt
4.2 kB
22. Optimizing Agricultural Production/6. Clustering Similar Crops.srt
4.2 kB
6. Data Visualizations/38. Quiz Solution.srt
4.2 kB
7. Feature Engineering/10. Finding the Words, Characters, and Punctuation Count.srt
4.2 kB
1. Python Fundamentals/5. Scope of Variables.srt
4.2 kB
2. Python for Data Analysis/7. Nested Dictionaries.srt
4.2 kB
18. Time Series Forecasting/25. Auto Correlation and Partial Correlation.srt
4.2 kB
18. Time Series Forecasting/11. Splitting Time Series Data.srt
4.2 kB
3. Python Functions Deep Dive/10. List, set, and Dictionary Comprehensions.srt
4.2 kB
6. Data Visualizations/5. Quiz Solution.srt
4.1 kB
14. Imbalanced Machine Learning/10. Implementing Synthetic Sampling using Imblearn.srt
4.1 kB
18. Time Series Forecasting/16. Simple Exponential Smoothing.srt
4.1 kB
15. Introduction to Clustering Analysis/10. Clustering Multiple Dimensions.srt
4.1 kB
1. Python Fundamentals/12. Quiz Solution.srt
4.1 kB
14. Imbalanced Machine Learning/9. Implementing Random Under Sampling using Imblearn.srt
4.1 kB
17. Recommendation Engines/9. Recommending Similar Movies to Watch.srt
4.1 kB
11. Introduction to KNN, SVM, Naive Bayes/8. When should we apply SVM, KNN and Naive bayes.srt
4.1 kB
3. Python Functions Deep Dive/20. Quiz Solution.srt
4.1 kB
3. Python Functions Deep Dive/12. Quiz Solution.srt
4.1 kB
12. Tree Based Models/6. Introduction to Random forest.srt
4.1 kB
5. Data Cleaning/21. Data Cleaning on Big Mart Dataset.srt
4.1 kB
16. Dimensionality Reduction/6. Removing Highly Correlated Columns using Correlation.srt
4.1 kB
5. Data Cleaning/20. Introduction to Melt, Explode, and Squeeze Functions.srt
4.0 kB
19. Employee Promotion Prediction/6. Outlier Values Treatment.srt
4.0 kB
2. Python for Data Analysis/20. Bubble Sort.srt
4.0 kB
5. Data Cleaning/18. Introduction to Split and Strip Function.srt
4.0 kB
15. Introduction to Clustering Analysis/13. Introduction to Dendrograms.srt
4.0 kB
7. Feature Engineering/6. Aggregating Features.srt
4.0 kB
5. Data Cleaning/9. How Outliers can be harmful for Machine Learning Models.srt
4.0 kB
7. Feature Engineering/19. Quiz Solution.srt
4.0 kB
3. Python Functions Deep Dive/23. Encapsulation.srt
4.0 kB
5. Data Cleaning/23. Data Cleaning on Melbourne Housing Dataset.srt
4.0 kB
15. Introduction to Clustering Analysis/2. Types of Clustering.srt
4.0 kB
18. Time Series Forecasting/24. Converting Non-Stationary Series into Stationary Implementation.srt
4.0 kB
4. Python for Data Science/6. Quiz Solution.srt
3.9 kB
5. Data Cleaning/13. Dealing with Outliers in a real-world scenario.srt
3.9 kB
4. Python for Data Science/10. Sets for Regular Expressions.srt
3.9 kB
5. Data Cleaning/4. Imputing the Missing Values using the Business Logic.srt
3.9 kB
2. Python for Data Analysis/16. Quiz Solution.srt
3.9 kB
17. Recommendation Engines/20. Implementing SVD using Surprise.srt
3.9 kB
10. Logistic Regression/5. Applying Cross Validation.srt
3.9 kB
18. Time Series Forecasting/36. Understanding SARIMA Model.srt
3.9 kB
15. Introduction to Clustering Analysis/6. Introduction to K Means Clustering.srt
3.9 kB
11. Introduction to KNN, SVM, Naive Bayes/2. The kermel trick for support vector machine.srt
3.9 kB
3. Python Functions Deep Dive/14. Introduction to Analytical Functions.srt
3.9 kB
1. Python Fundamentals/18. If, elif, and else.srt
3.8 kB
3. Python Functions Deep Dive/21. Introduction to Classes and Objects.srt
3.8 kB
18. Time Series Forecasting/15. Simple Moving Averages.srt
3.8 kB
14. Imbalanced Machine Learning/13. Implementing Ensemble Models for Imbalanced Data.srt
3.8 kB
17. Recommendation Engines/22. Comparing Content, and Collaborative Based Filtering.srt
3.8 kB
4. Python for Data Science/18. Reading Datasets using Pandas.srt
3.8 kB
18. Time Series Forecasting/50. Mean Forecast Error.srt
3.8 kB
17. Recommendation Engines/5. Introduction to Content Based Filtering.srt
3.7 kB
19. Employee Promotion Prediction/1. Setting up the Environment.srt
3.7 kB
15. Introduction to Clustering Analysis/5. Using the Elbow Method for Choosing the Best Value for K.srt
3.7 kB
2. Python for Data Analysis/5. Quiz Solution.srt
3.7 kB
18. Time Series Forecasting/23. Converting Non-Stationary Series into Stationary.srt
3.7 kB
5. Data Cleaning/1. Causes and Impact of Missing Values.srt
3.7 kB
15. Introduction to Clustering Analysis/14. Implementing Hierarchial Clustering.srt
3.7 kB
15. Introduction to Clustering Analysis/15. Introduction to DBSCAN Clustering.srt
3.7 kB
6. Data Visualizations/2. Bivariate Analysis.srt
3.7 kB
12. Tree Based Models/4. Implementing Decision tree using Sklearn.srt
3.7 kB
12. Tree Based Models/5. Understanding the concept of Bagging.srt
3.7 kB
14. Imbalanced Machine Learning/12. Combination of Oversampling and Under sampling.srt
3.7 kB
17. Recommendation Engines/24. Quiz Solution.srt
3.7 kB
20. Predicting Health Expense of Customers/1. Setting up the Environment.srt
3.7 kB
8. Data Processing/13. Train, Test and Validation Split.srt
3.7 kB
15. Introduction to Clustering Analysis/16. Implementing DBSCAN Clustering.srt
3.7 kB
16. Dimensionality Reduction/9. Implementing VIF using statsmodel.srt
3.7 kB
18. Time Series Forecasting/26. Auto Correlation and Partial Correlation Implementation.srt
3.7 kB
21. Determining Whether a Person should be Granted Loan/9. Applying Resampling.srt
3.6 kB
6. Data Visualizations/24. Introduction to Ipywidgets.srt
3.6 kB
7. Feature Engineering/15. Introduction to nlargest and nsmallest Functions.srt
3.6 kB
18. Time Series Forecasting/42. Implementing SARIMAX Model.srt
3.6 kB
14. Imbalanced Machine Learning/14. Introduction to XG Boost for Imbalanced Data.srt
3.6 kB
3. Python Functions Deep Dive/26. Quiz Solution.srt
3.6 kB
6. Data Visualizations/26. Interactive Bivariate Analysis.srt
3.6 kB
18. Time Series Forecasting/39. Understanding ARIMAX Model.srt
3.6 kB
7. Feature Engineering/1. Introduction to Feature Engineering.srt
3.6 kB
20. Predicting Health Expense of Customers/3. Understanding the Problem Statement.srt
3.5 kB
21. Determining Whether a Person should be Granted Loan/1. Understanding the Problem Statement.srt
3.5 kB
11. Introduction to KNN, SVM, Naive Bayes/7. Implementing Naive Bayes using sklearn.srt
3.5 kB
2. Python for Data Analysis/1. Differences between Lists and Tuples.srt
3.5 kB
17. Recommendation Engines/3. Types of Recommender Systems.srt
3.5 kB
19. Employee Promotion Prediction/3. Understanding the Problem Statement.srt
3.5 kB
8. Data Processing/5. Binary and BaseN Encoding.srt
3.5 kB
5. Data Cleaning/12. Deleting and Capping the Outliers.srt
3.5 kB
6. Data Visualizations/23. Quiz Solution.srt
3.4 kB
16. Dimensionality Reduction/22. Difference between PCA, t-SNE, and LDA.srt
3.4 kB
10. Logistic Regression/10. Industry Relevance of Logistic Regression.srt
3.4 kB
18. Time Series Forecasting/40. Implementing ARIMAX Model.srt
3.4 kB
16. Dimensionality Reduction/2. Methods to solve the problem of High Dimensionality.srt
3.4 kB
4. Python for Data Science/12. Quiz Solution.srt
3.4 kB
1. Python Fundamentals/1. Why should you learn Python.srt
3.4 kB
19. Employee Promotion Prediction/11. Categorical Encoding.srt
3.4 kB
21. Determining Whether a Person should be Granted Loan/10. Applying Logistic Regression.srt
3.4 kB
5. Data Cleaning/2. Types of Missing Values.srt
3.4 kB
3. Python Functions Deep Dive/16. Quiz Solution.srt
3.4 kB
15. Introduction to Clustering Analysis/3. Applications of Clustering.srt
3.4 kB
19. Employee Promotion Prediction/10. Feature Engineering.srt
3.4 kB
18. Time Series Forecasting/20. Checking for Stationarity Part 1.srt
3.4 kB
8. Data Processing/9. Square and Cube Root Transformation.srt
3.3 kB
7. Feature Engineering/22. Feature Engineering on Hotel Reviews.srt
3.3 kB
7. Feature Engineering/13. Introduction to Assign and Update Functions.srt
3.3 kB
19. Employee Promotion Prediction/8. Bivariate Analysis.srt
3.3 kB
18. Time Series Forecasting/27. The Simple Auto Regressive Model.srt
3.3 kB
4. Python for Data Science/13. Array Creation using Numpy.srt
3.3 kB
20. Predicting Health Expense of Customers/14. Major Takeaways from the Project.srt
3.3 kB
17. Recommendation Engines/8. Introduction to Transactional Encoder.srt
3.3 kB
22. Optimizing Agricultural Production/8. Predictive Modelling.srt
3.3 kB
14. Imbalanced Machine Learning/1. Why Imbalanced Data needs extra attention.srt
3.3 kB
22. Optimizing Agricultural Production/2. Understanding the Dataset.srt
3.3 kB
7. Feature Engineering/17. Introduction to Cumulative Functions.srt
3.2 kB
22. Optimizing Agricultural Production/1. Setting up the Environment.srt
3.2 kB
15. Introduction to Clustering Analysis/1. Introduction to Clustering.srt
3.2 kB
18. Time Series Forecasting/22. Checking for Stationary Implementation.srt
3.2 kB
14. Imbalanced Machine Learning/6. Applying Random Forest using Sklearn.srt
3.2 kB
16. Dimensionality Reduction/11. Introduction to Recursive Feature Selection.srt
3.2 kB
5. Data Cleaning/22. Data Cleaning on Movie Dataset.srt
3.2 kB
6. Data Visualizations/32. Funnel Charts.srt
3.2 kB
3. Python Functions Deep Dive/17. Solving the Factorial Problem using Recursion.srt
3.2 kB
3. Python Functions Deep Dive/18. Solving the Fibonacci Problem using Recursion.srt
3.2 kB
7. Feature Engineering/8. Reading and Summarizing the Text.srt
3.2 kB
18. Time Series Forecasting/33. Implementing ARMA Model.srt
3.2 kB
18. Time Series Forecasting/34. Understanding ARIMA Model.srt
3.1 kB
13. Boosting Models/1. Understading the concept of boosting.srt
3.1 kB
21. Determining Whether a Person should be Granted Loan/8. Preparing the Data for Modelling.srt
3.1 kB
19. Employee Promotion Prediction/14. Predictive Modelling.srt
3.1 kB
10. Logistic Regression/3. Feature Selection using RFECV.srt
3.1 kB
17. Recommendation Engines/26. Case Study for Youtube.srt
3.1 kB
17. Recommendation Engines/4. Evaluating Recommender Systems.srt
3.1 kB
8. Data Processing/4. OneHot Encoding.srt
3.0 kB
17. Recommendation Engines/25. Case Study for Netflix.srt
3.0 kB
4. Python for Data Science/2. The date and time class.srt
3.0 kB
16. Dimensionality Reduction/13. Introduction the Boruta Algorithm.srt
3.0 kB
18. Time Series Forecasting/5. Components of Time Series.srt
3.0 kB
12. Tree Based Models/3. Advantages and Issues with Decision trees.srt
3.0 kB
7. Feature Engineering/14. Introduction to at_time and between_time Functions.srt
3.0 kB
18. Time Series Forecasting/45. Choosing the Right for Model Smaller Datasets.srt
3.0 kB
3. Python Functions Deep Dive/5. Python Modules.srt
3.0 kB
21. Determining Whether a Person should be Granted Loan/11. Applying Gradient Boosting.srt
3.0 kB
18. Time Series Forecasting/32. Understanding ARMA Model.srt
3.0 kB
8. Data Processing/2. Label Encoding.srt
3.0 kB
5. Data Cleaning/5. Imputing Missing Values using MeanMedianMode.srt
3.0 kB
22. Optimizing Agricultural Production/5. Analyzing Agricultural Conditions.srt
3.0 kB
20. Predicting Health Expense of Customers/12. Comparing Performance of these Models.srt
3.0 kB
1. Python Fundamentals/15. User Input.srt
2.9 kB
6. Data Visualizations/12. Subplots.srt
2.9 kB
1. Python Fundamentals/20. Break and Continue.srt
2.9 kB
5. Data Cleaning/11. Using Winsorization to deal with Outliers.srt
2.9 kB
1. Python Fundamentals/10. Identity and Membership Operators.srt
2.9 kB
3. Python Functions Deep Dive/8. Lambda Functions.srt
2.9 kB
3. Python Functions Deep Dive/4. Keyword Arguments.srt
2.9 kB
8. Data Processing/8. Introduction to Skewness and Normal Distribution.srt
2.9 kB
6. Data Visualizations/18. Animation with Bubbleplot.srt
2.9 kB
2. Python for Data Analysis/13. Implementing Stacks and Queues using Lists.srt
2.8 kB
4. Python for Data Science/15. Built-in Functions in Numpy.srt
2.8 kB
4. Python for Data Science/9. Special Characters for Regular Expressions.srt
2.8 kB
20. Predicting Health Expense of Customers/13. More things to Try.srt
2.8 kB
9. Linear Regression/10. Industry relevance of linear regression.srt
2.8 kB
7. Feature Engineering/4. Decomposing Categorical Features.srt
2.8 kB
16. Dimensionality Reduction/21. Implementing LDA.srt
2.8 kB
16. Dimensionality Reduction/20. Introduction to Linear Discriminant Analysis.srt
2.8 kB
19. Employee Promotion Prediction/9. Multivariate Analysis.srt
2.7 kB
6. Data Visualizations/9. Facet Grids.srt
2.7 kB
2. Python for Data Analysis/14. Implementing Stacks and Queues using Deque.srt
2.7 kB
19. Employee Promotion Prediction/5. Missing Values Treatment.srt
2.7 kB
3. Python Functions Deep Dive/24. Polymorphism.srt
2.7 kB
6. Data Visualizations/11. Polar Charts.srt
2.7 kB
18. Time Series Forecasting/37. Implementing SARIMA Model.srt
2.7 kB
6. Data Visualizations/25. Interactive Univariate Analysis.srt
2.7 kB
7. Feature Engineering/11. Counting Nouns and Verbs in the Text.srt
2.7 kB
6. Data Visualizations/36. Network Charts.srt
2.7 kB
18. Time Series Forecasting/2. Types of Forecasting.srt
2.7 kB
3. Python Functions Deep Dive/22. Inheritance.srt
2.7 kB
6. Data Visualizations/15. Maps.srt
2.6 kB
4. Python for Data Science/8. Built-in Functions for Regular Expressions.srt
2.6 kB
22. Optimizing Agricultural Production/7. Visualizing the Hidden Patterns.srt
2.6 kB
4. Python for Data Science/14. Mathematical Operations using Numpy.srt
2.6 kB
3. Python Functions Deep Dive/13. Introduction to Aggregate Functions.srt
2.6 kB
18. Time Series Forecasting/4. Applications of Time Series.srt
2.6 kB
6. Data Visualizations/30. Sunburst Charts.srt
2.6 kB
5. Data Cleaning/17. Introduction to Replace and Droplevel Function.srt
2.6 kB
8. Data Processing/10. Log transformation.srt
2.6 kB
3. Python Functions Deep Dive/1. Introduction to Functions.srt
2.6 kB
18. Time Series Forecasting/51. Mean Absolute Error.srt
2.5 kB
6. Data Visualizations/33. Gantt Charts.srt
2.5 kB
19. Employee Promotion Prediction/16. Improvements Possible.srt
2.5 kB
1. Python Fundamentals/2. Installing Python and Jupyter Notebook.srt
2.5 kB
8. Data Processing/14. Standardization and Normalization.srt
2.5 kB
19. Employee Promotion Prediction/13. Feature Scaling.srt
2.5 kB
21. Determining Whether a Person should be Granted Loan/12. Summary.srt
2.5 kB
17. Recommendation Engines/2. What are it's Use Cases.srt
2.5 kB
18. Time Series Forecasting/47. Best Practices while Choosing a Time series Model..srt
2.5 kB
6. Data Visualizations/7. Charts with Colorscale.srt
2.5 kB
8. Data Processing/11. BoxCox transformation.srt
2.5 kB
7. Feature Engineering/3. Decomposing Time and Date Features.srt
2.4 kB
4. Python for Data Science/19. Plotting Data in Pandas.srt
2.4 kB
7. Feature Engineering/16. Introduction to Expanding Function.srt
2.4 kB
16. Dimensionality Reduction/19. Implementing t-SNE.srt
2.4 kB
16. Dimensionality Reduction/8. Introduction to Variance Inflation Filtering.srt
2.4 kB
2. Python for Data Analysis/3. Operations on Tuples.srt
2.3 kB
22. Optimizing Agricultural Production/10. Summarizing the Key-Points.srt
2.3 kB
18. Time Series Forecasting/35. Implementing ARIMA Model.srt
2.3 kB
18. Time Series Forecasting/41. Understanding SARIMAX Model.srt
2.3 kB
2. Python for Data Analysis/12. Introduction to Stacks and Queues.srt
2.3 kB
4. Python for Data Science/22. Lambda, Map, and Apply Functions.srt
2.3 kB
8. Data Processing/3. Feature Mapping for Ordinal Variables.srt
2.3 kB
21. Determining Whether a Person should be Granted Loan/3. Understanding the Dataset.srt
2.3 kB
3. Python Functions Deep Dive/3. Positional Arguments.srt
2.3 kB
17. Recommendation Engines/1. Introduction to Recommender systems.srt
2.2 kB
8. Data Processing/6. Mean and Frequency Encoding.srt
2.2 kB
6. Data Visualizations/27. Interactive Multivariate Analysis.srt
2.2 kB
14. Imbalanced Machine Learning/15. Comparing the Results.srt
2.2 kB
22. Optimizing Agricultural Production/9. Real Time Predictions.srt
2.2 kB
5. Data Cleaning/19. Introduction to Stack, and Unstack Functions.srt
2.1 kB
7. Feature Engineering/12. Counting Adjectives, Adverb, and Pronouns.srt
2.1 kB
13. Boosting Models/5. Getting High level intuition for XGBoost.srt
2.1 kB
11. Introduction to KNN, SVM, Naive Bayes/5. Implementing KNN using Sklearn.srt
2.1 kB
18. Time Series Forecasting/29. Moving Average Model.srt
2.0 kB
18. Time Series Forecasting/52. Mean Absolute Percentage Error.srt
2.0 kB
18. Time Series Forecasting/53. Root Mean Squared Error.srt
2.0 kB
6. Data Visualizations/21. Animation with Choropleth Maps.srt
2.0 kB
18. Time Series Forecasting/19. Introduction to Auto Regressive Models.srt
2.0 kB
18. Time Series Forecasting/1. What is a Time Series Data.srt
2.0 kB
6. Data Visualizations/13. 3D Charts.srt
2.0 kB
6. Data Visualizations/14. Waffle Charts.srt
2.0 kB
4. Python for Data Science/1. Introduction to datetime.srt
1.9 kB
22. Optimizing Agricultural Production/3. Understanding the Problem Statement.srt
1.9 kB
18. Time Series Forecasting/46. Choosing the Right Model for Larger Datasets.srt
1.9 kB
18. Time Series Forecasting/30. Moving Average Model Implementation.srt
1.9 kB
6. Data Visualizations/35. Tree Maps.srt
1.8 kB
18. Time Series Forecasting/44. How to Choose the Right Model.srt
1.8 kB
6. Data Visualizations/19. Animation with Facets.srt
1.8 kB
6. Data Visualizations/34. Ternary Charts.srt
1.8 kB
7. Feature Engineering/7. Introduction to Feature Engineering on Text Data.srt
1.8 kB
18. Time Series Forecasting/49. Why do we Evaluate Performance.srt
1.8 kB
6. Data Visualizations/31. Parallel Co-ordinate Charts.srt
1.7 kB
6. Data Visualizations/20. Animation with Scatter Maps.srt
1.6 kB
19. Employee Promotion Prediction/17. Major Takeaways from the Project.srt
1.6 kB
4. Python for Data Science/3. The datetime class.srt
1.5 kB
4. Python for Data Science/4. The timedelta class.srt
1.2 kB
1. Python Fundamentals/11. Quiz on Operators.html
147 Bytes
1. Python Fundamentals/16. Quiz on Strings.html
147 Bytes
1. Python Fundamentals/21. Quiz on Loops and Conditionals.html
147 Bytes
1. Python Fundamentals/6. Quiz on Variables and Data Types.html
147 Bytes
10. Logistic Regression/11. Quiz on Modelling with Logistic Regression.html
147 Bytes
11. Introduction to KNN, SVM, Naive Bayes/9. Quiz on Other classification models.html
147 Bytes
12. Tree Based Models/9. Quiz on Tree based models.html
147 Bytes
13. Boosting Models/8. Quiz on Boosting Models.html
147 Bytes
14. Imbalanced Machine Learning/16. Quiz on Handling Imbalanced Datasets.html
147 Bytes
14. Imbalanced Machine Learning/7. Quiz on Introduction to Imbalanced Machine Learning.html
147 Bytes
15. Introduction to Clustering Analysis/11. Quiz on K Means Clustering.html
147 Bytes
15. Introduction to Clustering Analysis/17. Quiz on Advanced Clustering Techniques.html
147 Bytes
15. Introduction to Clustering Analysis/4. Quiz on Introduction to Clustering.html
147 Bytes
16. Dimensionality Reduction/10. Quiz on Variance Filtering.html
147 Bytes
16. Dimensionality Reduction/15. Quiz on Feature Selection.html
147 Bytes
16. Dimensionality Reduction/23. Quiz on Machine Learning.html
147 Bytes
16. Dimensionality Reduction/4. Quiz on Introduction.html
147 Bytes
16. Dimensionality Reduction/7. Quiz on Correlation Filtering.html
147 Bytes
17. Recommendation Engines/10. Quiz on Content Based Filtering.html
147 Bytes
17. Recommendation Engines/17. Quiz on Collaborative Based Filtering.html
147 Bytes
17. Recommendation Engines/23. Quiz on Singular Value Decomposition.html
147 Bytes
18. Time Series Forecasting/12. Quiz on Time Series Analysis.html
147 Bytes
18. Time Series Forecasting/18. Quiz on Smoothing Techniques.html
147 Bytes
18. Time Series Forecasting/31. Quiz on AR Models.html
147 Bytes
18. Time Series Forecasting/38. Quiz on Advanced AR Models.html
147 Bytes
18. Time Series Forecasting/43. Quiz on ARIMAX and SARIMAX Models.html
147 Bytes
18. Time Series Forecasting/48. Quiz on Choosing the Right Model.html
147 Bytes
18. Time Series Forecasting/54. Quiz on Why do we Evaluate Performance.html
147 Bytes
18. Time Series Forecasting/6. Quiz on Introduction to Time Series.html
147 Bytes
19. Employee Promotion Prediction/18. Quiz on Employee Promotion Prediction.html
147 Bytes
2. Python for Data Analysis/10. Quiz on Sets and Dictionaries.html
147 Bytes
2. Python for Data Analysis/15. Quiz on Stacks and Queues.html
147 Bytes
2. Python for Data Analysis/23. Quiz on Searching, Sorting, and Time Complexity.html
147 Bytes
2. Python for Data Analysis/4. Quiz on Lists and Tuples.html
147 Bytes
20. Predicting Health Expense of Customers/15. Quiz on Predicting Health Expense of Customers.html
147 Bytes
21. Determining Whether a Person should be Granted Loan/13. Quiz on Determining Whether a Person should be Granted Loan.html
147 Bytes
22. Optimizing Agricultural Production/11. Quiz on Optimizing Agricultural Production.html
147 Bytes
3. Python Functions Deep Dive/11. Quiz on Anonymous Functions.html
147 Bytes
3. Python Functions Deep Dive/15. Quiz on In Built Functions.html
147 Bytes
3. Python Functions Deep Dive/19. Quiz on Recursions.html
147 Bytes
3. Python Functions Deep Dive/25. Quiz on Classes and Objects.html
147 Bytes
3. Python Functions Deep Dive/6. Quiz on Introduction to Functions.html
147 Bytes
4. Python for Data Science/11. Quiz on Regular Expressions.html
147 Bytes
4. Python for Data Science/16. Quiz on Introduction to Numpy.html
147 Bytes
4. Python for Data Science/23. Quiz on Introduction to Pandas.html
147 Bytes
4. Python for Data Science/5. Quiz on Dates and Times.html
147 Bytes
5. Data Cleaning/14. Quiz on Outliers Treatment.html
147 Bytes
5. Data Cleaning/7. Quiz on Missing Values Imputation.html
147 Bytes
6. Data Visualizations/16. Quiz on Advanced Visualizations.html
147 Bytes
6. Data Visualizations/22. Quiz on Animated Visualizations.html
147 Bytes
6. Data Visualizations/28. Quiz on Interactive Visualizations.html
147 Bytes
6. Data Visualizations/37. Quiz on Miscellaneous Charts.html
147 Bytes
6. Data Visualizations/4. Quiz on Basics of Visualization.html
147 Bytes
7. Feature Engineering/18. Quiz on Feature Engineering Functions.html
147 Bytes
7. Feature Engineering/25. Quiz on Feature Engineering on Real World Datasets.html
147 Bytes
8. Data Processing/12. Quiz on Data Transformation.html
147 Bytes
8. Data Processing/15. Quiz on Data Splitting and Feature Scaling.html
147 Bytes
8. Data Processing/7. Quiz on Dealing with Categorical data.html
147 Bytes
9. Linear Regression/11. Quiz on Modelling with Linear Regression.html
147 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>