搜索
[FreeCourseSite.com] Udemy - The Data Science Course Complete Data Science Bootcamp
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - The Data Science Course Complete Data Science Bootcamp
磁力链接/BT种子简介
种子哈希:
3ff83ac61ba63ed0429cf4df7457bd96e24b31f4
文件大小:
9.18G
已经下载:
6889
次
下载速度:
极快
收录时间:
2023-12-27
最近下载:
2024-11-10
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:3FF83AC61BA63ED0429CF4DF7457BD96E24B31F4
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
上山奈
淫語寸止
幼师
my first dp
nine inch nails
王杰2001演唱会
erosenro
相沢
爱玩夫妻推特
jul-572
忘年恋曲
18 and dead
onlyfans精品
sleeping mother
roselip-fetish-0493
中国模特大赛
heydouga4037+
blindness
피치
修炼
超模之战
超棒身材小姐姐职业接拍+附生活照
+torn
seraph
双城之战
大神dom
nirvana
独居的寡姐
处女 初中生
婧儿
文件列表
16 - Statistics - Practical Example Descriptive Statistics/001 Practical Example Descriptive Statistics.mp4
157.5 MB
11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference.mp4
145.9 MB
12 - Probability - Distributions/015 A Practical Example of Probability Distributions.mp4
144.8 MB
05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data.mp4
112.6 MB
40 - Part 6 Mathematics/011 Why is Linear Algebra Useful.mp4
92.7 MB
35 - Advanced Statistical Methods - Practical Example Linear Regression/001 Practical Example Linear Regression (Part 1).mp4
88.8 MB
20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis.mp4
87.6 MB
64 - Appendix - Working with Text Files in Python/018 Importing Data from .json Files.mp4
85.9 MB
05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning.mp4
84.5 MB
05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods.mp4
79.8 MB
64 - Appendix - Working with Text Files in Python/013 Importing .csv Files - Part III.mp4
78.7 MB
51 - Deep Learning - Business Case Example/004 Business Case Preprocessing the Data.mp4
77.4 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature.mp4
73.2 MB
19 - Statistics - Practical Example Inferential Statistics/001 Practical Example Inferential Statistics.mp4
72.3 MB
56 - Software Integration/003 Taking a Closer Look at APIs.mp4
70.3 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 Business Case Preprocessing.mp4
66.8 MB
05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data.mp4
65.1 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/001 Business Case Getting Acquainted with the Dataset.mp4
63.2 MB
56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints.mp4
63.2 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence.mp4
62.1 MB
08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions.mp4
61.7 MB
02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords Why are there so Many.mp4
60.1 MB
13 - Probability - Probability in Other Fields/003 Probability in Data Science.mp4
59.6 MB
64 - Appendix - Working with Text Files in Python/015 Importing Data with .loadtxt() and .genfromtxt().mp4
59.1 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/006 Creating a Data Provider.mp4
59.0 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set.mp4
56.7 MB
05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques.mp4
55.4 MB
02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science An Introduction.mp4
55.2 MB
18 - Statistics - Inferential Statistics Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score.mp4
54.7 MB
01 - Part 1 Introduction/002 What Does the Course Cover.mp4
53.9 MB
51 - Deep Learning - Business Case Example/001 Business Case Exploring the Dataset and Identifying Predictors.mp4
53.8 MB
35 - Advanced Statistical Methods - Practical Example Linear Regression/008 Practical Example Linear Regression (Part 5).mp4
52.9 MB
64 - Appendix - Working with Text Files in Python/011 Importing .csv Files - Part I.mp4
52.3 MB
05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques.mp4
51.8 MB
04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines.mp4
49.0 MB
21 - Statistics - Practical Example Hypothesis Testing/001 Practical Example Hypothesis Testing.mp4
48.0 MB
09 - Part 2 Probability/002 Computing Expected Values.mp4
47.9 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/009 MNIST Results and Testing.mp4
47.7 MB
02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic.mp4
47.5 MB
60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II.mp4
47.3 MB
18 - Statistics - Inferential Statistics Confidence Intervals/009 Confidence intervals. Two means. Dependent samples.mp4
47.2 MB
01 - Part 1 Introduction/001 A Practical Example What You Will Learn in This Course.mp4
46.1 MB
64 - Appendix - Working with Text Files in Python/016 Importing Data - Partial Cleaning While Importing Data.mp4
46.0 MB
51 - Deep Learning - Business Case Example/009 Business Case Setting an Early Stopping Mechanism.mp4
45.9 MB
62 - Appendix - Additional Python Tools/005 List Comprehensions.mp4
45.3 MB
15 - Statistics - Descriptive Statistics/001 Types of Data.mp4
45.3 MB
64 - Appendix - Working with Text Files in Python/021 Importing Data in Python - an Important Exercise.mp4
45.1 MB
64 - Appendix - Working with Text Files in Python/019 An Introduction to Working with Excel Files in Python.mp4
45.1 MB
56 - Software Integration/005 Software Integration - Explained.mp4
45.0 MB
10 - Probability - Combinatorics/011 A Practical Example of Combinatorics.mp4
44.9 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/007 Business Case Model Outline.mp4
44.6 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing.mp4
43.9 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python.mp4
43.3 MB
13 - Probability - Probability in Other Fields/001 Probability in Finance.mp4
42.3 MB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau.mp4
42.2 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set.mp4
42.1 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4).mp4
41.9 MB
35 - Advanced Statistical Methods - Practical Example Linear Regression/006 Practical Example Linear Regression (Part 4).mp4
41.3 MB
20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level.mp4
40.6 MB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau.mp4
40.5 MB
12 - Probability - Distributions/010 Continuous Distributions The Standard Normal Distribution.mp4
40.2 MB
38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful.mp4
39.3 MB
09 - Part 2 Probability/003 Frequency.mp4
39.2 MB
63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames.mp4
39.1 MB
02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI.mp4
38.7 MB
20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known.mp4
38.7 MB
15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques.mp4
38.4 MB
12 - Probability - Distributions/008 Characteristics of Continuous Distributions.mp4
37.9 MB
37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters.mp4
37.6 MB
12 - Probability - Distributions/002 Types of Probability Distributions.mp4
37.3 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained.mp4
37.3 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy.mp4
37.0 MB
14 - Part 3 Statistics/001 Population and Sample.mp4
36.8 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/004 MNIST Model Outline.mp4
36.3 MB
40 - Part 6 Mathematics/010 Dot Product of Matrices.mp4
36.0 MB
38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering.mp4
35.9 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared.mp4
35.9 MB
38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2).mp4
35.7 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the Date Column.mp4
35.6 MB
20 - Statistics - Hypothesis Testing/007 p-value.mp4
35.4 MB
62 - Appendix - Additional Python Tools/004 Triple Nested For Loops.mp4
34.6 MB
22 - Part 4 Introduction to Python/004 Installing Python and Jupyter.mp4
34.4 MB
20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples.mp4
34.4 MB
50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST Preprocess the Data - Shuffle and Batch.mp4
34.3 MB
28 - Python - Sequences/005 Dictionaries.mp4
34.0 MB
63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[].mp4
33.8 MB
15 - Statistics - Descriptive Statistics/002 Levels of Measurement.mp4
33.7 MB
35 - Advanced Statistical Methods - Practical Example Linear Regression/002 Practical Example Linear Regression (Part 2).mp4
33.4 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/008 MNIST Learning.mp4
33.4 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn.mp4
33.2 MB
13 - Probability - Probability in Other Fields/002 Probability in Statistics.mp4
33.1 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created.mp4
33.1 MB
50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST Learning.mp4
32.5 MB
12 - Probability - Distributions/006 Discrete Distributions The Binomial Distribution.mp4
32.1 MB
28 - Python - Sequences/002 Using Methods.mp4
31.8 MB
62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions.mp4
31.8 MB
63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes.mp4
31.2 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python.mp4
31.1 MB
09 - Part 2 Probability/001 The Basic Probability Formula.mp4
30.8 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
30.3 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table.mp4
30.1 MB
18 - Statistics - Inferential Statistics Confidence Intervals/001 What are Confidence Intervals.mp4
30.0 MB
64 - Appendix - Working with Text Files in Python/009 Importing Text Files - open().mp4
29.6 MB
38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1).mp4
29.5 MB
51 - Deep Learning - Business Case Example/008 Business Case Learning and Interpreting the Result.mp4
29.1 MB
05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML).mp4
29.0 MB
17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates.mp4
29.0 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence.mp4
29.0 MB
17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution.mp4
28.8 MB
05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods.mp4
28.7 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3 Normality and Homoscedasticity.mp4
28.7 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python.mp4
28.7 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/001 How to Install TensorFlow 2.0.mp4
28.6 MB
51 - Deep Learning - Business Case Example/003 Business Case Balancing the Dataset.mp4
28.6 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/003 The Importance of Working with a Balanced Dataset.mp4
28.6 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/006 Outlining the Model with TensorFlow 2.mp4
28.2 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/008 Business Case Optimization.mp4
28.2 MB
38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters.mp4
28.2 MB
64 - Appendix - Working with Text Files in Python/010 Importing Text Files - with open().mp4
27.5 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/007 Interpreting the Result and Extracting the Weights and Bias.mp4
27.2 MB
09 - Part 2 Probability/004 Events and Their Complements.mp4
27.1 MB
39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.mp4
27.0 MB
62 - Appendix - Additional Python Tools/001 Using the .format() Method.mp4
26.9 MB
36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression.mp4
26.0 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem.mp4
26.0 MB
05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI).mp4
25.9 MB
15 - Statistics - Descriptive Statistics/011 Mean, median and mode.mp4
25.7 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights.mp4
25.6 MB
20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2).mp4
25.6 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model.mp4
25.6 MB
63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique().mp4
25.5 MB
57 - Case Study - What's Next in the Course/003 Introducing the Data Set.mp4
25.4 MB
11 - Probability - Bayesian Inference/004 Union of Sets.mp4
25.4 MB
49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding.mp4
25.1 MB
12 - Probability - Distributions/007 Discrete Distributions The Poisson Distribution.mp4
25.1 MB
36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function.mp4
24.9 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/003 Digging into a Deep Net.mp4
24.8 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation.mp4
24.8 MB
10 - Probability - Combinatorics/006 Solving Combinations.mp4
24.8 MB
29 - Python - Iterations/001 For Loops.mp4
24.7 MB
42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm 1-Parameter Gradient Descent.mp4
24.7 MB
15 - Statistics - Descriptive Statistics/015 Variance.mp4
24.7 MB
64 - Appendix - Working with Text Files in Python/026 Saving Your Data with NumPy - Part II - .npz.mp4
24.4 MB
17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem.mp4
24.3 MB
18 - Statistics - Inferential Statistics Confidence Intervals/008 Margin of Error.mp4
24.2 MB
28 - Python - Sequences/001 Lists.mp4
24.2 MB
50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4
24.0 MB
50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST Testing the Model.mp4
23.7 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/004 Non-Linearities and their Purpose.mp4
23.7 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS.mp4
23.6 MB
64 - Appendix - Working with Text Files in Python/022 Importing Data with the .squeeze() Method.mp4
23.5 MB
63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series.mp4
23.3 MB
40 - Part 6 Mathematics/006 Addition and Subtraction of Matrices.mp4
23.2 MB
50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST Outline the Model.mp4
23.2 MB
29 - Python - Iterations/004 Conditional Statements and Loops.mp4
23.0 MB
36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python.mp4
23.0 MB
56 - Software Integration/004 Communication between Software Products through Text Files.mp4
22.9 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn.mp4
22.8 MB
36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model.mp4
22.6 MB
11 - Probability - Bayesian Inference/011 Bayes' Law.mp4
22.4 MB
63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas.mp4
22.2 MB
64 - Appendix - Working with Text Files in Python/024 Saving Your Data with pandas.mp4
22.1 MB
63 - Appendix - pandas Fundamentals/006 Using .sort_values().mp4
22.1 MB
12 - Probability - Distributions/012 Continuous Distributions The Chi-Squared Distribution.mp4
22.0 MB
64 - Appendix - Working with Text Files in Python/027 Saving Your Data with NumPy - Part III - .csv.mp4
21.8 MB
63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[].mp4
21.7 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 Business Case A Comment on the Homework.mp4
21.6 MB
40 - Part 6 Mathematics/008 Transpose of a Matrix.mp4
21.5 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression).mp4
21.5 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients.mp4
21.4 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization).mp4
21.3 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/007 Backpropagation.mp4
21.3 MB
36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model.mp4
21.3 MB
11 - Probability - Bayesian Inference/010 The Multiplication Law.mp4
21.2 MB
29 - Python - Iterations/002 While Loops and Incrementing.mp4
21.2 MB
15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation.mp4
21.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several Straightforward Columns for this Exercise.mp4
21.1 MB
12 - Probability - Distributions/009 Continuous Distributions The Normal Distribution.mp4
21.0 MB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau.mp4
20.7 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section.mp4
20.7 MB
15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots.mp4
20.7 MB
20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown.mp4
20.7 MB
57 - Case Study - What's Next in the Course/001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
20.6 MB
60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I.mp4
20.6 MB
64 - Appendix - Working with Text Files in Python/023 Importing Files in Jupyter.mp4
20.5 MB
63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I.mp4
20.5 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python.mp4
20.5 MB
56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses.mp4
20.5 MB
12 - Probability - Distributions/001 Fundamentals of Probability Distributions.mp4
20.4 MB
15 - Statistics - Descriptive Statistics/021 Correlation Coefficient.mp4
20.3 MB
11 - Probability - Bayesian Inference/002 Ways Sets Can Interact.mp4
20.2 MB
28 - Python - Sequences/003 List Slicing.mp4
20.1 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/009 Basic NN Example with TF Model Output.mp4
20.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the Date Column.mp4
20.0 MB
25 - Python - Other Python Operators/002 Logical and Identity Operators.mp4
19.9 MB
40 - Part 6 Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices.mp4
19.9 MB
22 - Part 4 Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks.mp4
19.9 MB
18 - Statistics - Inferential Statistics Confidence Intervals/004 Confidence Interval Clarifications.mp4
19.9 MB
64 - Appendix - Working with Text Files in Python/025 Saving Your Data with NumPy - Part I - .npy.mp4
19.8 MB
36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip.mp4
19.7 MB
20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error.mp4
19.5 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/009 Business Case Interpretation.mp4
19.5 MB
15 - Statistics - Descriptive Statistics/019 Covariance.mp4
19.3 MB
05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data.mp4
19.3 MB
39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram.mp4
19.2 MB
10 - Probability - Combinatorics/005 Solving Variations without Repetition.mp4
19.1 MB
28 - Python - Sequences/004 Tuples.mp4
19.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings.mp4
18.9 MB
63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II.mp4
18.7 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
18.6 MB
15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table.mp4
18.5 MB
11 - Probability - Bayesian Inference/001 Sets and Events.mp4
18.5 MB
10 - Probability - Combinatorics/002 Permutations and How to Use Them.mp4
18.4 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter.mp4
18.2 MB
17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution.mp4
18.0 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on Education, Children, and Pets.mp4
17.7 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/004 TensorFlow Intro.mp4
17.7 MB
42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm n-Parameter Gradient Descent.mp4
17.7 MB
64 - Appendix - Working with Text Files in Python/005 Importing Data in Python - Principles.mp4
17.5 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/008 Customizing a TensorFlow 2 Model.mp4
17.5 MB
10 - Probability - Combinatorics/003 Simple Operations with Factorials.mp4
17.5 MB
42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs.mp4
17.5 MB
35 - Advanced Statistical Methods - Practical Example Linear Regression/004 Practical Example Linear Regression (Part 3).mp4
17.5 MB
11 - Probability - Bayesian Inference/007 The Conditional Probability Formula.mp4
17.4 MB
29 - Python - Iterations/006 How to Iterate over Dictionaries.mp4
17.2 MB
10 - Probability - Combinatorics/009 Combinatorics in Real-Life The Lottery.mp4
17.2 MB
12 - Probability - Distributions/014 Continuous Distributions The Logistic Distribution.mp4
17.0 MB
52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches.mp4
16.9 MB
12 - Probability - Distributions/013 Continuous Distributions The Exponential Distribution.mp4
16.8 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/005 MNIST Loss and Optimization Algorithm.mp4
16.5 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/008 Basic NN Example with TF Loss Function and Gradient Descent.mp4
16.5 MB
23 - Python - Variables and Data Types/003 Python Strings.mp4
16.4 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3).mp4
16.4 MB
65 - Bonus Lecture/001 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf
16.3 MB
40 - Part 6 Mathematics/005 What is a Tensor.mp4
16.3 MB
20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1).mp4
16.2 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/003 TensorFlow 1 vs TensorFlow 2.mp4
16.1 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/002 TensorFlow Outline and Comparison with Other Libraries.mp4
16.0 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2).mp4
16.0 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data.mp4
15.9 MB
12 - Probability - Distributions/005 Discrete Distributions The Bernoulli Distribution.mp4
15.9 MB
10 - Probability - Combinatorics/010 A Recap of Combinatorics.mp4
15.8 MB
11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets.mp4
15.6 MB
22 - Part 4 Introduction to Python/001 Introduction to Programming.mp4
15.5 MB
18 - Statistics - Inferential Statistics Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2).mp4
15.3 MB
36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables.mp4
15.3 MB
37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis.mp4
15.2 MB
64 - Appendix - Working with Text Files in Python/020 Working with Excel (.xlsx) Data.mp4
15.1 MB
26 - Python - Conditional Statements/003 The ELIF Statement.mp4
14.9 MB
46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification.mp4
14.7 MB
10 - Probability - Combinatorics/004 Solving Variations with Repetition.mp4
14.6 MB
51 - Deep Learning - Business Case Example/006 Business Case Load the Preprocessed Data.mp4
14.5 MB
07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for.mp4
14.5 MB
10 - Probability - Combinatorics/007 Symmetry of Combinations.mp4
14.4 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise.mp4
14.4 MB
40 - Part 6 Mathematics/003 Linear Algebra and Geometry.mp4
14.4 MB
23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python.mp4
14.4 MB
18 - Statistics - Inferential Statistics Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score.mp4
14.4 MB
18 - Statistics - Inferential Statistics Confidence Intervals/005 Student's T Distribution.mp4
14.3 MB
17 - Statistics - Inferential Statistics Fundamentals/007 Standard error.mp4
14.2 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model.mp4
14.1 MB
52 - Deep Learning - Conclusion/004 An overview of CNNs.mp4
14.0 MB
15 - Statistics - Descriptive Statistics/013 Skewness.mp4
14.0 MB
64 - Appendix - Working with Text Files in Python/006 Plain Text Files, Flat Files and More.mp4
13.8 MB
05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data.mp4
13.7 MB
42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning.mp4
13.7 MB
47 - Deep Learning - Initialization/001 What is Initialization.mp4
13.5 MB
40 - Part 6 Mathematics/009 Dot Product.mp4
13.5 MB
62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects.mp4
13.2 MB
50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST Importing the Relevant Packages and Loading the Data.mp4
12.8 MB
62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops.mp4
12.7 MB
49 - Deep Learning - Preprocessing/003 Standardization.mp4
12.7 MB
22 - Part 4 Introduction to Python/002 Why Python.mp4
12.6 MB
64 - Appendix - Working with Text Files in Python/001 An Introduction to Working with Files in Python.mp4
12.6 MB
18 - Statistics - Inferential Statistics Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1).mp4
12.6 MB
29 - Python - Iterations/003 Lists with the range() Function.mp4
12.5 MB
40 - Part 6 Mathematics/001 What is a Matrix.mp4
12.5 MB
41 - Part 7 Deep Learning/001 What to Expect from this Part.mp4
12.3 MB
64 - Appendix - Working with Text Files in Python/014 Importing Data with index_col.mp4
12.2 MB
11 - Probability - Bayesian Inference/008 The Law of Total Probability.mp4
12.1 MB
36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean.mp4
11.9 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/003 MNIST Relevant Packages.mp4
11.8 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared.mp4
11.7 MB
02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics.mp4
11.7 MB
38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering.mp4
11.7 MB
11 - Probability - Bayesian Inference/009 The Additive Rule.mp4
11.6 MB
64 - Appendix - Working with Text Files in Python/003 Structured, Semi-Structured and Unstructured Data.mp4
11.6 MB
11 - Probability - Bayesian Inference/003 Intersection of Sets.mp4
11.5 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn.mp4
11.5 MB
64 - Appendix - Working with Text Files in Python/012 Importing .csv Files - Part II.mp4
11.5 MB
38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize.mp4
11.5 MB
38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering.mp4
11.3 MB
64 - Appendix - Working with Text Files in Python/004 Text Files and Data Connectivity.mp4
11.3 MB
46 - Deep Learning - Overfitting/001 What is Overfitting.mp4
11.3 MB
10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces.mp4
11.2 MB
50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST Select the Loss and the Optimizer.mp4
11.1 MB
63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I.mp4
11.1 MB
11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets.mp4
11.1 MB
42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks.mp4
11.0 MB
38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data.mp4
10.9 MB
12 - Probability - Distributions/004 Discrete Distributions The Uniform Distribution.mp4
10.8 MB
46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training.mp4
10.8 MB
27 - Python - Python Functions/007 Built-in Functions in Python.mp4
10.7 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python.mp4
10.5 MB
52 - Deep Learning - Conclusion/001 Summary on What You've Learned.mp4
10.3 MB
42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions Cross-Entropy Loss.mp4
10.3 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent.mp4
10.1 MB
37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering.mp4
10.1 MB
15 - Statistics - Descriptive Statistics/007 The Histogram.mp4
10.0 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/007 MNIST Batching and Early Stopping.mp4
9.9 MB
12 - Probability - Distributions/003 Characteristics of Discrete Distributions.mp4
9.9 MB
64 - Appendix - Working with Text Files in Python/002 File vs File Object, Reading vs Parsing Data.mp4
9.9 MB
46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets.mp4
9.9 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1).mp4
9.8 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2 No Endogeneity.mp4
9.7 MB
12 - Probability - Distributions/011 Continuous Distributions The Students' T Distribution.mp4
9.7 MB
49 - Deep Learning - Preprocessing/001 Preprocessing Introduction.mp4
9.7 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/005 Actual Introduction to TensorFlow.mp4
9.6 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/002 What is a Deep Net.mp4
9.6 MB
39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering.mp4
9.4 MB
63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II.mp4
9.4 MB
23 - Python - Variables and Data Types/001 Variables.mp4
9.4 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/006 Types of File Formats, supporting Tensors.mp4
9.3 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/005 Types of File Formats Supporting TensorFlow.mp4
9.3 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/005 Activation Functions.mp4
9.3 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability.mp4
9.2 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/006 Activation Functions Softmax Activation.mp4
9.2 MB
30 - Python - Advanced Python Tools/001 Object Oriented Programming.mp4
9.1 MB
12 - Probability - Distributions/015 FIFA19-post.csv
9.1 MB
12 - Probability - Distributions/015 FIFA19.csv
9.1 MB
24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python.mp4
9.1 MB
17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution.mp4
9.0 MB
36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression.mp4
9.0 MB
30 - Python - Advanced Python Tools/004 Importing Modules in Python.mp4
9.0 MB
40 - Part 6 Mathematics/002 Scalars and Vectors.mp4
8.9 MB
46 - Deep Learning - Overfitting/003 What is Validation.mp4
8.8 MB
57 - Case Study - What's Next in the Course/002 The Business Task.mp4
8.8 MB
27 - Python - Python Functions/002 How to Create a Function with a Parameter.mp4
8.7 MB
64 - Appendix - Working with Text Files in Python/008 Common Naming Conventions.mp4
8.6 MB
51 - Deep Learning - Business Case Example/011 Business Case Testing the Model.mp4
8.6 MB
22 - Part 4 Introduction to Python/003 Why Jupyter.mp4
8.5 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/008 Backpropagation Picture.mp4
8.5 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized.mp4
8.4 MB
42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version).mp4
8.4 MB
50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST.mp4
8.3 MB
42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs.mp4
8.3 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4 No Autocorrelation.mp4
8.3 MB
42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks.mp4
8.2 MB
42 - Deep Learning - Introduction to Neural Networks/002 Training the Model.mp4
8.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/029 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb
8.0 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5 No Multicollinearity.mp4
8.0 MB
36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting.mp4
7.9 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs.mp4
7.7 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test).mp4
7.5 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation).mp4
7.5 MB
52 - Deep Learning - Conclusion/005 An Overview of RNNs.mp4
7.3 MB
02 - The Field of Data Science - The Various Data Science Disciplines/004 365-DataScience.png
7.3 MB
02 - The Field of Data Science - The Various Data Science Disciplines/005 365-DataScience.png
7.3 MB
18 - Statistics - Inferential Statistics Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3).mp4
7.2 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST.mp4
6.8 MB
27 - Python - Python Functions/003 Defining a Function in Python - Part II.mp4
6.8 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values.mp4
6.8 MB
46 - Deep Learning - Overfitting/005 N-Fold Cross Validation.mp4
6.5 MB
42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function.mp4
6.5 MB
26 - Python - Conditional Statements/001 The IF Statement.mp4
6.4 MB
22 - Part 4 Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4
6.4 MB
26 - Python - Conditional Statements/002 The ELSE Statement.mp4
6.3 MB
27 - Python - Python Functions/005 Conditional Statements and Functions.mp4
6.3 MB
10 - Probability - Combinatorics/001 Fundamentals of Combinatorics.mp4
6.2 MB
36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression.mp4
6.2 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting.mp4
6.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables A Statistical Perspective.mp4
6.1 MB
40 - Part 6 Mathematics/007 Errors when Adding Matrices.mp4
6.1 MB
47 - Deep Learning - Initialization/002 Types of Simple Initializations.mp4
6.0 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression.mp4
6.0 MB
42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions L2-norm Loss.mp4
5.7 MB
47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
5.7 MB
49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data.mp4
5.7 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section.mp4
5.5 MB
37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites.mp4
5.5 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions.mp4
5.5 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum.mp4
5.4 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/001 What is a Layer.mp4
5.4 MB
30 - Python - Advanced Python Tools/003 What is the Standard Library.mp4
5.3 MB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/002 How to Install TensorFlow 1.mp4
5.2 MB
64 - Appendix - Working with Text Files in Python/007 Text Files of Fixed Width.mp4
5.1 MB
25 - Python - Other Python Operators/001 Comparison Operators.mp4
5.1 MB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/001 MNIST What is the MNIST Dataset.mp4
5.0 MB
52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning.mp4
5.0 MB
44 - Deep Learning - TensorFlow 2.0 Introduction/004 A Note on TensorFlow 2 Syntax.mp4
4.9 MB
50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST The Dataset.mp4
4.8 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/010 Business Case Testing the Model.mp4
4.5 MB
29 - Python - Iterations/005 Conditional Statements, Functions, and Loops.mp4
4.5 MB
26 - Python - Conditional Statements/004 A Note on Boolean Values.mp4
4.4 MB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/002 Business Case Outlining the Solution.mp4
4.4 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression.mp4
4.0 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent.mp4
3.8 MB
31 - Part 5 Advanced Statistical Methods in Python/001 Introduction to Regression Analysis.mp4
3.8 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1 Linearity.mp4
3.7 MB
38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression.mp4
3.7 MB
49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing.mp4
3.4 MB
27 - Python - Python Functions/001 Defining a Function in Python.mp4
3.4 MB
27 - Python - Python Functions/004 How to Use a Function within a Function.mp4
3.4 MB
17 - Statistics - Inferential Statistics Fundamentals/001 Introduction.mp4
3.2 MB
51 - Deep Learning - Business Case Example/002 Business Case Outlining the Solution.mp4
3.2 MB
27 - Python - Python Functions/006 Functions Containing a Few Arguments.mp4
3.0 MB
24 - Python - Basic Python Syntax/007 Structuring with Indentation.mp4
2.9 MB
24 - Python - Basic Python Syntax/002 The Double Equality Sign.mp4
2.8 MB
24 - Python - Basic Python Syntax/004 Add Comments.mp4
2.5 MB
24 - Python - Basic Python Syntax/006 Indexing Elements.mp4
2.5 MB
22 - Part 4 Introduction to Python/001 Introduction-to-Python-Course-Notes.pdf
2.3 MB
23 - Python - Variables and Data Types/001 Introduction-to-Python-Course-Notes.pdf
2.3 MB
64 - Appendix - Working with Text Files in Python/029 Working with Text Files in Python - Conclusion.mp4
2.2 MB
30 - Python - Advanced Python Tools/002 Modules and Packages.mp4
2.2 MB
24 - Python - Basic Python Syntax/003 How to Reassign Values.mp4
2.0 MB
19 - Statistics - Practical Example Inferential Statistics/002 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
1.9 MB
19 - Statistics - Practical Example Inferential Statistics/001 3.17.Practical-example.Confidence-intervals-lesson.xlsx
1.8 MB
19 - Statistics - Practical Example Inferential Statistics/002 3.17.Practical-example.Confidence-intervals-exercise.xlsx
1.8 MB
24 - Python - Basic Python Syntax/005 Understanding Line Continuation.mp4
1.3 MB
20 - Statistics - Hypothesis Testing/007 Online-p-value-calculator.pdf
1.2 MB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/001 Course-Notes-Section-6.pdf
958.9 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/002 Course-Notes-Section-6.pdf
958.9 kB
11 - Probability - Bayesian Inference/012 CDS-2017-2018-Hamilton.pdf
865.6 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/008 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb
728.1 kB
51 - Deep Learning - Business Case Example/001 Audiobooks-data.csv
727.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/001 Audiobooks-data.csv
727.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/003 Audiobooks-data.csv
727.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 Audiobooks-data.csv
727.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/005 Audiobooks-data.csv
727.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 Audiobooks-data.csv
727.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/012 Audiobooks-data.csv
727.8 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/008 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb
715.1 kB
20 - Statistics - Hypothesis Testing/001 Course-notes-hypothesis-testing.pdf
672.2 kB
20 - Statistics - Hypothesis Testing/003 Course-notes-hypothesis-testing.pdf
672.2 kB
64 - Appendix - Working with Text Files in Python/001 Common-Naming-Conventions.pdf
659.2 kB
64 - Appendix - Working with Text Files in Python/008 Common-Naming-Conventions.pdf
659.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Shortcuts-for-Jupyter.pdf
634.0 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/001 Shortcuts-for-Jupyter.pdf
634.0 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/005 Shortcuts-for-Jupyter.pdf
634.0 kB
42 - Deep Learning - Introduction to Neural Networks/001 Course-Notes-Section-2.pdf
592.0 kB
42 - Deep Learning - Introduction to Neural Networks/002 Course-Notes-Section-2.pdf
592.0 kB
14 - Part 3 Statistics/001 Course-notes-descriptive-statistics.pdf
493.8 kB
15 - Statistics - Descriptive Statistics/001 Course-notes-descriptive-statistics.pdf
493.8 kB
12 - Probability - Distributions/001 Course-Notes-Probability-Distributions.pdf
475.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/006 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb
417.4 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/006 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb
406.8 kB
11 - Probability - Bayesian Inference/001 Course-Notes-Bayesian-Inference.pdf
395.3 kB
17 - Statistics - Inferential Statistics Fundamentals/001 Course-notes-inferential-statistics.pdf
391.5 kB
17 - Statistics - Inferential Statistics Fundamentals/002 Course-notes-inferential-statistics.pdf
391.5 kB
09 - Part 2 Probability/001 Course-Notes-Basic-Probability.pdf
380.0 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/005 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb
379.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/004 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb
359.9 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/005 sklearn-Dummies-and-VIF-Exercise.ipynb
352.9 kB
12 - Probability - Distributions/008 Solving-Integrals.pdf
352.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/004 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb
351.8 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/002 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb
343.7 kB
36 - Advanced Statistical Methods - Logistic Regression/001 Course-Notes-Logistic-Regression.pdf
343.2 kB
36 - Advanced Statistical Methods - Logistic Regression/002 Course-Notes-Logistic-Regression.pdf
343.2 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/002 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb
336.6 kB
02 - The Field of Data Science - The Various Data Science Disciplines/003 365-DataScience-Diagram.pdf
330.8 kB
02 - The Field of Data Science - The Various Data Science Disciplines/004 365-DataScience-Diagram.pdf
330.8 kB
13 - Probability - Probability in Other Fields/003 Probability-Cheat-Sheet.pdf
328.0 kB
31 - Part 5 Advanced Statistical Methods in Python/001 Course-notes-regression-analysis.pdf
319.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 Course-notes-regression-analysis.pdf
319.7 kB
01 - Part 1 Introduction/003 FAQ-The-Data-Science-Course.pdf
313.4 kB
15 - Statistics - Descriptive Statistics/004 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
15 - Statistics - Descriptive Statistics/008 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
10 - Probability - Combinatorics/011 Additional-Exercises-Combinatorics-Solutions.pdf
251.6 kB
10 - Probability - Combinatorics/001 Course-Notes-Combinatorics.pdf
231.5 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/001 1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/002 1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/005 1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/006 1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/008 1.04.Real-life-example.csv
225.1 kB
64 - Appendix - Working with Text Files in Python/018 Lending-company.json
218.7 kB
37 - Advanced Statistical Methods - Cluster Analysis/001 Course-Notes-Cluster-Analysis.pdf
213.7 kB
37 - Advanced Statistical Methods - Cluster Analysis/002 Course-Notes-Cluster-Analysis.pdf
213.7 kB
10 - Probability - Combinatorics/006 Combinations-With-Repetition.pdf
212.4 kB
13 - Probability - Probability in Other Fields/001 Probability-in-Finance-Solutions.pdf
188.9 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/009 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
186.8 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/001 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb
175.5 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/001 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb
170.9 kB
63 - Appendix - pandas Fundamentals/001 Sales-products.csv
155.9 kB
63 - Appendix - pandas Fundamentals/012 Sales-products.csv
155.9 kB
16 - Statistics - Practical Example Descriptive Statistics/001 2.13.Practical-example.Descriptive-statistics-lesson.xlsx
150.0 kB
16 - Statistics - Practical Example Descriptive Statistics/002 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
149.9 kB
12 - Probability - Distributions/007 Poisson-Expected-Value-and-Variance.pdf
149.5 kB
12 - Probability - Distributions/009 Normal-Distribution-Exp-and-Var.pdf
147.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/001 data-preprocessing-homework.pdf
137.7 kB
16 - Statistics - Practical Example Descriptive Statistics/002 2.13.Practical-example.Descriptive-statistics-exercise.xlsx
123.2 kB
63 - Appendix - pandas Fundamentals/001 pandas-Fundamentals-Solutions.ipynb
121.2 kB
63 - Appendix - pandas Fundamentals/012 pandas-Fundamentals-Solutions.ipynb
121.2 kB
64 - Appendix - Working with Text Files in Python/011 Lending-company-single-column-data.csv
117.2 kB
63 - Appendix - pandas Fundamentals/001 Lending-company.csv
115.1 kB
63 - Appendix - pandas Fundamentals/012 Lending-company.csv
115.1 kB
64 - Appendix - Working with Text Files in Python/011 Lending-company.csv
115.1 kB
36 - Advanced Statistical Methods - Logistic Regression/016 Testing-the-Model-Solution.ipynb
113.8 kB
13 - Probability - Probability in Other Fields/001 Probability-in-Finance-Homework.pdf
113.3 kB
10 - Probability - Combinatorics/011 Additional-Exercises-Combinatorics.pdf
109.1 kB
64 - Appendix - Working with Text Files in Python/020 Lending-company.xlsx
95.3 kB
10 - Probability - Combinatorics/007 Symmetry-Explained.pdf
87.1 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/009 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
86.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-3.d.Solution.ipynb
86.2 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/009 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
85.7 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/009 TensorFlow-Minimal-example-All-exercises.ipynb
85.6 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/008 TensorFlow-Minimal-example-complete-with-comments.ipynb
84.3 kB
36 - Advanced Statistical Methods - Logistic Regression/013 Calculating-the-Accuracy-of-the-Model-Solution.ipynb
83.2 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/009 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
79.4 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/008 TensorFlow-Minimal-example-complete.ipynb
78.7 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/007 TensorFlow-Minimal-example-Part3.ipynb
78.4 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-3.c.Solution.ipynb
71.8 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-1-Solution.ipynb
70.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-5-Solution.ipynb
70.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-3.a.Solution.ipynb
69.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-3.b.Solution.ipynb
69.3 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-4-Solution.ipynb
68.1 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15251170.mpd
66.9 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15251152.mpd
65.3 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15185936.mpd
64.8 kB
60 - Case Study - Loading the 'absenteeism_module'/001 Absenteeism-Exercise-Integration.ipynb
63.8 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-6-Solution.ipynb
63.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-6.ipynb
63.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-Exercise-2-Solution.ipynb
62.9 kB
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.encrypted.m4a.part.frag.urls
62.5 kB
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.encrypted.mp4.part.frag.urls
62.5 kB
03 - The Field of Data Science - Connecting the Data Science Disciplines/temp/index_13908866.mpd
60.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15256016.mpd
60.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/temp/index_13060600.mpd
60.3 kB
64 - Appendix - Working with Text Files in Python/025 Lending-Company-Saving.csv
59.8 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15293084.mpd
58.1 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15251158.mpd
57.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/temp/index_13060526.mpd
56.0 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15251164.mpd
56.0 kB
21 - Statistics - Practical Example Hypothesis Testing/001 4.10.Hypothesis-testing-section-practical-example.xlsx
53.1 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb
51.2 kB
21 - Statistics - Practical Example Hypothesis Testing/002 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
45.3 kB
21 - Statistics - Practical Example Hypothesis Testing/002 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx
44.7 kB
42 - Deep Learning - Introduction to Neural Networks/011 GD-function-example.xlsx
43.4 kB
06 - The Field of Data Science - Popular Data Science Tools/temp/index_13040208.mpd
42.1 kB
15 - Statistics - Descriptive Statistics/004 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx
42.1 kB
15 - Statistics - Descriptive Statistics/010 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx
41.4 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061100.mpd
40.2 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15251168.mpd
40.2 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/temp/index_15251154.mpd
39.0 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/temp/index_17572166.mpd
38.7 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061110.mpd
36.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.encrypted.mp4.part.frag.urls
36.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.encrypted.m4a.part.frag.urls
36.7 kB
15 - Statistics - Descriptive Statistics/013 2.8.Skewness-lesson.xlsx
35.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/001 Absenteeism-data.csv
32.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/temp/index_17596538.mpd
32.0 kB
63 - Appendix - pandas Fundamentals/001 pandas-Fundamentals-Exercises.ipynb
31.7 kB
63 - Appendix - pandas Fundamentals/012 pandas-Fundamentals-Exercises.ipynb
31.7 kB
15 - Statistics - Descriptive Statistics/003 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
31.5 kB
11 - Probability - Bayesian Inference/012 Bayesian-Homework-Solutions.pdf
31.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb
30.5 kB
64 - Appendix - Working with Text Files in Python/015 Lending-Company-Numeric-Data.csv
30.2 kB
15 - Statistics - Descriptive Statistics/020 2.11.Covariance-exercise-solution.xlsx
30.2 kB
15 - Statistics - Descriptive Statistics/022 2.12.Correlation-exercise-solution.xlsx
30.2 kB
15 - Statistics - Descriptive Statistics/022 2.12.Correlation-exercise.xlsx
30.0 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Absenteeism-preprocessed.csv
29.8 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/001 df-preprocessed.csv
29.8 kB
64 - Appendix - Working with Text Files in Python/015 Lending-Company-Numeric-Data-NAN.csv
29.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 sklearn-Simple-Linear-Regression-with-comments.ipynb
29.0 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/009 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb
28.6 kB
64 - Appendix - Working with Text Files in Python/001 Working-with-Text-Files-Lectures.ipynb
28.2 kB
64 - Appendix - Working with Text Files in Python/029 Working-with-Text-Files-Lectures.ipynb
28.2 kB
11 - Probability - Bayesian Inference/012 Bayesian-Homework.pdf
27.9 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb
27.6 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
27.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/006 Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb
27.2 kB
15 - Statistics - Descriptive Statistics/009 2.6.Cross-table-and-scatter-plot.xlsx
26.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 sklearn-Simple-Linear-Regression.ipynb
26.7 kB
18 - Statistics - Inferential Statistics Confidence Intervals/002 3.9.The-z-table.xlsx
26.2 kB
18 - Statistics - Inferential Statistics Confidence Intervals/003 3.9.The-z-table.xlsx
26.2 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
26.2 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
26.1 kB
12 - Probability - Distributions/015 A Practical Example of Probability Distributions_en.srt
26.1 kB
62 - Appendix - Additional Python Tools/001 Additional-Python-Tools-Solutions.ipynb
26.1 kB
62 - Appendix - Additional Python Tools/006 Additional-Python-Tools-Solutions.ipynb
26.1 kB
16 - Statistics - Practical Example Descriptive Statistics/001 Practical Example Descriptive Statistics_en.srt
26.0 kB
15 - Statistics - Descriptive Statistics/019 2.11.Covariance-lesson.xlsx
25.5 kB
64 - Appendix - Working with Text Files in Python/017 Importing-Text-Data-DSc-Solution.ipynb
25.0 kB
11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference_en.srt
24.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.encrypted.m4a.part.frag.urls
24.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.encrypted.mp4.part.frag.urls
24.8 kB
17 - Statistics - Inferential Statistics Fundamentals/005 3.4.Standard-normal-distribution-exercise-solution.xlsx
24.6 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb
24.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb
22.6 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb
22.3 kB
63 - Appendix - pandas Fundamentals/001 pandas-Fundamentals-Lectures.ipynb
21.8 kB
63 - Appendix - pandas Fundamentals/012 pandas-Fundamentals-Lectures.ipynb
21.8 kB
01 - Part 1 Introduction/003 Download All Resources and Important FAQ.html
21.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
21.1 kB
14 - Part 3 Statistics/001 Statistics-Glossary.xlsx
20.8 kB
15 - Statistics - Descriptive Statistics/020 2.11.Covariance-exercise.xlsx
20.7 kB
12 - Probability - Distributions/015 Daily-Views-post.xlsx
20.7 kB
64 - Appendix - Working with Text Files in Python/022 Importing-Data-with-the-pandas-Squeeze-Method.ipynb
20.6 kB
15 - Statistics - Descriptive Statistics/001 Glossary.xlsx
20.4 kB
15 - Statistics - Descriptive Statistics/014 2.8.Skewness-exercise-solution.xlsx
20.2 kB
51 - Deep Learning - Business Case Example/008 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb
20.2 kB
36 - Advanced Statistical Methods - Logistic Regression/008 Bank-data.csv
20.0 kB
36 - Advanced Statistical Methods - Logistic Regression/011 Bank-data.csv
20.0 kB
36 - Advanced Statistical Methods - Logistic Regression/013 Bank-data.csv
20.0 kB
36 - Advanced Statistical Methods - Logistic Regression/016 Bank-data.csv
20.0 kB
17 - Statistics - Inferential Statistics Fundamentals/002 3.2.What-is-a-distribution-lesson.xlsx
19.9 kB
15 - Statistics - Descriptive Statistics/007 2.5.The-Histogram-lesson.xlsx
19.1 kB
10 - Probability - Combinatorics/011 A Practical Example of Combinatorics_en.srt
19.0 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/001 Practical Example Linear Regression (Part 1)_en.srt
18.4 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/012 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb
18.4 kB
64 - Appendix - Working with Text Files in Python/015 Importing Data with .loadtxt() and .genfromtxt()_en.srt
18.2 kB
39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps-with-comments.ipynb
18.1 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb
18.1 kB
15 - Statistics - Descriptive Statistics/008 2.5.The-Histogram-exercise-solution.xlsx
17.5 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
17.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 SKLEAR-1.IPY
17.2 kB
19 - Statistics - Practical Example Inferential Statistics/001 Practical Example Inferential Statistics_en.srt
17.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 TensorFlow-MNIST-All-Exercises.ipynb
17.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb
17.0 kB
51 - Deep Learning - Business Case Example/004 Business Case Preprocessing the Data_en.srt
16.9 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 Business Case Preprocessing_en.srt
16.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/017 sklearn-Feature-Scaling-Exercise-Solution.ipynb
16.7 kB
15 - Statistics - Descriptive Statistics/010 2.6.Cross-table-and-scatter-plot-exercise.xlsx
16.7 kB
64 - Appendix - Working with Text Files in Python/009 Importing Text Files - open()_en.srt
16.7 kB
18 - Statistics - Inferential Statistics Confidence Intervals/006 3.11.The-t-table.xlsx
16.2 kB
18 - Statistics - Inferential Statistics Confidence Intervals/007 3.11.The-t-table.xlsx
16.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
16.2 kB
12 - Probability - Distributions/015 Customers-Membership-post.xlsx
16.0 kB
15 - Statistics - Descriptive Statistics/008 2.5.The-Histogram-exercise.xlsx
15.9 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/010 TensorFlow-MNIST-Exercises-All.ipynb
15.8 kB
62 - Appendix - Additional Python Tools/005 List Comprehensions_en.srt
15.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/013 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb
15.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 2.TensorFlow-MNIST-Depth-Solution.ipynb
15.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
15.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/015 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb
15.7 kB
62 - Appendix - Additional Python Tools/001 Using the .format() Method_en.srt
15.6 kB
15 - Statistics - Descriptive Statistics/004 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx
15.6 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
15.6 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
15.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
15.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
15.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb
15.4 kB
02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI_en.srt
15.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb
15.3 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 2.TensorFlow-MNIST-Depth-Solution.ipynb
15.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 1.TensorFlow-MNIST-Width-Solution.ipynb
15.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
15.1 kB
20 - Statistics - Hypothesis Testing/008 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
14.9 kB
50 - Deep Learning - Classifying on the MNIST Dataset/012 TensorFlow-MNIST-complete-with-comments.ipynb
14.9 kB
20 - Statistics - Hypothesis Testing/011 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx
14.7 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/012 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
14.7 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/006 Practical Example Linear Regression (Part 4)_en.srt
14.6 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
14.6 kB
18 - Statistics - Inferential Statistics Confidence Intervals/010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx
14.6 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
14.5 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
14.4 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 1.TensorFlow-MNIST-Width-Solution.ipynb
14.3 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb
14.3 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 TensorFlow-Minimal-Example-All-Exercises.ipynb
14.3 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
14.3 kB
05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods_en.srt
14.2 kB
40 - Part 6 Mathematics/011 Why is Linear Algebra Useful_en.srt
14.2 kB
18 - Statistics - Inferential Statistics Confidence Intervals/010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx
14.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb
14.0 kB
63 - Appendix - pandas Fundamentals/001 Location.csv
13.8 kB
63 - Appendix - pandas Fundamentals/012 Location.csv
13.8 kB
62 - Appendix - Additional Python Tools/001 Additional-Python-Tools-Lectures.ipynb
13.8 kB
62 - Appendix - Additional Python Tools/006 Additional-Python-Tools-Lectures.ipynb
13.8 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/008 Practical Example Linear Regression (Part 5)_en.srt
13.7 kB
64 - Appendix - Working with Text Files in Python/028 Saving-Data-NP-Solution.ipynb
13.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/003 Multiple-Linear-Regression-Exercise-Solution.ipynb
13.7 kB
51 - Deep Learning - Business Case Example/001 Business Case Exploring the Dataset and Identifying Predictors_en.srt
13.7 kB
02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science An Introduction_en.srt
13.6 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/001 Business Case Getting Acquainted with the Dataset_en.srt
13.6 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4)_en.srt
13.5 kB
05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data_en.srt
13.5 kB
15 - Statistics - Descriptive Statistics/006 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
13.5 kB
56 - Software Integration/003 Taking a Closer Look at APIs_en.srt
13.4 kB
63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series_en.srt
13.4 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/009 12.9.TensorFlow-MNIST-with-comments.ipynb
13.3 kB
05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning_en.srt
13.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb
13.3 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Minimal-example-All-Exercises.ipynb
13.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 SKLEAR-1.IPY
13.2 kB
20 - Statistics - Hypothesis Testing/011 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx
13.1 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/008 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/009 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/011 sklearn-How-to-properly-include-p-values.ipynb
13.0 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence_en.srt
13.0 kB
63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames_en.srt
13.0 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature_en.srt
13.0 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/008 MNIST Learning_en.srt
12.9 kB
20 - Statistics - Hypothesis Testing/009 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
12.9 kB
62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions_en.srt
12.9 kB
15 - Statistics - Descriptive Statistics/018 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
12.9 kB
12 - Probability - Distributions/002 Types of Probability Distributions_en.srt
12.9 kB
28 - Python - Sequences/001 Lists_en.srt
12.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/010 TensorFlow-MNIST-Part6-with-comments.ipynb
12.8 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau_en.srt
12.6 kB
13 - Probability - Probability in Other Fields/001 Probability in Finance_en.srt
12.5 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/009 5.6.TensorFlow-Minimal-example-complete.ipynb
12.4 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables_en.srt
12.3 kB
17 - Statistics - Inferential Statistics Fundamentals/005 3.4.Standard-normal-distribution-exercise.xlsx
12.3 kB
51 - Deep Learning - Business Case Example/011 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
51 - Deep Learning - Business Case Example/012 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering_en.srt
12.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb
12.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained_en.srt
12.0 kB
64 - Appendix - Working with Text Files in Python/016 Importing Data - Partial Cleaning While Importing Data_en.srt
12.0 kB
36 - Advanced Statistical Methods - Logistic Regression/012 Accuracy-with-comments.ipynb
12.0 kB
15 - Statistics - Descriptive Statistics/018 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
11.9 kB
18 - Statistics - Inferential Statistics Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score_en.srt
11.9 kB
64 - Appendix - Working with Text Files in Python/015 Importing-Text-Data-with-NumPy-Complete.ipynb
11.8 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau_en.srt
11.8 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/008 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb
11.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST Preprocess the Data - Shuffle and Batch_en.srt
11.7 kB
15 - Statistics - Descriptive Statistics/005 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx
11.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Minimal-example-Part-4-Complete.ipynb
11.7 kB
20 - Statistics - Hypothesis Testing/015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
11.7 kB
62 - Appendix - Additional Python Tools/001 Additional-Python-Tools-Exercises.ipynb
11.6 kB
62 - Appendix - Additional Python Tools/006 Additional-Python-Tools-Exercises.ipynb
11.6 kB
15 - Statistics - Descriptive Statistics/012 2.7.Mean-median-and-mode-exercise-solution.xlsx
11.6 kB
20 - Statistics - Hypothesis Testing/009 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
11.6 kB
20 - Statistics - Hypothesis Testing/013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
11.5 kB
05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques_en.srt
11.5 kB
20 - Statistics - Hypothesis Testing/006 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx
11.5 kB
18 - Statistics - Inferential Statistics Confidence Intervals/002 3.9.Population-variance-known-z-score-lesson.xlsx
11.5 kB
51 - Deep Learning - Business Case Example/004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/012 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
18 - Statistics - Inferential Statistics Confidence Intervals/003 3.9.Population-variance-known-z-score-exercise-solution.xlsx
11.4 kB
22 - Part 4 Introduction to Python/004 Installing Python and Jupyter_en.srt
11.4 kB
64 - Appendix - Working with Text Files in Python/013 Importing .csv Files - Part III_en.srt
11.4 kB
18 - Statistics - Inferential Statistics Confidence Intervals/007 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx
11.4 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/004 MNIST Model Outline_en.srt
11.3 kB
03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML_en.srt
11.3 kB
15 - Statistics - Descriptive Statistics/016 2.9.Variance-exercise-solution.xlsx
11.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization)_en.srt
11.3 kB
20 - Statistics - Hypothesis Testing/006 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx
11.3 kB
12 - Probability - Distributions/008 Characteristics of Continuous Distributions_en.srt
11.3 kB
40 - Part 6 Mathematics/010 Dot Product of Matrices_en.srt
11.3 kB
50 - Deep Learning - Classifying on the MNIST Dataset/009 TensorFlow-MNIST-Part5-with-comments.ipynb
11.2 kB
56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints_en.srt
11.2 kB
38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2)_en.srt
11.2 kB
15 - Statistics - Descriptive Statistics/017 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx
11.2 kB
13 - Probability - Probability in Other Fields/002 Probability in Statistics_en.srt
11.2 kB
20 - Statistics - Hypothesis Testing/005 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx
11.2 kB
15 - Statistics - Descriptive Statistics/012 2.7.Mean-median-and-mode-exercise.xlsx
11.1 kB
18 - Statistics - Inferential Statistics Confidence Intervals/003 3.9.Population-variance-known-z-score-exercise.xlsx
11.1 kB
15 - Statistics - Descriptive Statistics/016 2.9.Variance-exercise.xlsx
11.1 kB
18 - Statistics - Inferential Statistics Confidence Intervals/006 3.11.Population-variance-unknown-t-score-lesson.xlsx
11.0 kB
20 - Statistics - Hypothesis Testing/013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
11.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/015 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb
11.0 kB
28 - Python - Sequences/005 Dictionaries_en.srt
11.0 kB
09 - Part 2 Probability/001 The Basic Probability Formula_en.srt
10.9 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/008 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/009 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
64 - Appendix - Working with Text Files in Python/011 Importing .csv Files - Part I_en.srt
10.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set_en.srt
10.9 kB
18 - Statistics - Inferential Statistics Confidence Intervals/007 3.11.Population-variance-unknown-t-score-exercise.xlsx
10.9 kB
42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm 1-Parameter Gradient Descent_en.srt
10.8 kB
12 - Probability - Distributions/006 Discrete Distributions The Binomial Distribution_en.srt
10.8 kB
20 - Statistics - Hypothesis Testing/015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
10.8 kB
05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques_en.srt
10.8 kB
28 - Python - Sequences/002 Using Methods_en.srt
10.8 kB
15 - Statistics - Descriptive Statistics/011 2.7.Mean-median-and-mode-lesson.xlsx
10.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/008 TensorFlow-MNIST-Part4-with-comments.ipynb
10.7 kB
18 - Statistics - Inferential Statistics Confidence Intervals/009 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx
10.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression_en.srt
10.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 sklearn-Feature-Selection-with-F-regression.ipynb
10.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb
10.7 kB
21 - Statistics - Practical Example Hypothesis Testing/001 Practical Example Hypothesis Testing_en.srt
10.6 kB
17 - Statistics - Inferential Statistics Fundamentals/004 3.4.Standard-normal-distribution-lesson.xlsx
10.6 kB
29 - Python - Iterations/003 Lists with the range() Function_en.srt
10.6 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/007 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb
10.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/005 Categorical.csv
10.6 kB
20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level_en.srt
10.6 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem_en.srt
10.6 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb
10.6 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing_en.srt
10.6 kB
63 - Appendix - pandas Fundamentals/001 Region.csv
10.5 kB
63 - Appendix - pandas Fundamentals/012 Region.csv
10.5 kB
62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops_en.srt
10.5 kB
62 - Appendix - Additional Python Tools/004 Triple Nested For Loops_en.srt
10.5 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/006 Outlining the Model with TensorFlow 2_en.srt
10.4 kB
18 - Statistics - Inferential Statistics Confidence Intervals/009 Confidence intervals. Two means. Dependent samples_en.srt
10.4 kB
18 - Statistics - Inferential Statistics Confidence Intervals/012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx
10.4 kB
12 - Probability - Distributions/001 Fundamentals of Probability Distributions_en.srt
10.3 kB
15 - Statistics - Descriptive Statistics/015 2.9.Variance-lesson.xlsx
10.3 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model_en.srt
10.3 kB
51 - Deep Learning - Business Case Example/009 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb
10.3 kB
51 - Deep Learning - Business Case Example/005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[]_en.srt
10.3 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/002 Practical Example Linear Regression (Part 2)_en.srt
10.2 kB
64 - Appendix - Working with Text Files in Python/021 Importing Data in Python - an Important Exercise_en.srt
10.2 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python_en.srt
10.2 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python_en.srt
10.2 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/006 Creating a Data Provider_en.srt
10.2 kB
15 - Statistics - Descriptive Statistics/015 Variance_en.srt
10.1 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/009 MNIST Results and Testing_en.srt
10.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb
10.1 kB
64 - Appendix - Working with Text Files in Python/025 Saving-Data-NP-Complete.ipynb
10.1 kB
18 - Statistics - Inferential Statistics Confidence Intervals/011 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx
10.1 kB
18 - Statistics - Inferential Statistics Confidence Intervals/012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx
10.1 kB
18 - Statistics - Inferential Statistics Confidence Intervals/014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx
10.0 kB
20 - Statistics - Hypothesis Testing/010 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx
10.0 kB
20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known_en.srt
10.0 kB
51 - Deep Learning - Business Case Example/009 Business Case Setting an Early Stopping Mechanism_en.srt
10.0 kB
12 - Probability - Distributions/015 Customers-Membership.xlsx
9.9 kB
60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II_en.srt
9.9 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases_en.srt
9.9 kB
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science_en.srt
9.9 kB
20 - Statistics - Hypothesis Testing/012 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx
9.9 kB
63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II_en.srt
9.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the Date Column_en.srt
9.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST Learning_en.srt
9.8 kB
29 - Python - Iterations/004 Conditional Statements and Loops_en.srt
9.8 kB
12 - Probability - Distributions/015 Daily-Views.xlsx
9.8 kB
18 - Statistics - Inferential Statistics Confidence Intervals/013 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx
9.7 kB
15 - Statistics - Descriptive Statistics/014 2.8.Skewness-exercise.xlsx
9.7 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/009 Basic NN Example with TF Model Output_en.srt
9.7 kB
22 - Part 4 Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks_en.srt
9.7 kB
29 - Python - Iterations/006 How to Iterate over Dictionaries_en.srt
9.6 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making-predictions-with-comments.ipynb
9.6 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/007 TensorFlow-Audiobooks-Outlining-the-model.ipynb
9.6 kB
42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm n-Parameter Gradient Descent_en.srt
9.5 kB
20 - Statistics - Hypothesis Testing/014 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx
9.5 kB
23 - Python - Variables and Data Types/003 Python Strings_en.srt
9.5 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights_en.srt
9.5 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau_en.srt
9.5 kB
11 - Probability - Bayesian Inference/011 Bayes' Law_en.srt
9.4 kB
18 - Statistics - Inferential Statistics Confidence Intervals/014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx
9.4 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061118_1920x1080.m3u8
9.4 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061118_1024x576.m3u8
9.3 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061118_1280x720.m3u8
9.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb
9.3 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061118_768x432.m3u8
9.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn_en.srt
9.3 kB
39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram_en.srt
9.3 kB
64 - Appendix - Working with Text Files in Python/025 Saving Your Data with NumPy - Part I - .npy_en.srt
9.3 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061118_640x360.m3u8
9.3 kB
38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters_en.srt
9.3 kB
64 - Appendix - Working with Text Files in Python/018 Importing Data from .json Files_en.srt
9.3 kB
38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1)_en.srt
9.3 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/006 TensorFlow-Minimal-example-Part2.ipynb
9.3 kB
64 - Appendix - Working with Text Files in Python/005 Importing Data in Python - Principles_en.srt
9.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/019 sklearn-Train-Test-Split-with-comments.ipynb
9.3 kB
28 - Python - Sequences/004 Tuples_en.srt
9.2 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared_en.srt
9.2 kB
02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords Why are there so Many_en.srt
9.2 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression_en.srt
9.2 kB
64 - Appendix - Working with Text Files in Python/010 Importing Text Files - with open()_en.srt
9.1 kB
63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I_en.srt
9.0 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy_en.srt
9.0 kB
22 - Part 4 Introduction to Python/001 Introduction to Programming_en.srt
8.9 kB
12 - Probability - Distributions/007 Discrete Distributions The Poisson Distribution_en.srt
8.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 sklearn-Multiple-Linear-Regression-with-comments.ipynb
8.9 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/008 5.5.TensorFlow-Minimal-example-Part-3.ipynb
8.9 kB
63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I_en.srt
8.8 kB
22 - Part 4 Introduction to Python/002 Why Python_en.srt
8.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/007 TensorFlow-MNIST-Part3-with-comments.ipynb
8.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/007 Business Case Model Outline_en.srt
8.8 kB
51 - Deep Learning - Business Case Example/005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST Outline the Model_en.srt
8.8 kB
20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis_en.srt
8.8 kB
13 - Probability - Probability in Other Fields/003 Probability in Data Science_en.srt
8.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3 Normality and Homoscedasticity_en.srt
8.7 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set_en.srt
8.7 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/007 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb
8.7 kB
09 - Part 2 Probability/004 Events and Their Complements_en.srt
8.7 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb
8.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/007 How-to-Choose-the-Number-of-Clusters-Solution.ipynb
8.7 kB
30 - Python - Advanced Python Tools/001 Object Oriented Programming_en.srt
8.6 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression)_en.srt
8.6 kB
09 - Part 2 Probability/003 Frequency_en.srt
8.5 kB
09 - Part 2 Probability/002 Computing Expected Values_en.srt
8.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/029 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb
8.5 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/008 Business Case Optimization_en.srt
8.5 kB
56 - Software Integration/005 Software Integration - Explained_en.srt
8.5 kB
46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training_en.srt
8.5 kB
36 - Advanced Statistical Methods - Logistic Regression/016 Bank-data-testing.csv
8.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/003 Countries-exercise.csv
8.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/007 Countries-exercise.csv
8.5 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/003 Digging into a Deep Net_en.srt
8.5 kB
15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots_en.srt
8.5 kB
64 - Appendix - Working with Text Files in Python/006 Plain Text Files, Flat Files and More_en.srt
8.4 kB
26 - Python - Conditional Statements/003 The ELIF Statement_en.srt
8.4 kB
01 - Part 1 Introduction/001 A Practical Example What You Will Learn in This Course_en.srt
8.4 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/007 Interpreting the Result and Extracting the Weights and Bias_en.srt
8.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.srt
8.3 kB
20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples_en.srt
8.3 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared_en.srt
8.3 kB
38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful_en.srt
8.3 kB
29 - Python - Iterations/001 For Loops_en.srt
8.3 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2)_en.srt
8.2 kB
15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques_en.srt
8.2 kB
64 - Appendix - Working with Text Files in Python/026 Saving Your Data with NumPy - Part II - .npz_en.srt
8.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn_en.srt
8.2 kB
38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering_en.srt
8.1 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/001 How to Install TensorFlow 2.0_en.srt
8.1 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/006 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb
8.1 kB
63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes_en.srt
8.0 kB
36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model_en.srt
8.0 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created_en.srt
8.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 sklearn-Multiple-Linear-Regression.ipynb
8.0 kB
50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST Preprocess the Data - Create a Validation Set and Scale It_en.srt
8.0 kB
04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines_en.srt
8.0 kB
62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects_en.srt
7.9 kB
18 - Statistics - Inferential Statistics Confidence Intervals/008 Margin of Error_en.srt
7.9 kB
51 - Deep Learning - Business Case Example/008 Business Case Learning and Interpreting the Result_en.srt
7.8 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table_en.srt
7.8 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate_en.srt
7.8 kB
15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation_en.srt
7.8 kB
36 - Advanced Statistical Methods - Logistic Regression/015 Testing-the-model-with-comments.ipynb
7.7 kB
23 - Python - Variables and Data Types/003 Strings-Lecture-Py3.ipynb
7.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize_en.srt
7.7 kB
56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses_en.srt
7.7 kB
18 - Statistics - Inferential Statistics Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1)_en.srt
7.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept_en.srt
7.7 kB
52 - Deep Learning - Conclusion/004 An overview of CNNs_en.srt
7.7 kB
37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters_en.srt
7.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/006 Selecting-the-number-of-clusters-with-comments.ipynb
7.7 kB
42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks_en.srt
7.7 kB
11 - Probability - Bayesian Inference/004 Union of Sets_en.srt
7.6 kB
64 - Appendix - Working with Text Files in Python/022 Customer-Gender.csv
7.6 kB
40 - Part 6 Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices_en.srt
7.6 kB
39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps_en.srt
7.6 kB
49 - Deep Learning - Preprocessing/003 Standardization_en.srt
7.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/014 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb
7.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/029 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb
7.5 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/005 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb
7.5 kB
29 - Python - Iterations/002 While Loops and Incrementing_en.srt
7.5 kB
10 - Probability - Combinatorics/006 Solving Combinations_en.srt
7.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/019 sklearn-Train-Test-Split.ipynb
7.4 kB
25 - Python - Other Python Operators/002 Logical and Identity Operators_en.srt
7.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence_en.srt
7.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on Education, Children, and Pets_en.srt
7.4 kB
15 - Statistics - Descriptive Statistics/011 Mean, median and mode_en.srt
7.4 kB
20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown_en.srt
7.3 kB
11 - Probability - Bayesian Inference/007 The Conditional Probability Formula_en.srt
7.3 kB
50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST Testing the Model_en.srt
7.3 kB
64 - Appendix - Working with Text Files in Python/001 An Introduction to Working with Files in Python_en.srt
7.3 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module_en.srt
7.3 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dummy-variables-with-comments.ipynb
7.3 kB
36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python_en.srt
7.2 kB
17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution_en.srt
7.2 kB
64 - Appendix - Working with Text Files in Python/008 Common Naming Conventions_en.srt
7.2 kB
56 - Software Integration/004 Communication between Software Products through Text Files_en.srt
7.2 kB
14 - Part 3 Statistics/001 Population and Sample_en.srt
7.2 kB
63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique()_en.srt
7.2 kB
05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data_en.srt
7.1 kB
46 - Deep Learning - Overfitting/001 What is Overfitting_en.srt
7.1 kB
15 - Statistics - Descriptive Statistics/001 Types of Data_en.srt
7.1 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment_en.srt
7.1 kB
52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches_en.srt
7.0 kB
63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas_en.srt
7.0 kB
12 - Probability - Distributions/010 Continuous Distributions The Standard Normal Distribution_en.srt
7.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/012 Market-segmentation-example-Part2-with-comments.ipynb
7.0 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Minimal-example-Part-3.ipynb
7.0 kB
36 - Advanced Statistical Methods - Logistic Regression/016 Testing-the-Model-Exercise.ipynb
7.0 kB
50 - Deep Learning - Classifying on the MNIST Dataset/012 TensorFlow-MNIST-complete.ipynb
6.9 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2 No Endogeneity_en.srt
6.9 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )_en.srt
6.9 kB
18 - Statistics - Inferential Statistics Confidence Intervals/004 Confidence Interval Clarifications_en.srt
6.9 kB
36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables_en.srt
6.9 kB
17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem_en.srt
6.8 kB
40 - Part 6 Mathematics/008 Transpose of a Matrix_en.srt
6.8 kB
63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[]_en.srt
6.8 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation_en.srt
6.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients_en.srt
6.8 kB
64 - Appendix - Working with Text Files in Python/019 An Introduction to Working with Excel Files in Python_en.srt
6.8 kB
57 - Case Study - What's Next in the Course/001 Game Plan for this Python, SQL, and Tableau Business Exercise_en.srt
6.8 kB
63 - Appendix - pandas Fundamentals/006 Using .sort_values()_en.srt
6.8 kB
60 - Case Study - Loading the 'absenteeism_module'/001 absenteeism-module.py
6.8 kB
28 - Python - Sequences/003 List Slicing_en.srt
6.8 kB
20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error_en.srt
6.7 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/002 TensorFlow Outline and Comparison with Other Libraries_en.srt
6.7 kB
08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions_en.srt
6.7 kB
20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1)_en.srt
6.7 kB
42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning_en.srt
6.7 kB
01 - Part 1 Introduction/002 What Does the Course Cover_en.srt
6.7 kB
11 - Probability - Bayesian Inference/001 Sets and Events_en.srt
6.7 kB
52 - Deep Learning - Conclusion/001 Summary on What You've Learned_en.srt
6.7 kB
12 - Probability - Distributions/005 Discrete Distributions The Bernoulli Distribution_en.srt
6.6 kB
49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding_en.srt
6.6 kB
20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2)_en.srt
6.6 kB
64 - Appendix - Working with Text Files in Python/027 Saving Your Data with NumPy - Part III - .csv_en.srt
6.6 kB
18 - Statistics - Inferential Statistics Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score_en.srt
6.6 kB
42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions Cross-Entropy Loss_en.srt
6.6 kB
12 - Probability - Distributions/014 Continuous Distributions The Logistic Distribution_en.srt
6.6 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 Business Case A Comment on the Homework_en.srt
6.6 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model_en.srt
6.6 kB
50 - Deep Learning - Classifying on the MNIST Dataset/005 TensorFlow-MNIST-Part2-with-comments.ipynb
6.5 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model_en.srt
6.5 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/004 TensorFlow Intro_en.srt
6.5 kB
20 - Statistics - Hypothesis Testing/007 p-value_en.srt
6.4 kB
36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression_en.srt
6.4 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler)_en.srt
6.4 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/005 Activation Functions_en.srt
6.4 kB
17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution_en.srt
6.4 kB
36 - Advanced Statistical Methods - Logistic Regression/005 Example-bank-data.csv
6.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python_en.srt
6.3 kB
36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting_en.srt
6.3 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/007 5.4.TensorFlow-Minimal-example-Part-2.ipynb
6.3 kB
28 - Python - Sequences/005 Dictionaries-Solution-Py3.ipynb
6.3 kB
15 - Statistics - Descriptive Statistics/019 Covariance_en.srt
6.3 kB
02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics_en.srt
6.3 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/004 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb
6.2 kB
12 - Probability - Distributions/009 Continuous Distributions The Normal Distribution_en.srt
6.2 kB
39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering_en.srt
6.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/017 sklearn-Feature-Scaling-Exercise.ipynb
6.2 kB
02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic_en.srt
6.2 kB
36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function_en.srt
6.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 sklearn-Simple-Linear-Regression-with-comments.ipynb
6.2 kB
64 - Appendix - Working with Text Files in Python/003 Structured, Semi-Structured and Unstructured Data_en.srt
6.2 kB
64 - Appendix - Working with Text Files in Python/028 Saving-Data-NP-Exercise.ipynb
6.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4 No Autocorrelation_en.srt
6.1 kB
46 - Deep Learning - Overfitting/003 What is Validation_en.srt
6.1 kB
60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I_en.srt
6.1 kB
15 - Statistics - Descriptive Statistics/021 Correlation Coefficient_en.srt
6.1 kB
10 - Probability - Combinatorics/005 Solving Variations without Repetition_en.srt
6.1 kB
37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis_en.srt
6.1 kB
22 - Part 4 Introduction to Python/003 Why Jupyter_en.srt
6.1 kB
38 - Advanced Statistical Methods - K-Means Clustering/011 Market-segmentation-example-with-comments.ipynb
6.0 kB
30 - Python - Advanced Python Tools/004 Importing Modules in Python_en.srt
6.0 kB
25 - Python - Other Python Operators/002 Logical-and-Identity-Operators-Lecture-Py3.ipynb
6.0 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/008 Basic NN Example with TF Loss Function and Gradient Descent_en.srt
6.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/002 Country-clusters-with-comments.ipynb
5.9 kB
41 - Part 7 Deep Learning/001 What to Expect from this Part_en.srt
5.9 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent_en.srt
5.9 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset_en.srt
5.9 kB
64 - Appendix - Working with Text Files in Python/023 Importing Files in Jupyter_en.srt
5.9 kB
42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs_en.srt
5.9 kB
23 - Python - Variables and Data Types/001 Variables_en.srt
5.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the Date Column_en.srt
5.9 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making-predictions.ipynb
5.9 kB
36 - Advanced Statistical Methods - Logistic Regression/015 Testing-the-model.ipynb
5.9 kB
15 - Statistics - Descriptive Statistics/002 Levels of Measurement_en.srt
5.9 kB
64 - Appendix - Working with Text Files in Python/024 Saving Your Data with pandas_en.srt
5.9 kB
42 - Deep Learning - Introduction to Neural Networks/002 Training the Model_en.srt
5.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/013 sklearn-Multiple-Linear-Regression-Exercise.ipynb
5.8 kB
64 - Appendix - Working with Text Files in Python/004 Text Files and Data Connectivity_en.srt
5.8 kB
11 - Probability - Bayesian Inference/010 The Multiplication Law_en.srt
5.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/004 Categorical-data-with-comments.ipynb
5.8 kB
18 - Statistics - Inferential Statistics Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2)_en.srt
5.7 kB
07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for_en.srt
5.7 kB
51 - Deep Learning - Business Case Example/004 TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
51 - Deep Learning - Business Case Example/006 Business Case Load the Preprocessed Data_en.srt
5.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/007 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb
5.7 kB
40 - Part 6 Mathematics/001 What is a Matrix_en.srt
5.7 kB
27 - Python - Python Functions/007 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb
5.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5 No Multicollinearity_en.srt
5.6 kB
64 - Appendix - Working with Text Files in Python/022 Importing Data with the .squeeze() Method_en.srt
5.6 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several Straightforward Columns for this Exercise_en.srt
5.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering_en.srt
5.6 kB
11 - Probability - Bayesian Inference/002 Ways Sets Can Interact_en.srt
5.6 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/007 Backpropagation_en.srt
5.6 kB
23 - Python - Variables and Data Types/003 Strings-Solution-Py3.ipynb
5.6 kB
18 - Statistics - Inferential Statistics Confidence Intervals/005 Student's T Distribution_en.srt
5.6 kB
27 - Python - Python Functions/002 How to Create a Function with a Parameter_en.srt
5.6 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1)_en.srt
5.5 kB
36 - Advanced Statistical Methods - Logistic Regression/013 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb
5.5 kB
10 - Probability - Combinatorics/007 Symmetry of Combinations_en.srt
5.5 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/006 Activation Functions Softmax Activation_en.srt
5.5 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability_en.srt
5.5 kB
35 - Advanced Statistical Methods - Practical Example Linear Regression/004 Practical Example Linear Regression (Part 3)_en.srt
5.5 kB
12 - Probability - Distributions/013 Continuous Distributions The Exponential Distribution_en.srt
5.5 kB
37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites_en.srt
5.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression_en.srt
5.4 kB
36 - Advanced Statistical Methods - Logistic Regression/002 Admittance-with-comments.ipynb
5.4 kB
15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table_en.srt
5.4 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3)_en.srt
5.4 kB
36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean_en.srt
5.4 kB
10 - Probability - Combinatorics/002 Permutations and How to Use Them_en.srt
5.4 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/003 The Importance of Working with a Balanced Dataset_en.srt
5.4 kB
24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python_en.srt
5.4 kB
40 - Part 6 Mathematics/009 Dot Product_en.srt
5.3 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/008 Customizing a TensorFlow 2 Model_en.srt
5.3 kB
46 - Deep Learning - Overfitting/005 N-Fold Cross Validation_en.srt
5.3 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/004 Non-Linearities and their Purpose_en.srt
5.3 kB
57 - Case Study - What's Next in the Course/003 Introducing the Data Set_en.srt
5.3 kB
27 - Python - Python Functions/007 Built-in Functions in Python_en.srt
5.3 kB
51 - Deep Learning - Business Case Example/003 Business Case Balancing the Dataset_en.srt
5.3 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings_en.srt
5.3 kB
40 - Part 6 Mathematics/006 Addition and Subtraction of Matrices_en.srt
5.2 kB
36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model_en.srt
5.2 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data_en.srt
5.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn_en.srt
5.2 kB
64 - Appendix - Working with Text Files in Python/002 File vs File Object, Reading vs Parsing Data_en.srt
5.2 kB
10 - Probability - Combinatorics/009 Combinatorics in Real-Life The Lottery_en.srt
5.2 kB
28 - Python - Sequences/003 List-Slicing-Lecture-Py3.ipynb
5.1 kB
40 - Part 6 Mathematics/003 Linear Algebra and Geometry_en.srt
5.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 sklearn-Simple-Linear-Regression.ipynb
5.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/005 Clustering-Categorical-Data-Solution.ipynb
5.0 kB
57 - Case Study - What's Next in the Course/002 The Business Task_en.srt
5.0 kB
49 - Deep Learning - Preprocessing/001 Preprocessing Introduction_en.srt
5.0 kB
10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces_en.srt
5.0 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/003 TensorFlow 1 vs TensorFlow 2_en.srt
5.0 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python_en.srt
5.0 kB
17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution_en.srt
5.0 kB
40 - Part 6 Mathematics/002 Scalars and Vectors_en.srt
5.0 kB
64 - Appendix - Working with Text Files in Python/014 Importing Data with index_col_en.srt
4.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb
4.9 kB
36 - Advanced Statistical Methods - Logistic Regression/008 Understanding-Logistic-Regression-Tables-Solution.ipynb
4.9 kB
17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates_en.srt
4.9 kB
11 - Probability - Bayesian Inference/008 The Law of Total Probability_en.srt
4.9 kB
63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II_en.srt
4.8 kB
52 - Deep Learning - Conclusion/005 An Overview of RNNs_en.srt
4.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/012 Market-segmentation-example-Part2.ipynb
4.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/003 A-Simple-Example-of-Clustering-Solution.ipynb
4.8 kB
30 - Python - Advanced Python Tools/003 What is the Standard Library_en.srt
4.7 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST_en.srt
4.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dummy-Variables.ipynb
4.7 kB
51 - Deep Learning - Business Case Example/007 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb
4.7 kB
28 - Python - Sequences/004 Tuples-Solution-Py3.ipynb
4.7 kB
10 - Probability - Combinatorics/010 A Recap of Combinatorics_en.srt
4.7 kB
64 - Appendix - Working with Text Files in Python/012 Importing .csv Files - Part II_en.srt
4.7 kB
23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python_en.srt
4.7 kB
40 - Part 6 Mathematics/005 What is a Tensor_en.srt
4.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS_en.srt
4.7 kB
40 - Part 6 Mathematics/004 Scalars-Vectors-and-Matrices.ipynb
4.7 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/008 Backpropagation Picture_en.srt
4.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/006 Selecting-the-number-of-clusters.ipynb
4.6 kB
47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization_en.srt
4.6 kB
27 - Python - Python Functions/007 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb
4.6 kB
36 - Advanced Statistical Methods - Logistic Regression/011 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb
4.6 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting_en.srt
4.6 kB
26 - Python - Conditional Statements/001 The IF Statement_en.srt
4.6 kB
47 - Deep Learning - Initialization/002 Types of Simple Initializations_en.srt
4.6 kB
10 - Probability - Combinatorics/004 Solving Variations with Repetition_en.srt
4.6 kB
47 - Deep Learning - Initialization/001 What is Initialization_en.srt
4.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/014 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb
4.6 kB
36 - Advanced Statistical Methods - Logistic Regression/005 Building-a-Logistic-Regression-Solution.ipynb
4.5 kB
22 - Part 4 Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard_en.srt
4.5 kB
15 - Statistics - Descriptive Statistics/013 Skewness_en.srt
4.5 kB
42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version)_en.srt
4.5 kB
28 - Python - Sequences/002 Help-Yourself-with-Methods-Lecture-Py3.ipynb
4.5 kB
37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering_en.srt
4.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST The Dataset_en.srt
4.5 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages_en.srt
4.5 kB
28 - Python - Sequences/005 Dictionaries-Lecture-Py3.ipynb
4.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST_en.srt
4.4 kB
27 - Python - Python Functions/005 Conditional Statements and Functions_en.srt
4.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter_en.srt
4.4 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression_en.srt
4.4 kB
05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods_en.srt
4.4 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/001 MNIST What is the MNIST Dataset_en.srt
4.4 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum_en.srt
4.4 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/005 MNIST Loss and Optimization Algorithm_en.srt
4.4 kB
28 - Python - Sequences/003 List-Slicing-Solution-Py3.ipynb
4.4 kB
24 - Python - Basic Python Syntax/001 Arithmetic-Operators-Solution-Py3.ipynb
4.3 kB
36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression_en.srt
4.3 kB
64 - Appendix - Working with Text Files in Python/017 Importing-Text-Data-DSc-Exercise.ipynb
4.3 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/005 Types of File Formats Supporting TensorFlow_en.srt
4.2 kB
11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets_en.srt
4.2 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression_en.srt
4.2 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb
4.2 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/006 Types of File Formats, supporting Tensors_en.srt
4.2 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation)_en.srt
4.2 kB
36 - Advanced Statistical Methods - Logistic Regression/004 Admittance-regression-tables-fixed-error.ipynb
4.2 kB
46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets_en.srt
4.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/006 Simple-Linear-Regression-with-sklearn-Exercise.ipynb
4.2 kB
10 - Probability - Combinatorics/003 Simple Operations with Factorials_en.srt
4.2 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 Simple-linear-regression-with-comments.ipynb
4.2 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/002 How to Install TensorFlow 1_en.srt
4.2 kB
15 - Statistics - Descriptive Statistics/007 The Histogram_en.srt
4.1 kB
38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data_en.srt
4.1 kB
50 - Deep Learning - Classifying on the MNIST Dataset/003 TensorFlow-MNIST-Part1-with-comments.ipynb
4.1 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/003 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb
4.0 kB
26 - Python - Conditional Statements/002 The ELSE Statement_en.srt
4.0 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/002 What is a Deep Net_en.srt
4.0 kB
18 - Statistics - Inferential Statistics Confidence Intervals/001 What are Confidence Intervals_en.srt
3.9 kB
12 - Probability - Distributions/011 Continuous Distributions The Students' T Distribution_en.srt
3.9 kB
38 - Advanced Statistical Methods - K-Means Clustering/011 Market-segmentation-example.ipynb
3.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 Simple-linear-regression.ipynb
3.9 kB
23 - Python - Variables and Data Types/001 Variables-Solution-Py3.ipynb
3.9 kB
38 - Advanced Statistical Methods - K-Means Clustering/005 Clustering-Categorical-Data-Exercise.ipynb
3.9 kB
36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip_en.srt
3.8 kB
26 - Python - Conditional Statements/004 A Note on Boolean Values_en.srt
3.8 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/009 Business Case Interpretation_en.srt
3.8 kB
27 - Python - Python Functions/003 Defining a Function in Python - Part II_en.srt
3.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values_en.srt
3.8 kB
27 - Python - Python Functions/007 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb
3.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Minimal-example-Part-2.ipynb
3.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions_en.srt
3.7 kB
36 - Advanced Statistical Methods - Logistic Regression/012 Accuracy.ipynb
3.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/015 iris-with-answers.csv
3.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST Importing the Relevant Packages and Loading the Data_en.srt
3.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/003 A-Simple-Example-of-Clustering-Exercise.ipynb
3.7 kB
23 - Python - Variables and Data Types/001 Variables-Lecture-Py3.ipynb
3.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section_en.srt
3.7 kB
40 - Part 6 Mathematics/010 Dot-product-Part-2.ipynb
3.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST Select the Loss and the Optimizer_en.srt
3.7 kB
05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML)_en.srt
3.7 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise_en.srt
3.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/006 Simple-Linear-Regression-Exercise-Solution.ipynb
3.7 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent_en.srt
3.6 kB
36 - Advanced Statistical Methods - Logistic Regression/002 Admittance.ipynb
3.6 kB
12 - Probability - Distributions/012 Continuous Distributions The Chi-Squared Distribution_en.srt
3.6 kB
24 - Python - Basic Python Syntax/001 Arithmetic-Operators-Lecture-Py3.ipynb
3.6 kB
42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions L2-norm Loss_en.srt
3.6 kB
12 - Probability - Distributions/004 Discrete Distributions The Uniform Distribution_en.srt
3.5 kB
25 - Python - Other Python Operators/002 Logical-and-Identity-Operators-Solution-Py3.ipynb
3.5 kB
46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification_en.srt
3.5 kB
49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data_en.srt
3.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/012 real-estate-price-size-year-view.csv
3.5 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/007 MNIST Batching and Early Stopping_en.srt
3.5 kB
23 - Python - Variables and Data Types/002 Numbers-and-Boolean-Values-Lecture-Py3.ipynb
3.4 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/006 5.3.TensorFlow-Minimal-example-Part-1.ipynb
3.4 kB
64 - Appendix - Working with Text Files in Python/020 Working with Excel (.xlsx) Data_en.srt
3.4 kB
42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs_en.srt
3.4 kB
38 - Advanced Statistical Methods - K-Means Clustering/004 Categorical-data.ipynb
3.4 kB
38 - Advanced Statistical Methods - K-Means Clustering/002 Country-clusters.ipynb
3.4 kB
27 - Python - Python Functions/003 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb
3.4 kB
11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets_en.srt
3.4 kB
26 - Python - Conditional Statements/003 Else-If-for-Brief-Elif-Lecture-Py3.ipynb
3.3 kB
40 - Part 6 Mathematics/006 Adding-and-subtracting-matrices.ipynb
3.3 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/010 Business Case Testing the Model_en.srt
3.3 kB
42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks_en.srt
3.3 kB
40 - Part 6 Mathematics/007 Errors when Adding Matrices_en.srt
3.3 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section_en.srt
3.3 kB
52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning_en.srt
3.3 kB
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/001 What is a Layer_en.srt
3.3 kB
28 - Python - Sequences/001 Lists-Solution-Py3.ipynb
3.3 kB
64 - Appendix - Working with Text Files in Python/025 Saving-Data-NP-Template.ipynb
3.2 kB
40 - Part 6 Mathematics/007 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb
3.2 kB
36 - Advanced Statistical Methods - Logistic Regression/008 Understanding-Logistic-Regression-Tables-Exercise.ipynb
3.2 kB
27 - Python - Python Functions/001 Defining a Function in Python_en.srt
3.2 kB
11 - Probability - Bayesian Inference/009 The Additive Rule_en.srt
3.2 kB
55 - Appendix Deep Learning - TensorFlow 1 Business Case/002 Business Case Outlining the Solution_en.srt
3.2 kB
65 - Bonus Lecture/001 Bonus Lecture Next Steps.html
3.2 kB
25 - Python - Other Python Operators/001 Comparison Operators_en.srt
3.2 kB
24 - Python - Basic Python Syntax/003 Reassign-Values-Lecture-Py3.ipynb
3.2 kB
11 - Probability - Bayesian Inference/003 Intersection of Sets_en.srt
3.1 kB
12 - Probability - Distributions/003 Characteristics of Discrete Distributions_en.srt
3.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/012 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb
3.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1 Linearity_en.srt
3.1 kB
29 - Python - Iterations/005 Conditional Statements, Functions, and Loops_en.srt
3.0 kB
29 - Python - Iterations/004 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb
3.0 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test)_en.srt
3.0 kB
28 - Python - Sequences/005 Dictionaries-Exercise-Py3.ipynb
3.0 kB
36 - Advanced Statistical Methods - Logistic Regression/005 Building-a-Logistic-Regression-Exercise.ipynb
3.0 kB
28 - Python - Sequences/004 Tuples-Lecture-Py3.ipynb
3.0 kB
40 - Part 6 Mathematics/008 Tranpose-of-a-matrix.ipynb
3.0 kB
29 - Python - Iterations/006 Iterating-over-Dictionaries-Solution-Py3.ipynb
2.9 kB
28 - Python - Sequences/002 Help-Yourself-with-Methods-Solution-Py3.ipynb
2.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/005 What's Regression Analysis - a Quick Refresher.html
2.9 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb
2.9 kB
05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data_en.srt
2.9 kB
28 - Python - Sequences/003 List-Slicing-Exercise-Py3.ipynb
2.9 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/005 Actual Introduction to TensorFlow_en.srt
2.9 kB
31 - Part 5 Advanced Statistical Methods in Python/001 Introduction to Regression Analysis_en.srt
2.8 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/006 Simple-Linear-Regression-Exercise.ipynb
2.8 kB
24 - Python - Basic Python Syntax/007 Structuring with Indentation_en.srt
2.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression_en.srt
2.8 kB
64 - Appendix - Working with Text Files in Python/007 Text Files of Fixed Width_en.srt
2.8 kB
42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function_en.srt
2.8 kB
28 - Python - Sequences/001 Lists-Lecture-Py3.ipynb
2.8 kB
05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI)_en.srt
2.7 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized_en.srt
2.7 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/temp/index_13061118.m3u8
2.7 kB
24 - Python - Basic Python Syntax/001 Arithmetic-Operators-Exercise-Py3.ipynb
2.7 kB
23 - Python - Variables and Data Types/003 Strings-Exercise-Py3.ipynb
2.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression_en.srt
2.7 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/003 MNIST Relevant Packages_en.srt
2.7 kB
36 - Advanced Statistical Methods - Logistic Regression/010 2.02.Binary-predictors.csv
2.6 kB
51 - Deep Learning - Business Case Example/011 Business Case Testing the Model_en.srt
2.6 kB
36 - Advanced Statistical Methods - Logistic Regression/011 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb
2.6 kB
25 - Python - Other Python Operators/001 Comparison-Operators-Lecture-Py3.ipynb
2.6 kB
27 - Python - Python Functions/004 How to Use a Function within a Function_en.srt
2.6 kB
17 - Statistics - Inferential Statistics Fundamentals/007 Standard error_en.srt
2.6 kB
36 - Advanced Statistical Methods - Logistic Regression/004 Admittance-regression-summary-error.ipynb
2.5 kB
64 - Appendix - Working with Text Files in Python/010 Importing-Text-Files-in-Python-with-open.ipynb
2.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/003 Multiple-Linear-Regression-Exercise.ipynb
2.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/001 What to Expect from the Following Sections.html
2.5 kB
18 - Statistics - Inferential Statistics Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3)_en.srt
2.5 kB
36 - Advanced Statistical Methods - Logistic Regression/010 Binary-predictors.ipynb
2.5 kB
25 - Python - Other Python Operators/001 Comparison-Operators-Solution-Py3.ipynb
2.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/014 iris-dataset.csv
2.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/015 iris-dataset.csv
2.5 kB
26 - Python - Conditional Statements/003 Else-If-for-Brief-Elif-Solution-Py3.ipynb
2.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/003 real-estate-price-size-year.csv
2.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/013 real-estate-price-size-year.csv
2.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/017 real-estate-price-size-year.csv
2.4 kB
24 - Python - Basic Python Syntax/004 Add Comments_en.srt
2.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/014 Dropping a Dummy Variable from the Data Set.html
2.4 kB
24 - Python - Basic Python Syntax/002 The Double Equality Sign_en.srt
2.3 kB
23 - Python - Variables and Data Types/002 Numbers-and-Boolean-Values-Exercise-Py3.ipynb
2.3 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/003 A Note on Installing Packages in Anaconda.html
2.3 kB
64 - Appendix - Working with Text Files in Python/015 Importing-Text-Data-with-NumPy-Template.ipynb
2.3 kB
51 - Deep Learning - Business Case Example/002 Business Case Outlining the Solution_en.srt
2.3 kB
29 - Python - Iterations/003 Create-Lists-with-the-range-Function-Solution-Py3.ipynb
2.3 kB
05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data_en.srt
2.3 kB
20 - Statistics - Hypothesis Testing/002 Further Reading on Null and Alternative Hypothesis.html
2.3 kB
23 - Python - Variables and Data Types/001 Variables-Exercise-Py3.ipynb
2.3 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python_en.srt
2.3 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/011 MNIST Solutions.html
2.3 kB
49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing_en.srt
2.3 kB
26 - Python - Conditional Statements/001 Introduction-to-the-If-Statement-Solution-Py3.ipynb
2.2 kB
29 - Python - Iterations/006 Iterating-over-Dictionaries-Exercise-Py3.ipynb
2.2 kB
24 - Python - Basic Python Syntax/006 Indexing-Elements-Solution-Py3.ipynb
2.2 kB
36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression_en.srt
2.2 kB
54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/010 MNIST Exercises.html
2.2 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Multiple-linear-regression-and-Adjusted-R-squared.ipynb
2.2 kB
64 - Appendix - Working with Text Files in Python/009 Importing-Text-Files-in-Python-open.ipynb
2.2 kB
28 - Python - Sequences/001 Lists-Exercise-Py3.ipynb
2.2 kB
40 - Part 6 Mathematics/009 Dot-product.ipynb
2.2 kB
24 - Python - Basic Python Syntax/003 Reassign-Values-Solution-Py3.ipynb
2.2 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/014 ARTICLE - A Note on 'pickling'.html
2.2 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/001 Absenteeism-predictions.csv
2.2 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Absenteeism-predictions.csv
2.2 kB
29 - Python - Iterations/004 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb
2.1 kB
36 - Advanced Statistical Methods - Logistic Regression/004 Admittance-regression.ipynb
2.1 kB
40 - Part 6 Mathematics/005 Tensors.ipynb
2.1 kB
28 - Python - Sequences/004 Tuples-Exercise-Py3.ipynb
2.1 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model_en.srt
2.1 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables A Statistical Perspective_en.srt
2.1 kB
24 - Python - Basic Python Syntax/006 Indexing Elements_en.srt
2.0 kB
27 - Python - Python Functions/003 Another-Way-to-Define-a-Function-Solution-Py3.ipynb
2.0 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 MNIST - Exercises.html
2.0 kB
17 - Statistics - Inferential Statistics Fundamentals/001 Introduction_en.srt
2.0 kB
29 - Python - Iterations/004 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb
2.0 kB
28 - Python - Sequences/002 Help-Yourself-with-Methods-Exercise-Py3.ipynb
2.0 kB
29 - Python - Iterations/005 All-In-Solution-Py3.ipynb
1.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs_en.srt
1.9 kB
60 - Case Study - Loading the 'absenteeism_module'/001 Absenteeism-new-data.csv
1.9 kB
60 - Case Study - Loading the 'absenteeism_module'/001 scaler
1.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/006 real-estate-price-size.csv
1.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/006 real-estate-price-size.csv
1.9 kB
39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.ipynb
1.9 kB
29 - Python - Iterations/001 For-Loops-Solution-Py3.ipynb
1.8 kB
27 - Python - Python Functions/002 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb
1.8 kB
26 - Python - Conditional Statements/002 Add-an-Else-Statement-Lecture-Py3.ipynb
1.8 kB
27 - Python - Python Functions/006 Functions Containing a Few Arguments_en.srt
1.8 kB
26 - Python - Conditional Statements/003 Else-If-for-Brief-Elif-Exercise-Py3.ipynb
1.8 kB
29 - Python - Iterations/002 While-Loops-and-Incrementing-Solution-Py3.ipynb
1.8 kB
10 - Probability - Combinatorics/001 Fundamentals of Combinatorics_en.srt
1.8 kB
30 - Python - Advanced Python Tools/002 Modules and Packages_en.srt
1.8 kB
27 - Python - Python Functions/006 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb
1.8 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/004 A Note on TensorFlow 2 Syntax_en.srt
1.7 kB
24 - Python - Basic Python Syntax/003 Reassign-Values-Exercise-Py3.ipynb
1.7 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/005 TensorFlow-Minimal-example-Part1.ipynb
1.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Basic NN Example Exercises.html
1.7 kB
27 - Python - Python Functions/005 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb
1.7 kB
29 - Python - Iterations/005 All-In-Lecture-Py3.ipynb
1.7 kB
25 - Python - Other Python Operators/001 Comparison-Operators-Exercise-Py3.ipynb
1.6 kB
27 - Python - Python Functions/004 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb
1.6 kB
27 - Python - Python Functions/002 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb
1.6 kB
36 - Advanced Statistical Methods - Logistic Regression/002 2.01.Admittance.csv
1.6 kB
53 - Appendix Deep Learning - TensorFlow 1 Introduction/010 Basic NN Example with TF Exercises.html
1.6 kB
24 - Python - Basic Python Syntax/003 How to Reassign Values_en.srt
1.6 kB
64 - Appendix - Working with Text Files in Python/011 Importing.csv-Files-with-pandas-Part-I.ipynb
1.6 kB
26 - Python - Conditional Statements/001 Introduction-to-the-If-Statement-Exercise-Py3.ipynb
1.6 kB
24 - Python - Basic Python Syntax/005 Line-Continuation-Solution-Py3.ipynb
1.5 kB
24 - Python - Basic Python Syntax/007 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb
1.5 kB
29 - Python - Iterations/003 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb
1.5 kB
24 - Python - Basic Python Syntax/002 The-Double-Equality-Sign-Lecture-Py3.ipynb
1.5 kB
26 - Python - Conditional Statements/002 Add-an-Else-Statement-Solution-Py3.ipynb
1.4 kB
24 - Python - Basic Python Syntax/005 Understanding Line Continuation_en.srt
1.4 kB
24 - Python - Basic Python Syntax/006 Indexing-Elements-Exercise-Py3.ipynb
1.4 kB
64 - Appendix - Working with Text Files in Python/029 Working with Text Files in Python - Conclusion_en.srt
1.4 kB
29 - Python - Iterations/003 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb
1.4 kB
24 - Python - Basic Python Syntax/006 Indexing-Elements-Lecture-Py3.ipynb
1.3 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/006 First Regression in Python Exercise.html
1.3 kB
29 - Python - Iterations/005 All-In-Exercise-Py3.ipynb
1.3 kB
27 - Python - Python Functions/005 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb
1.3 kB
44 - Deep Learning - TensorFlow 2.0 Introduction/009 Basic NN with TensorFlow Exercises.html
1.3 kB
29 - Python - Iterations/001 For-Loops-Exercise-Py3.ipynb
1.3 kB
29 - Python - Iterations/001 For-Loops-Lecture-Py3.ipynb
1.3 kB
27 - Python - Python Functions/003 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb
1.3 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 1.03.Dummies.csv
1.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Minimal-example-Part-1.ipynb
1.2 kB
27 - Python - Python Functions/002 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb
1.2 kB
26 - Python - Conditional Statements/001 Introduction-to-the-If-Statement-Lecture-Py3.ipynb
1.2 kB
24 - Python - Basic Python Syntax/002 The-Double-Equality-Sign-Solution-Py3.ipynb
1.2 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/029 EXERCISE - Removing the Date Column.html
1.2 kB
24 - Python - Basic Python Syntax/005 Line-Continuation-Exercise-Py3.ipynb
1.2 kB
29 - Python - Iterations/002 While-Loops-and-Incrementing-Exercise-Py3.ipynb
1.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 1.02.Multiple-linear-regression.csv
1.1 kB
29 - Python - Iterations/002 While-Loops-and-Incrementing-Lecture-Py3.ipynb
1.1 kB
29 - Python - Iterations/006 Iterating-over-Dictionaries-Lecture-Py3.ipynb
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/009 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/011 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 1.02.Multiple-linear-regression.csv
1.1 kB
27 - Python - Python Functions/005 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb
1.1 kB
27 - Python - Python Functions/004 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb
1.1 kB
52 - Deep Learning - Conclusion/003 DeepMind and Deep Learning.html
1.1 kB
24 - Python - Basic Python Syntax/004 Add-Comments-Lecture-Py3.ipynb
1.1 kB
26 - Python - Conditional Statements/002 Add-an-Else-Statement-Exercise-Py3.ipynb
1.0 kB
60 - Case Study - Loading the 'absenteeism_module'/001 model
1.0 kB
27 - Python - Python Functions/004 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb
1.0 kB
60 - Case Study - Loading the 'absenteeism_module'/004 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb
973 Bytes
60 - Case Study - Loading the 'absenteeism_module'/004 Exporting the Obtained Data Set as a .csv.html
964 Bytes
24 - Python - Basic Python Syntax/007 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb
958 Bytes
24 - Python - Basic Python Syntax/007 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb
956 Bytes
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 1.01.Simple-linear-regression.csv
922 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 1.01.Simple-linear-regression.csv
922 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 1.01.Simple-linear-regression.csv
922 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/033 A Note on Exporting Your Data as a .csv File.html
880 Bytes
27 - Python - Python Functions/001 Defining-a-Function-in-Python-Lecture-Py3.ipynb
868 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/008 EXERCISE - Dropping a Column from a DataFrame in Python.html
864 Bytes
35 - Advanced Statistical Methods - Practical Example Linear Regression/003 A Note on Multicollinearity.html
849 Bytes
24 - Python - Basic Python Syntax/002 The-Double-Equality-Sign-Exercise-Py3.ipynb
838 Bytes
26 - Python - Conditional Statements/004 A-Note-on-Boolean-Values-Lecture-Py3.ipynb
791 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-links.txt
790 Bytes
24 - Python - Basic Python Syntax/005 Line-Continuation-Lecture-Py3.ipynb
779 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/005 A Note on Normalization.html
729 Bytes
35 - Advanced Statistical Methods - Practical Example Linear Regression/007 Dummy Variables - Exercise.html
705 Bytes
53 - Appendix Deep Learning - TensorFlow 1 Introduction/001 READ ME!!!!.html
564 Bytes
45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/009 Backpropagation - A Peek into the Mathematics of Optimization.html
539 Bytes
61 - Case Study - Analyzing the Predicted Outputs in Tableau/005 EXERCISE - Transportation Expense vs Probability.html
529 Bytes
15 - Statistics - Descriptive Statistics/016 Variance Exercise.html
522 Bytes
60 - Case Study - Loading the 'absenteeism_module'/001 Are You Sure You're All Set.html
513 Bytes
35 - Advanced Statistical Methods - Practical Example Linear Regression/009 Linear Regression - Exercise.html
497 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
478 Bytes
55 - Appendix Deep Learning - TensorFlow 1 Business Case/012 Business Case Final Exercise.html
441 Bytes
51 - Deep Learning - Business Case Example/012 Business Case Final Exercise.html
433 Bytes
61 - Case Study - Analyzing the Predicted Outputs in Tableau/003 EXERCISE - Reasons vs Probability.html
385 Bytes
55 - Appendix Deep Learning - TensorFlow 1 Business Case/005 Business Case Preprocessing Exercise.html
379 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/011 A Note on Calculation of P-values with sklearn.html
370 Bytes
51 - Deep Learning - Business Case Example/005 Business Case Preprocessing the Data - Exercise.html
370 Bytes
61 - Case Study - Analyzing the Predicted Outputs in Tableau/001 EXERCISE - Age vs Probability.html
367 Bytes
36 - Advanced Statistical Methods - Logistic Regression/015 2.03.Test-dataset.csv
322 Bytes
64 - Appendix - Working with Text Files in Python/017 Importing Data with NumPy - Exercise.html
308 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/015 EXERCISE - Saving the Model (and Scaler).html
284 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/011 3.12.Example.csv
283 Bytes
64 - Appendix - Working with Text Files in Python/028 Saving Data with Numpy - Exercise.html
260 Bytes
39 - Advanced Statistical Methods - Other Types of Clustering/003 Country-clusters-standardized.csv
244 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/002 3.01.Country-clusters.csv
200 Bytes
51 - Deep Learning - Business Case Example/010 Setting an Early Stopping Mechanism - Exercise.html
192 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/018 EXERCISE - Using .concat() in Python.html
189 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Logistic-Regression-prior-to-Backward-Elimination.url
189 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Logistic-Regression-prior-to-Custom-Scaler.url
182 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/015 Logistic-Regression-with-Comments.url
173 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
161 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/015 Logistic-Regression.url
159 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/019 SOLUTION - Using .concat() in Python.html
143 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html
137 Bytes
35 - Advanced Statistical Methods - Practical Example Linear Regression/external-links.txt
134 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
03 - The Field of Data Science - Connecting the Data Science Disciplines/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
21 - Statistics - Practical Example Hypothesis Testing/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
30 - Python - Advanced Python Tools/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
64 - Appendix - Working with Text Files in Python/external-links.txt
124 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/012 EXERCISE - Obtaining Dummies from a Single Feature.html
123 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
03 - The Field of Data Science - Connecting the Data Science Disciplines/0. Websites you may like/[CourseClub.Me].url
122 Bytes
21 - Statistics - Practical Example Hypothesis Testing/0. Websites you may like/[CourseClub.Me].url
122 Bytes
30 - Python - Advanced Python Tools/0. Websites you may like/[CourseClub.Me].url
122 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html
118 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/013 SOLUTION - Obtaining Dummies from a Single Feature.html
117 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/009 SOLUTION - Dropping a Column from a DataFrame in Python.html
114 Bytes
01 - Part 1 Introduction/external-links.txt
105 Bytes
01 - Part 1 Introduction/003 Download-all-resources.url
97 Bytes
35 - Advanced Statistical Methods - Practical Example Linear Regression/004 sklearn-Linear-Regression-Practical-Example-Part-3-.url
97 Bytes
64 - Appendix - Working with Text Files in Python/001 Section-Resources-Working-with-Text-Files.url
97 Bytes
36 - Advanced Statistical Methods - Logistic Regression/005 Building a Logistic Regression - Exercise.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/008 Understanding Logistic Regression Tables - Exercise.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/011 Binary Predictors in a Logistic Regression - Exercise.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/013 Calculating the Accuracy of the Model.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/016 Testing the Model - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/003 A Simple Example of Clustering - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/005 Clustering Categorical Data - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/007 How to Choose the Number of Clusters - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/014 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/015 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
87 Bytes
15 - Statistics - Descriptive Statistics/004 Categorical Variables Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/006 Numerical Variables Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/008 Histogram Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/010 Cross Tables and Scatter Plots Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/012 Mean, Median and Mode Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/014 Skewness Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/018 Standard Deviation and Coefficient of Variation Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/020 Covariance Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/022 Correlation Coefficient Exercise.html
81 Bytes
16 - Statistics - Practical Example Descriptive Statistics/002 Practical Example Descriptive Statistics Exercise.html
81 Bytes
17 - Statistics - Inferential Statistics Fundamentals/005 The Standard Normal Distribution Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics Confidence Intervals/003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics Confidence Intervals/007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics Confidence Intervals/010 Confidence intervals. Two means. Dependent samples Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics Confidence Intervals/012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics Confidence Intervals/014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
81 Bytes
19 - Statistics - Practical Example Inferential Statistics/002 Practical Example Inferential Statistics Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/006 Test for the Mean. Population Variance Known Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/009 Test for the Mean. Population Variance Unknown Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/011 Test for the Mean. Dependent Samples Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/013 Test for the mean. Independent Samples (Part 1). Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/015 Test for the mean. Independent Samples (Part 2). Exercise.html
81 Bytes
21 - Statistics - Practical Example Hypothesis Testing/002 Practical Example Hypothesis Testing Exercise.html
81 Bytes
50 - Deep Learning - Classifying on the MNIST Dataset/005 MNIST Preprocess the Data - Scale the Test Data - Exercise.html
79 Bytes
50 - Deep Learning - Classifying on the MNIST Dataset/007 MNIST Preprocess the Data - Shuffle and Batch - Exercise.html
79 Bytes
51 - Deep Learning - Business Case Example/007 Business Case Load the Preprocessed Data - Exercise.html
79 Bytes
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/003 Multiple Linear Regression Exercise.html
76 Bytes
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/012 Dealing with Categorical Data - Dummy Variables.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/006 Simple Linear Regression with sklearn - Exercise.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/009 Calculating the Adjusted R-Squared in sklearn - Exercise.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/013 Multiple Linear Regression - Exercise.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/017 Feature Scaling (Standardization) - Exercise.html
76 Bytes
35 - Advanced Statistical Methods - Practical Example Linear Regression/005 Dummies and Variance Inflation Factor - Exercise.html
76 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
03 - The Field of Data Science - Connecting the Data Science Disciplines/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
21 - Statistics - Practical Example Hypothesis Testing/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
30 - Python - Advanced Python Tools/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
64 - Appendix - Working with Text Files in Python/009 source.txt
39 Bytes
64 - Appendix - Working with Text Files in Python/010 source.txt
39 Bytes
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.encrypted.m4a.part
0 Bytes
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.encrypted.mp4.part
0 Bytes
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.encrypted.m4a.part
0 Bytes
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.encrypted.mp4.part
0 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.encrypted.m4a.part
0 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.encrypted.mp4.part
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>