搜索
[DesireCourse.Net] Udemy - The Complete Machine Learning Course with Python
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - The Complete Machine Learning Course with Python
磁力链接/BT种子简介
种子哈希:
4105824974f98a3c8a55ef524a209615ba9b11bf
文件大小:
6.79G
已经下载:
932
次
下载速度:
极快
收录时间:
2021-04-25
最近下载:
2025-01-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:4105824974F98A3C8A55EF524A209615BA9B11BF
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
妈妈她
シロウトスト
kfc2022
庐江++夫妻
kagaku x bouken survival
叫床音
射出浓精
widow+
厕所+强
soapland
桃色パニック iii
天月ntr汉化组
anal
serena hill 24.12.24
起来晃动
超市操
推特汤不热
1-8
关卡
+女友+不要拍
台湾禁欲
ddr[ethd]
无码呕吐
中性短发
fsdss-439
unbearable
抖娘利世写真合集
恶魔艺术
上海绿帽老公找鸭子操极品老婆
白内裤
文件列表
6. Tree/6. Project HR.mp4
186.5 MB
7. Ensemble Machine Learning/2. Bagging.mp4
173.5 MB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.mp4
163.2 MB
3. Regression/2. EDA.mp4
159.0 MB
11. Deep Learning/3. Motivational Example - Project MNIST.mp4
152.0 MB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.mp4
150.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.mp4
148.8 MB
3. Regression/15. Data Preprocessing.mp4
142.1 MB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.mp4
134.8 MB
3. Regression/19. CV Illustration.mp4
133.4 MB
10. Unsupervised Learning Clustering/1. Clustering.mp4
131.8 MB
3. Regression/9. Multiple Regression 1.mp4
131.6 MB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.mp4
130.9 MB
4. Classification/1. Logistic Regression.mp4
125.4 MB
3. Regression/7. Robust Regression.mp4
124.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.mp4
116.5 MB
3. Regression/12. Polynomial Regression.mp4
116.2 MB
4. Classification/3. Understanding MNIST.mp4
114.3 MB
3. Regression/4. Correlation Analysis and Feature Selection.mp4
110.3 MB
4. Classification/10. Precision Recall Tradeoff.mp4
107.0 MB
3. Regression/8. Evaluate Regression Model Performance.mp4
104.5 MB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.mp4
101.7 MB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.mp4
98.0 MB
3. Regression/10. Multiple Regression 2.mp4
95.6 MB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.mp4
94.2 MB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.mp4
93.1 MB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.mp4
92.4 MB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.mp4
88.5 MB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.mp4
84.9 MB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.mp4
84.2 MB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.mp4
83.6 MB
3. Regression/6. Five Steps Machine Learning Process.mp4
81.0 MB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.mp4
81.0 MB
3. Regression/5. Linear Regression with Scikit-Learn.mp4
80.7 MB
11. Deep Learning/5. Natural Language Processing - Binary Classification.mp4
79.7 MB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.mp4
79.4 MB
11. Deep Learning/4. Binary Classification Problem.mp4
75.6 MB
5. Support Vector Machine (SVM)/4. Radial Basis Function.mp4
73.5 MB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.mp4
73.5 MB
3. Regression/16. Variance-Bias Trade Off.mp4
72.0 MB
6. Tree/7. Project HR with Google Colab.mp4
69.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.mp4
69.4 MB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.mp4
67.7 MB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.mp4
66.8 MB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.mp4
66.0 MB
3. Regression/13. Dealing with Non-linear Relationships.mp4
65.7 MB
5. Support Vector Machine (SVM)/5. Support Vector Regression.mp4
62.6 MB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.mp4
62.1 MB
10. Unsupervised Learning Clustering/2. k_Means Clustering.mp4
60.5 MB
4. Classification/4. SGD.mp4
60.1 MB
3. Regression/17. Learning Curve.mp4
59.1 MB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.mp4
58.6 MB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.mp4
57.6 MB
6. Tree/3. Visualizing Boundary.mp4
57.4 MB
4. Classification/6. Confusion Matrix.mp4
57.4 MB
1. Introduction/1. What Does the Course Cover.mp4
57.0 MB
4. Classification/12. ROC.mp4
54.8 MB
4. Classification/5. Performance Measure and Stratified k-Fold.mp4
54.0 MB
6. Tree/2. Training and Visualizing a Decision Tree.mp4
53.9 MB
2. Getting Started with Anaconda/2. Hello World.mp4
53.7 MB
7. Ensemble Machine Learning/4. AdaBoost.mp4
52.3 MB
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.mp4
51.8 MB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.mp4
51.4 MB
3. Regression/1. Scikit-Learn.mp4
50.8 MB
3. Regression/18. Cross Validation.mp4
50.4 MB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.mp4
50.2 MB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.mp4
48.7 MB
3. Regression/11. Regularized Regression.mp4
46.5 MB
6. Tree/1. Introduction to Decision Tree.mp4
46.0 MB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.mp4
45.9 MB
4. Classification/2. Introduction to Classification.mp4
44.2 MB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.mp4
42.6 MB
6. Tree/4. Tree Regression, Regularization and Over Fitting.mp4
42.0 MB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.mp4
40.3 MB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.mp4
39.7 MB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.mp4
39.7 MB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.mp4
39.3 MB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.mp4
39.0 MB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.mp4
38.4 MB
3. Regression/14. Feature Importance.mp4
38.0 MB
6. Tree/5. End to End Modeling.mp4
37.3 MB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.mp4
37.1 MB
7. Ensemble Machine Learning/7. XGBoost.mp4
36.8 MB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.mp4
36.7 MB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.mp4
35.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.mp4
33.9 MB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.mp4
32.9 MB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.mp4
32.2 MB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.mp4
31.5 MB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.mp4
30.5 MB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.mp4
29.9 MB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.mp4
28.8 MB
4. Classification/7. Precision.mp4
24.7 MB
3. Regression/3. Correlation Analysis and Feature Selection.mp4
23.7 MB
11. Deep Learning/2. Neural Network Architecture.mp4
23.5 MB
7. Ensemble Machine Learning/6. XGBoost Installation.mp4
23.3 MB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.mp4
23.0 MB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.mp4
22.5 MB
4. Classification/11. Altering the Precision Recall Tradeoff.mp4
21.9 MB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.mp4
21.9 MB
4. Classification/8. Recall.mp4
20.6 MB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.mp4
19.6 MB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.mp4
17.7 MB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.mp4
14.8 MB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.mp4
14.4 MB
4. Classification/9. f1.mp4
12.7 MB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.mp4
11.8 MB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.mp4
9.5 MB
3. Regression/3.1 0305.zip.zip
2.2 MB
8. k-Nearest Neighbours (kNN)/4.1 0805.zip.zip
41.7 kB
6. Tree/6. Project HR.vtt
28.8 kB
3. Regression/15. Data Preprocessing.vtt
26.1 kB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.vtt
24.9 kB
11. Deep Learning/3. Motivational Example - Project MNIST.vtt
24.1 kB
4. Classification/1. Logistic Regression.vtt
24.0 kB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.vtt
23.6 kB
3. Regression/9. Multiple Regression 1.vtt
23.0 kB
3. Regression/2. EDA.vtt
23.0 kB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.vtt
22.9 kB
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.vtt
22.6 kB
7. Ensemble Machine Learning/2. Bagging.vtt
21.6 kB
4. Classification/10. Precision Recall Tradeoff.vtt
21.3 kB
3. Regression/7. Robust Regression.vtt
20.6 kB
3. Regression/19. CV Illustration.vtt
20.3 kB
3. Regression/12. Polynomial Regression.vtt
20.2 kB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.vtt
19.3 kB
10. Unsupervised Learning Clustering/1. Clustering.vtt
19.2 kB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.vtt
18.9 kB
3. Regression/8. Evaluate Regression Model Performance.vtt
18.3 kB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.vtt
17.1 kB
4. Classification/3. Understanding MNIST.vtt
16.8 kB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.vtt
15.7 kB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.vtt
15.6 kB
3. Regression/5. Linear Regression with Scikit-Learn.vtt
15.3 kB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.vtt
14.8 kB
3. Regression/4. Correlation Analysis and Feature Selection.vtt
14.3 kB
3. Regression/10. Multiple Regression 2.vtt
14.1 kB
3. Regression/16. Variance-Bias Trade Off.vtt
14.0 kB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.vtt
13.2 kB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.vtt
12.9 kB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.vtt
12.8 kB
2. Getting Started with Anaconda/2. Hello World.vtt
12.8 kB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.vtt
12.4 kB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.vtt
12.4 kB
11. Deep Learning/5. Natural Language Processing - Binary Classification.vtt
12.0 kB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.vtt
11.8 kB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.vtt
11.8 kB
11. Deep Learning/4. Binary Classification Problem.vtt
11.7 kB
6. Tree/7. Project HR with Google Colab.vtt
11.7 kB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.vtt
11.7 kB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.vtt
11.5 kB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.vtt
11.3 kB
4. Classification/6. Confusion Matrix.vtt
11.3 kB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.vtt
11.3 kB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.vtt
10.9 kB
4. Classification/4. SGD.vtt
10.8 kB
3. Regression/13. Dealing with Non-linear Relationships.vtt
10.5 kB
3. Regression/17. Learning Curve.vtt
10.5 kB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.vtt
10.3 kB
10. Unsupervised Learning Clustering/2. k_Means Clustering.vtt
10.2 kB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.vtt
10.2 kB
3. Regression/1. Scikit-Learn.vtt
10.2 kB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.vtt
10.2 kB
3. Regression/3. Correlation Analysis and Feature Selection.vtt
10.0 kB
3. Regression/18. Cross Validation.vtt
9.9 kB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.vtt
9.7 kB
5. Support Vector Machine (SVM)/5. Support Vector Regression.vtt
9.5 kB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.vtt
9.4 kB
3. Regression/6. Five Steps Machine Learning Process.vtt
9.4 kB
6. Tree/3. Visualizing Boundary.vtt
9.0 kB
5. Support Vector Machine (SVM)/4. Radial Basis Function.vtt
9.0 kB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.vtt
8.9 kB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.vtt
8.4 kB
4. Classification/5. Performance Measure and Stratified k-Fold.vtt
8.3 kB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.vtt
8.2 kB
6. Tree/1. Introduction to Decision Tree.vtt
8.1 kB
7. Ensemble Machine Learning/4. AdaBoost.vtt
8.1 kB
3. Regression/11. Regularized Regression.vtt
8.0 kB
4. Classification/12. ROC.vtt
7.8 kB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.vtt
7.5 kB
11. Deep Learning/2. Neural Network Architecture.vtt
7.4 kB
6. Tree/2. Training and Visualizing a Decision Tree.vtt
7.2 kB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.vtt
7.2 kB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.vtt
7.0 kB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.vtt
6.9 kB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.vtt
6.4 kB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.vtt
6.2 kB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.vtt
6.1 kB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.vtt
6.1 kB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.vtt
6.0 kB
4. Classification/2. Introduction to Classification.vtt
5.9 kB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.vtt
5.8 kB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.vtt
5.7 kB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.vtt
5.6 kB
3. Regression/14. Feature Importance.vtt
5.5 kB
6. Tree/5. End to End Modeling.vtt
5.5 kB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.vtt
5.4 kB
6. Tree/4. Tree Regression, Regularization and Over Fitting.vtt
5.4 kB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.vtt
5.4 kB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.vtt
5.2 kB
7. Ensemble Machine Learning/7. XGBoost.vtt
5.2 kB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.vtt
5.2 kB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.vtt
5.0 kB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.vtt
4.4 kB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.vtt
4.4 kB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.vtt
4.2 kB
4. Classification/7. Precision.vtt
4.2 kB
4. Classification/8. Recall.vtt
3.7 kB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.vtt
3.7 kB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.vtt
3.7 kB
4. Classification/11. Altering the Precision Recall Tradeoff.vtt
3.6 kB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.vtt
3.4 kB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.vtt
3.1 kB
1. Introduction/1. What Does the Course Cover.vtt
3.0 kB
7. Ensemble Machine Learning/6. XGBoost Installation.vtt
2.9 kB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.vtt
2.6 kB
4. Classification/9. f1.vtt
2.3 kB
1. Introduction/2. How to Succeed in This Course.html
2.3 kB
1. Introduction/3. Project Files and Resources.html
1.8 kB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.vtt
1.6 kB
8. k-Nearest Neighbours (kNN)/3. Addition Materials.html
335 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>