搜索
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python
磁力链接/BT种子简介
种子哈希:
414a605583e143afc6af14b432465fdea713bf79
文件大小:
1.18G
已经下载:
134
次
下载速度:
极快
收录时间:
2023-12-21
最近下载:
2024-12-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:414A605583E143AFC6AF14B432465FDEA713BF79
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
剧情向直播 勾引 搭讪
淫妻盛宴
합
松本一香 中文
骚逼+展示
樱桃妹妹制服
jurassic world chaos theory s02
老+狗++女
somersault
warning-extreme rape
上海白富美
+意大利
manyvids
sm 喝尿
下班 丝袜
无剧本、突袭埋伏、本『色』演出!av女优措手不及
極品蘿莉
锦衣夜行
太诱人
spa养生之道+偷拍
yuahentai 汗蒸
眼睛骚?+看到大鸡巴都舍不得放口+直接口爆
12月新品性瘾情侣身高177顶级大长腿反差母狗svj798ds订阅2部新人旧爱亡妻回忆瑜伽老师极致后
女同 丝
俘虏+无修正
π1879 椿风得意马蹄疾,人妻出轨不稀奇atid-590三宫椿
罗娜的秘密
zmen-041
nicky+ricky+dicky+and+dawn
+raped
文件列表
6. Appendix FAQ/3. Windows-Focused Environment Setup 2018.mp4
195.3 MB
6. Appendix FAQ/9. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp4
63.2 MB
6. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.srt
62.3 MB
1. Welcome/1. Welcome.mp4
52.1 MB
6. Appendix FAQ/11. What order should I take your courses in (part 2).srt
49.7 MB
6. Appendix FAQ/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
4. Practical machine learning issues/3. Generalization error, train and test sets.srt
40.9 MB
6. Appendix FAQ/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
6. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
39.7 MB
6. Appendix FAQ/11. What order should I take your courses in (part 2).mp4
39.4 MB
6. Appendix FAQ/10. What order should I take your courses in (part 1).srt
30.8 MB
6. Appendix FAQ/10. What order should I take your courses in (part 1).mp4
30.7 MB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp4
25.9 MB
6. Appendix FAQ/5. How to Code by Yourself (part 1).mp4
25.7 MB
4. Practical machine learning issues/17. Why Divide by Square Root of D.mp4
24.6 MB
4. Practical machine learning issues/11. Gradient Descent Tutorial.mp4
23.9 MB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp4
20.7 MB
6. Appendix FAQ/6. How to Code by Yourself (part 2).srt
20.5 MB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp4
20.3 MB
6. Appendix FAQ/7. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.mp4
18.3 MB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp4
18.1 MB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp4
17.2 MB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp4
15.6 MB
6. Appendix FAQ/6. How to Code by Yourself (part 2).mp4
15.5 MB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp4
15.1 MB
4. Practical machine learning issues/2. Interpreting the Weights.mp4
14.8 MB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).srt
14.4 MB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp4
12.9 MB
4. Practical machine learning issues/1. What do all these letters mean.mp4
10.1 MB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp4
9.0 MB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp4
8.9 MB
1. Welcome/3. What is machine learning How does linear regression play a role.mp4
8.8 MB
4. Practical machine learning issues/15. L1 Regularization - Code.mp4
8.7 MB
4. Practical machine learning issues/5. Categorical inputs.mp4
8.6 MB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp4
8.5 MB
4. Practical machine learning issues/9. L2 Regularization - Code.mp4
8.5 MB
6. Appendix FAQ/12. Python 2 vs Python 3.mp4
8.2 MB
4. Practical machine learning issues/16. L1 vs L2 Regularization.srt
8.0 MB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp4
7.5 MB
4. Practical machine learning issues/8. L2 Regularization - Theory.srt
7.0 MB
4. Practical machine learning issues/8. L2 Regularization - Theory.mp4
7.0 MB
1. Welcome/2. Introduction and Outline.mp4
6.6 MB
4. Practical machine learning issues/10. The Dummy Variable Trap.mp4
6.4 MB
6. Appendix FAQ/1. What is the Appendix.mp4
5.7 MB
4. Practical machine learning issues/16. L1 vs L2 Regularization.mp4
5.0 MB
4. Practical machine learning issues/14. L1 Regularization - Theory.mp4
4.9 MB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp4
4.7 MB
1. Welcome/4. Introduction to Moore's Law Problem.mp4
4.6 MB
4. Practical machine learning issues/3. Generalization error, train and test sets.mp4
4.6 MB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp4
4.0 MB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp4
3.7 MB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp4
3.7 MB
1. Welcome/6. How to Succeed in this Course.mp4
3.5 MB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp4
3.2 MB
2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.mp4
2.9 MB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp4
1.1 MB
6. Appendix FAQ/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
32.5 kB
6. Appendix FAQ/5. How to Code by Yourself (part 1).srt
23.3 kB
6. Appendix FAQ/3. Windows-Focused Environment Setup 2018.srt
20.6 kB
6. Appendix FAQ/7. How to Succeed in this Course (Long Version).srt
14.9 kB
6. Appendix FAQ/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
14.8 kB
6. Appendix FAQ/9. Proof that using Jupyter Notebook is the same as not using it.srt
14.5 kB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.srt
13.2 kB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.srt
11.3 kB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.srt
9.4 kB
4. Practical machine learning issues/17. Why Divide by Square Root of D.srt
8.9 kB
4. Practical machine learning issues/1. What do all these letters mean.srt
8.1 kB
2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.srt
7.1 kB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.srt
6.6 kB
6. Appendix FAQ/12. Python 2 vs Python 3.srt
6.2 kB
1. Welcome/2. Introduction and Outline.srt
6.0 kB
1. Welcome/3. What is machine learning How does linear regression play a role.srt
6.0 kB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.srt
5.8 kB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.srt
5.8 kB
4. Practical machine learning issues/11. Gradient Descent Tutorial.srt
5.6 kB
4. Practical machine learning issues/10. The Dummy Variable Trap.srt
5.6 kB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.srt
5.6 kB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.srt
5.5 kB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.srt
5.3 kB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).srt
5.1 kB
4. Practical machine learning issues/5. Categorical inputs.srt
4.9 kB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.srt
4.8 kB
1. Welcome/1. Welcome.srt
4.6 kB
4. Practical machine learning issues/2. Interpreting the Weights.srt
4.4 kB
4. Practical machine learning issues/14. L1 Regularization - Theory.srt
4.2 kB
1. Welcome/6. How to Succeed in this Course.srt
4.1 kB
1. Welcome/4. Introduction to Moore's Law Problem.srt
3.8 kB
6. Appendix FAQ/1. What is the Appendix.srt
3.8 kB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.srt
3.7 kB
4. Practical machine learning issues/15. L1 Regularization - Code.srt
3.6 kB
4. Practical machine learning issues/9. L2 Regularization - Code.srt
3.5 kB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.srt
3.2 kB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.srt
2.8 kB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.srt
2.5 kB
2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.srt
2.3 kB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.srt
2.1 kB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.srt
1.8 kB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.srt
1.6 kB
1. Welcome/5. What can linear regression be used for.html
150 Bytes
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>