MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FCSNEW.NET] Udemy - Complete Computer Vision Bootcamp With PyTorch & Tensorflow

磁力链接/BT种子名称

[FCSNEW.NET] Udemy - Complete Computer Vision Bootcamp With PyTorch & Tensorflow

磁力链接/BT种子简介

种子哈希:449197e7d034f02430a0d07504f51628d94d0760
文件大小: 28.27G
已经下载:122次
下载速度:极快
收录时间:2025-10-07
最近下载:2026-01-03

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:449197E7D034F02430A0D07504F51628D94D0760
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 小蓝俱乐部 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 母狗园 51动漫 91短视频 抖音Max 海王TV TikTok成人版 PornHub 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 搜同 91暗网

最近搜索

牧神记+司幼幽 梁佳芯 教练 midv-185 ai脱衣陈佳琪一个身材哇塞的超美小骚逼! mida+459 melody marks nympho dungeon+of+the+borgias 吉尺明步 ncy218 东京热 摄影师 主播妹妹蜗居 裸足足交 fc2-ppv-4777215 kv-238 vanessa cage ssni-429 dsvr h4610-ki241124 1954537 can you massage me 淫妻+性爱+露脸 sophia+santi savr-884 ayame kawana bf-567 tahliaxxx 진성네토 대리 cjod-069 reality kings

文件列表

  • 05. computer vision (Open CV With Python)/19. Image Segmentation Using openCV.mp4 690.3 MB
  • 06. PyTorch/16. CNN Training Using a Custom Dataset.mp4 561.3 MB
  • 02. Python Prerequisites/37. Pandas-DataFrame And Series.mp4 558.5 MB
  • 02. Python Prerequisites/36. Numpy In Python.mp4 545.7 MB
  • 02. Python Prerequisites/38. Data Manipulation With Pandas And Numpy.mp4 468.7 MB
  • 05. computer vision (Open CV With Python)/20. Haar Cascade for face detection.mp4 440.3 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/6. Vanishing Gradient Problem and Sigmoid.mp4 418.6 MB
  • 11. Image Segmentation/7. Implementing Custom Unet Training.mp4 415.2 MB
  • 02. Python Prerequisites/12. Sets In Python.mp4 412.7 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/3. ANN intuition and Working.mov.mp4 405.2 MB
  • 02. Python Prerequisites/9. Loops In Python.mp4 395.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/4. Back Propogation and Weight Updation.mp4 377.4 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/17. Loss Function Classification Problem.mp4 375.4 MB
  • 06. PyTorch/12. Create Linear Regression model with Pytorch components.mp4 370.6 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/1. Perceptron Intuition.mp4 342.8 MB
  • 11. Image Segmentation/5. Fully Convolutional Networks (FCNs).mp4 340.8 MB
  • 10. Basics of Object Detection/11. Custom Object Detection with YOLOv11.mp4 322.3 MB
  • 02. Python Prerequisites/8. Conditional Statements(if,elif,else).mp4 322.0 MB
  • 06. PyTorch/22. Implementing gradio app inference backend.mp4 321.8 MB
  • 02. Python Prerequisites/13. Dictionaries In Python.mp4 313.3 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/16. Regression Cost Function.mp4 299.6 MB
  • 11. Image Segmentation/8. Mask-RCNN.mp4 288.9 MB
  • 05. computer vision (Open CV With Python)/11. Affine.mp4 288.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/32. Convolution Operatuin In CNN.mp4 288.5 MB
  • 05. computer vision (Open CV With Python)/6. image Resizing, Scaling and interpolation.mp4 288.3 MB
  • 02. Python Prerequisites/39. Reading Data From Various Data Source Using Pandas.mp4 285.5 MB
  • 11. Image Segmentation/9. Training Yolov11 Instance Segmentation.mp4 284.1 MB
  • 02. Python Prerequisites/5. Variables In Python.mp4 280.7 MB
  • 06. PyTorch/14. Understanding components of custom data loader in pytorch.mp4 279.8 MB
  • 02. Python Prerequisites/40. Logging Practical Implementation In Python.mp4 266.5 MB
  • 06. PyTorch/15. Defining custom Image Dataset loader and usage.mp4 260.5 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/8. Sigmoid Activation Function part -2.mp4 246.2 MB
  • 10. Basics of Object Detection/12. Custom Object Detection with Detectron2.mp4 244.7 MB
  • 03. Introduction To Deep Learning/2. Why Deep Learning is Becoming Popular.mp4 239.5 MB
  • 02. Python Prerequisites/16. More Coding Examples With Functions.mp4 235.1 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/5. Chain Rule Of Derivatives.mp4 234.5 MB
  • 02. Python Prerequisites/4. Python Basics- Syntax and Semantics.mp4 231.8 MB
  • 06. PyTorch/7. Tensor Manuplation.mp4 225.0 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/28. Dropout Layers.mp4 223.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/22. SGD with Momentum.mp4 221.7 MB
  • 10. Basics of Object Detection/2. Object Detection Metrics.mp4 218.2 MB
  • 06. PyTorch/11. Understanding Pytorch neural network components.mp4 216.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/19. Gradient Descent Optimizers.mp4 216.8 MB
  • 02. Python Prerequisites/24. Exception Handling.mp4 214.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/27. Weight Initialisation Techniques.mp4 211.3 MB
  • 05. computer vision (Open CV With Python)/4. Exploring Color Space.mp4 208.9 MB
  • 07. Deep Dive Visualizing CNNs/1. Image Understanding with CNNs vs ANNs.mp4 208.4 MB
  • 05. computer vision (Open CV With Python)/18. Contours.mp4 206.3 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/13. Softmax for Multiclass Classification.mp4 203.9 MB
  • 02. Python Prerequisites/28. Encapsulation In OOPS.mp4 196.1 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/10. Relu Activation Function.mp4 193.4 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/35. Max, Min and Average Pooling.mp4 191.2 MB
  • 02. Python Prerequisites/25. Classes And Objects In Python.mp4 187.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/21. Mini Batch With SGD.mp4 187.2 MB
  • 02. Python Prerequisites/15. Getting Started With Functions.mp4 185.8 MB
  • 10. Basics of Object Detection/4. Getting started with YOLO.mp4 185.7 MB
  • 02. Python Prerequisites/35. Function Copy,Closures And Decorators.mp4 185.3 MB
  • 05. computer vision (Open CV With Python)/12. Image FIlters.mp4 185.2 MB
  • 05. computer vision (Open CV With Python)/14. Edge Detection Using Sobel, Canny & Laplacian.mp4 182.1 MB
  • 11. Image Segmentation/1. Introduction to Image Segmentation.mp4 181.6 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/26. Exploding Gradient Problem.mp4 177.9 MB
  • 02. Python Prerequisites/14. Tuples In Python.mp4 176.9 MB
  • 02. Python Prerequisites/7. Operators In Python.mp4 175.8 MB
  • 06. PyTorch/13. Multi Class classification with pytorch using custom neural networks.mp4 173.2 MB
  • 02. Python Prerequisites/26. Inheritance In OOPS.mp4 169.5 MB
  • 02. Python Prerequisites/27. Polymorphism In OOPS.mp4 165.4 MB
  • 02. Python Prerequisites/2. Anaconda Installation.mp4 163.8 MB
  • 05. computer vision (Open CV With Python)/3. Working with the video Files.mp4 163.0 MB
  • 05. computer vision (Open CV With Python)/16. Histogram Equalization.mp4 162.5 MB
  • 05. computer vision (Open CV With Python)/5. Color Thresholding.mp4 158.9 MB
  • 10. Basics of Object Detection/1. What is Object Detection.mp4 155.9 MB
  • 05. computer vision (Open CV With Python)/7. Flip, Rotate and Crop Images.mp4 154.0 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/29. CNN Introduction.mp4 153.6 MB
  • 03. Introduction To Deep Learning/1. Introduction.mp4 153.5 MB
  • 02. Python Prerequisites/21. Standard Library Overview.mp4 151.5 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/23. Adagard.mp4 151.2 MB
  • 08. Image Classification/4. LeNet with Pytorch.mp4 148.7 MB
  • 02. Python Prerequisites/3. Getting Started With VS Code.mp4 148.6 MB
  • 06. PyTorch/10. Stack Operation.mp4 147.3 MB
  • 10. Basics of Object Detection/10. FASTER RCNN with Pytorch Implementation.mp4 147.0 MB
  • 08. Image Classification/17. ResNet Architecture.mp4 146.9 MB
  • 02. Python Prerequisites/42. Logging With a Real World Examples.mp4 144.3 MB
  • 10. Basics of Object Detection/5. Getting started with Detectron2.mp4 143.8 MB
  • 07. Deep Dive Visualizing CNNs/2. CNN Explainer.mp4 143.4 MB
  • 02. Python Prerequisites/32. Custom Exception Handling.mp4 142.8 MB
  • 02. Python Prerequisites/22. File Operation In Python.mp4 142.5 MB
  • 02. Python Prerequisites/20. Import Modules And Package In Python.mp4 142.0 MB
  • 08. Image Classification/6. AlexNet with Keras.mp4 141.9 MB
  • 06. PyTorch/19. Tools to create interactive demos.mp4 141.7 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/36. Flattening and Fully Connected Layers.mp4 141.3 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/34. Operation Of CNN Vs ANN.mp4 139.6 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/30. Human Brain V CNN.mp4 137.3 MB
  • 10. Basics of Object Detection/9. FASTER RCNN.mp4 135.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/20. SGD.mp4 135.3 MB
  • 02. Python Prerequisites/6. Basic Datatypes In Python.mp4 132.8 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/31. All you need to know about Images.mp4 127.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/2. Adv and Diadvantaes of Perceptron.mp4 127.5 MB
  • 07. Deep Dive Visualizing CNNs/5. Building Your Own Filters.mp4 122.3 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/7. Sigmoid Activation Function.mp4 122.0 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/15. Loss Function Vs Cost Function.mp4 121.8 MB
  • 07. Deep Dive Visualizing CNNs/4. CNN Filters.mp4 120.7 MB
  • 11. Image Segmentation/6. UNet.mp4 118.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/25. Adam Optimiser.mp4 118.9 MB
  • 09. Data Augmentation/2. Data Augmentation with Albumentations.mp4 118.4 MB
  • 05. computer vision (Open CV With Python)/17. CLAHE.mp4 116.7 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/24. RMSPROP.mp4 115.0 MB
  • 06. PyTorch/6. Tensor data types.mp4 113.6 MB
  • 08. Image Classification/20. Resnet Transfer Learning.mp4 113.1 MB
  • 06. PyTorch/1. Introduction PyTorch.mp4 112.1 MB
  • 06. PyTorch/3. indexing Tensors.mp4 110.8 MB
  • 08. Image Classification/7. AlexNet with Pytorch.mp4 110.5 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/33. Padding In CNN.mp4 110.0 MB
  • 08. Image Classification/12. VGG Transfer Learning.mp4 109.0 MB
  • 08. Image Classification/13. Inception Architecture.mp4 107.9 MB
  • 08. Image Classification/16. Inception Transfer Learning.mp4 107.7 MB
  • 11. Image Segmentation/10. Testing Yolov11 Instance Segmentation.mp4 107.2 MB
  • 05. computer vision (Open CV With Python)/15. Calculating and Plotting Histogram.mp4 107.1 MB
  • 06. PyTorch/4. Using Random Numbers to create noise image.mp4 104.8 MB
  • 06. PyTorch/9. View and Reshape Operation.mp4 102.8 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/9. Tanh Activation Function.mp4 102.7 MB
  • 07. Deep Dive Visualizing CNNs/7. CNN Parameter Calculations.mp4 102.4 MB
  • 05. computer vision (Open CV With Python)/13. Applying Blur filters Average, Gaussian, Median.mp4 101.9 MB
  • 08. Image Classification/8. VGG Architecture.mp4 101.4 MB
  • 06. PyTorch/2. Introduction to Tensors.mp4 101.1 MB
  • 07. Deep Dive Visualizing CNNs/3. Visualization with Tensorspace.mp4 97.0 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/14. Which Activation Function To Apply When.mp4 96.2 MB
  • 05. computer vision (Open CV With Python)/9. Drawing lines and shapes using opencv.mp4 94.6 MB
  • 11. Image Segmentation/3. UpsamplingTransposed Convolution.mp4 93.8 MB
  • 10. Basics of Object Detection/6. Object Detection Architectures.mp4 93.3 MB
  • 07. Deep Dive Visualizing CNNs/8. Receptive Fields.mp4 93.2 MB
  • 11. Image Segmentation/4. Segmentation Loss Functions.mp4 92.8 MB
  • 02. Python Prerequisites/41. Logging With Multiple Loggers.mp4 92.7 MB
  • 02. Python Prerequisites/34. Generators In Python.mp4 91.2 MB
  • 05. computer vision (Open CV With Python)/2. Reading and Writing Images.mp4 89.3 MB
  • 08. Image Classification/3. LeNet with Keras.mp4 89.1 MB
  • 06. PyTorch/17. Understanding Components of an Application.mp4 89.1 MB
  • 08. Image Classification/20. Fruits dataset.zip 89.0 MB
  • 01. Introduction/1. Welcome to the Course.mp4 87.4 MB
  • 11. Image Segmentation/2. Downsampling.mp4 87.3 MB
  • 02. Python Prerequisites/18. Map Functions In Python.mp4 86.4 MB
  • 02. Python Prerequisites/11. Preactical Exmaples Of List.mp4 86.2 MB
  • 07. Deep Dive Visualizing CNNs/6. Feature Map Size Calculation.mp4 85.3 MB
  • 09. Data Augmentation/1. What is Data Augmentation.mp4 85.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/11. Leaky Relu and Parametric Relu.mp4 83.1 MB
  • 06. PyTorch/8. Matrix Aggregation.mp4 83.1 MB
  • 10. Basics of Object Detection/8. FAST RCNN.mp4 82.8 MB
  • 08. Image Classification/1. What is Image Classification.mp4 82.4 MB
  • 02. Python Prerequisites/31. Operator Overloading In Python.mp4 81.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/37. CNN Example with RGB.mp4 80.7 MB
  • 10. Basics of Object Detection/7. RCNN.mp4 80.4 MB
  • 02. Python Prerequisites/23. Working With File Paths.mp4 77.4 MB
  • 06. PyTorch/24. Deploying gradio app on hugging face space.mp4 76.9 MB
  • 02. Python Prerequisites/29. Abstraction In OOPS.mp4 75.7 MB
  • 06. PyTorch/20. Hosting platform.mp4 74.0 MB
  • 02. Python Prerequisites/19. Filter Function In Python.mp4 73.8 MB
  • 02. Python Prerequisites/10. List and List Comprehension In Python.mp4 73.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/12. ELU Activation Function.mp4 72.4 MB
  • 02. Python Prerequisites/30. Magic Methods In Python.mp4 71.9 MB
  • 02. Python Prerequisites/17. Python Lambda Functions.mp4 71.5 MB
  • 05. computer vision (Open CV With Python)/10. Adding Text to Image.mp4 70.8 MB
  • 08. Image Classification/5. AlexNet Architecture.mp4 70.6 MB
  • 08. Image Classification/10. VGG Pretrained Keras.mp4 68.8 MB
  • 08. Image Classification/2. LeNet Architecture.mp4 68.7 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/18. Which Loss Function To Use When.mp4 65.1 MB
  • 09. Data Augmentation/3. Data Augmentation with Imgaug.mp4 61.4 MB
  • 06. PyTorch/23. Setting hugging face space.mp4 61.3 MB
  • 06. PyTorch/21. Setting up gradio app in local space.mp4 57.2 MB
  • 10. Basics of Object Detection/3. What are Bounding Boxes.mp4 53.0 MB
  • 02. Python Prerequisites/33. Iterators In Python.mp4 49.8 MB
  • 05. computer vision (Open CV With Python)/1. Introduction to OpenCV.mp4 49.2 MB
  • 08. Image Classification/14. Inception Pretrained Keras.mp4 48.0 MB
  • 08. Image Classification/11. VGG Pretrained Pytorch.mp4 44.5 MB
  • 06. PyTorch/5. Tensors of Zero's and One's.mp4 37.1 MB
  • 08. Image Classification/15. Inception Pretrained Pytorch.mp4 37.0 MB
  • 08. Image Classification/9. Transfer Learning vs Pretrained.mp4 35.6 MB
  • 10. Basics of Object Detection/5. Getting_Started_with_Detectron2_Object_Detection.ipynb 35.0 MB
  • 06. PyTorch/22. 022. Implementing gradio app inference backend(gradio-app-1-chkpt-22).zip 32.8 MB
  • 06. PyTorch/16. 016-CNN-Training-Using-a-Custom-Dataset.zip 32.8 MB
  • 06. PyTorch/18. What is Deployment.mp4 31.6 MB
  • 08. Image Classification/19. Resnet Pretrained Pytorch.mp4 27.3 MB
  • 08. Image Classification/18. Resnet Pretrained Keras.mp4 23.0 MB
  • 05. computer vision (Open CV With Python)/8. Understanding Coordinate system in openCV.mp4 22.9 MB
  • 05. computer vision (Open CV With Python)/3. 003. Working_with_video_files.zip 9.2 MB
  • 07. Deep Dive Visualizing CNNs/1. Understanding of images with Visualization.pdf 8.8 MB
  • 05. computer vision (Open CV With Python)/2. 002. Reading_and_writing_images.zip 6.9 MB
  • 05. computer vision (Open CV With Python)/11. 011. Affine and Perspective Transformation.zip 5.4 MB
  • 10. Basics of Object Detection/12. Custom_Dataset_Training_with_Detectron2.ipynb 5.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/29. 30-38 CNN.pdf 5.2 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/6. 8-15 Activation functions.pdf 4.9 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/19. 20-26 Optimizers.pdf 4.4 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/3. 5-8 Deep LEarning.pdf 4.4 MB
  • 07. Deep Dive Visualizing CNNs/5. Building Your Custom Filters.ipynb 4.3 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/15. 16-19 Loss Functions.pdf 3.6 MB
  • 03. Introduction To Deep Learning/1. 1-4 Deep learnng.pdf 3.3 MB
  • 05. computer vision (Open CV With Python)/20. 020. Haar Cascade for face detection (1).zip 3.2 MB
  • 05. computer vision (Open CV With Python)/19. 019. Image Segmentation Using openCV (1).zip 3.1 MB
  • 05. computer vision (Open CV With Python)/7. 007. Flip, Rotate and Crop Images.zip 2.4 MB
  • 11. Image Segmentation/8. 008-Mask-RCNN.pdf 2.3 MB
  • 05. computer vision (Open CV With Python)/6. 006. Image Resizing, Scaling and interpolation.zip 2.2 MB
  • 09. Data Augmentation/2. Data_Augmenation_with_Albumentations.ipynb 2.1 MB
  • 11. Image Segmentation/1. 001-Introduction to image segmentation.pdf 2.1 MB
  • 10. Basics of Object Detection/1. What is Object Detection.pdf 2.0 MB
  • 05. computer vision (Open CV With Python)/11. 011. Affine and Perspective Transformation.pdf 2.0 MB
  • 05. computer vision (Open CV With Python)/16. 016. Histogram Equalization.zip 2.0 MB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/27. 27-8 Weight initialization Techniques.pdf 2.0 MB
  • 05. computer vision (Open CV With Python)/4. 004. Exploring_Color_Space (1).zip 1.9 MB
  • 08. Image Classification/8. VGG CNN Architecture .pdf 1.9 MB
  • 10. Basics of Object Detection/9. Faster RCNN.pdf 1.9 MB
  • 05. computer vision (Open CV With Python)/6. 006. Image Resizing, Scaling and interpolation (1).zip 1.8 MB
  • 05. computer vision (Open CV With Python)/17. 017. CLAHE.zip 1.8 MB
  • 05. computer vision (Open CV With Python)/14. 014. Edge Detection Using Sobel, Canny & Laplacian_pdf.zip 1.7 MB
  • 11. Image Segmentation/5. 005-Fully Convolutional Networks (FCNs).pdf 1.7 MB
  • 05. computer vision (Open CV With Python)/19. 019. Image Segmentation Using openCV.zip 1.6 MB
  • 08. Image Classification/17. Resnet Architecture .pdf 1.5 MB
  • 10. Basics of Object Detection/7. RCNN.pdf 1.5 MB
  • 05. computer vision (Open CV With Python)/12. 012. Image FIlters (1).zip 1.5 MB
  • 08. Image Classification/13. Googlenet CNN Architecture.pdf 1.5 MB
  • 08. Image Classification/2. LeNet-5 CNN Architecture .pdf 1.4 MB
  • 10. Basics of Object Detection/8. Fast RCNN.pdf 1.3 MB
  • 06. PyTorch/20. 020. Hosting platform.pdf 1.3 MB
  • 10. Basics of Object Detection/10. Faster_RCNN_with_Pytorch.ipynb 1.2 MB
  • 10. Basics of Object Detection/3. Bounding Boxes.pdf 1.2 MB
  • 08. Image Classification/1. What is Image Classification.pdf 1.2 MB
  • 11. Image Segmentation/4. 004-Segmentation Loss Functions.pdf 1.1 MB
  • 05. computer vision (Open CV With Python)/14. 014. Edge Detection Using Sobel, Canny & Laplacian.zip 1.1 MB
  • 10. Basics of Object Detection/11. Custom_Dataset_Training_with_YOLOv11.ipynb 1.1 MB
  • 05. computer vision (Open CV With Python)/5. 005. Color Thresholding (1).zip 1.1 MB
  • 11. Image Segmentation/6. 006-Unet.pdf 1.0 MB
  • 05. computer vision (Open CV With Python)/16. 016. Histogram Equalization (1).zip 1.0 MB
  • 05. computer vision (Open CV With Python)/3. 003. Working_with_video_files (1).zip 1.0 MB
  • 06. PyTorch/17. 017. Understanding Components of an Application.pdf 997.2 kB
  • 10. Basics of Object Detection/6. Object Detection Architectures .pdf 978.0 kB
  • 06. PyTorch/9. 009-View-and-reshape.zip 965.9 kB
  • 06. PyTorch/9. 009-View-and-reshape.pdf 965.7 kB
  • 05. computer vision (Open CV With Python)/17. 017. CLAHE.pdf 962.8 kB
  • 11. Image Segmentation/9. 009-Training Yolov11 Instance Segmentation.pdf 961.6 kB
  • 08. Image Classification/5. AlexNet CNN Architecture.pdf 928.0 kB
  • 06. PyTorch/15. 015. Defining custom Image Dataset loader and usage.pdf 919.4 kB
  • 06. PyTorch/16. 016. CNN Training Using a Custom Dataset.pdf 918.9 kB
  • 07. Deep Dive Visualizing CNNs/7. CNN Parameters Calculation.pdf 914.9 kB
  • 11. Image Segmentation/3. 003-Transposed convolution.pdf 912.9 kB
  • 06. PyTorch/19. 019. Tools to create interactive demos.pdf 908.5 kB
  • 05. computer vision (Open CV With Python)/7. 007. Flip, Rotate and Crop Images (1).zip 906.0 kB
  • 09. Data Augmentation/3. Data_Augmentation_with_IMGAUG.ipynb 895.9 kB
  • 05. computer vision (Open CV With Python)/5. 005. Color Thresholding.zip 887.2 kB
  • 06. PyTorch/11. 011-Understanding-Pytorch-neural-network-components.pdf 883.0 kB
  • 07. Deep Dive Visualizing CNNs/8. Receptive Fields in CNN.pdf 869.1 kB
  • 06. PyTorch/10. 010-Stack-Operation.zip 867.2 kB
  • 06. PyTorch/10. 010-Stack-Operation.pdf 867.0 kB
  • 06. PyTorch/18. 018. What is Deployment.pdf 863.9 kB
  • 11. Image Segmentation/2. 002-Downsampling.pdf 845.6 kB
  • 05. computer vision (Open CV With Python)/18. 018. Contours (1).zip 837.4 kB
  • 05. computer vision (Open CV With Python)/4. 004. Exploring_Color_Space.zip 833.1 kB
  • 08. Image Classification/20. Resnet Transfer Learning Pytorch.ipynb 805.9 kB
  • 05. computer vision (Open CV With Python)/8. 008. Understanding Coordinate system in openCV.pdf 798.7 kB
  • 08. Image Classification/16. InceptionV3_Transfer_Learning_Keras_CIFAR10.ipynb 778.9 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/28. 29-Dropout Layer.pdf 778.4 kB
  • 06. PyTorch/4. 004-Using Random Numbers to create noise image .zip 778.0 kB
  • 08. Image Classification/14. Inception Pretrained.ipynb 772.4 kB
  • 05. computer vision (Open CV With Python)/13. 013. Applying Blur filters Average, Gaussian, Median.zip 695.9 kB
  • 08. Image Classification/18. Resnet Pretrained Keras.ipynb 670.6 kB
  • 09. Data Augmentation/1. Data Augmentation(DA).pdf 635.7 kB
  • 05. computer vision (Open CV With Python)/13. 013. Applying Blur filters Average, Gaussian, Median (1).zip 599.1 kB
  • 05. computer vision (Open CV With Python)/12. 012. Image FIlters.zip 584.1 kB
  • 05. computer vision (Open CV With Python)/18. 018. Contours.zip 572.2 kB
  • 02. Python Prerequisites/1. Complete-Python-Bootcamp-main.zip 567.5 kB
  • 02. Python Prerequisites/3. Complete-Python-Bootcamp-main.zip 567.5 kB
  • 07. Deep Dive Visualizing CNNs/6. Feature Map Size Calculation .pdf 563.5 kB
  • 05. computer vision (Open CV With Python)/15. 015. Calculating and Plotting Histograms (1).zip 483.4 kB
  • 05. computer vision (Open CV With Python)/2. 002. Reading_and_writing_images (1).zip 482.9 kB
  • 08. Image Classification/12. VGG Transfer Learning Pytorch.ipynb 450.9 kB
  • 08. Image Classification/19. Resnet Pretrained Pytorch.ipynb 432.3 kB
  • 11. Image Segmentation/8. 008-Mask-RCNN.zip 423.0 kB
  • 05. computer vision (Open CV With Python)/9. 009. Drawing lines and shapes using opencv.zip 418.7 kB
  • 08. Image Classification/15. Inception Pytorch Pretrained.ipynb 418.3 kB
  • 07. Deep Dive Visualizing CNNs/4. CNN Filters.pdf 416.7 kB
  • 08. Image Classification/10. VGG Keras Pretrained Model.ipynb 401.4 kB
  • 08. Image Classification/9. Transfer Learning vs Pretrained .pdf 395.2 kB
  • 08. Image Classification/11. VGG Pretrained Pytorch.ipynb 373.0 kB
  • 05. computer vision (Open CV With Python)/15. 015. Calculating and Plotting Histograms.zip 312.0 kB
  • 06. PyTorch/15. 015-Defining-custom-Image-Dataset-loader-and-usage.zip 159.4 kB
  • 05. computer vision (Open CV With Python)/19. Image Segmentation Using openCV.vtt 125.8 kB
  • 11. Image Segmentation/9. 009-Training Yolov11 Instance Segmentation.zip 122.3 kB
  • 08. Image Classification/6. AlexNet _ Keras.ipynb 110.7 kB
  • 06. PyTorch/16. CNN Training Using a Custom Dataset.vtt 106.9 kB
  • 05. computer vision (Open CV With Python)/9. 009. Drawing lines and shapes using opencv (1).zip 92.5 kB
  • 08. Image Classification/4. LeNet5 Pytorch.ipynb 91.4 kB
  • 05. computer vision (Open CV With Python)/20. Haar Cascade for face detection.vtt 71.7 kB
  • 08. Image Classification/7. AlexNet Pytorch.ipynb 70.1 kB
  • 06. PyTorch/12. Create Linear Regression model with Pytorch components.vtt 65.7 kB
  • 11. Image Segmentation/7. Implementing Custom Unet Training.vtt 64.4 kB
  • 11. Image Segmentation/5. Fully Convolutional Networks (FCNs).vtt 61.1 kB
  • 05. computer vision (Open CV With Python)/11. Affine.vtt 56.8 kB
  • 06. PyTorch/7. Tensor Manuplation.vtt 56.4 kB
  • 02. Python Prerequisites/10. List and List Comprehension In Python.vtt 53.8 kB
  • 07. Deep Dive Visualizing CNNs/5. Build Your Custom Filters.pdf 53.1 kB
  • 02. Python Prerequisites/13. Dictionaries In Python.vtt 52.0 kB
  • 05. computer vision (Open CV With Python)/10. 010. Adding Text to images.zip 49.6 kB
  • 06. PyTorch/14. Understanding components of custom data loader in pytorch.vtt 49.2 kB
  • 06. PyTorch/11. Understanding Pytorch neural network components.vtt 48.6 kB
  • 05. computer vision (Open CV With Python)/18. Contours.vtt 47.2 kB
  • 06. PyTorch/15. Defining custom Image Dataset loader and usage.vtt 45.2 kB
  • 02. Python Prerequisites/37. Pandas-DataFrame And Series.vtt 44.0 kB
  • 06. PyTorch/22. Implementing gradio app inference backend.vtt 43.8 kB
  • 02. Python Prerequisites/36. Numpy In Python.vtt 43.4 kB
  • 11. Image Segmentation/9. Training Yolov11 Instance Segmentation.vtt 43.4 kB
  • 11. Image Segmentation/8. Mask-RCNN.vtt 42.9 kB
  • 02. Python Prerequisites/9. Loops In Python.vtt 42.5 kB
  • 02. Python Prerequisites/16. More Coding Examples With Functions.vtt 41.4 kB
  • 05. computer vision (Open CV With Python)/6. image Resizing, Scaling and interpolation.vtt 39.8 kB
  • 05. computer vision (Open CV With Python)/12. Image FIlters.vtt 39.3 kB
  • 02. Python Prerequisites/38. Data Manipulation With Pandas And Numpy.vtt 38.8 kB
  • 02. Python Prerequisites/24. Exception Handling.vtt 38.3 kB
  • 05. computer vision (Open CV With Python)/4. Exploring Color Space.vtt 38.1 kB
  • 05. computer vision (Open CV With Python)/14. Edge Detection Using Sobel, Canny & Laplacian.vtt 36.9 kB
  • 02. Python Prerequisites/15. Getting Started With Functions.vtt 35.3 kB
  • 02. Python Prerequisites/25. Classes And Objects In Python.vtt 34.5 kB
  • 02. Python Prerequisites/14. Tuples In Python.vtt 33.9 kB
  • 02. Python Prerequisites/28. Encapsulation In OOPS.vtt 33.9 kB
  • 06. PyTorch/13. Multi Class classification with pytorch using custom neural networks.vtt 33.8 kB
  • 02. Python Prerequisites/35. Function Copy,Closures And Decorators.vtt 33.8 kB
  • 10. Basics of Object Detection/11. Custom Object Detection with YOLOv11.vtt 33.5 kB
  • 10. Basics of Object Detection/2. Object Detection Metrics.vtt 33.2 kB
  • 02. Python Prerequisites/12. Sets In Python.vtt 32.9 kB
  • 06. PyTorch/10. Stack Operation.vtt 32.5 kB
  • 11. Image Segmentation/1. Introduction to Image Segmentation.vtt 31.5 kB
  • 11. Image Segmentation/10. 010-Testing Yolov11 Instance Segmentation.zip 31.2 kB
  • 05. computer vision (Open CV With Python)/5. Color Thresholding.vtt 31.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/6. Vanishing Gradient Problem and Sigmoid.vtt 30.9 kB
  • 10. Basics of Object Detection/9. FASTER RCNN.vtt 30.4 kB
  • 02. Python Prerequisites/43.1 Python CodeQuiz.html 30.2 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/3. ANN intuition and Working.mov.vtt 29.7 kB
  • 08. Image Classification/4. LeNet with Pytorch.vtt 29.7 kB
  • 02. Python Prerequisites/8. Conditional Statements(if,elif,else).vtt 29.7 kB
  • 08. Image Classification/17. ResNet Architecture.vtt 29.4 kB
  • 05. computer vision (Open CV With Python)/16. Histogram Equalization.vtt 29.4 kB
  • 02. Python Prerequisites/5. Variables In Python.vtt 29.2 kB
  • 05. computer vision (Open CV With Python)/3. Working with the video Files.vtt 29.1 kB
  • 02. Python Prerequisites/4. Python Basics- Syntax and Semantics.vtt 29.0 kB
  • 02. Python Prerequisites/26. Inheritance In OOPS.vtt 28.7 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/17. Loss Function Classification Problem.vtt 28.7 kB
  • 06. PyTorch/14. 014-Understanding-components-of-custom-data-loader-in-pytorch.zip 28.2 kB
  • 05. computer vision (Open CV With Python)/9. Drawing lines and shapes using opencv.vtt 27.8 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/4. Back Propogation and Weight Updation.vtt 27.7 kB
  • 02. Python Prerequisites/27. Polymorphism In OOPS.vtt 26.8 kB
  • 02. Python Prerequisites/21. Standard Library Overview.vtt 26.6 kB
  • 02. Python Prerequisites/20. Import Modules And Package In Python.vtt 26.5 kB
  • 06. PyTorch/3. indexing Tensors.vtt 26.1 kB
  • 08. Image Classification/3. LeNet5 with MNIST Keras.ipynb 26.1 kB
  • 02. Python Prerequisites/22. File Operation In Python.vtt 25.9 kB
  • 05. computer vision (Open CV With Python)/7. Flip, Rotate and Crop Images.vtt 25.9 kB
  • 06. PyTorch/19. Tools to create interactive demos.vtt 25.9 kB
  • 07. Deep Dive Visualizing CNNs/1. Image Understanding with CNNs vs ANNs.vtt 25.4 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/1. Perceptron Intuition.vtt 25.3 kB
  • 06. PyTorch/1. Introduction PyTorch.vtt 25.0 kB
  • 05. computer vision (Open CV With Python)/15. Calculating and Plotting Histogram.vtt 24.6 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/32. Convolution Operatuin In CNN.vtt 24.0 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/16. Regression Cost Function.vtt 23.5 kB
  • 08. Image Classification/6. AlexNet with Keras.vtt 23.5 kB
  • 02. Python Prerequisites/7. Operators In Python.vtt 23.5 kB
  • 10. Basics of Object Detection/1. What is Object Detection.vtt 23.3 kB
  • 08. Image Classification/8. VGG Architecture.vtt 22.9 kB
  • 08. Image Classification/13. Inception Architecture.vtt 22.7 kB
  • 02. Python Prerequisites/39. Reading Data From Various Data Source Using Pandas.vtt 22.7 kB
  • 02. Python Prerequisites/40. Logging Practical Implementation In Python.vtt 22.6 kB
  • 10. Basics of Object Detection/12. Custom Object Detection with Detectron2.vtt 22.4 kB
  • 06. PyTorch/9. View and Reshape Operation.vtt 22.3 kB
  • 07. Deep Dive Visualizing CNNs/4. CNN Filters.vtt 22.3 kB
  • 10. Basics of Object Detection/10. FASTER RCNN with Pytorch Implementation.vtt 22.2 kB
  • 06. PyTorch/6. Tensor data types.vtt 21.8 kB
  • 05. computer vision (Open CV With Python)/17. CLAHE.vtt 21.7 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/8. Sigmoid Activation Function part -2.vtt 21.5 kB
  • 10. Basics of Object Detection/6. Object Detection Architectures.vtt 21.4 kB
  • 07. Deep Dive Visualizing CNNs/8. Receptive Fields.vtt 21.3 kB
  • 11. Image Segmentation/4. Segmentation Loss Functions.vtt 21.3 kB
  • 11. Image Segmentation/6. UNet.vtt 21.3 kB
  • 06. PyTorch/4. Using Random Numbers to create noise image.vtt 20.9 kB
  • 06. PyTorch/2. Introduction to Tensors.vtt 20.6 kB
  • 05. computer vision (Open CV With Python)/13. Applying Blur filters Average, Gaussian, Median.vtt 20.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/28. Dropout Layers.vtt 19.3 kB
  • 08. Image Classification/7. AlexNet with Pytorch.vtt 19.1 kB
  • 06. PyTorch/8. Matrix Aggregation.vtt 19.1 kB
  • 11. Image Segmentation/10. Testing Yolov11 Instance Segmentation.vtt 19.0 kB
  • 11. Image Segmentation/2. Downsampling.vtt 18.9 kB
  • 11. Image Segmentation/3. UpsamplingTransposed Convolution.vtt 18.7 kB
  • 05. computer vision (Open CV With Python)/10. Adding Text to Image.vtt 18.4 kB
  • 05. computer vision (Open CV With Python)/2. Reading and Writing Images.vtt 18.3 kB
  • 10. Basics of Object Detection/7. RCNN.vtt 18.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/22. SGD with Momentum.vtt 18.1 kB
  • 07. Deep Dive Visualizing CNNs/5. Building Your Own Filters.vtt 17.9 kB
  • 08. Image Classification/12. VGG Transfer Learning.vtt 17.9 kB
  • 03. Introduction To Deep Learning/2. Why Deep Learning is Becoming Popular.vtt 17.8 kB
  • 02. Python Prerequisites/2. Anaconda Installation.vtt 17.8 kB
  • 08. Image Classification/20. Resnet Transfer Learning.vtt 17.8 kB
  • 10. Basics of Object Detection/8. FAST RCNN.vtt 17.7 kB
  • 10. Basics of Object Detection/4. Getting started with YOLO.vtt 17.5 kB
  • 07. Deep Dive Visualizing CNNs/2. CNN Explainer.vtt 17.5 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/19. Gradient Descent Optimizers.vtt 17.2 kB
  • 02. Python Prerequisites/34. Generators In Python.vtt 17.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/27. Weight Initialisation Techniques.vtt 16.8 kB
  • 02. Python Prerequisites/18. Map Functions In Python.vtt 16.7 kB
  • 06. PyTorch/17. Understanding Components of an Application.vtt 16.4 kB
  • 08. Image Classification/5. AlexNet Architecture.vtt 16.4 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/13. Softmax for Multiclass Classification.vtt 16.3 kB
  • 02. Python Prerequisites/3. Getting Started With VS Code.vtt 16.3 kB
  • 07. Deep Dive Visualizing CNNs/6. Feature Map Size Calculation.vtt 16.2 kB
  • 08. Image Classification/1. What is Image Classification.vtt 16.2 kB
  • 07. Deep Dive Visualizing CNNs/7. CNN Parameter Calculations.vtt 16.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/5. Chain Rule Of Derivatives.vtt 16.0 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/35. Max, Min and Average Pooling.vtt 15.8 kB
  • 08. Image Classification/16. Inception Transfer Learning.vtt 15.6 kB
  • 08. Image Classification/2. LeNet Architecture.vtt 15.5 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/26. Exploding Gradient Problem.vtt 15.5 kB
  • 02. Python Prerequisites/17. Python Lambda Functions.vtt 15.4 kB
  • 02. Python Prerequisites/6. Basic Datatypes In Python.vtt 15.3 kB
  • 09. Data Augmentation/2. Data Augmentation with Albumentations.vtt 15.3 kB
  • 07. Deep Dive Visualizing CNNs/7. CNN Parameter Calculation.ipynb 15.3 kB
  • 02. Python Prerequisites/11. Preactical Exmaples Of List.vtt 15.1 kB
  • 06. PyTorch/20. Hosting platform.vtt 15.1 kB
  • 10. Basics of Object Detection/5. Getting started with Detectron2.vtt 14.9 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/21. Mini Batch With SGD.vtt 14.8 kB
  • 08. Image Classification/3. LeNet with Keras.vtt 14.6 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/10. Relu Activation Function.vtt 14.3 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/7. Sigmoid Activation Function.vtt 13.4 kB
  • 02. Python Prerequisites/29. Abstraction In OOPS.vtt 13.4 kB
  • 02. Python Prerequisites/19. Filter Function In Python.vtt 13.3 kB
  • 05. computer vision (Open CV With Python)/1. Introduction to OpenCV.vtt 13.2 kB
  • 10. Basics of Object Detection/4. Getting_Started_with_Yolov11.ipynb 13.2 kB
  • 02. Python Prerequisites/31. Operator Overloading In Python.vtt 12.8 kB
  • 09. Data Augmentation/1. What is Data Augmentation.vtt 12.8 kB
  • 06. PyTorch/24. Deploying gradio app on hugging face space.vtt 12.4 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/34. Operation Of CNN Vs ANN.vtt 12.3 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/36. Flattening and Fully Connected Layers.vtt 12.3 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/29. CNN Introduction.vtt 12.2 kB
  • 02. Python Prerequisites/30. Magic Methods In Python.vtt 12.2 kB
  • 02. Python Prerequisites/42. Logging With a Real World Examples.vtt 12.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/20. SGD.vtt 12.0 kB
  • 02. Python Prerequisites/23. Working With File Paths.vtt 11.7 kB
  • 06. PyTorch/12. 012-Create Linear Regression model with Pytorch components.zip 11.5 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/23. Adagard.vtt 11.4 kB
  • 06. PyTorch/23. Setting hugging face space.vtt 11.2 kB
  • 03. Introduction To Deep Learning/1. Introduction.vtt 11.1 kB
  • 08. Image Classification/9. Transfer Learning vs Pretrained.vtt 10.9 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/30. Human Brain V CNN.vtt 10.9 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/9. Tanh Activation Function.vtt 10.8 kB
  • 02. Python Prerequisites/32. Custom Exception Handling.vtt 10.6 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/2. Adv and Diadvantaes of Perceptron.vtt 10.5 kB
  • 01. Introduction/1. Welcome to the Course.vtt 10.4 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/15. Loss Function Vs Cost Function.vtt 10.3 kB
  • 10. Basics of Object Detection/3. What are Bounding Boxes.vtt 10.0 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/31. All you need to know about Images.vtt 9.8 kB
  • 02. Python Prerequisites/33. Iterators In Python.vtt 9.7 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/24. RMSPROP.vtt 9.5 kB
  • 06. PyTorch/21. Setting up gradio app in local space.vtt 9.5 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/25. Adam Optimiser.vtt 9.4 kB
  • 07. Deep Dive Visualizing CNNs/3. Visualization with Tensorspace.vtt 9.3 kB
  • 08. Image Classification/10. VGG Pretrained Keras.vtt 9.0 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/33. Padding In CNN.vtt 8.8 kB
  • 06. PyTorch/5. Tensors of Zero's and One's.vtt 8.8 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/14. Which Activation Function To Apply When.vtt 7.9 kB
  • 09. Data Augmentation/3. Data Augmentation with Imgaug.vtt 7.7 kB
  • 02. Python Prerequisites/41. Logging With Multiple Loggers.vtt 6.7 kB
  • 06. PyTorch/18. What is Deployment.vtt 6.6 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/37. CNN Example with RGB.vtt 6.6 kB
  • 08. Image Classification/14. Inception Pretrained Keras.vtt 6.5 kB
  • 06. PyTorch/5. 005-Tensors of Zero_s and One_s.zip 6.4 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/11. Leaky Relu and Parametric Relu.vtt 6.4 kB
  • 08. Image Classification/11. VGG Pretrained Pytorch.vtt 6.3 kB
  • 05. computer vision (Open CV With Python)/8. Understanding Coordinate system in openCV.vtt 6.2 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/12. ELU Activation Function.vtt 6.1 kB
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/18. Which Loss Function To Use When.vtt 5.8 kB
  • 06. PyTorch/13. 013-Multi-Class-classification-with-pytorch-using-custom-neural-networks.zip 5.8 kB
  • 08. Image Classification/15. Inception Pretrained Pytorch.vtt 5.6 kB
  • 08. Image Classification/19. Resnet Pretrained Pytorch.vtt 4.3 kB
  • 11. Image Segmentation/7. 007_Implementing_custom_Unet_training.zip 4.0 kB
  • 08. Image Classification/18. Resnet Pretrained Keras.vtt 3.6 kB
  • 06. PyTorch/7. 007-Tensor_Manipulation.zip 3.4 kB
  • 11. Image Segmentation/5. 005-Fully Convolutional Networks (FCNs).zip 2.8 kB
  • 06. PyTorch/11. 011-Understanding Pytorch neural network components.zip 2.7 kB
  • 06. PyTorch/3. 003-Indexing-Tensors.zip 2.3 kB
  • 06. PyTorch/2. 002-Introduction to tensors.zip 2.2 kB
  • 06. PyTorch/6. 006-Tensor DataTypes.zip 2.0 kB
  • 06. PyTorch/8. 008-Matrix Aggregation.zip 1.9 kB
  • 05. computer vision (Open CV With Python)/20. 020. Haar Cascade for face detection.zip 1.6 kB
  • 11. Image Segmentation/2. 002-Downsampling.zip 1.4 kB
  • 11. Image Segmentation/3. 003-Transposed convolution.zip 1.3 kB
  • 11. Image Segmentation/4. 004-Segmentation_Loss_Functions.zip 1.2 kB
  • 06. PyTorch/21. 021. Setting up gradio app in local space(gradio-app-1-chkpt-21).zip 778 Bytes
  • 11. Image Segmentation/8. 008-Mask-RCNN-Research-paper-mentioned.txt 262 Bytes
  • 01. Introduction/2. Important Note.html 185 Bytes
  • 0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 01. Introduction/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 01. Introduction/[CourseClub.Me].url 122 Bytes
  • 02. Python Prerequisites/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 02. Python Prerequisites/[CourseClub.Me].url 122 Bytes
  • 03. Introduction To Deep Learning/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 03. Introduction To Deep Learning/[CourseClub.Me].url 122 Bytes
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/[CourseClub.Me].url 122 Bytes
  • 05. computer vision (Open CV With Python)/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 05. computer vision (Open CV With Python)/[CourseClub.Me].url 122 Bytes
  • 06. PyTorch/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 06. PyTorch/[CourseClub.Me].url 122 Bytes
  • 07. Deep Dive Visualizing CNNs/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 07. Deep Dive Visualizing CNNs/[CourseClub.Me].url 122 Bytes
  • 08. Image Classification/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 08. Image Classification/[CourseClub.Me].url 122 Bytes
  • 09. Data Augmentation/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 09. Data Augmentation/[CourseClub.Me].url 122 Bytes
  • 10. Basics of Object Detection/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 10. Basics of Object Detection/[CourseClub.Me].url 122 Bytes
  • 11. Image Segmentation/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 11. Image Segmentation/[CourseClub.Me].url 122 Bytes
  • [CourseClub.Me].url 122 Bytes
  • 0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 01. Introduction/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 01. Introduction/[FCSNEW.NET].url 119 Bytes
  • 02. Python Prerequisites/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 02. Python Prerequisites/[FCSNEW.NET].url 119 Bytes
  • 03. Introduction To Deep Learning/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 03. Introduction To Deep Learning/[FCSNEW.NET].url 119 Bytes
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 04. Deep Learning-ANN, Optimizers, Loss Functions, Activation Functions,CNN Theory/[FCSNEW.NET].url 119 Bytes
  • 05. computer vision (Open CV With Python)/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 05. computer vision (Open CV With Python)/[FCSNEW.NET].url 119 Bytes
  • 06. PyTorch/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 06. PyTorch/[FCSNEW.NET].url 119 Bytes
  • 07. Deep Dive Visualizing CNNs/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 07. Deep Dive Visualizing CNNs/[FCSNEW.NET].url 119 Bytes
  • 08. Image Classification/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 08. Image Classification/[FCSNEW.NET].url 119 Bytes
  • 09. Data Augmentation/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 09. Data Augmentation/[FCSNEW.NET].url 119 Bytes
  • 10. Basics of Object Detection/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 10. Basics of Object Detection/[FCSNEW.NET].url 119 Bytes
  • 11. Image Segmentation/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 11. Image Segmentation/[FCSNEW.NET].url 119 Bytes
  • [FCSNEW.NET].url 119 Bytes
  • 02. Python Prerequisites/1. Complete Python Materials.html 87 Bytes
  • 07. Deep Dive Visualizing CNNs/7. Colab-Link.txt 85 Bytes
  • 08. Image Classification/20. Dataset.txt 85 Bytes
  • 09. Data Augmentation/2. Colab-Link.txt 85 Bytes
  • 09. Data Augmentation/3. Colab-Link.txt 85 Bytes
  • 10. Basics of Object Detection/10. Colab-Link.txt 85 Bytes
  • 08. Image Classification/12. Dataset.txt 82 Bytes
  • 08. Image Classification/6. Dataset.txt 82 Bytes
  • 08. Image Classification/7. Dataset.txt 82 Bytes
  • 10. Basics of Object Detection/11. Colab-Link.txt 82 Bytes
  • 10. Basics of Object Detection/12. Colab-Link.txt 82 Bytes
  • 10. Basics of Object Detection/4. Colab-Link.txt 82 Bytes
  • 10. Basics of Object Detection/5. Colab-Link.txt 82 Bytes
  • 11. Image Segmentation/6. 006-Unet-Research-paper-mentioned.txt 66 Bytes
  • 08. Image Classification/2. Paper.txt 60 Bytes
  • 10. Basics of Object Detection/2. OD-Metrics.txt 57 Bytes
  • 11. Image Segmentation/5. 005-Fully Convolutional Networks (FCNs)-Research-paper-mentioned.txt 56 Bytes
  • 07. Deep Dive Visualizing CNNs/3. Tensorspace-Link.txt 50 Bytes
  • 07. Deep Dive Visualizing CNNs/2. CNN-Explainer-Link.txt 41 Bytes
  • 10. Basics of Object Detection/8. Paper-Link.txt 32 Bytes
  • 10. Basics of Object Detection/9. Paper-Link.txt 32 Bytes
  • 10. Basics of Object Detection/7. Paper.txt 31 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!