搜索
[FreeCourseSite.com] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp
磁力链接/BT种子简介
种子哈希:
461c3f0fb6b2af1d53467fb252f58c4d74aa8220
文件大小:
15.06G
已经下载:
794
次
下载速度:
极快
收录时间:
2021-03-06
最近下载:
2024-11-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:461C3F0FB6B2AF1D53467FB252F58C4D74AA8220
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
特殊
diy中字
江又又
fsdss-825]
雌堕婊
经典av蓝衣白丝
调教人妻【lin lin】
臭
ebod-948-c
franco battiato mp3 platinum collection
house of
graduate
贵在真实民宿纯上帝视角偸拍时髦
special ed legal flac
无职转生Ⅱ+~到了异世界就拿出真本事~4
mira 2023
heydouga252
拍尺度
姨zhangxufan9999
fc2-ppv-3080513
换面
塞玩具
superman and lois
正太
童颜中出
身材纤细高挑
姜兔兔
附近情侣
hayamakuraki
cawd-646
文件列表
16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4
168.2 MB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.mp4
165.5 MB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.mp4
152.2 MB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.mp4
151.3 MB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4
145.0 MB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.mp4
140.8 MB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
133.0 MB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4
131.2 MB
56. Software Integration/5. Taking a Closer Look at APIs.mp4
121.2 MB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4
117.1 MB
2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4
114.3 MB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4
109.1 MB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4
108.5 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.mp4
108.4 MB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4
107.6 MB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4
104.1 MB
13. Probability - Probability in Other Fields/1. Probability in Finance.mp4
103.9 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).mp4
101.8 MB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.mp4
96.5 MB
12. Probability - Distributions/3. Types of Probability Distributions.mp4
96.0 MB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4
94.3 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting acquainted with the dataset.mp4
91.9 MB
36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4
90.7 MB
9. Part 2 Probability/1. The Basic Probability Formula.mp4
90.1 MB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing the Data.mp4
88.4 MB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.mp4
88.2 MB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4
86.6 MB
2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.mp4
85.4 MB
4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.mp4
85.1 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4
85.0 MB
18. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.mp4
82.0 MB
13. Probability - Probability in Other Fields/2. Probability in Statistics.mp4
81.0 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/6. Creating a Data Provider.mp4
80.1 MB
9. Part 2 Probability/3. Computing Expected Values.mp4
79.4 MB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4
79.2 MB
22. Part 4 Introduction to Python/3. Why Python.mp4
78.7 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp4
78.2 MB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.mp4
78.1 MB
12. Probability - Distributions/1. Fundamentals of Probability Distributions.mp4
77.0 MB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4
76.4 MB
15. Statistics - Descriptive Statistics/1. Types of Data.mp4
76.0 MB
37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4
75.0 MB
18. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.mp4
73.9 MB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4
72.9 MB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp4
72.4 MB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.mp4
72.2 MB
2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4
71.0 MB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.mp4
69.5 MB
2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4
67.6 MB
56. Software Integration/9. Software Integration - Explained.mp4
66.8 MB
13. Probability - Probability in Other Fields/3. Probability in Data Science.mp4
66.6 MB
17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.mp4
65.9 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp4
65.8 MB
1. Part 1 Introduction/2. What Does the Course Cover.mp4
65.3 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.mp4
64.9 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.mp4
64.8 MB
9. Part 2 Probability/5. Frequency.mp4
64.7 MB
17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4
64.6 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4
64.1 MB
56. Software Integration/7. Communication between Software Products through Text Files.mp4
63.3 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.mp4
62.2 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.mp4
62.2 MB
18. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.mp4
62.0 MB
9. Part 2 Probability/7. Events and Their Complements.mp4
62.0 MB
52. Deep Learning - Conclusion/4. An overview of CNNs.mp4
61.6 MB
22. Part 4 Introduction to Python/1. Introduction to Programming.mp4
61.4 MB
14. Part 3 Statistics/1. Population and Sample.mp4
60.9 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).mp4
60.7 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/1. The Linear Regression Model.mp4
60.2 MB
10. Probability - Combinatorics/11. Solving Combinations.mp4
60.1 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp4
60.1 MB
11. Probability - Bayesian Inference/7. Union of Sets.mp4
60.0 MB
18. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.mp4
59.8 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.mp4
59.3 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4. MNIST Model Outline.mp4
59.1 MB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).mp4
58.8 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).mp4
58.8 MB
20. Statistics - Hypothesis Testing/10. p-value.mp4
58.6 MB
12. Probability - Distributions/13. Discrete Distributions The Poisson Distribution.mp4
58.5 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18. Dealing with Categorical Data - Dummy Variables.mp4
58.4 MB
42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4
58.3 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3. Adjusted R-Squared.mp4
57.5 MB
15. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4
57.0 MB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4
57.0 MB
60. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.mp4
56.9 MB
20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4
56.9 MB
2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.mp4
56.2 MB
11. Probability - Bayesian Inference/1. Sets and Events.mp4
56.1 MB
37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4
56.0 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7. Business Case Model Outline.mp4
55.7 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.mp4
55.3 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.mp4
54.9 MB
57. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
54.8 MB
44. Deep Learning - TensorFlow 2.0 Introduction/1. How to Install TensorFlow 2.0.mp4
54.7 MB
38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4
54.3 MB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.mp4
53.5 MB
49. Deep Learning - Preprocessing/3. Standardization.mp4
53.5 MB
15. Statistics - Descriptive Statistics/22. Variance.mp4
53.4 MB
20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4
52.8 MB
18. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.mp4
52.4 MB
11. Probability - Bayesian Inference/20. Bayes' Law.mp4
52.4 MB
17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4
52.3 MB
51. Deep Learning - Business Case Example/9. Business Case Setting an Early Stopping Mechanism.mp4
52.2 MB
40. Part 6 Mathematics/5. Linear Algebra and Geometry.mp4
52.2 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/13. Decomposition of Variability.mp4
52.1 MB
40. Part 6 Mathematics/15. Dot Product of Matrices.mp4
51.8 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.mp4
51.6 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.mp4
51.4 MB
1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4
51.4 MB
11. Probability - Bayesian Inference/18. The Multiplication Law.mp4
51.4 MB
12. Probability - Distributions/17. Continuous Distributions The Normal Distribution.mp4
50.6 MB
12. Probability - Distributions/19. Continuous Distributions The Standard Normal Distribution.mp4
50.2 MB
17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.mp4
50.1 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp4
50.1 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/4. TensorFlow Intro.mp4
50.0 MB
11. Probability - Bayesian Inference/3. Ways Sets Can Interact.mp4
49.7 MB
12. Probability - Distributions/27. Continuous Distributions The Logistic Distribution.mp4
49.3 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/8. MNIST Learning.mp4
49.0 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/2. Practical Example Linear Regression (Part 2).mp4
48.2 MB
11. Probability - Bayesian Inference/13. The Conditional Probability Formula.mp4
48.1 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.mp4
48.0 MB
15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.mp4
47.3 MB
42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4
47.3 MB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4
46.9 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/11. How to Interpret the Regression Table.mp4
46.8 MB
39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4
46.7 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/8. First Regression in Python.mp4
46.7 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.mp4
46.6 MB
22. Part 4 Introduction to Python/5. Why Jupyter.mp4
46.5 MB
38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.mp4
46.3 MB
20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4
46.1 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp4
46.0 MB
10. Probability - Combinatorics/9. Solving Variations without Repetition.mp4
45.2 MB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).mp4
45.1 MB
42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4
45.0 MB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4
44.9 MB
10. Probability - Combinatorics/3. Permutations and How to Use Them.mp4
44.8 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. A3 Normality and Homoscedasticity.mp4
44.8 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.mp4
43.6 MB
50. Deep Learning - Classifying on the MNIST Dataset/6. MNIST Preprocess the Data - Shuffle and Batch.mp4
43.5 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8. Business Case Optimization.mp4
43.5 MB
10. Probability - Combinatorics/17. Combinatorics in Real-Life The Lottery.mp4
43.3 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
43.2 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/17. R-Squared.mp4
43.0 MB
50. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.mp4
43.0 MB
57. Case Study - What's Next in the Course/3. Introducing the Data Set.mp4
42.8 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.mp4
42.6 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/7. Python Packages Installation.mp4
42.6 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp4
42.5 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.mp4
42.4 MB
10. Probability - Combinatorics/13. Symmetry of Combinations.mp4
42.3 MB
20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4
42.2 MB
12. Probability - Distributions/25. Continuous Distributions The Exponential Distribution.mp4
42.2 MB
15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.mp4
41.7 MB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.mp4
41.7 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4
41.5 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.mp4
41.5 MB
42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4
41.3 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3. The Importance of Working with a Balanced Dataset.mp4
41.3 MB
57. Case Study - What's Next in the Course/2. The Business Task.mp4
41.1 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).mp4
41.0 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.mp4
40.8 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4
40.6 MB
10. Probability - Combinatorics/19. A Recap of Combinatorics.mp4
40.4 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
40.4 MB
15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4
40.3 MB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.mp4
40.3 MB
42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4
40.2 MB
40. Part 6 Mathematics/13. Transpose of a Matrix.mp4
39.9 MB
38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.mp4
39.5 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.mp4
39.3 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9. Basic NN Example with TF Model Output.mp4
39.2 MB
42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4
39.0 MB
15. Statistics - Descriptive Statistics/17. Mean, median and mode.mp4
38.9 MB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4
38.6 MB
20. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).mp4
38.2 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.mp4
38.1 MB
37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4
37.9 MB
10. Probability - Combinatorics/5. Simple Operations with Factorials.mp4
37.9 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. A2 No Endogeneity.mp4
37.4 MB
18. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.mp4
37.2 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.mp4
36.6 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4
36.6 MB
11. Probability - Bayesian Inference/15. The Law of Total Probability.mp4
36.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.mp4
36.6 MB
11. Probability - Bayesian Inference/11. Dependence and Independence of Sets.mp4
36.5 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/3. Simple Linear Regression with sklearn.mp4
36.5 MB
36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4
36.4 MB
44. Deep Learning - TensorFlow 2.0 Introduction/6. Outlining the Model with TensorFlow 2.mp4
36.4 MB
12. Probability - Distributions/9. Discrete Distributions The Bernoulli Distribution.mp4
35.8 MB
10. Probability - Combinatorics/7. Solving Variations with Repetition.mp4
35.7 MB
20. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).mp4
35.6 MB
40. Part 6 Mathematics/3. Scalars and Vectors.mp4
35.5 MB
30. Python - Advanced Python Tools/1. Object Oriented Programming.mp4
35.2 MB
40. Part 6 Mathematics/1. What is a matrix.mp4
35.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/2. TensorFlow Outline and Comparison with Other Libraries.mp4
35.1 MB
26. Python - Conditional Statements/4. The ELIF Statement.mp4
34.8 MB
10. Probability - Combinatorics/15. Solving Combinations with Separate Sample Spaces.mp4
34.8 MB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.mp4
34.5 MB
46. Deep Learning - Overfitting/3. What is Validation.mp4
34.3 MB
40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.mp4
34.2 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8. Basic NN Example with TF Loss Function and Gradient Descent.mp4
34.1 MB
36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.mp4
33.8 MB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.mp4
33.8 MB
18. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.mp4
33.8 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
33.6 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.mp4
33.0 MB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.mp4
32.7 MB
41. Part 7 Deep Learning/1. What to Expect from this Part.mp4
32.6 MB
46. Deep Learning - Overfitting/1. What is Overfitting.mp4
32.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.mp4
32.4 MB
28. Python - Sequences/5. List Slicing.mp4
32.3 MB
23. Python - Variables and Data Types/5. Python Strings.mp4
32.3 MB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4
32.1 MB
36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.mp4
32.0 MB
51. Deep Learning - Business Case Example/3. Business Case Balancing the Dataset.mp4
31.9 MB
44. Deep Learning - TensorFlow 2.0 Introduction/7. Interpreting the Result and Extracting the Weights and Bias.mp4
31.7 MB
38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.mp4
31.6 MB
25. Python - Other Python Operators/3. Logical and Identity Operators.mp4
31.5 MB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4
31.4 MB
39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4
31.1 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.mp4
31.0 MB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4
31.0 MB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.mp4
31.0 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).mp4
30.9 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4
30.9 MB
15. Statistics - Descriptive Statistics/30. Correlation Coefficient.mp4
30.8 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
30.5 MB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4
30.5 MB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4
30.5 MB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4
30.3 MB
18. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).mp4
30.2 MB
42. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4
30.1 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/16. A5 No Multicollinearity.mp4
30.1 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp4
30.1 MB
42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4
29.8 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/15. What is the OLS.mp4
29.7 MB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Outline the Model.mp4
29.6 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp4
29.3 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.mp4
29.2 MB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4
29.1 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.mp4
29.0 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.mp4
28.9 MB
15. Statistics - Descriptive Statistics/27. Covariance.mp4
28.8 MB
38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4
28.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/1. What is sklearn and How is it Different from Other Packages.mp4
28.6 MB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.mp4
28.5 MB
36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4
28.4 MB
11. Probability - Bayesian Inference/5. Intersection of Sets.mp4
28.3 MB
11. Probability - Bayesian Inference/16. The Additive Rule.mp4
28.3 MB
18. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).mp4
28.1 MB
40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4
28.0 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
27.6 MB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.mp4
27.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.mp4
27.2 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.mp4
27.2 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp4
27.1 MB
15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.mp4
27.1 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9. Business Case Interpretation.mp4
27.0 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4
26.9 MB
60. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.mp4
26.7 MB
11. Probability - Bayesian Inference/9. Mutually Exclusive Sets.mp4
26.6 MB
23. Python - Variables and Data Types/1. Variables.mp4
26.5 MB
52. Deep Learning - Conclusion/5. An Overview of RNNs.mp4
26.5 MB
46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4
26.4 MB
42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4
26.3 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.mp4
26.3 MB
46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4
26.3 MB
28. Python - Sequences/7. Dictionaries.mp4
26.3 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20. Making Predictions with the Linear Regression.mp4
25.9 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4
25.6 MB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.mp4
25.6 MB
46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4
25.3 MB
40. Part 6 Mathematics/14. Dot Product.mp4
25.2 MB
27. Python - Python Functions/2. How to Create a Function with a Parameter.mp4
25.0 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/4. Practical Example Linear Regression (Part 3).mp4
24.8 MB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4
24.4 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.mp4
24.3 MB
36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.mp4
24.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/8. Customizing a TensorFlow 2 Model.mp4
24.0 MB
17. Statistics - Inferential Statistics Fundamentals/11. Standard error.mp4
23.9 MB
12. Probability - Distributions/5. Characteristics of Discrete Distributions.mp4
23.8 MB
42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4
23.7 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4
23.7 MB
40. Part 6 Mathematics/8. What is a Tensor.mp4
23.6 MB
17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4
23.6 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp4
23.4 MB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.mp4
23.4 MB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.vtt
23.1 MB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4
23.1 MB
27. Python - Python Functions/7. Built-in Functions in Python.mp4
23.1 MB
28. Python - Sequences/1. Lists.mp4
23.1 MB
44. Deep Learning - TensorFlow 2.0 Introduction/3. TensorFlow 1 vs TensorFlow 2.mp4
23.1 MB
28. Python - Sequences/3. Using Methods.mp4
23.0 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/7. OLS Assumptions.mp4
22.9 MB
47. Deep Learning - Initialization/1. What is Initialization.mp4
22.8 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp4
22.7 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/1. Multiple Linear Regression.mp4
22.6 MB
38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.mp4
22.3 MB
46. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4
21.7 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4
21.6 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.mp4
21.6 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6. Types of File Formats, supporting Tensors.mp4
21.3 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.mp4
21.2 MB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4
21.1 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/7. Multiple Linear Regression with sklearn.mp4
21.0 MB
18. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).mp4
20.9 MB
30. Python - Advanced Python Tools/7. Importing Modules in Python.mp4
20.9 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.mp4
20.4 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/2. How are Going to Approach this Section.mp4
20.3 MB
15. Statistics - Descriptive Statistics/19. Skewness.mp4
20.3 MB
24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4
19.8 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp4
19.8 MB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4
19.6 MB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4
19.5 MB
30. Python - Advanced Python Tools/5. What is the Standard Library.mp4
18.9 MB
42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4
18.8 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp4
18.7 MB
51. Deep Learning - Business Case Example/6. Business Case Load the Preprocessed Data.mp4
18.4 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5. Actual Introduction to TensorFlow.mp4
18.3 MB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4
18.2 MB
47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
18.0 MB
36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4
17.9 MB
23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4
17.9 MB
29. Python - Iterations/8. How to Iterate over Dictionaries.mp4
17.8 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.mp4
17.8 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.mp4
17.6 MB
28. Python - Sequences/6. Tuples.mp4
17.5 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp4
17.2 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/6. Test for Significance of the Model (F-Test).mp4
17.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/5. Types of File Formats Supporting TensorFlow.mp4
17.2 MB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Importing the Relevant Packages and Loading the Data.mp4
17.1 MB
10. Probability - Combinatorics/1. Fundamentals of Combinatorics.mp4
17.0 MB
29. Python - Iterations/6. Conditional Statements and Loops.mp4
16.9 MB
27. Python - Python Functions/5. Conditional Statements and Functions.mp4
16.4 MB
17. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4
16.3 MB
29. Python - Iterations/3. While Loops and Incrementing.mp4
16.2 MB
27. Python - Python Functions/3. Defining a Function in Python - Part II.mp4
15.5 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/3. Correlation vs Regression.mp4
15.5 MB
37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4
15.3 MB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST The Dataset.mp4
15.0 MB
47. Deep Learning - Initialization/2. Types of Simple Initializations.mp4
15.0 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp4
14.7 MB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Select the Loss and the Optimizer.mp4
14.6 MB
22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4
14.5 MB
15. Statistics - Descriptive Statistics/11. The Histogram.mp4
14.4 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp4
14.4 MB
26. Python - Conditional Statements/1. The IF Statement.mp4
14.3 MB
26. Python - Conditional Statements/3. The ELSE Statement.mp4
14.3 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp4
13.5 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/9. A1 Linearity.mp4
13.2 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.mp4
13.1 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with p-values.mp4
12.9 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/10. Using Seaborn for Graphs.mp4
12.8 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/2. Business Case Outlining the Solution.mp4
12.8 MB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4
12.4 MB
29. Python - Iterations/1. For Loops.mp4
12.4 MB
29. Python - Iterations/4. Lists with the range() Function.mp4
12.0 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/2. How to Install TensorFlow 1.mp4
11.9 MB
22. Part 4 Introduction to Python/11. Python 2 vs Python 3.mp4
11.8 MB
26. Python - Conditional Statements/5. A Note on Boolean Values.mp4
11.8 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.mp4
11.7 MB
40. Part 6 Mathematics/12. Errors when Adding Matrices.mp4
11.7 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp4
11.5 MB
51. Deep Learning - Business Case Example/11. Business Case Testing the Model.mp4
11.3 MB
25. Python - Other Python Operators/1. Comparison Operators.mp4
10.7 MB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.mp4
10.4 MB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4
9.9 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp4
9.5 MB
12. Probability - Distributions/29.1 FIFA19.csv.csv
9.1 MB
12. Probability - Distributions/29.4 FIFA19 (post).csv.csv
9.1 MB
30. Python - Advanced Python Tools/3. Modules and Packages.mp4
8.9 MB
27. Python - Python Functions/4. How to Use a Function within a Function.mp4
8.5 MB
27. Python - Python Functions/1. Defining a Function in Python.mp4
8.1 MB
27. Python - Python Functions/6. Functions Containing a Few Arguments.mp4
7.9 MB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4
7.7 MB
2. The Field of Data Science - The Various Data Science Disciplines/7.2 365_DataScience.png.png
7.3 MB
2. The Field of Data Science - The Various Data Science Disciplines/9.1 365_DataScience.png.png
7.3 MB
24. Python - Basic Python Syntax/12. Structuring with Indentation.mp4
7.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/4. A Note on TensorFlow 2 Syntax.mp4
7.1 MB
24. Python - Basic Python Syntax/3. The Double Equality Sign.mp4
6.3 MB
24. Python - Basic Python Syntax/10. Indexing Elements.mp4
6.2 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/5. Geometrical Representation of the Linear Regression Model.mp4
5.4 MB
24. Python - Basic Python Syntax/7. Add Comments.mp4
5.3 MB
24. Python - Basic Python Syntax/5. How to Reassign Values.mp4
4.2 MB
24. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4
2.5 MB
22. Part 4 Introduction to Python/11.1 Python Introduction - Course Notes.pdf.pdf
2.1 MB
23. Python - Variables and Data Types/1.1 Python Introduction - Course Notes.pdf.pdf
2.1 MB
19. Statistics - Practical Example Inferential Statistics/2.1 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx
1.9 MB
19. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx
1.8 MB
19. Statistics - Practical Example Inferential Statistics/2.2 3.17.Practical-example.Confidence-intervals-exercise.xlsx.xlsx
1.8 MB
20. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf.pdf
1.2 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf.pdf
958.9 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf.pdf
958.9 kB
11. Probability - Bayesian Inference/22.3 CDS_2017-2018 Hamilton.pdf.pdf
865.6 kB
51. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1.1 Audiobooks_data.csv.csv
727.8 kB
20. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf.pdf
663.8 kB
20. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf.pdf
663.8 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Shortcuts-for-Jupyter.pdf.pdf
634.0 kB
44. Deep Learning - TensorFlow 2.0 Introduction/1.1 Shortcuts-for-Jupyter.pdf.pdf
634.0 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5.2 Shortcuts-for-Jupyter.pdf.pdf
634.0 kB
42. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf.pdf
592.0 kB
42. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf.pdf
592.0 kB
14. Part 3 Statistics/1.1 Course notes_descriptive_statistics.pdf.pdf
493.8 kB
15. Statistics - Descriptive Statistics/1.1 Course notes_descriptive_statistics.pdf.pdf
493.8 kB
12. Probability - Distributions/1.1 Course Notes - Probability Distributions.pdf.pdf
459.5 kB
11. Probability - Bayesian Inference/1.1 Course Notes - Bayesian Inference.pdf.pdf
395.3 kB
17. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf.pdf
391.5 kB
17. Statistics - Inferential Statistics Fundamentals/2.2 Course notes_inferential statistics.pdf.pdf
391.5 kB
9. Part 2 Probability/1.1 Course Notes - Basic Probability.pdf.pdf
380.0 kB
12. Probability - Distributions/15.1 Solving Integrals.pdf.pdf
352.1 kB
2. The Field of Data Science - The Various Data Science Disciplines/5.1 365_DataScience_Diagram.pdf.pdf
330.8 kB
2. The Field of Data Science - The Various Data Science Disciplines/7.1 365_DataScience_Diagram.pdf.pdf
330.8 kB
1. Part 1 Introduction/3.2 FAQ_The_Data_Science_Course.pdf.pdf
313.4 kB
15. Statistics - Descriptive Statistics/13.3 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf
296.1 kB
15. Statistics - Descriptive Statistics/7.3 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf
296.1 kB
10. Probability - Combinatorics/20.1 Additional Exercises Combinatorics Solutions.pdf.pdf
251.6 kB
10. Probability - Combinatorics/1.1 Course Notes - Combinatorics.pdf.pdf
231.5 kB
10. Probability - Combinatorics/11.1 Combinations With Repetition.pdf.pdf
212.4 kB
13. Probability - Probability in Other Fields/1.2 Probability in Finance Solutions.pdf.pdf
188.9 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf
186.7 kB
16. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx
150.0 kB
16. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx
149.9 kB
12. Probability - Distributions/13.1 Poisson - Expected Value and Variance.pdf.pdf
149.5 kB
12. Probability - Distributions/17.1 Normal Distribution - Exp and Var.pdf.pdf
147.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.3 data_preprocessing_homework.pdf.pdf
137.7 kB
16. Statistics - Practical Example Descriptive Statistics/2.1 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx
123.2 kB
13. Probability - Probability in Other Fields/1.1 Probability in Finance Homework.pdf.pdf
113.3 kB
10. Probability - Combinatorics/20.2 Additional Exercises Combinatorics.pdf.pdf
109.1 kB
10. Probability - Combinatorics/13.1 Symmetry Explained.pdf.pdf
87.1 kB
21. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx
53.0 kB
21. Statistics - Practical Example Hypothesis Testing/2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx
45.1 kB
21. Statistics - Practical Example Hypothesis Testing/2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx
44.4 kB
42. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx.xlsx
43.4 kB
15. Statistics - Descriptive Statistics/7.2 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx
42.1 kB
15. Statistics - Descriptive Statistics/16.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx
41.4 kB
15. Statistics - Descriptive Statistics/19.1 2.8. Skewness_lesson.xlsx.xlsx
35.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.2 Absenteeism_data.csv.csv
32.8 kB
15. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx
31.5 kB
11. Probability - Bayesian Inference/22.2 Bayesian Homework - Solutions.pdf.pdf
31.1 kB
15. Statistics - Descriptive Statistics/29.1 2.11. Covariance_exercise_solution.xlsx.xlsx
30.2 kB
15. Statistics - Descriptive Statistics/32.2 2.12. Correlation_exercise_solution.xlsx.xlsx
30.2 kB
15. Statistics - Descriptive Statistics/32.1 2.12. Correlation_exercise.xlsx.xlsx
30.0 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1.1 Absenteeism_preprocessed.csv.csv
29.8 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.1 df_preprocessed.csv.csv
29.8 kB
11. Probability - Bayesian Inference/22.1 Bayesian Homework .pdf.pdf
27.9 kB
15. Statistics - Descriptive Statistics/14.1 2.6. Cross table and scatter plot.xlsx.xlsx
26.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/3.1 3.9.The-z-table.xlsx.xlsx
26.2 kB
18. Statistics - Inferential Statistics Confidence Intervals/4.3 3.9.The-z-table.xlsx.xlsx
26.2 kB
15. Statistics - Descriptive Statistics/27.1 2.11. Covariance_lesson.xlsx.xlsx
25.5 kB
17. Statistics - Inferential Statistics Fundamentals/8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx
24.6 kB
1. Part 1 Introduction/3. Download All Resources and Important FAQ.html
21.9 kB
14. Part 3 Statistics/1.2 Statistics Glossary.xlsx.xlsx
20.8 kB
15. Statistics - Descriptive Statistics/29.2 2.11. Covariance_exercise.xlsx.xlsx
20.7 kB
12. Probability - Distributions/29.5 Daily Views (post).xlsx.xlsx
20.7 kB
15. Statistics - Descriptive Statistics/1.2 Glossary.xlsx.xlsx
20.4 kB
15. Statistics - Descriptive Statistics/21.1 2.8. Skewness_exercise_solution.xlsx.xlsx
20.2 kB
36. Advanced Statistical Methods - Logistic Regression/11.1 Bank_data.csv.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/13.2 Bank_data.csv.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/16.2 Bank_data.csv.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/8.2 Bank_data.csv.csv
20.0 kB
17. Statistics - Inferential Statistics Fundamentals/2.1 3.2. What is a distribution_lesson.xlsx.xlsx
19.9 kB
15. Statistics - Descriptive Statistics/11.1 2.5. The Histogram_lesson.xlsx.xlsx
19.1 kB
16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.vtt
18.4 kB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.vtt
17.9 kB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.vtt
17.5 kB
15. Statistics - Descriptive Statistics/13.1 2.5.The-Histogram-exercise-solution.xlsx.xlsx
17.5 kB
15. Statistics - Descriptive Statistics/16.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx
16.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/8.1 3.11. The t-table.xlsx.xlsx
16.2 kB
12. Probability - Distributions/29.2 Customers_Membership (post).xlsx.xlsx
16.0 kB
15. Statistics - Descriptive Statistics/13.2 2.5.The-Histogram-exercise.xlsx.xlsx
15.9 kB
15. Statistics - Descriptive Statistics/7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx
15.6 kB
20. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx
14.9 kB
20. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx
14.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx
14.6 kB
18. Statistics - Inferential Statistics Confidence Intervals/13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx
14.1 kB
15. Statistics - Descriptive Statistics/10.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx
13.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).vtt
13.3 kB
20. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx
13.1 kB
20. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx
12.9 kB
15. Statistics - Descriptive Statistics/26.1 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx.xlsx
12.9 kB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.vtt
12.7 kB
17. Statistics - Inferential Statistics Fundamentals/8.1 3.4.Standard-normal-distribution-exercise.xlsx.xlsx
12.3 kB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.vtt
12.2 kB
15. Statistics - Descriptive Statistics/10.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx
12.0 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.vtt
12.0 kB
15. Statistics - Descriptive Statistics/26.2 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx.xlsx
11.9 kB
15. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx
11.7 kB
20. Statistics - Hypothesis Testing/20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx
11.7 kB
15. Statistics - Descriptive Statistics/18.2 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx
11.6 kB
20. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx
11.6 kB
20. Statistics - Hypothesis Testing/17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx
11.5 kB
20. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx
11.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/3.2 3.9. Population variance known, z-score_lesson.xlsx.xlsx
11.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/4.1 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx
11.4 kB
18. Statistics - Inferential Statistics Confidence Intervals/9.1 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx
11.4 kB
15. Statistics - Descriptive Statistics/23.2 2.9. Variance_exercise_solution.xlsx.xlsx
11.3 kB
20. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx
11.3 kB
15. Statistics - Descriptive Statistics/24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx
11.2 kB
20. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx
11.2 kB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing the Data.vtt
11.2 kB
15. Statistics - Descriptive Statistics/18.1 2.7. Mean, median and mode_exercise.xlsx.xlsx
11.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx
11.1 kB
15. Statistics - Descriptive Statistics/23.1 2.9. Variance_exercise.xlsx.xlsx
11.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/8.2 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx
11.0 kB
20. Statistics - Hypothesis Testing/17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx
11.0 kB
18. Statistics - Inferential Statistics Confidence Intervals/9.2 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx
10.9 kB
20. Statistics - Hypothesis Testing/20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx
10.8 kB
15. Statistics - Descriptive Statistics/17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx
10.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx
10.7 kB
2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.vtt
10.7 kB
17. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx
10.6 kB
38. Advanced Statistical Methods - K-Means Clustering/5.1 Categorical.csv.csv
10.6 kB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.vtt
10.6 kB
18. Statistics - Inferential Statistics Confidence Intervals/15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx
10.4 kB
15. Statistics - Descriptive Statistics/22.1 2.9. Variance_lesson.xlsx.xlsx
10.3 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).vtt
10.3 kB
18. Statistics - Inferential Statistics Confidence Intervals/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx
10.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx
10.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx
10.0 kB
20. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx
10.0 kB
12. Probability - Distributions/29.6 Customers_Membership.xlsx.xlsx
9.9 kB
20. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx
9.9 kB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.vtt
9.8 kB
12. Probability - Distributions/29.3 Daily Views.xlsx.xlsx
9.8 kB
18. Statistics - Inferential Statistics Confidence Intervals/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx
9.7 kB
15. Statistics - Descriptive Statistics/21.2 2.8. Skewness_exercise.xlsx.xlsx
9.7 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).vtt
9.7 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting acquainted with the dataset.vtt
9.6 kB
20. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx
9.5 kB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.vtt
9.5 kB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.vtt
9.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).vtt
9.5 kB
2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt
9.5 kB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.vtt
9.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx
9.4 kB
56. Software Integration/5. Taking a Closer Look at APIs.vtt
9.4 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.vtt
9.2 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/8. MNIST Learning.vtt
9.1 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.vtt
9.0 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.vtt
9.0 kB
13. Probability - Probability in Other Fields/1. Probability in Finance.vtt
8.9 kB
18. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.vtt
8.9 kB
12. Probability - Distributions/3. Types of Probability Distributions.vtt
8.6 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.vtt
8.6 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.vtt
8.6 kB
36. Advanced Statistical Methods - Logistic Regression/16.1 Bank_data_testing.csv.csv
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.vtt
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/3.2 Countries_exercise.csv.csv
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/7.2 Countries_exercise.csv.csv
8.5 kB
40. Part 6 Mathematics/15. Dot Product of Matrices.vtt
8.4 kB
50. Deep Learning - Classifying on the MNIST Dataset/6. MNIST Preprocess the Data - Shuffle and Batch.vtt
8.3 kB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).vtt
8.1 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4. MNIST Model Outline.vtt
8.1 kB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt
8.1 kB
9. Part 2 Probability/1. The Basic Probability Formula.vtt
8.0 kB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.vtt
8.0 kB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.vtt
7.9 kB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.vtt
7.9 kB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.vtt
7.8 kB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.vtt
7.7 kB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.vtt
7.7 kB
13. Probability - Probability in Other Fields/2. Probability in Statistics.vtt
7.7 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.vtt
7.6 kB
42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.vtt
7.6 kB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.vtt
7.6 kB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.vtt
7.6 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.vtt
7.5 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/9. MNIST Results and Testing.vtt
7.3 kB
20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.vtt
7.3 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18. Dealing with Categorical Data - Dummy Variables.vtt
7.3 kB
18. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.vtt
7.3 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.vtt
7.2 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/2. Practical Example Linear Regression (Part 2).vtt
7.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.vtt
7.1 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.vtt
7.1 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/8. First Regression in Python.vtt
7.1 kB
50. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.vtt
7.1 kB
51. Deep Learning - Business Case Example/9. Business Case Setting an Early Stopping Mechanism.vtt
7.1 kB
44. Deep Learning - TensorFlow 2.0 Introduction/6. Outlining the Model with TensorFlow 2.vtt
7.0 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9. Basic NN Example with TF Model Output.vtt
7.0 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.vtt
7.0 kB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.vtt
7.0 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/6. Creating a Data Provider.vtt
7.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).vtt
6.9 kB
12. Probability - Distributions/1. Fundamentals of Probability Distributions.vtt
6.9 kB
15. Statistics - Descriptive Statistics/22. Variance.vtt
6.8 kB
60. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.vtt
6.8 kB
42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.vtt
6.8 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3. Adjusted R-Squared.vtt
6.7 kB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).vtt
6.7 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt
6.6 kB
23. Python - Variables and Data Types/5. Python Strings.vtt
6.6 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/3. Simple Linear Regression with sklearn.vtt
6.6 kB
38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.vtt
6.6 kB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.vtt
6.6 kB
44. Deep Learning - TensorFlow 2.0 Introduction/1. How to Install TensorFlow 2.0.vtt
6.6 kB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.vtt
6.6 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.vtt
6.6 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.vtt
6.6 kB
11. Probability - Bayesian Inference/20. Bayes' Law.vtt
6.6 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.vtt
6.5 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.vtt
6.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Outline the Model.vtt
6.4 kB
36. Advanced Statistical Methods - Logistic Regression/5.2 Example_bank_data.csv.csv
6.4 kB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.vtt
6.3 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.vtt
6.3 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/1. The Linear Regression Model.vtt
6.3 kB
22. Part 4 Introduction to Python/3. Why Python.vtt
6.3 kB
22. Part 4 Introduction to Python/1. Introduction to Programming.vtt
6.2 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7. Business Case Model Outline.vtt
6.2 kB
46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.vtt
6.2 kB
9. Part 2 Probability/7. Events and Their Complements.vtt
6.1 kB
56. Software Integration/9. Software Integration - Explained.vtt
6.1 kB
9. Part 2 Probability/3. Computing Expected Values.vtt
6.0 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).vtt
6.0 kB
15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.vtt
6.0 kB
13. Probability - Probability in Other Fields/3. Probability in Data Science.vtt
6.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt
6.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).vtt
6.0 kB
2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.vtt
6.0 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.vtt
6.0 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. A3 Normality and Homoscedasticity.vtt
6.0 kB
12. Probability - Distributions/13. Discrete Distributions The Poisson Distribution.vtt
5.9 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/17. R-Squared.vtt
5.9 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.vtt
5.9 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8. Business Case Optimization.vtt
5.9 kB
38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.vtt
5.9 kB
15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.vtt
5.9 kB
26. Python - Conditional Statements/4. The ELIF Statement.vtt
5.9 kB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.vtt
5.8 kB
4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.vtt
5.8 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.vtt
5.8 kB
9. Part 2 Probability/5. Frequency.vtt
5.8 kB
15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.vtt
5.8 kB
52. Deep Learning - Conclusion/4. An overview of CNNs.vtt
5.8 kB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.vtt
5.8 kB
1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.vtt
5.8 kB
20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.vtt
5.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.vtt
5.7 kB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt
5.7 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/11. How to Interpret the Regression Table.vtt
5.6 kB
39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.vtt
5.6 kB
44. Deep Learning - TensorFlow 2.0 Introduction/7. Interpreting the Result and Extracting the Weights and Bias.vtt
5.6 kB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.vtt
5.6 kB
37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.vtt
5.6 kB
18. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.vtt
5.5 kB
30. Python - Advanced Python Tools/1. Object Oriented Programming.vtt
5.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).vtt
5.5 kB
40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.vtt
5.4 kB
49. Deep Learning - Preprocessing/3. Standardization.vtt
5.4 kB
23. Python - Variables and Data Types/1. Variables.vtt
5.4 kB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.vtt
5.4 kB
15. Statistics - Descriptive Statistics/1. Types of Data.vtt
5.4 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt
5.3 kB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.vtt
5.3 kB
42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.vtt
5.3 kB
38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.vtt
5.3 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.vtt
5.2 kB
20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.vtt
5.2 kB
17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.vtt
5.2 kB
36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.vtt
5.2 kB
18. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.vtt
5.1 kB
15. Statistics - Descriptive Statistics/17. Mean, median and mode.vtt
5.1 kB
25. Python - Other Python Operators/3. Logical and Identity Operators.vtt
5.1 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.vtt
5.1 kB
10. Probability - Combinatorics/11. Solving Combinations.vtt
5.1 kB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.vtt
5.1 kB
11. Probability - Bayesian Inference/7. Union of Sets.vtt
5.1 kB
17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.vtt
5.1 kB
46. Deep Learning - Overfitting/1. What is Overfitting.vtt
5.1 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.vtt
5.0 kB
20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.vtt
5.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.vtt
5.0 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/7. Python Packages Installation.vtt
5.0 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.vtt
5.0 kB
36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.vtt
5.0 kB
28. Python - Sequences/5. List Slicing.vtt
4.9 kB
20. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).vtt
4.9 kB
18. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.vtt
4.9 kB
14. Part 3 Statistics/1. Population and Sample.vtt
4.9 kB
56. Software Integration/7. Communication between Software Products through Text Files.vtt
4.9 kB
57. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt
4.9 kB
42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.vtt
4.9 kB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.vtt
4.9 kB
12. Probability - Distributions/19. Continuous Distributions The Standard Normal Distribution.vtt
4.8 kB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.vtt
4.8 kB
40. Part 6 Mathematics/13. Transpose of a Matrix.vtt
4.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.vtt
4.8 kB
42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.vtt
4.7 kB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.vtt
4.7 kB
44. Deep Learning - TensorFlow 2.0 Introduction/2. TensorFlow Outline and Comparison with Other Libraries.vtt
4.7 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/4. TensorFlow Intro.vtt
4.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. A2 No Endogeneity.vtt
4.7 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.vtt
4.7 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.vtt
4.7 kB
42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.vtt
4.7 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt
4.7 kB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.vtt
4.7 kB
20. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).vtt
4.7 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.vtt
4.6 kB
1. Part 1 Introduction/2. What Does the Course Cover.vtt
4.6 kB
11. Probability - Bayesian Inference/1. Sets and Events.vtt
4.6 kB
20. Statistics - Hypothesis Testing/10. p-value.vtt
4.6 kB
12. Probability - Distributions/27. Continuous Distributions The Logistic Distribution.vtt
4.6 kB
2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.vtt
4.6 kB
11. Probability - Bayesian Inference/13. The Conditional Probability Formula.vtt
4.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.vtt
4.5 kB
2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.vtt
4.5 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt
4.5 kB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.vtt
4.5 kB
17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.vtt
4.4 kB
15. Statistics - Descriptive Statistics/27. Covariance.vtt
4.4 kB
28. Python - Sequences/1. Lists.vtt
4.4 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.vtt
4.4 kB
36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.vtt
4.4 kB
46. Deep Learning - Overfitting/3. What is Validation.vtt
4.4 kB
12. Probability - Distributions/17. Continuous Distributions The Normal Distribution.vtt
4.3 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8. Basic NN Example with TF Loss Function and Gradient Descent.vtt
4.3 kB
37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.vtt
4.3 kB
60. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.vtt
4.3 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.vtt
4.3 kB
36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.vtt
4.3 kB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.vtt
4.3 kB
30. Python - Advanced Python Tools/7. Importing Modules in Python.vtt
4.3 kB
15. Statistics - Descriptive Statistics/30. Correlation Coefficient.vtt
4.2 kB
39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.vtt
4.2 kB
51. Deep Learning - Business Case Example/6. Business Case Load the Preprocessed Data.vtt
4.2 kB
22. Part 4 Introduction to Python/5. Why Jupyter.vtt
4.2 kB
11. Probability - Bayesian Inference/18. The Multiplication Law.vtt
4.2 kB
41. Part 7 Deep Learning/1. What to Expect from this Part.vtt
4.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/16. A5 No Multicollinearity.vtt
4.1 kB
15. Statistics - Descriptive Statistics/3. Levels of Measurement.vtt
4.1 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.vtt
4.1 kB
38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.vtt
4.1 kB
10. Probability - Combinatorics/9. Solving Variations without Repetition.vtt
4.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).vtt
4.1 kB
51. Deep Learning - Business Case Example/3. Business Case Balancing the Dataset.vtt
4.1 kB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.vtt
4.0 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3. The Importance of Working with a Balanced Dataset.vtt
4.0 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.vtt
4.0 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).vtt
4.0 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.vtt
4.0 kB
11. Probability - Bayesian Inference/3. Ways Sets Can Interact.vtt
4.0 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.vtt
4.0 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).vtt
4.0 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20. Making Predictions with the Linear Regression.vtt
4.0 kB
15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.vtt
3.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.vtt
3.9 kB
40. Part 6 Mathematics/1. What is a matrix.vtt
3.9 kB
42. Deep Learning - Introduction to Neural Networks/3. Training the Model.vtt
3.9 kB
10. Probability - Combinatorics/13. Symmetry of Combinations.vtt
3.9 kB
27. Python - Python Functions/2. How to Create a Function with a Parameter.vtt
3.9 kB
40. Part 6 Mathematics/14. Dot Product.vtt
3.8 kB
18. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.vtt
3.8 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.vtt
3.8 kB
27. Python - Python Functions/7. Built-in Functions in Python.vtt
3.8 kB
46. Deep Learning - Overfitting/5. N-Fold Cross Validation.vtt
3.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/7. Multiple Linear Regression with sklearn.vtt
3.8 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/13. Decomposition of Variability.vtt
3.8 kB
57. Case Study - What's Next in the Course/3. Introducing the Data Set.vtt
3.7 kB
12. Probability - Distributions/25. Continuous Distributions The Exponential Distribution.vtt
3.7 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/4. Practical Example Linear Regression (Part 3).vtt
3.7 kB
28. Python - Sequences/7. Dictionaries.vtt
3.7 kB
10. Probability - Combinatorics/17. Combinatorics in Real-Life The Lottery.vtt
3.7 kB
38. Advanced Statistical Methods - K-Means Clustering/15.3 iris_with_answers.csv.csv
3.7 kB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.vtt
3.7 kB
10. Probability - Combinatorics/3. Permutations and How to Use Them.vtt
3.7 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.vtt
3.7 kB
44. Deep Learning - TensorFlow 2.0 Introduction/8. Customizing a TensorFlow 2 Model.vtt
3.7 kB
24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.vtt
3.7 kB
40. Part 6 Mathematics/5. Linear Algebra and Geometry.vtt
3.6 kB
37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.vtt
3.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.vtt
3.6 kB
40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.vtt
3.6 kB
12. Probability - Distributions/9. Discrete Distributions The Bernoulli Distribution.vtt
3.6 kB
28. Python - Sequences/3. Using Methods.vtt
3.6 kB
17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.vtt
3.5 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.vtt
3.5 kB
42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).vtt
3.5 kB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.vtt
3.5 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.vtt
3.5 kB
29. Python - Iterations/8. How to Iterate over Dictionaries.vtt
3.4 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/15. What is the OLS.vtt
3.4 kB
10. Probability - Combinatorics/15. Solving Combinations with Separate Sample Spaces.vtt
3.4 kB
52. Deep Learning - Conclusion/5. An Overview of RNNs.vtt
3.4 kB
57. Case Study - What's Next in the Course/2. The Business Task.vtt
3.4 kB
40. Part 6 Mathematics/3. Scalars and Vectors.vtt
3.4 kB
17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.vtt
3.4 kB
10. Probability - Combinatorics/19. A Recap of Combinatorics.vtt
3.3 kB
22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt
3.3 kB
47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt
3.3 kB
47. Deep Learning - Initialization/2. Types of Simple Initializations.vtt
3.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/3. TensorFlow 1 vs TensorFlow 2.vtt
3.3 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.vtt
3.3 kB
15. Statistics - Descriptive Statistics/19. Skewness.vtt
3.3 kB
23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.vtt
3.2 kB
40. Part 6 Mathematics/8. What is a Tensor.vtt
3.2 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.vtt
3.2 kB
30. Python - Advanced Python Tools/5. What is the Standard Library.vtt
3.2 kB
29. Python - Iterations/6. Conditional Statements and Loops.vtt
3.2 kB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.vtt
3.2 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.vtt
3.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST The Dataset.vtt
3.2 kB
11. Probability - Bayesian Inference/15. The Law of Total Probability.vtt
3.2 kB
26. Python - Conditional Statements/1. The IF Statement.vtt
3.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.vtt
3.2 kB
46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.vtt
3.2 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.vtt
3.2 kB
10. Probability - Combinatorics/7. Solving Variations with Repetition.vtt
3.2 kB
47. Deep Learning - Initialization/1. What is Initialization.vtt
3.2 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.vtt
3.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.vtt
3.1 kB
11. Probability - Bayesian Inference/11. Dependence and Independence of Sets.vtt
3.1 kB
27. Python - Python Functions/5. Conditional Statements and Functions.vtt
3.1 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.vtt
3.1 kB
44. Deep Learning - TensorFlow 2.0 Introduction/5. Types of File Formats Supporting TensorFlow.vtt
3.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/1. What is sklearn and How is it Different from Other Packages.vtt
3.1 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6. Types of File Formats, supporting Tensors.vtt
3.1 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/2. How to Install TensorFlow 1.vtt
3.0 kB
28. Python - Sequences/6. Tuples.vtt
3.0 kB
22. Part 4 Introduction to Python/11. Python 2 vs Python 3.vtt
3.0 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/1. Multiple Linear Regression.vtt
3.0 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).vtt
3.0 kB
10. Probability - Combinatorics/5. Simple Operations with Factorials.vtt
3.0 kB
36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.vtt
3.0 kB
37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.vtt
3.0 kB
18. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.vtt
2.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/5. What's Regression Analysis - a Quick Refresher.html
2.9 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.vtt
2.9 kB
38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.vtt
2.9 kB
36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.vtt
2.8 kB
42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.vtt
2.8 kB
27. Python - Python Functions/3. Defining a Function in Python - Part II.vtt
2.8 kB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Importing the Relevant Packages and Loading the Data.vtt
2.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/7. OLS Assumptions.vtt
2.7 kB
15. Statistics - Descriptive Statistics/11. The Histogram.vtt
2.7 kB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Select the Loss and the Optimizer.vtt
2.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with p-values.vtt
2.7 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9. Business Case Interpretation.vtt
2.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/2. How are Going to Approach this Section.vtt
2.6 kB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).vtt
2.6 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.vtt
2.6 kB
26. Python - Conditional Statements/5. A Note on Boolean Values.vtt
2.6 kB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.vtt
2.6 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.vtt
2.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1. What to Expect from the Following Sections.html
2.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.vtt
2.5 kB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.vtt
2.5 kB
26. Python - Conditional Statements/3. The ELSE Statement.vtt
2.5 kB
29. Python - Iterations/4. Lists with the range() Function.vtt
2.5 kB
29. Python - Iterations/1. For Loops.vtt
2.5 kB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.vtt
2.5 kB
11. Probability - Bayesian Inference/16. The Additive Rule.vtt
2.5 kB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.vtt
2.5 kB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.vtt
2.5 kB
29. Python - Iterations/3. While Loops and Incrementing.vtt
2.5 kB
38. Advanced Statistical Methods - K-Means Clustering/14.1 iris_dataset.csv.csv
2.5 kB
38. Advanced Statistical Methods - K-Means Clustering/15.1 iris_dataset.csv.csv
2.5 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.vtt
2.4 kB
42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.vtt
2.4 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/14. Dropping a Dummy Variable from the Data Set.html
2.4 kB
46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.vtt
2.4 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/3. A Note on Installing Packages in Anaconda.html
2.4 kB
20. Statistics - Hypothesis Testing/2. Further Reading on Null and Alternative Hypothesis.html
2.3 kB
40. Part 6 Mathematics/12. Errors when Adding Matrices.vtt
2.3 kB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.vtt
2.3 kB
11. Probability - Bayesian Inference/9. Mutually Exclusive Sets.vtt
2.3 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/6. Test for Significance of the Model (F-Test).vtt
2.3 kB
27. Python - Python Functions/1. Defining a Function in Python.vtt
2.3 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.vtt
2.2 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/2. Business Case Outlining the Solution.vtt
2.2 kB
11. Probability - Bayesian Inference/5. Intersection of Sets.vtt
2.2 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10. MNIST Solutions.html
2.2 kB
12. Probability - Distributions/5. Characteristics of Discrete Distributions.vtt
2.2 kB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/14. ARTICLE - A Note on 'pickling'.html
2.2 kB
25. Python - Other Python Operators/1. Comparison Operators.vtt
2.2 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/11. MNIST Exercises.html
2.2 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.vtt
2.2 kB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.vtt
2.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/9. A1 Linearity.vtt
2.1 kB
50. Deep Learning - Classifying on the MNIST Dataset/11. MNIST - Exercises.html
2.0 kB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.vtt
2.0 kB
24. Python - Basic Python Syntax/12. Structuring with Indentation.vtt
2.0 kB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.vtt
2.0 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5. Actual Introduction to TensorFlow.vtt
2.0 kB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.vtt
2.0 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.vtt
1.9 kB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).vtt
1.9 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/3. MNIST Relevant Packages.vtt
1.9 kB
42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.vtt
1.9 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/3. Correlation vs Regression.vtt
1.9 kB
51. Deep Learning - Business Case Example/11. Business Case Testing the Model.vtt
1.8 kB
27. Python - Python Functions/4. How to Use a Function within a Function.vtt
1.8 kB
17. Statistics - Inferential Statistics Fundamentals/11. Standard error.vtt
1.8 kB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.vtt
1.8 kB
18. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).vtt
1.8 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5. Basic NN Example Exercises.html
1.7 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.vtt
1.6 kB
24. Python - Basic Python Syntax/3. The Double Equality Sign.vtt
1.6 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10. Basic NN Example with TF Exercises.html
1.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.vtt
1.5 kB
24. Python - Basic Python Syntax/7. Add Comments.vtt
1.5 kB
24. Python - Basic Python Syntax/10. Indexing Elements.vtt
1.5 kB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.vtt
1.5 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/5. Geometrical Representation of the Linear Regression Model.vtt
1.5 kB
17. Statistics - Inferential Statistics Fundamentals/1. Introduction.vtt
1.5 kB
36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.vtt
1.5 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/9. First Regression in Python Exercise.html
1.4 kB
32. Advanced Statistical Methods - Linear regression with StatsModels/10. Using Seaborn for Graphs.vtt
1.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9. Basic NN with TensorFlow Exercises.html
1.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/4. A Note on TensorFlow 2 Syntax.vtt
1.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/29. EXERCISE - Removing the Date Column.html
1.2 kB
10. Probability - Combinatorics/1. Fundamentals of Combinatorics.vtt
1.2 kB
24. Python - Basic Python Syntax/5. How to Reassign Values.vtt
1.2 kB
30. Python - Advanced Python Tools/3. Modules and Packages.vtt
1.2 kB
27. Python - Python Functions/6. Functions Containing a Few Arguments.vtt
1.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/7.2 1.02. Multiple linear regression.csv.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/8.2 1.02. Multiple linear regression.csv.csv
1.1 kB
52. Deep Learning - Conclusion/3. DeepMind and Deep Learning.html
1.1 kB
24. Python - Basic Python Syntax/9. Understanding Line Continuation.vtt
1.0 kB
60. Case Study - Loading the 'absenteeism_module'/4. Exporting the Obtained Data Set as a .csv.html
998 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/3.2 1.01. Simple linear regression.csv.csv
922 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/4.2 1.01. Simple linear regression.csv.csv
922 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/8. EXERCISE - Dropping a Column from a DataFrame in Python.html
866 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/3. A Note on Multicollinearity.html
849 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/5. A Note on Normalization.html
733 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/7. Dummy Variables - Exercise.html
713 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/1. READ ME!!!!.html
564 Bytes
61. Case Study - Analyzing the Predicted Outputs in Tableau/5. EXERCISE - Transportation Expense vs Probability.html
553 Bytes
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9. Backpropagation - A Peek into the Mathematics of Optimization.html
539 Bytes
15. Statistics - Descriptive Statistics/23. Variance Exercise.html
522 Bytes
60. Case Study - Loading the 'absenteeism_module'/1. Are You Sure You're All Set.html
519 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/9. Linear Regression - Exercise.html
503 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
471 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/12. Business Case Final Exercise.html
439 Bytes
51. Deep Learning - Business Case Example/12. Business Case Final Exercise.html
433 Bytes
61. Case Study - Analyzing the Predicted Outputs in Tableau/3. EXERCISE - Reasons vs Probability.html
397 Bytes
61. Case Study - Analyzing the Predicted Outputs in Tableau/1. EXERCISE - Age vs Probability.html
385 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/5. Business Case Preprocessing Exercise.html
383 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/11. A Note on Calculation of P-values with sklearn.html
372 Bytes
51. Deep Learning - Business Case Example/5. Business Case Preprocessing the Data - Exercise.html
370 Bytes
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15. EXERCISE - Saving the Model (and Scaler).html
284 Bytes
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11.1 Logistic Regression prior to Backward Elimination.html
226 Bytes
40. Part 6 Mathematics/12.1 Errors when Adding Matrices Python Notebook.html
220 Bytes
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9.1 Logistic Regression prior to Custom Scaler.html
219 Bytes
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15.2 Logistic Regression with Comments.html
210 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/8.1 Multiple Linear Regression and Adjusted R-squared with Comments.html
201 Bytes
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15.1 Logistic Regression.html
196 Bytes
51. Deep Learning - Business Case Example/10. Setting an Early Stopping Mechanism - Exercise.html
192 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/18. EXERCISE - Using .concat() in Python.html
189 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/29.2 Removing the “Date” Column.html
188 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/8.3 Multiple Linear Regression and Adjusted R-squared.html
187 Bytes
60. Case Study - Loading the 'absenteeism_module'/4.1 Deploying the ‘absenteeism_module.html
185 Bytes
40. Part 6 Mathematics/7.1 Arrays in Python Notebook.html
181 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/23.1 Creating Checkpoints.html
181 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/29.1 Preprocessing.html
181 Bytes
40. Part 6 Mathematics/10.1 Addition and Subtraction of Matrices Python Notebook.html
178 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/7.1 Multiple Linear Regression with sklearn with Comments.html
172 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.7 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html
172 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.9 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html
172 Bytes
40. Part 6 Mathematics/15.1 Dot Product of Matrices Python Notebook.html
171 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/3.3 Simple Linear Regression with sklearn with Comments.html
170 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/4.1 Simple Linear Regression with sklearn with Comments.html
170 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/32.1 Exercises and solutions.html
170 Bytes
40. Part 6 Mathematics/13.1 Transpose of a Matrix Python Notebook.html
167 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
167 Bytes
10. Probability - Combinatorics/10. Solving Variations without Repetition.html
165 Bytes
10. Probability - Combinatorics/12. Solving Combinations.html
165 Bytes
10. Probability - Combinatorics/14. Symmetry of Combinations.html
165 Bytes
10. Probability - Combinatorics/16. Solving Combinations with Separate Sample Spaces.html
165 Bytes
10. Probability - Combinatorics/18. Combinatorics in Real-Life The Lottery.html
165 Bytes
10. Probability - Combinatorics/2. Fundamentals of Combinatorics.html
165 Bytes
10. Probability - Combinatorics/4. Permutations and How to Use Them.html
165 Bytes
10. Probability - Combinatorics/6. Simple Operations with Factorials.html
165 Bytes
10. Probability - Combinatorics/8. Solving Variations with Repetition.html
165 Bytes
11. Probability - Bayesian Inference/10. Mutually Exclusive Sets.html
165 Bytes
11. Probability - Bayesian Inference/12. Dependence and Independence of Sets.html
165 Bytes
11. Probability - Bayesian Inference/14. The Conditional Probability Formula.html
165 Bytes
11. Probability - Bayesian Inference/17. The Additive Rule.html
165 Bytes
11. Probability - Bayesian Inference/19. The Multiplication Law.html
165 Bytes
11. Probability - Bayesian Inference/2. Sets and Events.html
165 Bytes
11. Probability - Bayesian Inference/21. Bayes' Law.html
165 Bytes
11. Probability - Bayesian Inference/4. Ways Sets Can Interact.html
165 Bytes
11. Probability - Bayesian Inference/6. Intersection of Sets.html
165 Bytes
11. Probability - Bayesian Inference/8. Union of Sets.html
165 Bytes
12. Probability - Distributions/10. Discrete Distributions The Bernoulli Distribution.html
165 Bytes
12. Probability - Distributions/12. Discrete Distributions The Binomial Distribution.html
165 Bytes
12. Probability - Distributions/14. Discrete Distributions The Poisson Distribution.html
165 Bytes
12. Probability - Distributions/16. Characteristics of Continuous Distributions.html
165 Bytes
12. Probability - Distributions/18. Continuous Distributions The Normal Distribution.html
165 Bytes
12. Probability - Distributions/2. Fundamentals of Probability Distributions.html
165 Bytes
12. Probability - Distributions/20. Continuous Distributions The Standard Normal Distribution.html
165 Bytes
12. Probability - Distributions/22. Continuous Distributions The Students' T Distribution.html
165 Bytes
12. Probability - Distributions/24. Continuous Distributions The Chi-Squared Distribution.html
165 Bytes
12. Probability - Distributions/26. Continuous Distributions The Exponential Distribution.html
165 Bytes
12. Probability - Distributions/28. Continuous Distributions The Logistic Distribution.html
165 Bytes
12. Probability - Distributions/4. Types of Probability Distributions.html
165 Bytes
12. Probability - Distributions/6. Characteristics of Discrete Distributions.html
165 Bytes
12. Probability - Distributions/8. Discrete Distributions The Uniform Distribution.html
165 Bytes
14. Part 3 Statistics/2. Population and Sample.html
165 Bytes
15. Statistics - Descriptive Statistics/12. The Histogram.html
165 Bytes
15. Statistics - Descriptive Statistics/15. Cross Tables and Scatter Plots.html
165 Bytes
15. Statistics - Descriptive Statistics/2. Types of Data.html
165 Bytes
15. Statistics - Descriptive Statistics/20. Skewness.html
165 Bytes
15. Statistics - Descriptive Statistics/25. Standard Deviation.html
165 Bytes
15. Statistics - Descriptive Statistics/28. Covariance.html
165 Bytes
15. Statistics - Descriptive Statistics/31. Correlation.html
165 Bytes
15. Statistics - Descriptive Statistics/4. Levels of Measurement.html
165 Bytes
15. Statistics - Descriptive Statistics/6. Categorical Variables - Visualization Techniques.html
165 Bytes
15. Statistics - Descriptive Statistics/9. Numerical Variables - Frequency Distribution Table.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/10. Central Limit Theorem.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/12. Standard Error.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/14. Estimators and Estimates.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/3. What is a Distribution.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/5. The Normal Distribution.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/7. The Standard Normal Distribution.html
165 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/11. Margin of Error.html
165 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/2. What are Confidence Intervals.html
165 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/7. Student's T Distribution.html
165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/10. A Breakdown of our Data Science Infographic.html
165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/2. Data Science and Business Buzzwords Why are there so many.html
165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/4. What is the difference between Analysis and Analytics.html
165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/6. Business Analytics, Data Analytics, and Data Science An Introduction.html
165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/8. Continuing with BI, ML, and AI.html
165 Bytes
20. Statistics - Hypothesis Testing/11. p-value.html
165 Bytes
20. Statistics - Hypothesis Testing/19. Test for the mean. Independent samples (Part 2).html
165 Bytes
20. Statistics - Hypothesis Testing/3. Null vs Alternative Hypothesis.html
165 Bytes
20. Statistics - Hypothesis Testing/5. Rejection Region and Significance Level.html
165 Bytes
20. Statistics - Hypothesis Testing/7. Type I Error and Type II Error.html
165 Bytes
22. Part 4 Introduction to Python/10. Jupyter's Interface.html
165 Bytes
22. Part 4 Introduction to Python/2. Introduction to Programming.html
165 Bytes
22. Part 4 Introduction to Python/4. Why Python.html
165 Bytes
22. Part 4 Introduction to Python/6. Why Jupyter.html
165 Bytes
23. Python - Variables and Data Types/2. Variables.html
165 Bytes
23. Python - Variables and Data Types/4. Numbers and Boolean Values in Python.html
165 Bytes
23. Python - Variables and Data Types/6. Python Strings.html
165 Bytes
24. Python - Basic Python Syntax/11. Indexing Elements.html
165 Bytes
24. Python - Basic Python Syntax/13. Structuring with Indentation.html
165 Bytes
24. Python - Basic Python Syntax/2. Using Arithmetic Operators in Python.html
165 Bytes
24. Python - Basic Python Syntax/4. The Double Equality Sign.html
165 Bytes
24. Python - Basic Python Syntax/6. How to Reassign Values.html
165 Bytes
24. Python - Basic Python Syntax/8. Add Comments.html
165 Bytes
25. Python - Other Python Operators/2. Comparison Operators.html
165 Bytes
25. Python - Other Python Operators/4. Logical and Identity Operators.html
165 Bytes
26. Python - Conditional Statements/2. The IF Statement.html
165 Bytes
26. Python - Conditional Statements/6. A Note on Boolean Values.html
165 Bytes
27. Python - Python Functions/8. Python Functions.html
165 Bytes
28. Python - Sequences/2. Lists.html
165 Bytes
28. Python - Sequences/4. Using Methods.html
165 Bytes
28. Python - Sequences/8. Dictionaries.html
165 Bytes
29. Python - Iterations/2. For Loops.html
165 Bytes
29. Python - Iterations/5. Lists with the range() Function.html
165 Bytes
3. The Field of Data Science - Connecting the Data Science Disciplines/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html
165 Bytes
30. Python - Advanced Python Tools/2. Object Oriented Programming.html
165 Bytes
30. Python - Advanced Python Tools/4. Modules and Packages.html
165 Bytes
30. Python - Advanced Python Tools/6. What is the Standard Library.html
165 Bytes
30. Python - Advanced Python Tools/8. Importing Modules in Python.html
165 Bytes
31. Part 5 Advanced Statistical Methods in Python/2. Introduction to Regression Analysis.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/12. How to Interpret the Regression Table.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/14. Decomposition of Variability.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/16. What is the OLS.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/18. R-Squared.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/2. The Linear Regression Model.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/4. Correlation vs Regression.html
165 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/6. Geometrical Representation of the Linear Regression Model.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/10. A1 Linearity.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/12. A2 No Endogeneity.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/15. A4 No autocorrelation.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/17. A5 No Multicollinearity.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/2. Multiple Linear Regression.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/4. Adjusted R-Squared.html
165 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/8. OLS Assumptions.html
165 Bytes
4. The Field of Data Science - The Benefits of Each Discipline/2. The Reason behind these Disciplines.html
165 Bytes
40. Part 6 Mathematics/11. Addition and Subtraction of Matrices.html
165 Bytes
40. Part 6 Mathematics/2. What is a Matrix.html
165 Bytes
40. Part 6 Mathematics/4. Scalars and Vectors.html
165 Bytes
40. Part 6 Mathematics/6. Linear Algebra and Geometry.html
165 Bytes
40. Part 6 Mathematics/9. What is a Tensor.html
165 Bytes
41. Part 7 Deep Learning/2. What is Machine Learning.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/10. The Linear Model with Multiple Inputs.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/12. The Linear model with Multiple Inputs and Multiple Outputs.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/14. Graphical Representation of Simple Neural Networks.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/16. What is the Objective Function.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/18. Common Objective Functions L2-norm Loss.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/2. Introduction to Neural Networks.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/20. Common Objective Functions Cross-Entropy Loss.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/22. Optimization Algorithm 1-Parameter Gradient Descent.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/24. Optimization Algorithm n-Parameter Gradient Descent.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/4. Training the Model.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/6. Types of Machine Learning.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/8. The Linear Model.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/11. Techniques for Working with Traditional Methods.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/14. Machine Learning (ML) Techniques.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/16. Types of Machine Learning.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/18. Real Life Examples of Machine Learning (ML).html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/2. Techniques for Working with Traditional Data.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/5. Techniques for Working with Big Data.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/8. Business Intelligence (BI) Techniques.html
165 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.1 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html
165 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.3 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html
165 Bytes
56. Software Integration/10. Software Integration - Explained.html
165 Bytes
56. Software Integration/2. What are Data, Servers, Clients, Requests, and Responses.html
165 Bytes
56. Software Integration/4. What are Data Connectivity, APIs, and Endpoints.html
165 Bytes
56. Software Integration/6. Taking a Closer Look at APIs.html
165 Bytes
56. Software Integration/8. Communication between Software Products through Text Files.html
165 Bytes
57. Case Study - What's Next in the Course/4. Introducing the Data Set.html
165 Bytes
6. The Field of Data Science - Popular Data Science Tools/2. Necessary Programming Languages and Software Used in Data Science.html
165 Bytes
7. The Field of Data Science - Careers in Data Science/2. Finding the Job - What to Expect and What to Look for.html
165 Bytes
8. The Field of Data Science - Debunking Common Misconceptions/2. Debunking Common Misconceptions.html
165 Bytes
9. Part 2 Probability/2. The Basic Probability Formula.html
165 Bytes
9. Part 2 Probability/4. Computing Expected Values.html
165 Bytes
9. Part 2 Probability/6. Frequency.html
165 Bytes
9. Part 2 Probability/8. Events and Their Complements.html
165 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.1 Basic NN Example with TensorFlow Exercise 2.3 Solution.html
162 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html
162 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.6 Basic NN Example with TensorFlow Exercise 2.4 Solution.html
162 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.7 Basic NN Example with TensorFlow Exercise 2.2 Solution.html
162 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.11 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html
162 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.4 TensorFlow MNIST 'Time' Solution.html
162 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.6 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html
162 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.3 Basic NN Example with TensorFlow Exercise 1 Solution.html
160 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.4 Basic NN Example with TensorFlow Exercise 3 Solution.html
160 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.8 Basic NN Example with TensorFlow Exercise 4 Solution.html
160 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.2 TensorFlow MNIST '3. Width and Depth' Solution.html
160 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/3.1 TensorFlow MNIST Part 1 with Comments.html
159 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4.1 TensorFlow MNIST Part 2 with Comments.html
159 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/5.1 TensorFlow MNIST Part 3 with Comments.html
159 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/6.1 TensorFlow MNIST Part 4 with Comments.html
159 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/7.1 TensorFlow MNIST Part 5 with Comments.html
159 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/8.1 TensorFlow MNIST Part 6 with Comments.html
159 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/7.3 Multiple Linear Regression with sklearn.html
158 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.5 TensorFlow MNIST 'Around 98% Accuracy' Solution.html
157 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/3.1 Simple Linear Regression with sklearn.html
156 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/4.3 Simple Linear Regression with sklearn.html
156 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/9.1 Basic NN Example with TensorFlow (Complete).html
156 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/32.2 Preprocessing.html
156 Bytes
40. Part 6 Mathematics/14.1 Dot Product Python Notebook.html
154 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.1 Basic NN Example Exercise 3a Solution.html
154 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.3 Basic NN Example Exercise 3c Solution.html
154 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.5 Basic NN Example Exercise 3b Solution.html
154 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.7 Basic NN Example Exercise 3d Solution.html
154 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.5 Basic NN Example with TensorFlow (All Exercises).html
154 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/6.1 Basic NN Example with TensorFlow (Part 1).html
154 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/7.1 Basic NN Example with TensorFlow (Part 2).html
154 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/8.1 Basic NN Example with TensorFlow (Part 3).html
154 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/9.1 TensorFlow MNIST Complete Code with Comments.html
152 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.10 TensorFlow MNIST '2. Depth' Solution.html
150 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.8 TensorFlow MNIST '1. Width' Solution.html
150 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.10 Basic NN Example Exercise 4 Solution.html
149 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.2 Basic NN Example Exercise 5 Solution.html
149 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.4 Basic NN Example Exercise 1 Solution.html
149 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.8 Basic NN Example Exercise 2 Solution.html
149 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.9 Basic NN Example Exercise 6 Solution.html
149 Bytes
40. Part 6 Mathematics/8.1 Tensors Notebook.html
148 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4.1 Basic NN Example (Part 4).html
145 Bytes
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/11.1 TensorFlow MNIST All Exercises.html
144 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.6 Basic NN Example (All Exercises).html
143 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/19. SOLUTION - Using .concat() in Python.html
142 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html
137 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.2 Bais NN Example Part 1.html
136 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2.1 Basic NN Example (Part 2).html
136 Bytes
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3.1 Basic NN Example (Part 3).html
136 Bytes
1. Part 1 Introduction/3.1 Download All Resources.html
134 Bytes
23. Python - Variables and Data Types/1.2 Variables - Resources.html
134 Bytes
23. Python - Variables and Data Types/3.1 Numbers and Boolean Values - Resources.html
134 Bytes
23. Python - Variables and Data Types/5.1 Strings - Resources.html
134 Bytes
24. Python - Basic Python Syntax/1.1 Arithmetic Operators - Resources.html
134 Bytes
24. Python - Basic Python Syntax/10.1 Indexing Elements - Resources.html
134 Bytes
24. Python - Basic Python Syntax/12.1 Structure Your Code with Indentation - Resources.html
134 Bytes
24. Python - Basic Python Syntax/3.1 The Double Equality Sign - Resources.html
134 Bytes
24. Python - Basic Python Syntax/5.1 Reassign Values - Resources.html
134 Bytes
24. Python - Basic Python Syntax/7.1 Add Comments - Resources.html
134 Bytes
24. Python - Basic Python Syntax/9.1 Line Continuation - Resources.html
134 Bytes
25. Python - Other Python Operators/1.1 Comparison Operators - Resources.html
134 Bytes
25. Python - Other Python Operators/3.1 Logical and Identity Operators - Resources.html
134 Bytes
26. Python - Conditional Statements/1.1 Introduction to the If Statement - Resources.html
134 Bytes
26. Python - Conditional Statements/3.1 Add an Else Statement - Resources.html
134 Bytes
26. Python - Conditional Statements/4.1 Else if, for Brief - Elif - Resources.html
134 Bytes
26. Python - Conditional Statements/5.1 A Note on Boolean Values - Resources.html
134 Bytes
27. Python - Python Functions/1.1 Defining a Function in Python - Resources.html
134 Bytes
27. Python - Python Functions/2.1 Creating a Function with a Parameter - Resources.html
134 Bytes
27. Python - Python Functions/3.1 Another Way to Define a Function - Resources.html
134 Bytes
27. Python - Python Functions/4.1 Using a Function in Another Function - Resources.html
134 Bytes
27. Python - Python Functions/5.1 Combining Conditional Statements and Functions - Resources.html
134 Bytes
27. Python - Python Functions/6.1 Creating Functions Containing a Few Arguments - Resources.html
134 Bytes
27. Python - Python Functions/7.1 Notable Built-In Functions in Python - Resources.html
134 Bytes
28. Python - Sequences/1.1 Lists - Resources.html
134 Bytes
28. Python - Sequences/3.1 Help Yourself with Methods - Resources.html
134 Bytes
28. Python - Sequences/5.1 List Slicing - Resources.html
134 Bytes
28. Python - Sequences/6.1 Tuples - Resources.html
134 Bytes
28. Python - Sequences/7.1 Dictionaries - Resources.html
134 Bytes
29. Python - Iterations/1.1 For Loops - Resources.html
134 Bytes
29. Python - Iterations/3.1 While Loops and Incrementing - Resources.html
134 Bytes
29. Python - Iterations/4.1 Create Lists with the range() Function - Resources.html
134 Bytes
29. Python - Iterations/6.1 Use Conditional Statements and Loops Together - Resources.html
134 Bytes
29. Python - Iterations/7.1 All In - Conditional Statements, Functions, and Loops - Resources.html
134 Bytes
29. Python - Iterations/8.1 Iterating over Dictionaries - Resources.html
134 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/8.1 First regression in Python.html
134 Bytes
32. Advanced Statistical Methods - Linear regression with StatsModels/9.1 First regression in Python - Exercise.html
134 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18.1 Dealing with categorical data.html
134 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/19.1 Dealing with categorical data.html
134 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20.1 Making predictions.html
134 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3.1 Adjusted R-squared.html
134 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/5.1 Multiple linear regression - exercise.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/10.1 Feature selection.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/11.1 Calculation of P-values.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/12.1 Summary table with p-values.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/13.1 Multiple linear regression - Exercise.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/14.1 Feature scaling.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/15.1 Feature scaling standardization.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/16.1 Predicting with the Standardized Cofficients.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/17.1 Feature scaling - exercise.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/19.1 Train - Test split explained.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/6.1 Simple linear regression with sklearn.html
134 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/9.1 Calculating the Adjusted R-Squared.html
134 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/1.1 sklearn - Linear Regression - Practical Example (Part 1).html
134 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/2.1 sklearn - Linear Regression - Practical Example (Part 2).html
134 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/4.1 sklearn - Linear Regression - Practical Example (Part 3).html
134 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/5.1 Dummies and VIF - Exercise and Solution.html
134 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/6.1 sklearn - Linear Regression - Practical Example (Part 4).html
134 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/8.1 sklearn - Linear Regression - Practical Example (Part 5).html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/10.1 Binary predictors.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/11.2 Binary predictors - exercise.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/12.1 Accuracy.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/13.1 Accuracy of the model - exercise.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/15.1 Testing the model.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/16.3 Testing the model - exercise.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/2.1 A simple example in Python.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/4.1 Building a logistic regression.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/5.1 Building a logistic regression.html
134 Bytes
36. Advanced Statistical Methods - Logistic Regression/8.1 Understanding logistic regression.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/11.1 Market segmentation.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/12.1 Market segmentation.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/14.2 Exercise - part 1.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/15.2 Exercise - part 2.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/2.1 Example of clustering.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/3.1 A simple example of clustering.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/4.1 Clustering categorical data.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/5.2 Clustering categorical data.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/6.1 How to choose the number of clusters.html
134 Bytes
38. Advanced Statistical Methods - K-Means Clustering/7.1 How to choose the number of clusters.html
134 Bytes
39. Advanced Statistical Methods - Other Types of Clustering/3.1 Heatmaps.html
134 Bytes
44. Deep Learning - TensorFlow 2.0 Introduction/4.1 A note on TensorFlow 2 Syntax.html
134 Bytes
44. Deep Learning - TensorFlow 2.0 Introduction/5.1 Types of File Formats.html
134 Bytes
44. Deep Learning - TensorFlow 2.0 Introduction/6.1 Outlining the Model.html
134 Bytes
44. Deep Learning - TensorFlow 2.0 Introduction/7.1 Interpreting the Result.html
134 Bytes
44. Deep Learning - TensorFlow 2.0 Introduction/8.1 Customizing a TensorFlow 2 Model.html
134 Bytes
44. Deep Learning - TensorFlow 2.0 Introduction/9.1 Basic NN with TensorFlow.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/10.1 MNIST Learning.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/11.1 MNIST - Exercises.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/12.1 MNIST Testing the Model.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/3.1 MNIST Importing the Relevant Packages.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/5.1 MNIST Preprocess the Data.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/7.1 MNIST Preprocess the Data.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/8.1 MNIST Outline the Model.html
134 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/9.1 MNIST Select the Loss and the Optimizer.html
134 Bytes
51. Deep Learning - Business Case Example/1.2 Business Case Exploring the Dataset.html
134 Bytes
51. Deep Learning - Business Case Example/11.1 Business Case Testing the Model.html
134 Bytes
51. Deep Learning - Business Case Example/12.1 Business Case Final Exercise.html
134 Bytes
51. Deep Learning - Business Case Example/4.1 Business Case Preprocessing the Data.html
134 Bytes
51. Deep Learning - Business Case Example/5.1 Business Case Preprocessing the Data.html
134 Bytes
51. Deep Learning - Business Case Example/7.1 Business Case Load the Preprocessed Data.html
134 Bytes
51. Deep Learning - Business Case Example/8.1 Business Case Learning and Interpreting.html
134 Bytes
51. Deep Learning - Business Case Example/9.1 Business Case Setting an Early Stopping Mechanism.html
134 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/5.1 Actual Introduction to TensorFlow.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/11.1 TensorFlow Business Case Homework.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/12.1 TensorFlow Business Case Homework.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/4.1 Audiobooks Preprocessing.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/5.1 Preprocessing Exercise.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/6.1 Creating a Data Provider (Class).html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/7.1 TensorFlow Business Case Model Outline.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/8.1 TensorFlow Business Case Optimization.html
134 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/9.1 TensorFlow Business Case Interpretation.html
134 Bytes
60. Case Study - Loading the 'absenteeism_module'/1.1 5 Files Needed to Deploy the Model.html
134 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/12. EXERCISE - Obtaining Dummies from a Single Feature.html
129 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html
117 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/13. SOLUTION - Obtaining Dummies from a Single Feature.html
116 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/9. SOLUTION - Dropping a Column from a DataFrame in Python.html
113 Bytes
36. Advanced Statistical Methods - Logistic Regression/11. Binary Predictors in a Logistic Regression - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/13. Calculating the Accuracy of the Model.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/16. Testing the Model - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/5. Building a Logistic Regression - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/8. Understanding Logistic Regression Tables - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/3. A Simple Example of Clustering - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/5. Clustering Categorical Data - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/7. How to Choose the Number of Clusters - Exercise.html
87 Bytes
15. Statistics - Descriptive Statistics/10. Numerical Variables Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/13. Histogram Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/16. Cross Tables and Scatter Plots Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/18. Mean, Median and Mode Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/21. Skewness Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/26. Standard Deviation and Coefficient of Variation Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/29. Covariance Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/32. Correlation Coefficient Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/7. Categorical Variables Exercise.html
81 Bytes
16. Statistics - Practical Example Descriptive Statistics/2. Practical Example Descriptive Statistics Exercise.html
81 Bytes
17. Statistics - Inferential Statistics Fundamentals/8. The Standard Normal Distribution Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Dependent samples Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/4. Confidence Intervals; Population Variance Known; z-score; Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/9. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html
81 Bytes
19. Statistics - Practical Example Inferential Statistics/2. Practical Example Inferential Statistics Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/13. Test for the Mean. Population Variance Unknown Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/15. Test for the Mean. Dependent Samples Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 1). Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/20. Test for the mean. Independent samples (Part 2) Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/9. Test for the Mean. Population Variance Known Exercise.html
81 Bytes
21. Statistics - Practical Example Hypothesis Testing/2. Practical Example Hypothesis Testing Exercise.html
81 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Preprocess the Data - Scale the Test Data - Exercise.html
79 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html
79 Bytes
51. Deep Learning - Business Case Example/7. Business Case Load the Preprocessed Data - Exercise.html
79 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/19. Dealing with Categorical Data - Dummy Variables.html
76 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/5. Multiple Linear Regression Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/13. Multiple Linear Regression - Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/17. Feature Scaling (Standardization) - Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/6. Simple Linear Regression with sklearn - Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/9. Calculating the Adjusted R-Squared in sklearn - Exercise.html
76 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/5. Dummies and Variance Inflation Factor - Exercise.html
76 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>