搜索
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python
磁力链接/BT种子简介
种子哈希:
484708b8ac5470a7a19c3327077bf4780f2ddb05
文件大小:
1.08G
已经下载:
69
次
下载速度:
极快
收录时间:
2021-04-18
最近下载:
2024-12-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:484708B8AC5470A7A19C3327077BF4780F2DDB05
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
性生活
「困困狗」性感网袜小女警被肌肉囚犯反制强奸操到不停求饶喊痛
豪 女
安安研
[rca]+
dandy-289
甄漂亮 户外
venom x265 1080p dance
浴室被偷拍
美女高中女生被男同学迷奸
91bcm-020
小宝寻花 朋友介绍
漫威宇宙全集
母女中文字幕
调情教学
mtv
菲菲姐
cawd 711
stamtąd
含射
18歲
麻田かおり写真集 葡萄
海角 肏
香香光头
にデカチン
king+bee
一念关山第9集
ipzz-020
code
걸래
文件列表
6. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.mp4
195.3 MB
7. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp4
63.2 MB
1. Welcome/5. Statistics vs. Machine Learning.mp4
58.2 MB
1. Welcome/1. Welcome.mp4
52.1 MB
6. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.0 MB
8. Effective Learning Strategies for Machine Learning/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
9. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
39.7 MB
8. Effective Learning Strategies for Machine Learning/4. What order should I take your courses in (part 2).mp4
39.5 MB
8. Effective Learning Strategies for Machine Learning/3. What order should I take your courses in (part 1).mp4
30.7 MB
1. Welcome/4. How to Succeed in this Course.mp4
29.3 MB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp4
25.9 MB
7. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).mp4
25.7 MB
4. Practical machine learning issues/17. Why Divide by Square Root of D.mp4
24.6 MB
4. Practical machine learning issues/11. Gradient Descent Tutorial.mp4
23.9 MB
2. 1-D Linear Regression Theory and Code/9. Moore's Law Derivation.mp4
21.2 MB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp4
20.7 MB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp4
20.3 MB
8. Effective Learning Strategies for Machine Learning/1. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. 1-D Linear Regression Theory and Code/8. Demonstrating Moore's Law in Code.mp4
18.3 MB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp4
18.1 MB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp4
17.2 MB
2. 1-D Linear Regression Theory and Code/11. Suggestion Box.mp4
16.9 MB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp4
15.6 MB
7. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).mp4
15.5 MB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp4
15.1 MB
4. Practical machine learning issues/2. Interpreting the Weights.mp4
14.8 MB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp4
12.9 MB
4. Practical machine learning issues/1. What do all these letters mean.mp4
10.1 MB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp4
8.9 MB
1. Welcome/3. What is machine learning How does linear regression play a role.mp4
8.8 MB
4. Practical machine learning issues/15. L1 Regularization - Code.mp4
8.7 MB
4. Practical machine learning issues/5. Categorical inputs.mp4
8.6 MB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp4
8.5 MB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp4
8.5 MB
4. Practical machine learning issues/9. L2 Regularization - Code.mp4
8.5 MB
7. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.mp4
8.2 MB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp4
7.5 MB
4. Practical machine learning issues/8. L2 Regularization - Theory.mp4
7.0 MB
1. Welcome/2. Introduction and Outline.mp4
6.6 MB
4. Practical machine learning issues/10. The Dummy Variable Trap.mp4
6.4 MB
9. Appendix FAQ/1. What is the Appendix.mp4
5.7 MB
4. Practical machine learning issues/16. L1 vs L2 Regularization.mp4
5.0 MB
4. Practical machine learning issues/14. L1 Regularization - Theory.mp4
4.9 MB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp4
4.7 MB
2. 1-D Linear Regression Theory and Code/7. Introduction to Moore's Law Problem.mp4
4.6 MB
4. Practical machine learning issues/3. Generalization error, train and test sets.mp4
4.6 MB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp4
4.0 MB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp4
3.7 MB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp4
3.7 MB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp4
3.2 MB
2. 1-D Linear Regression Theory and Code/10. R-squared Quiz 1.mp4
2.9 MB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp4
1.1 MB
8. Effective Learning Strategies for Machine Learning/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
34.6 kB
8. Effective Learning Strategies for Machine Learning/4. What order should I take your courses in (part 2).srt
25.8 kB
7. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).srt
24.8 kB
6. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.srt
22.2 kB
2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).srt
18.1 kB
8. Effective Learning Strategies for Machine Learning/3. What order should I take your courses in (part 1).srt
17.6 kB
1. Welcome/5. Statistics vs. Machine Learning.srt
16.4 kB
6. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
15.9 kB
8. Effective Learning Strategies for Machine Learning/1. How to Succeed in this Course (Long Version).srt
15.6 kB
7. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.srt
15.4 kB
7. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).srt
14.3 kB
3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.srt
13.2 kB
2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.srt
11.3 kB
4. Practical machine learning issues/17. Why Divide by Square Root of D.srt
9.6 kB
1. Welcome/4. How to Succeed in this Course.srt
9.5 kB
4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.srt
9.4 kB
4. Practical machine learning issues/1. What do all these letters mean.srt
8.7 kB
9. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.srt
8.6 kB
2. 1-D Linear Regression Theory and Code/9. Moore's Law Derivation.srt
8.3 kB
2. 1-D Linear Regression Theory and Code/8. Demonstrating Moore's Law in Code.srt
7.1 kB
4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.srt
6.9 kB
7. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.srt
6.7 kB
4. Practical machine learning issues/8. L2 Regularization - Theory.srt
6.1 kB
4. Practical machine learning issues/11. Gradient Descent Tutorial.srt
6.1 kB
4. Practical machine learning issues/10. The Dummy Variable Trap.srt
6.0 kB
2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.srt
6.0 kB
1. Welcome/2. Introduction and Outline.srt
6.0 kB
1. Welcome/3. What is machine learning How does linear regression play a role.srt
6.0 kB
5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.srt
5.8 kB
3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.srt
5.6 kB
3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.srt
5.6 kB
5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.srt
5.5 kB
3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).srt
5.4 kB
2. 1-D Linear Regression Theory and Code/11. Suggestion Box.srt
5.0 kB
4. Practical machine learning issues/5. Categorical inputs.srt
4.9 kB
1. Welcome/1. Welcome.srt
4.9 kB
2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.srt
4.8 kB
4. Practical machine learning issues/2. Interpreting the Weights.srt
4.7 kB
4. Practical machine learning issues/14. L1 Regularization - Theory.srt
4.6 kB
4. Practical machine learning issues/16. L1 vs L2 Regularization.srt
4.6 kB
9. Appendix FAQ/1. What is the Appendix.srt
4.0 kB
4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.srt
3.9 kB
4. Practical machine learning issues/15. L1 Regularization - Code.srt
3.9 kB
2. 1-D Linear Regression Theory and Code/7. Introduction to Moore's Law Problem.srt
3.8 kB
4. Practical machine learning issues/9. L2 Regularization - Code.srt
3.7 kB
4. Practical machine learning issues/12. Gradient Descent for Linear Regression.srt
3.5 kB
3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.srt
3.0 kB
4. Practical machine learning issues/3. Generalization error, train and test sets.srt
2.9 kB
4. Practical machine learning issues/6. One-Hot Encoding Quiz.srt
2.8 kB
2. 1-D Linear Regression Theory and Code/10. R-squared Quiz 1.srt
2.4 kB
3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.srt
2.1 kB
2. 1-D Linear Regression Theory and Code/6. R-squared in code.srt
1.9 kB
2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.srt
1.7 kB
1. Welcome/6. What can linear regression be used for.html
150 Bytes
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>