搜索
[GigaCourse.com] Udemy - Complete linear algebra theory and implementation
磁力链接/BT种子名称
[GigaCourse.com] Udemy - Complete linear algebra theory and implementation
磁力链接/BT种子简介
种子哈希:
4b41c1c5bc2d8285c19f6a94c1a5598d8294af8d
文件大小:
7.28G
已经下载:
3678
次
下载速度:
极快
收录时间:
2021-04-19
最近下载:
2024-11-27
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:4B41C1C5BC2D8285C19F6A94C1A5598D8294AF8D
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
湿身 透
国家运动员村
乔宝
韩流极限
被绿的
高潮绯红
shoplyfter+-+curvy+babe+blair+williams+regretted+s
露脸吞精
徐州小
幼女阴道内镜手术dvd视频
91猴小雪
私密性爱一览无遗
server 2019
黑客破解医院摄像头偷拍
超人美国
fc2絶美
棠棠
西里夕海
xyz淫妻
326eva-089
全裸 福利姬
骑乘+女王
starcraft+ii+
pornochild
日本经典sm捆绑束缚
野外约拍
姬美+
sakuyamako
rina
dd-277
文件列表
11. Least-squares for model-fitting in statistics/8. Least-squares application 2.mp4
153.0 MB
14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.mp4
132.5 MB
13. Singular value decomposition/8. Spectral theory of matrices.mp4
127.3 MB
14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.mp4
98.6 MB
5. Matrix rank/4. Computing rank theory and practice.mp4
94.7 MB
12. Eigendecomposition/10. Matrix powers via diagonalization.mp4
89.8 MB
7. Solving systems of equations/2. Systems of equations algebra and geometry.mp4
88.7 MB
13. Singular value decomposition/4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4
86.9 MB
11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.mp4
84.5 MB
7. Solving systems of equations/6. Reduced row echelon form.mp4
83.1 MB
4. Matrix multiplications/11. Code challenge Geometric transformations via matrix multiplications.mp4
82.9 MB
2. Vectors/10. Dot product geometry sign and orthogonality.mp4
80.6 MB
8. Matrix determinant/8. Code challenge determinant of shifted matrices.mp4
79.8 MB
11. Least-squares for model-fitting in statistics/7. Least-squares application 1.mp4
79.6 MB
4. Matrix multiplications/7. Matrix-vector multiplication.mp4
79.5 MB
2. Vectors/27. Linear independence.mp4
79.4 MB
13. Singular value decomposition/9. SVD for low-rank approximations.mp4
77.5 MB
10. Projections and orthogonalization/11. Code challenge Inverse via QR.mp4
76.0 MB
12. Eigendecomposition/20. Code challenge GED in small and large matrices.mp4
75.9 MB
13. Singular value decomposition/15. Code challenge Create matrix with desired condition number.mp4
75.8 MB
9. Matrix inverse/6. Code challenge Implement the MCA algorithm!!.mp4
75.7 MB
13. Singular value decomposition/2. Singular value decomposition (SVD).mp4
74.4 MB
12. Eigendecomposition/3. Finding eigenvalues.mp4
73.5 MB
2. Vectors/23. Subspaces.mp4
73.0 MB
10. Projections and orthogonalization/8. QR decomposition.mp4
72.4 MB
13. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.mp4
70.5 MB
4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.mp4
68.2 MB
9. Matrix inverse/5. The MCA algorithm to compute the inverse.mp4
67.4 MB
14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.mp4
67.2 MB
10. Projections and orthogonalization/9. Code challenge Gram-Schmidt algorithm.mp4
67.0 MB
7. Solving systems of equations/4. Gaussian elimination.mp4
66.6 MB
12. Eigendecomposition/2. What are eigenvalues and eigenvectors.mp4
66.6 MB
8. Matrix determinant/5. Determinant of a 3x3 matrix.mp4
66.3 MB
14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.mp4
66.1 MB
12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.mp4
65.8 MB
6. Matrix spaces/5. Null space and left null space of a matrix.mp4
64.8 MB
12. Eigendecomposition/14. Eigendecomposition of symmetric matrices.mp4
63.4 MB
2. Vectors/25. Span.mp4
62.8 MB
5. Matrix rank/11. Making a matrix full-rank by shifting.mp4
62.8 MB
10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.mp4
61.9 MB
5. Matrix rank/5. Rank of added and multiplied matrices.mp4
61.7 MB
13. Singular value decomposition/10. Convert singular values to percent variance.mp4
61.2 MB
2. Vectors/6. Dot product properties associative, distributive, commutative.mp4
60.1 MB
10. Projections and orthogonalization/4. Orthogonal and parallel vector components.mp4
60.1 MB
12. Eigendecomposition/7. Finding eigenvectors.mp4
59.7 MB
9. Matrix inverse/7. Computing the inverse via row reduction.mp4
58.9 MB
5. Matrix rank/8. Code challenge scalar multiplication and rank.mp4
58.4 MB
10. Projections and orthogonalization/12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.mp4
58.4 MB
6. Matrix spaces/2. Column space of a matrix.mp4
58.3 MB
2. Vectors/19. Hermitian transpose (a.k.a. conjugate transpose).mp4
58.2 MB
14. Quadratic form and definiteness/3. The quadratic form in geometry.mp4
57.9 MB
3. Introduction to matrices/4. A zoo of matrices.mp4
57.8 MB
9. Matrix inverse/12. Pseudo-inverse, part 1.mp4
57.1 MB
4. Matrix multiplications/13. Additive and multiplicative symmetric matrices.mp4
56.8 MB
11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.mp4
56.7 MB
10. Projections and orthogonalization/3. Projections in R^N.mp4
55.3 MB
4. Matrix multiplications/9. 2D transformation matrices.mp4
55.0 MB
13. Singular value decomposition/6. Code challenge A^TA, Av, and singular vectors.mp4
53.9 MB
6. Matrix spaces/8. Example of the four subspaces.mp4
53.4 MB
2. Vectors/28. Basis.mp4
53.4 MB
10. Projections and orthogonalization/7. Gram-Schmidt procedure.mp4
53.2 MB
7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.mp4
53.2 MB
4. Matrix multiplications/3. Four ways to think about matrix multiplication.mp4
53.1 MB
1. Introductions/1. What is linear algebra.mp4
52.6 MB
12. Eigendecomposition/16. Code challenge reconstruct a matrix from eigenlayers.mp4
52.3 MB
4. Matrix multiplications/17. Multiplication of two symmetric matrices.mp4
52.2 MB
12. Eigendecomposition/9. Diagonalization.mp4
52.1 MB
6. Matrix spaces/6. Columnleft-null and rownull spaces are orthogonal.mp4
51.7 MB
5. Matrix rank/2. Rank concepts, terms, and applications.mp4
51.3 MB
9. Matrix inverse/2. Matrix inverse Concept and applications.mp4
51.2 MB
12. Eigendecomposition/11. Code challenge eigendecomposition of matrix differences.mp4
50.9 MB
12. Eigendecomposition/13. Eigenvectors of repeated eigenvalues.mp4
50.3 MB
4. Matrix multiplications/19. Code challenge Fourier transform via matrix multiplication!.mp4
50.2 MB
12. Eigendecomposition/8. Eigendecomposition by hand two examples.mp4
48.9 MB
14. Quadratic form and definiteness/2. The quadratic form in algebra.mp4
48.8 MB
7. Solving systems of equations/8. Matrix spaces after row reduction.mp4
48.0 MB
14. Quadratic form and definiteness/11. Proof Eigenvalues and matrix definiteness.mp4
47.8 MB
12. Eigendecomposition/19. Generalized eigendecomposition.mp4
47.5 MB
4. Matrix multiplications/20. Frobenius dot product.mp4
47.3 MB
9. Matrix inverse/10. One-sided inverses in MATLAB.mp4
47.3 MB
5. Matrix rank/9. Rank of A^TA and AA^T.mp4
47.2 MB
2. Vectors/21. Code challenge dot products with unit vectors.mp4
47.1 MB
2. Vectors/13. Code challenge dot product sign and scalar multiplication.mp4
47.0 MB
13. Singular value decomposition/13. SVD, matrix inverse, and pseudoinverse.mp4
46.8 MB
11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.mp4
46.5 MB
2. Vectors/17. Vector cross product.mp4
46.5 MB
10. Projections and orthogonalization/6. Orthogonal matrices.mp4
46.0 MB
11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.mp4
44.5 MB
13. Singular value decomposition/14. Condition number of a matrix.mp4
44.5 MB
2. Vectors/16. Outer product.mp4
44.1 MB
9. Matrix inverse/9. Left inverse and right inverse.mp4
43.6 MB
12. Eigendecomposition/12. Eigenvectors of distinct eigenvalues.mp4
43.5 MB
2. Vectors/2. Algebraic and geometric interpretations of vectors.mp4
42.7 MB
6. Matrix spaces/7. Dimensions of columnrownull spaces.mp4
41.8 MB
9. Matrix inverse/4. Inverse of a 2x2 matrix.mp4
40.8 MB
2. Vectors/22. Dimensions and fields in linear algebra.mp4
40.6 MB
8. Matrix determinant/4. Code challenge determinant of small and large singular matrices.mp4
40.6 MB
4. Matrix multiplications/2. Introduction to standard matrix multiplication.mp4
39.6 MB
9. Matrix inverse/8. Code challenge inverse of a diagonal matrix.mp4
39.1 MB
13. Singular value decomposition/7. SVD and the four subspaces.mp4
39.0 MB
10. Projections and orthogonalization/2. Projections in R^2.mp4
38.7 MB
4. Matrix multiplications/6. Order-of-operations on matrices.mp4
38.6 MB
3. Introduction to matrices/13. Code challenge linearity of trace.mp4
38.0 MB
4. Matrix multiplications/4. Code challenge matrix multiplication by layering.mp4
37.4 MB
5. Matrix rank/7. Code challenge reduced-rank matrix via multiplication.mp4
36.1 MB
11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.mp4
36.0 MB
4. Matrix multiplications/16. Code challenge symmetry of combined symmetric matrices.mp4
35.9 MB
6. Matrix spaces/9. More on Ax=b and Ax=0.mp4
35.7 MB
12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.mp4
35.5 MB
8. Matrix determinant/2. Determinant concept and applications.mp4
35.4 MB
12. Eigendecomposition/18. Code challenge trace and determinant, eigenvalues sum and product.mp4
34.6 MB
2. Vectors/18. Vectors with complex numbers.mp4
34.5 MB
3. Introduction to matrices/2. Matrix terminology and dimensionality.mp4
34.2 MB
2. Vectors/5. Vector-vector multiplication the dot product.mp4
33.9 MB
3. Introduction to matrices/9. Transpose.mp4
32.8 MB
14. Quadratic form and definiteness/4. The normalized quadratic form.mp4
32.8 MB
14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.mp4
32.2 MB
5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.mp4
31.4 MB
1. Introductions/2. Linear algebra applications.mp4
31.0 MB
2. Vectors/4. Vector-scalar multiplication.mp4
30.9 MB
7. Solving systems of equations/5. Echelon form and pivots.mp4
30.7 MB
11. Least-squares for model-fitting in statistics/9. Code challenge Least-squares via QR decomposition.mp4
30.7 MB
2. Vectors/24. Subspaces vs. subsets.mp4
30.5 MB
13. Singular value decomposition/11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.mp4
30.2 MB
6. Matrix spaces/3. Column space, visualized in MATLAB.mp4
29.4 MB
2. Vectors/14. Code challenge is the dot product commutative.mp4
28.9 MB
8. Matrix determinant/3. Determinant of a 2x2 matrix.mp4
28.7 MB
3. Introduction to matrices/12. Diagonal and trace.mp4
28.6 MB
3. Introduction to matrices/6. Matrix addition and subtraction.mp4
28.4 MB
1. Introductions/3. How best to learn from this course.mp4
28.3 MB
1. Introductions/6. Using the Q&A forum.mp4
28.1 MB
2. Vectors/20. Interpreting and creating unit vectors.mp4
27.8 MB
2. Vectors/3. Vector addition and subtraction.mp4
27.1 MB
3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.mp4
26.5 MB
4. Matrix multiplications/12. Additive and multiplicative matrix identities.mp4
26.5 MB
14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.mp4
26.2 MB
12. Eigendecomposition/15. Eigenlayers of a matrix.mp4
25.9 MB
5. Matrix rank/12. Code challenge is this vector in the span of this set.mp4
25.6 MB
2. Vectors/8. Vector length.mp4
25.0 MB
6. Matrix spaces/4. Row space of a matrix.mp4
24.6 MB
2. Vectors/7. Code challenge dot products with matrix columns.mp4
24.2 MB
10. Projections and orthogonalization/13. Code challenge A^TA = R^TR.mp4
23.0 MB
8. Matrix determinant/7. Find matrix values for a given determinant.mp4
22.6 MB
1. Introductions/4. Using MATLAB, Octave, or Python in this course.mp4
22.2 MB
7. Solving systems of equations/3. Converting systems of equations to matrix equations.mp4
22.0 MB
12. Eigendecomposition/17. Eigendecomposition of singular matrices.mp4
21.0 MB
4. Matrix multiplications/18. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4
20.9 MB
9. Matrix inverse/13. Code challenge pseudoinverse of invertible matrices.mp4
20.3 MB
9. Matrix inverse/3. Computing the inverse in MATLAB.mp4
19.8 MB
4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.mp4
19.4 MB
1. Introductions/5. Leaving reviews, course coupons.mp4
18.7 MB
8. Matrix determinant/6. Code challenge large matrices with row exchanges.mp4
18.6 MB
9. Matrix inverse/11. Proof the inverse is unique.mp4
17.3 MB
4. Matrix multiplications/21. What about matrix division.mp4
14.8 MB
12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.mp4
13.2 MB
2. Vectors/15. Vector Hadamard multiplication.mp4
12.7 MB
4. Matrix multiplications/14. Hadamard (element-wise) multiplication.mp4
12.5 MB
3. Introduction to matrices/7. Matrix-scalar multiplication.mp4
8.3 MB
10. Projections and orthogonalization/10. Matrix inverse via QR decomposition.mp4
7.4 MB
3. Introduction to matrices/10. Complex matrices.mp4
7.1 MB
14. Quadratic form and definiteness/1.1 linalg_quadformDefinite.zip.zip
405.0 kB
2. Vectors/1.1 linalg_vectors.zip.zip
395.1 kB
13. Singular value decomposition/1.1 linalg_svd.zip.zip
338.9 kB
11. Least-squares for model-fitting in statistics/1.1 linalg_leastsquares.zip.zip
323.0 kB
12. Eigendecomposition/1.1 linalg_eig.zip.zip
304.4 kB
10. Projections and orthogonalization/1.1 linalg_projorth.zip.zip
252.4 kB
9. Matrix inverse/1.1 linalg_inverse.zip.zip
231.6 kB
4. Matrix multiplications/1.1 linalg_matrixMult.zip.zip
219.9 kB
7. Solving systems of equations/1.1 linalg_systems.zip.zip
216.3 kB
6. Matrix spaces/1.1 linalg_matrixSpaces.zip.zip
215.0 kB
5. Matrix rank/1.1 linalg_matrixRank.zip.zip
184.0 kB
3. Introduction to matrices/1.1 linalg_matrices.zip.zip
170.3 kB
8. Matrix determinant/1.1 linalg_matrixDet.pdf.pdf
141.6 kB
6. Matrix spaces/5. Null space and left null space of a matrix.mp4.jpg
61.1 kB
10. Projections and orthogonalization/8. QR decomposition.mp4.jpg
55.6 kB
11. Least-squares for model-fitting in statistics/8. Least-squares application 2.vtt
22.2 kB
14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.vtt
20.3 kB
7. Solving systems of equations/6. Reduced row echelon form.vtt
20.0 kB
5. Matrix rank/4. Computing rank theory and practice.vtt
19.5 kB
7. Solving systems of equations/4. Gaussian elimination.vtt
18.5 kB
2. Vectors/10. Dot product geometry sign and orthogonality.vtt
18.4 kB
7. Solving systems of equations/2. Systems of equations algebra and geometry.vtt
18.2 kB
2. Vectors/27. Linear independence.vtt
18.0 kB
12. Eigendecomposition/3. Finding eigenvalues.vtt
17.6 kB
9. Matrix inverse/6. Code challenge Implement the MCA algorithm!!.vtt
17.6 kB
2. Vectors/23. Subspaces.vtt
17.4 kB
4. Matrix multiplications/7. Matrix-vector multiplication.vtt
17.4 kB
13. Singular value decomposition/4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt
17.4 kB
12. Eigendecomposition/10. Matrix powers via diagonalization.vtt
16.8 kB
14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.vtt
16.4 kB
9. Matrix inverse/5. The MCA algorithm to compute the inverse.vtt
16.3 kB
6. Matrix spaces/5. Null space and left null space of a matrix.vtt
16.2 kB
4. Matrix multiplications/11. Code challenge Geometric transformations via matrix multiplications.vtt
16.2 kB
8. Matrix determinant/8. Code challenge determinant of shifted matrices.vtt
16.1 kB
13. Singular value decomposition/2. Singular value decomposition (SVD).vtt
16.1 kB
10. Projections and orthogonalization/12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.vtt
16.0 kB
13. Singular value decomposition/8. Spectral theory of matrices.vtt
15.9 kB
10. Projections and orthogonalization/9. Code challenge Gram-Schmidt algorithm.vtt
15.8 kB
8. Matrix determinant/5. Determinant of a 3x3 matrix.vtt
15.8 kB
10. Projections and orthogonalization/7. Gram-Schmidt procedure.vtt
15.5 kB
5. Matrix rank/8. Code challenge scalar multiplication and rank.vtt
15.4 kB
11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.vtt
15.3 kB
12. Eigendecomposition/20. Code challenge GED in small and large matrices.vtt
15.3 kB
2. Vectors/6. Dot product properties associative, distributive, commutative.vtt
15.0 kB
6. Matrix spaces/2. Column space of a matrix.vtt
14.8 kB
9. Matrix inverse/2. Matrix inverse Concept and applications.vtt
14.7 kB
13. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.vtt
14.6 kB
10. Projections and orthogonalization/8. QR decomposition.vtt
14.5 kB
10. Projections and orthogonalization/4. Orthogonal and parallel vector components.vtt
14.5 kB
13. Singular value decomposition/15. Code challenge Create matrix with desired condition number.vtt
14.4 kB
12. Eigendecomposition/2. What are eigenvalues and eigenvectors.vtt
14.3 kB
11. Least-squares for model-fitting in statistics/7. Least-squares application 1.vtt
14.3 kB
2. Vectors/19. Hermitian transpose (a.k.a. conjugate transpose).vtt
14.0 kB
7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.vtt
13.7 kB
9. Matrix inverse/7. Computing the inverse via row reduction.vtt
13.7 kB
4. Matrix multiplications/9. 2D transformation matrices.vtt
13.7 kB
6. Matrix spaces/8. Example of the four subspaces.vtt
13.6 kB
12. Eigendecomposition/7. Finding eigenvectors.vtt
13.6 kB
4. Matrix multiplications/13. Additive and multiplicative symmetric matrices.vtt
13.6 kB
4. Matrix multiplications/3. Four ways to think about matrix multiplication.vtt
13.4 kB
10. Projections and orthogonalization/6. Orthogonal matrices.vtt
13.4 kB
12. Eigendecomposition/14. Eigendecomposition of symmetric matrices.vtt
13.4 kB
2. Vectors/13. Code challenge dot product sign and scalar multiplication.vtt
13.4 kB
13. Singular value decomposition/9. SVD for low-rank approximations.vtt
13.3 kB
11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.vtt
13.3 kB
3. Introduction to matrices/4. A zoo of matrices.vtt
13.3 kB
13. Singular value decomposition/10. Convert singular values to percent variance.vtt
13.2 kB
2. Vectors/28. Basis.vtt
13.2 kB
10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.vtt
13.1 kB
5. Matrix rank/5. Rank of added and multiplied matrices.vtt
13.0 kB
13. Singular value decomposition/6. Code challenge A^TA, Av, and singular vectors.vtt
12.9 kB
2. Vectors/25. Span.vtt
12.8 kB
14. Quadratic form and definiteness/3. The quadratic form in geometry.vtt
12.7 kB
5. Matrix rank/11. Making a matrix full-rank by shifting.vtt
12.5 kB
5. Matrix rank/2. Rank concepts, terms, and applications.vtt
12.5 kB
4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.vtt
12.4 kB
14. Quadratic form and definiteness/2. The quadratic form in algebra.vtt
12.4 kB
6. Matrix spaces/6. Columnleft-null and rownull spaces are orthogonal.vtt
12.2 kB
12. Eigendecomposition/11. Code challenge eigendecomposition of matrix differences.vtt
12.1 kB
2. Vectors/21. Code challenge dot products with unit vectors.vtt
12.1 kB
12. Eigendecomposition/16. Code challenge reconstruct a matrix from eigenlayers.vtt
12.1 kB
4. Matrix multiplications/19. Code challenge Fourier transform via matrix multiplication!.vtt
12.0 kB
12. Eigendecomposition/13. Eigenvectors of repeated eigenvalues.vtt
12.0 kB
5. Matrix rank/9. Rank of A^TA and AA^T.vtt
12.0 kB
10. Projections and orthogonalization/3. Projections in R^N.vtt
11.8 kB
12. Eigendecomposition/9. Diagonalization.vtt
11.7 kB
4. Matrix multiplications/17. Multiplication of two symmetric matrices.vtt
11.5 kB
2. Vectors/2. Algebraic and geometric interpretations of vectors.vtt
11.1 kB
12. Eigendecomposition/8. Eigendecomposition by hand two examples.vtt
11.1 kB
12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.vtt
11.1 kB
14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.vtt
11.1 kB
14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.vtt
11.0 kB
11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.vtt
10.9 kB
7. Solving systems of equations/8. Matrix spaces after row reduction.vtt
10.8 kB
9. Matrix inverse/9. Left inverse and right inverse.vtt
10.8 kB
8. Matrix determinant/4. Code challenge determinant of small and large singular matrices.vtt
10.5 kB
13. Singular value decomposition/13. SVD, matrix inverse, and pseudoinverse.vtt
10.5 kB
12. Eigendecomposition/19. Generalized eigendecomposition.vtt
10.3 kB
11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.vtt
10.2 kB
3. Introduction to matrices/13. Code challenge linearity of trace.vtt
10.0 kB
13. Singular value decomposition/14. Condition number of a matrix.vtt
10.0 kB
12. Eigendecomposition/18. Code challenge trace and determinant, eigenvalues sum and product.vtt
9.9 kB
9. Matrix inverse/12. Pseudo-inverse, part 1.vtt
9.9 kB
10. Projections and orthogonalization/2. Projections in R^2.vtt
9.9 kB
2. Vectors/16. Outer product.vtt
9.8 kB
9. Matrix inverse/8. Code challenge inverse of a diagonal matrix.vtt
9.7 kB
12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.vtt
9.7 kB
4. Matrix multiplications/20. Frobenius dot product.vtt
9.6 kB
4. Matrix multiplications/2. Introduction to standard matrix multiplication.vtt
9.5 kB
4. Matrix multiplications/16. Code challenge symmetry of combined symmetric matrices.vtt
9.5 kB
4. Matrix multiplications/4. Code challenge matrix multiplication by layering.vtt
9.5 kB
2. Vectors/18. Vectors with complex numbers.vtt
9.4 kB
1. Introductions/1. What is linear algebra.vtt
9.4 kB
6. Matrix spaces/7. Dimensions of columnrownull spaces.vtt
9.3 kB
10. Projections and orthogonalization/11. Code challenge Inverse via QR.vtt
9.2 kB
12. Eigendecomposition/12. Eigenvectors of distinct eigenvalues.vtt
9.2 kB
3. Introduction to matrices/2. Matrix terminology and dimensionality.vtt
9.2 kB
9. Matrix inverse/4. Inverse of a 2x2 matrix.vtt
9.2 kB
14. Quadratic form and definiteness/11. Proof Eigenvalues and matrix definiteness.vtt
9.1 kB
2. Vectors/22. Dimensions and fields in linear algebra.vtt
9.0 kB
5. Matrix rank/7. Code challenge reduced-rank matrix via multiplication.vtt
9.0 kB
7. Solving systems of equations/5. Echelon form and pivots.vtt
8.7 kB
2. Vectors/5. Vector-vector multiplication the dot product.vtt
8.7 kB
2. Vectors/14. Code challenge is the dot product commutative.vtt
8.6 kB
11. Least-squares for model-fitting in statistics/9. Code challenge Least-squares via QR decomposition.vtt
8.5 kB
6. Matrix spaces/9. More on Ax=b and Ax=0.vtt
8.3 kB
8. Matrix determinant/3. Determinant of a 2x2 matrix.vtt
8.3 kB
13. Singular value decomposition/7. SVD and the four subspaces.vtt
8.2 kB
5. Matrix rank/12. Code challenge is this vector in the span of this set.vtt
8.1 kB
2. Vectors/7. Code challenge dot products with matrix columns.vtt
8.1 kB
14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.vtt
7.8 kB
11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.vtt
7.8 kB
2. Vectors/4. Vector-scalar multiplication.vtt
7.8 kB
5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.vtt
7.7 kB
2. Vectors/17. Vector cross product.vtt
7.7 kB
3. Introduction to matrices/9. Transpose.vtt
7.7 kB
9. Matrix inverse/10. One-sided inverses in MATLAB.vtt
7.6 kB
4. Matrix multiplications/6. Order-of-operations on matrices.vtt
7.5 kB
14. Quadratic form and definiteness/4. The normalized quadratic form.vtt
7.4 kB
8. Matrix determinant/2. Determinant concept and applications.vtt
7.4 kB
13. Singular value decomposition/11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.vtt
7.1 kB
2. Vectors/3. Vector addition and subtraction.vtt
7.1 kB
1. Introductions/2. Linear algebra applications.vtt
7.0 kB
3. Introduction to matrices/6. Matrix addition and subtraction.vtt
6.9 kB
2. Vectors/8. Vector length.vtt
6.7 kB
3. Introduction to matrices/12. Diagonal and trace.vtt
6.7 kB
1. Introductions/6. Using the Q&A forum.vtt
6.7 kB
12. Eigendecomposition/15. Eigenlayers of a matrix.vtt
6.6 kB
3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.vtt
6.4 kB
2. Vectors/24. Subspaces vs. subsets.vtt
6.3 kB
2. Vectors/20. Interpreting and creating unit vectors.vtt
6.3 kB
8. Matrix determinant/7. Find matrix values for a given determinant.vtt
5.9 kB
4. Matrix multiplications/12. Additive and multiplicative matrix identities.vtt
5.9 kB
4. Matrix multiplications/18. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt
5.9 kB
8. Matrix determinant/6. Code challenge large matrices with row exchanges.vtt
5.7 kB
12. Eigendecomposition/17. Eigendecomposition of singular matrices.vtt
5.6 kB
1. Introductions/3. How best to learn from this course.vtt
5.3 kB
7. Solving systems of equations/3. Converting systems of equations to matrix equations.vtt
5.2 kB
9. Matrix inverse/13. Code challenge pseudoinverse of invertible matrices.vtt
5.0 kB
4. Matrix multiplications/21. What about matrix division.vtt
5.0 kB
10. Projections and orthogonalization/13. Code challenge A^TA = R^TR.vtt
4.9 kB
6. Matrix spaces/4. Row space of a matrix.vtt
4.9 kB
1. Introductions/4. Using MATLAB, Octave, or Python in this course.vtt
4.7 kB
4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.vtt
4.4 kB
6. Matrix spaces/3. Column space, visualized in MATLAB.vtt
4.3 kB
14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.vtt
4.2 kB
9. Matrix inverse/3. Computing the inverse in MATLAB.vtt
3.9 kB
9. Matrix inverse/11. Proof the inverse is unique.vtt
3.5 kB
12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.vtt
3.1 kB
4. Matrix multiplications/14. Hadamard (element-wise) multiplication.vtt
3.0 kB
1. Introductions/5. Leaving reviews, course coupons.vtt
2.9 kB
2. Vectors/15. Vector Hadamard multiplication.vtt
2.8 kB
15. Discount coupons for related courses/1. Bonus Links to related courses.html
2.3 kB
3. Introduction to matrices/10. Complex matrices.vtt
2.2 kB
10. Projections and orthogonalization/10. Matrix inverse via QR decomposition.vtt
2.0 kB
3. Introduction to matrices/7. Matrix-scalar multiplication.vtt
1.9 kB
6. Matrix spaces/5. Null space and left null space of a matrix.txt
250 Bytes
10. Projections and orthogonalization/4. Orthogonal and parallel vector components.txt
249 Bytes
10. Projections and orthogonalization/8. QR decomposition.txt
224 Bytes
13. Singular value decomposition/12. Singular values of an orthogonal matrix.html
144 Bytes
13. Singular value decomposition/3. Are these two expressions equal.html
144 Bytes
2. Vectors/11. Vector orthogonality.html
144 Bytes
2. Vectors/12. Relative vector angles.html
144 Bytes
2. Vectors/26. In the span.html
144 Bytes
2. Vectors/9. Vector length in MATLAB.html
144 Bytes
3. Introduction to matrices/11. Addition, equality, and transpose.html
144 Bytes
3. Introduction to matrices/3. Matrix sizes and dimensionality.html
144 Bytes
3. Introduction to matrices/5. Can the matrices be concatenated.html
144 Bytes
4. Matrix multiplications/15. Matrix operation equality.html
144 Bytes
4. Matrix multiplications/8. Find the missing value!.html
144 Bytes
5. Matrix rank/3. Maximum possible rank..html
144 Bytes
5. Matrix rank/6. What's the maximum possible rank.html
144 Bytes
4. Matrix multiplications/1. Exercises + code.html
87 Bytes
11. Least-squares for model-fitting in statistics/1. Exercises + code.html
86 Bytes
5. Matrix rank/1. Exercises + code.html
85 Bytes
9. Matrix inverse/1. Exercises + code.html
85 Bytes
2. Vectors/1. Exercises + code.html
80 Bytes
10. Projections and orthogonalization/1. Exercises + code.html
76 Bytes
3. Introduction to matrices/1. Exercises + code.html
75 Bytes
14. Quadratic form and definiteness/1. Exercises + code.html
55 Bytes
8. Matrix determinant/1. Exercises.html
52 Bytes
[GigaCourse.com].url
49 Bytes
7. Solving systems of equations/1. Exercises + code.html
40 Bytes
6. Matrix spaces/1. Exercises + code.html
36 Bytes
12. Eigendecomposition/1. Exercises + code.html
33 Bytes
13. Singular value decomposition/1. Exercises + code.html
26 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>