搜索
[Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning
磁力链接/BT种子简介
种子哈希:
4f108556bc0918c6234ee6b9fba37b4dbbf06114
文件大小:
5.54G
已经下载:
999
次
下载速度:
极快
收录时间:
2022-03-12
最近下载:
2024-11-05
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:4F108556BC0918C6234EE6B9FBA37B4DBBF06114
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
arifureta s03e05
实拍勾引
[uncensored]ssis
jvid丝
4539956
實現願望
maya kendrick
messiah s01
nancy a
特殊视频
理发偷拍
ipcam
shake
橙橙大
x-men+
碧志乃无码
(无码破解)
the last victim kevin
重磅订阅露脸反差婊!推特巨乳肥臀模特ms_meancreature
mkbd-s078
katie cummings
探花小哥酒店约炮
日av
cosmid.net
avatar 1080p
150-雨波_haneame[更新至210期]
23.09.16.
反差女大 肖丽琴
bellringer
骚舞 合集
文件列表
03 - Machine Learning Numpy + Scikit Learn/012 CART part 2.mp4
174.6 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/009 Semantic Segmentation training with PyTorch Lightning.mp4
136.5 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/005 Titanic dataset.mp4
122.0 MB
09 - Deep Learning Recurrent Neural Nets/010 Sequence to Sequence models Prediction step.mp4
109.8 MB
13 - Deep Learning Transformers and BERT/008 Pytorch Lightning + DistilBERT for classification.mp4
107.7 MB
05 - Unsupervised Learning/002 Fashion MNIST PCA.mp4
107.1 MB
09 - Deep Learning Recurrent Neural Nets/005 Deep Learning - Long Short Term Memory (LSTM) Nets.mp4
95.4 MB
03 - Machine Learning Numpy + Scikit Learn/009 Linear Regresson Part 1.mp4
94.9 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/007 Sklearn classification.mp4
94.4 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/019 Area Under Curve (AUC) Part 1.mp4
88.2 MB
09 - Deep Learning Recurrent Neural Nets/008 Sequence to Sequence Introduction + Data Prep.mp4
84.0 MB
10 - Deep Learning PyTorch Introduction/006 Deep Learning with Pytorch Stochastic Gradient Descent.mp4
83.3 MB
03 - Machine Learning Numpy + Scikit Learn/004 Kmeans part 1.mp4
82.2 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/012 FB Prophet part 1.mp4
81.8 MB
06 - Natural Language Processing + Regularization/009 Feature Extraction with Spacy (using Pandas).mp4
80.2 MB
09 - Deep Learning Recurrent Neural Nets/007 Transfer Learning - GLOVE vectors.mp4
78.2 MB
03 - Machine Learning Numpy + Scikit Learn/010 Linear Regression Part 2.mp4
75.0 MB
14 - Bayesian Learning and probabilistic programming/005 Coin Toss Example with Pymc3.mp4
74.1 MB
14 - Bayesian Learning and probabilistic programming/004 Bayesian learning Population estimation pymc3 way.mp4
74.0 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/008 Nose Tip detection with CNNs.mp4
72.0 MB
03 - Machine Learning Numpy + Scikit Learn/015 Gradient Boosted Machines.mp4
70.9 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/006 PyTorch Hooks Step through with breakpoints.mp4
70.8 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/007 PyTorch Weighted CrossEntropy Loss.mp4
68.4 MB
03 - Machine Learning Numpy + Scikit Learn/005 Kmeans part 2.mp4
66.3 MB
02 - Basic python + Pandas + Plotting/005 Numpy functions.mp4
65.5 MB
14 - Bayesian Learning and probabilistic programming/007 Bayesian Linear Regression with pymc3.mp4
63.0 MB
07 - Deep Learning/009 Softmax theory.mp4
61.2 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/018 Stratified K Fold.mp4
60.9 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/009 Data Augmentation with Torchvision Transforms.mp4
59.3 MB
07 - Deep Learning/007 MNIST and Softmax.mp4
58.5 MB
14 - Bayesian Learning and probabilistic programming/009 Bayesian Rolling regression - pymc3 way.mp4
57.4 MB
07 - Deep Learning/011 Batch Norm Theory.mp4
56.5 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/017 Cross Validation.mp4
56.3 MB
10 - Deep Learning PyTorch Introduction/005 Deep Learning with Pytorch Loss functions.mp4
55.0 MB
10 - Deep Learning PyTorch Introduction/010 Deep Learning Intro to Pytorch Lightning.mp4
54.9 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/008 Dealing with missing values.mp4
53.2 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/006 PyTorch Lightning Trainer + Model evaluation.mp4
52.7 MB
14 - Bayesian Learning and probabilistic programming/003 Bayes rule for population mean estimation.mp4
52.6 MB
02 - Basic python + Pandas + Plotting/024 Seaborn + pair plots.mp4
52.1 MB
01 - Introduction/002 How to tackle this course.mp4
51.2 MB
13 - Deep Learning Transformers and BERT/007 Distilbert (Smaller BERT) model.mp4
51.2 MB
05 - Unsupervised Learning/004 Other clustering methods.mp4
50.4 MB
06 - Natural Language Processing + Regularization/016 Ridge regression (L2 penalised regression).mp4
49.3 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/011 Loss functions.mp4
48.7 MB
06 - Natural Language Processing + Regularization/005 NLTK + Stemming.mp4
47.8 MB
02 - Basic python + Pandas + Plotting/020 Plot multiple lines.mp4
47.6 MB
09 - Deep Learning Recurrent Neural Nets/003 Word2Vec keras Model API.mp4
47.4 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/003 Keras Conv2D layer.mp4
46.6 MB
14 - Bayesian Learning and probabilistic programming/012 Variational Bayes Linear Classification.mp4
46.4 MB
09 - Deep Learning Recurrent Neural Nets/001 Word2vec and Embeddings.mp4
46.1 MB
03 - Machine Learning Numpy + Scikit Learn/003 Gradient Descent.mp4
45.5 MB
07 - Deep Learning/004 Tensorflow + Keras demo problem 1.mp4
45.4 MB
01 - Introduction/003 Installations and sign ups.mp4
44.9 MB
02 - Basic python + Pandas + Plotting/013 Pandas loc and iloc.mp4
43.8 MB
01 - Introduction/001 Introduction.mp4
43.8 MB
02 - Basic python + Pandas + Plotting/011 Pandas simple functions.mp4
40.2 MB
03 - Machine Learning Numpy + Scikit Learn/014 Random Forest Code.mp4
38.5 MB
14 - Bayesian Learning and probabilistic programming/002 Bayesian Learning Distributions.mp4
37.7 MB
03 - Machine Learning Numpy + Scikit Learn/008 Intro.mp4
37.1 MB
10 - Deep Learning PyTorch Introduction/003 Pytorch Dataset and DataLoaders.mp4
37.1 MB
06 - Natural Language Processing + Regularization/004 Financial News Sentiment Classifier.mp4
35.3 MB
10 - Deep Learning PyTorch Introduction/008 Pytorch Model API.mp4
34.9 MB
06 - Natural Language Processing + Regularization/008 Spacy intro.mp4
34.8 MB
06 - Natural Language Processing + Regularization/011 Over-sampling.mp4
34.4 MB
07 - Deep Learning/006 First example with Relu.mp4
34.2 MB
02 - Basic python + Pandas + Plotting/015 Pandas map and apply.mp4
33.0 MB
06 - Natural Language Processing + Regularization/018 L1 Penalised Regression (Lasso).mp4
32.9 MB
09 - Deep Learning Recurrent Neural Nets/009 Sequence to Sequence model + Keras Model API.mp4
32.0 MB
14 - Bayesian Learning and probabilistic programming/010 Bayesian Rolling Regression - forecasting.mp4
31.8 MB
15 - Model Deployment/004 FastAPI serving model.mp4
30.7 MB
13 - Deep Learning Transformers and BERT/006 Tokenizers and data prep for BERT models.mp4
30.5 MB
13 - Deep Learning Transformers and BERT/003 Encoder Transformer Models The Maths.mp4
30.1 MB
09 - Deep Learning Recurrent Neural Nets/002 Kaggle + Word2Vec.mp4
29.1 MB
02 - Basic python + Pandas + Plotting/004 Python functions (methods).mp4
28.9 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/007 Cifar-10.mp4
28.6 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/004 Theory part 2 + code.mp4
28.6 MB
03 - Machine Learning Numpy + Scikit Learn/006 Broadcasting.mp4
28.5 MB
01 - Introduction/30889860-course-code-material.zip
27.5 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/001 Introduction.mp4
26.5 MB
06 - Natural Language Processing + Regularization/017 S&P500 data preparation for L1 loss.mp4
26.4 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/005 PyTorch Hooks.mp4
25.9 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/013 FB Prophet part 2.mp4
25.6 MB
06 - Natural Language Processing + Regularization/010 Classification Example.mp4
25.3 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/005 Dropout theory and code.mp4
24.8 MB
13 - Deep Learning Transformers and BERT/002 The illustrated Transformer (blogpost by Jay Alammar).mp4
24.7 MB
06 - Natural Language Processing + Regularization/019 L1 L2 Penalty theory why it works.mp4
24.3 MB
07 - Deep Learning/003 DL theory part 2.mp4
23.9 MB
05 - Unsupervised Learning/003 K-means.mp4
23.4 MB
02 - Basic python + Pandas + Plotting/012 Pandas Subsetting.mp4
23.1 MB
02 - Basic python + Pandas + Plotting/002 Basic Data Structures.mp4
23.0 MB
02 - Basic python + Pandas + Plotting/021 Histograms.mp4
22.7 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/015 WandB for logging experiments.mp4
22.6 MB
15 - Model Deployment/006 Streamlit functions.mp4
21.8 MB
05 - Unsupervised Learning/001 Principal Component Analysis (PCA) theory.mp4
21.5 MB
05 - Unsupervised Learning/006 Gaussian Mixture Models (GMM) theory.mp4
21.0 MB
03 - Machine Learning Numpy + Scikit Learn/011 Classification and Regression Trees.mp4
21.0 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/002 Fashion MNIST feed forward net for benchmarking.mp4
20.6 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/020 Area Under Curve (AUC) Part 2.mp4
20.4 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/016 Overfitting.mp4
20.3 MB
09 - Deep Learning Recurrent Neural Nets/004 Recurrent Neural Nets - Theory.mp4
20.0 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/002 Coco Dataset + Augmentations for Segmentation with Torchvision.mp4
19.8 MB
02 - Basic python + Pandas + Plotting/003 Dictionaries.mp4
19.7 MB
15 - Model Deployment/007 CLIP model.mp4
19.7 MB
02 - Basic python + Pandas + Plotting/022 Scatter Plots.mp4
19.5 MB
02 - Basic python + Pandas + Plotting/016 Pandas groupby.mp4
19.2 MB
06 - Natural Language Processing + Regularization/014 MSE recap.mp4
19.2 MB
14 - Bayesian Learning and probabilistic programming/001 Introduction and Terminology.mp4
19.0 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/006 MaxPool (and comparison to stride).mp4
18.5 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/004 Model fitting and discussion of results.mp4
18.3 MB
07 - Deep Learning/002 DL theory part 1.mp4
18.1 MB
14 - Bayesian Learning and probabilistic programming/006 Data Setup for Bayesian Linear Regression.mp4
17.9 MB
07 - Deep Learning/010 Batch Norm.mp4
17.9 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/014 Theory behind FB Prophet.mp4
17.7 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/008 Weights and Biases Logging images.mp4
16.6 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/004 PyTorch transfer learning with ResNet.mp4
16.2 MB
07 - Deep Learning/005 Activation functions.mp4
16.1 MB
02 - Basic python + Pandas + Plotting/023 Subplots.mp4
16.1 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/008 Cassava Leaf Dataset.mp4
16.0 MB
14 - Bayesian Learning and probabilistic programming/008 Bayesian Rolling Regression - Problem setup.mp4
15.6 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/003 PyTorch datasets + Torchvision.mp4
15.4 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/003 Unet Architecture overview.mp4
15.4 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/006 Sklearn classification prelude.mp4
15.0 MB
02 - Basic python + Pandas + Plotting/014 Pandas loc and iloc 2.mp4
14.5 MB
06 - Natural Language Processing + Regularization/006 N-grams.mp4
14.5 MB
16 - Final Thoughts/001 Some advice on your journey.mp4
14.2 MB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/004 PyTorch Model Architecture.mp4
14.2 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/003 Theory part 1.mp4
14.2 MB
05 - Unsupervised Learning/005 DBSCAN theory.mp4
13.9 MB
02 - Basic python + Pandas + Plotting/006 Conditional statements.mp4
13.2 MB
06 - Natural Language Processing + Regularization/007 Word (feature) importance.mp4
13.0 MB
10 - Deep Learning PyTorch Introduction/002 Pytorch TensorDataset.mp4
13.0 MB
02 - Basic python + Pandas + Plotting/007 For loops.mp4
13.0 MB
15 - Model Deployment/003 FastAPI intro.mp4
12.2 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/010 Intro.mp4
12.0 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/002 Kaggle part 2.mp4
11.7 MB
14 - Bayesian Learning and probabilistic programming/014 Minibatch Variational Bayes.mp4
11.6 MB
10 - Deep Learning PyTorch Introduction/004 Deep Learning with PyTorch nn.Sequential models.mp4
11.6 MB
06 - Natural Language Processing + Regularization/002 Stop words and Term Frequency.mp4
11.2 MB
14 - Bayesian Learning and probabilistic programming/016 Deep Bayesian Networks - analysis.mp4
11.0 MB
06 - Natural Language Processing + Regularization/001 Intro.mp4
10.9 MB
07 - Deep Learning/008 Deep Learning Input Normalisation.mp4
10.9 MB
10 - Deep Learning PyTorch Introduction/007 Deep Learning with Pytorch Optimizers.mp4
10.7 MB
06 - Natural Language Processing + Regularization/015 L2 Loss Ridge Regression intro.mp4
10.5 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/005 PyTorch Lightning Model.mp4
9.9 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/002 Kaggle problem description.mp4
9.6 MB
01 - Introduction/004 Jupyter Notebooks.mp4
9.1 MB
14 - Bayesian Learning and probabilistic programming/011 Variational Bayes Intro.mp4
9.1 MB
02 - Basic python + Pandas + Plotting/019 Line plot.mp4
9.0 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/013 Cross Entropy Loss for Imbalanced Classes.mp4
8.9 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/012 Setting up PyTorch Lightning for training.mp4
8.8 MB
06 - Natural Language Processing + Regularization/013 Introduction.mp4
8.8 MB
13 - Deep Learning Transformers and BERT/004 BERT - The theory.mp4
8.5 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/011 Deep Learning Transfer Learning Model with ResNet.mp4
8.4 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/010 Train vs Test Augmentations + DataLoader parameters.mp4
8.1 MB
15 - Model Deployment/002 Saving Models.mp4
7.9 MB
14 - Bayesian Learning and probabilistic programming/013 Variational Bayesian Inference Result Analysis.mp4
7.7 MB
14 - Bayesian Learning and probabilistic programming/015 Deep Bayesian Networks.mp4
7.6 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/014 PyTorch Test dataset setup and evaluation.mp4
7.4 MB
13 - Deep Learning Transformers and BERT/005 Kaggle Multi-lingual Toxic Comment Classification Challenge.mp4
7.1 MB
04 - Machine Learning Classification + Time Series + Model Diagnostics/001 Kaggle part 1.mp4
7.1 MB
02 - Basic python + Pandas + Plotting/008 Dictionaries again.mp4
6.5 MB
06 - Natural Language Processing + Regularization/003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory.mp4
6.3 MB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/001 Intro.mp4
6.3 MB
15 - Model Deployment/005 Streamlit Intro.mp4
6.2 MB
09 - Deep Learning Recurrent Neural Nets/006 Deep Learning - Stacking LSTMs + GRUs.mp4
5.3 MB
02 - Basic python + Pandas + Plotting/010 Intro.mp4
5.3 MB
10 - Deep Learning PyTorch Introduction/009 Pytorch in GPUs.mp4
5.2 MB
03 - Machine Learning Numpy + Scikit Learn/013 Random Forest theory.mp4
5.1 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/001 Transfer Learning Introduction.mp4
4.7 MB
11 - Deep Learning Transfer Learning with PyTorch Lightning/007 Deep Learning for Cassava Leaf Classification.mp4
4.3 MB
13 - Deep Learning Transformers and BERT/001 Introduction to Transformers.mp4
3.6 MB
02 - Basic python + Pandas + Plotting/001 Intro.mp4
3.0 MB
02 - Basic python + Pandas + Plotting/31237618-03-0-plotting.zip
2.9 MB
07 - Deep Learning/32725408-09-tensorflow.zip
2.8 MB
06 - Natural Language Processing + Regularization/31762302-06-0-reguralisation.zip
2.7 MB
15 - Model Deployment/001 Intro.mp4
2.6 MB
10 - Deep Learning PyTorch Introduction/001 Introduction.mp4
2.3 MB
03 - Machine Learning Numpy + Scikit Learn/001 Your reviews are important to me!.mp4
2.1 MB
14 - Bayesian Learning and probabilistic programming/31919076-bayesian-inference.zip
1.9 MB
07 - Deep Learning/001 Intro.mp4
647.8 kB
02 - Basic python + Pandas + Plotting/34142844-04-pairplots.ipynb
205.3 kB
03 - Machine Learning Numpy + Scikit Learn/012 CART part 2_en.vtt
21.0 kB
03 - Machine Learning Numpy + Scikit Learn/005 Kmeans part 2_en.vtt
20.2 kB
13 - Deep Learning Transformers and BERT/008 Pytorch Lightning + DistilBERT for classification_en.vtt
17.7 kB
03 - Machine Learning Numpy + Scikit Learn/003 Gradient Descent_en.vtt
17.0 kB
07 - Deep Learning/004 Tensorflow + Keras demo problem 1_en.vtt
16.8 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/009 Semantic Segmentation training with PyTorch Lightning_en.vtt
16.6 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/005 Titanic dataset_en.vtt
15.6 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/007 Sklearn classification_en.vtt
14.8 kB
09 - Deep Learning Recurrent Neural Nets/003 Word2Vec keras Model API_en.vtt
13.6 kB
09 - Deep Learning Recurrent Neural Nets/010 Sequence to Sequence models Prediction step_en.vtt
13.4 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/008 Nose Tip detection with CNNs_en.vtt
12.8 kB
03 - Machine Learning Numpy + Scikit Learn/009 Linear Regresson Part 1_en.vtt
12.5 kB
03 - Machine Learning Numpy + Scikit Learn/004 Kmeans part 1_en.vtt
12.1 kB
09 - Deep Learning Recurrent Neural Nets/005 Deep Learning - Long Short Term Memory (LSTM) Nets_en.vtt
12.1 kB
09 - Deep Learning Recurrent Neural Nets/007 Transfer Learning - GLOVE vectors_en.vtt
11.7 kB
02 - Basic python + Pandas + Plotting/011 Pandas simple functions_en.vtt
11.7 kB
03 - Machine Learning Numpy + Scikit Learn/010 Linear Regression Part 2_en.vtt
11.5 kB
13 - Deep Learning Transformers and BERT/006 Tokenizers and data prep for BERT models_en.vtt
11.0 kB
13 - Deep Learning Transformers and BERT/007 Distilbert (Smaller BERT) model_en.vtt
11.0 kB
02 - Basic python + Pandas + Plotting/005 Numpy functions_en.vtt
10.9 kB
09 - Deep Learning Recurrent Neural Nets/004 Recurrent Neural Nets - Theory_en.vtt
10.8 kB
09 - Deep Learning Recurrent Neural Nets/002 Kaggle + Word2Vec_en.vtt
10.8 kB
05 - Unsupervised Learning/002 Fashion MNIST PCA_en.vtt
10.7 kB
14 - Bayesian Learning and probabilistic programming/002 Bayesian Learning Distributions_en.vtt
10.7 kB
07 - Deep Learning/007 MNIST and Softmax_en.vtt
10.7 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/007 Cifar-10_en.vtt
10.3 kB
06 - Natural Language Processing + Regularization/004 Financial News Sentiment Classifier_en.vtt
10.2 kB
14 - Bayesian Learning and probabilistic programming/007 Bayesian Linear Regression with pymc3_en.vtt
10.2 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/018 Stratified K Fold_en.vtt
10.2 kB
06 - Natural Language Processing + Regularization/009 Feature Extraction with Spacy (using Pandas)_en.vtt
10.1 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/012 FB Prophet part 1_en.vtt
10.0 kB
03 - Machine Learning Numpy + Scikit Learn/015 Gradient Boosted Machines_en.vtt
9.9 kB
03 - Machine Learning Numpy + Scikit Learn/006 Broadcasting_en.vtt
9.9 kB
10 - Deep Learning PyTorch Introduction/010 Deep Learning Intro to Pytorch Lightning_en.vtt
9.5 kB
14 - Bayesian Learning and probabilistic programming/009 Bayesian Rolling regression - pymc3 way_en.vtt
9.5 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/019 Area Under Curve (AUC) Part 1_en.vtt
9.4 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/007 PyTorch Weighted CrossEntropy Loss_en.vtt
9.3 kB
05 - Unsupervised Learning/001 Principal Component Analysis (PCA) theory_en.vtt
9.2 kB
14 - Bayesian Learning and probabilistic programming/003 Bayes rule for population mean estimation_en.vtt
9.2 kB
13 - Deep Learning Transformers and BERT/002 The illustrated Transformer (blogpost by Jay Alammar)_en.vtt
9.2 kB
14 - Bayesian Learning and probabilistic programming/004 Bayesian learning Population estimation pymc3 way_en.vtt
9.1 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/006 PyTorch Hooks Step through with breakpoints_en.vtt
9.0 kB
09 - Deep Learning Recurrent Neural Nets/009 Sequence to Sequence model + Keras Model API_en.vtt
8.9 kB
10 - Deep Learning PyTorch Introduction/005 Deep Learning with Pytorch Loss functions_en.vtt
8.9 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/003 Keras Conv2D layer_en.vtt
8.8 kB
14 - Bayesian Learning and probabilistic programming/001 Introduction and Terminology_en.vtt
8.5 kB
09 - Deep Learning Recurrent Neural Nets/001 Word2vec and Embeddings_en.vtt
8.5 kB
07 - Deep Learning/011 Batch Norm Theory_en.vtt
8.5 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/017 Cross Validation_en.vtt
8.5 kB
02 - Basic python + Pandas + Plotting/015 Pandas map and apply_en.vtt
8.4 kB
10 - Deep Learning PyTorch Introduction/006 Deep Learning with Pytorch Stochastic Gradient Descent_en.vtt
8.3 kB
14 - Bayesian Learning and probabilistic programming/005 Coin Toss Example with Pymc3_en.vtt
8.2 kB
09 - Deep Learning Recurrent Neural Nets/008 Sequence to Sequence Introduction + Data Prep_en.vtt
8.2 kB
02 - Basic python + Pandas + Plotting/024 Seaborn + pair plots_en.vtt
8.1 kB
06 - Natural Language Processing + Regularization/016 Ridge regression (L2 penalised regression)_en.vtt
8.1 kB
05 - Unsupervised Learning/006 Gaussian Mixture Models (GMM) theory_en.vtt
8.1 kB
02 - Basic python + Pandas + Plotting/021 Histograms_en.vtt
8.1 kB
06 - Natural Language Processing + Regularization/005 NLTK + Stemming_en.vtt
8.0 kB
02 - Basic python + Pandas + Plotting/013 Pandas loc and iloc_en.vtt
7.8 kB
05 - Unsupervised Learning/003 K-means_en.vtt
7.8 kB
15 - Model Deployment/004 FastAPI serving model_en.vtt
7.7 kB
14 - Bayesian Learning and probabilistic programming/012 Variational Bayes Linear Classification_en.vtt
7.7 kB
15 - Model Deployment/007 CLIP model_en.vtt
7.5 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/005 PyTorch Hooks_en.vtt
7.5 kB
05 - Unsupervised Learning/004 Other clustering methods_en.vtt
7.3 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/011 Loss functions_en.vtt
7.3 kB
06 - Natural Language Processing + Regularization/017 S&P500 data preparation for L1 loss_en.vtt
7.3 kB
02 - Basic python + Pandas + Plotting/016 Pandas groupby_en.vtt
7.2 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/005 Dropout theory and code_en.vtt
7.2 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/016 Overfitting_en.vtt
7.2 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/020 Area Under Curve (AUC) Part 2_en.vtt
7.1 kB
05 - Unsupervised Learning/005 DBSCAN theory_en.vtt
7.1 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/003 Theory part 1_en.vtt
6.9 kB
03 - Machine Learning Numpy + Scikit Learn/014 Random Forest Code_en.vtt
6.8 kB
03 - Machine Learning Numpy + Scikit Learn/011 Classification and Regression Trees_en.vtt
6.6 kB
02 - Basic python + Pandas + Plotting/002 Basic Data Structures_en.vtt
6.6 kB
02 - Basic python + Pandas + Plotting/022 Scatter Plots_en.vtt
6.5 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/003 Unet Architecture overview_en.vtt
6.5 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/006 PyTorch Lightning Trainer + Model evaluation_en.vtt
6.5 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/004 Theory part 2 + code_en.vtt
6.4 kB
02 - Basic python + Pandas + Plotting/012 Pandas Subsetting_en.vtt
6.4 kB
01 - Introduction/002 How to tackle this course_en.vtt
6.4 kB
07 - Deep Learning/002 DL theory part 1_en.vtt
6.3 kB
06 - Natural Language Processing + Regularization/014 MSE recap_en.vtt
6.3 kB
15 - Model Deployment/006 Streamlit functions_en.vtt
6.2 kB
02 - Basic python + Pandas + Plotting/023 Subplots_en.vtt
6.1 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/002 Coco Dataset + Augmentations for Segmentation with Torchvision_en.vtt
6.1 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/010 Intro_en.vtt
6.1 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/009 Data Augmentation with Torchvision Transforms_en.vtt
6.0 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/014 Theory behind FB Prophet_en.vtt
6.0 kB
06 - Natural Language Processing + Regularization/011 Over-sampling_en.vtt
5.9 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/008 Dealing with missing values_en.vtt
5.9 kB
10 - Deep Learning PyTorch Introduction/003 Pytorch Dataset and DataLoaders_en.vtt
5.9 kB
10 - Deep Learning PyTorch Introduction/004 Deep Learning with PyTorch nn.Sequential models_en.vtt
5.8 kB
07 - Deep Learning/010 Batch Norm_en.vtt
5.8 kB
06 - Natural Language Processing + Regularization/018 L1 Penalised Regression (Lasso)_en.vtt
5.7 kB
14 - Bayesian Learning and probabilistic programming/008 Bayesian Rolling Regression - Problem setup_en.vtt
5.7 kB
13 - Deep Learning Transformers and BERT/003 Encoder Transformer Models The Maths_en.vtt
5.7 kB
06 - Natural Language Processing + Regularization/008 Spacy intro_en.vtt
5.7 kB
02 - Basic python + Pandas + Plotting/004 Python functions (methods)_en.vtt
5.7 kB
07 - Deep Learning/009 Softmax theory_en.vtt
5.7 kB
07 - Deep Learning/005 Activation functions_en.vtt
5.6 kB
10 - Deep Learning PyTorch Introduction/008 Pytorch Model API_en.vtt
5.6 kB
07 - Deep Learning/006 First example with Relu_en.vtt
5.5 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/015 WandB for logging experiments_en.vtt
5.5 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/006 MaxPool (and comparison to stride)_en.vtt
5.5 kB
06 - Natural Language Processing + Regularization/001 Intro_en.vtt
5.5 kB
14 - Bayesian Learning and probabilistic programming/010 Bayesian Rolling Regression - forecasting_en.vtt
5.5 kB
15 - Model Deployment/003 FastAPI intro_en.vtt
5.4 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/006 Sklearn classification prelude_en.vtt
5.4 kB
02 - Basic python + Pandas + Plotting/014 Pandas loc and iloc 2_en.vtt
5.3 kB
10 - Deep Learning PyTorch Introduction/002 Pytorch TensorDataset_en.vtt
5.1 kB
03 - Machine Learning Numpy + Scikit Learn/008 Intro_en.vtt
5.1 kB
01 - Introduction/004 Jupyter Notebooks_en.vtt
5.1 kB
06 - Natural Language Processing + Regularization/002 Stop words and Term Frequency_en.vtt
5.1 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/008 Cassava Leaf Dataset_en.vtt
5.0 kB
01 - Introduction/003 Installations and sign ups_en.vtt
4.9 kB
14 - Bayesian Learning and probabilistic programming/006 Data Setup for Bayesian Linear Regression_en.vtt
4.8 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/004 PyTorch transfer learning with ResNet_en.vtt
4.5 kB
06 - Natural Language Processing + Regularization/010 Classification Example_en.vtt
4.4 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/003 PyTorch datasets + Torchvision_en.vtt
4.3 kB
02 - Basic python + Pandas + Plotting/007 For loops_en.vtt
4.3 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/013 FB Prophet part 2_en.vtt
4.2 kB
14 - Bayesian Learning and probabilistic programming/016 Deep Bayesian Networks - analysis_en.vtt
4.2 kB
06 - Natural Language Processing + Regularization/006 N-grams_en.vtt
4.1 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/013 Cross Entropy Loss for Imbalanced Classes_en.vtt
4.0 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/005 PyTorch Lightning Model_en.vtt
4.0 kB
07 - Deep Learning/003 DL theory part 2_en.vtt
4.0 kB
02 - Basic python + Pandas + Plotting/006 Conditional statements_en.vtt
4.0 kB
02 - Basic python + Pandas + Plotting/020 Plot multiple lines_en.vtt
4.0 kB
14 - Bayesian Learning and probabilistic programming/014 Minibatch Variational Bayes_en.vtt
4.0 kB
02 - Basic python + Pandas + Plotting/003 Dictionaries_en.vtt
3.9 kB
06 - Natural Language Processing + Regularization/019 L1 L2 Penalty theory why it works_en.vtt
3.9 kB
16 - Final Thoughts/001 Some advice on your journey_en.vtt
3.9 kB
13 - Deep Learning Transformers and BERT/004 BERT - The theory_en.vtt
3.9 kB
06 - Natural Language Processing + Regularization/007 Word (feature) importance_en.vtt
3.8 kB
14 - Bayesian Learning and probabilistic programming/013 Variational Bayesian Inference Result Analysis_en.vtt
3.8 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/004 PyTorch Model Architecture_en.vtt
3.7 kB
06 - Natural Language Processing + Regularization/015 L2 Loss Ridge Regression intro_en.vtt
3.7 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/012 Setting up PyTorch Lightning for training_en.vtt
3.6 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/002 Fashion MNIST feed forward net for benchmarking_en.vtt
3.6 kB
10 - Deep Learning PyTorch Introduction/007 Deep Learning with Pytorch Optimizers_en.vtt
3.5 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/010 Train vs Test Augmentations + DataLoader parameters_en.vtt
3.4 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/011 Deep Learning Transfer Learning Model with ResNet_en.vtt
3.4 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/002 Kaggle part 2_en.vtt
3.3 kB
02 - Basic python + Pandas + Plotting/019 Line plot_en.vtt
3.3 kB
14 - Bayesian Learning and probabilistic programming/011 Variational Bayes Intro_en.vtt
3.3 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/001 Intro_en.vtt
3.3 kB
14 - Bayesian Learning and probabilistic programming/015 Deep Bayesian Networks_en.vtt
3.2 kB
07 - Deep Learning/008 Deep Learning Input Normalisation_en.vtt
3.2 kB
15 - Model Deployment/002 Saving Models_en.vtt
3.2 kB
02 - Basic python + Pandas + Plotting/008 Dictionaries again_en.vtt
3.2 kB
06 - Natural Language Processing + Regularization/003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory_en.vtt
3.1 kB
08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/004 Model fitting and discussion of results_en.vtt
3.0 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/014 PyTorch Test dataset setup and evaluation_en.vtt
2.9 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/002 Kaggle problem description_en.vtt
2.9 kB
04 - Machine Learning Classification + Time Series + Model Diagnostics/001 Kaggle part 1_en.vtt
2.7 kB
06 - Natural Language Processing + Regularization/013 Introduction_en.vtt
2.7 kB
10 - Deep Learning PyTorch Introduction/009 Pytorch in GPUs_en.vtt
2.6 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/001 Introduction_en.vtt
2.6 kB
15 - Model Deployment/005 Streamlit Intro_en.vtt
2.6 kB
03 - Machine Learning Numpy + Scikit Learn/013 Random Forest theory_en.vtt
2.6 kB
02 - Basic python + Pandas + Plotting/010 Intro_en.vtt
2.5 kB
01 - Introduction/001 Introduction_en.vtt
2.3 kB
09 - Deep Learning Recurrent Neural Nets/006 Deep Learning - Stacking LSTMs + GRUs_en.vtt
2.2 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/001 Transfer Learning Introduction_en.vtt
2.0 kB
13 - Deep Learning Transformers and BERT/005 Kaggle Multi-lingual Toxic Comment Classification Challenge_en.vtt
2.0 kB
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/008 Weights and Biases Logging images_en.vtt
2.0 kB
13 - Deep Learning Transformers and BERT/001 Introduction to Transformers_en.vtt
1.7 kB
10 - Deep Learning PyTorch Introduction/001 Introduction_en.vtt
1.3 kB
15 - Model Deployment/001 Intro_en.vtt
1.2 kB
11 - Deep Learning Transfer Learning with PyTorch Lightning/007 Deep Learning for Cassava Leaf Classification_en.vtt
1.1 kB
02 - Basic python + Pandas + Plotting/001 Intro_en.vtt
865 Bytes
07 - Deep Learning/001 Intro_en.vtt
473 Bytes
02 - Basic python + Pandas + Plotting/31283222-multi-plot.py
440 Bytes
13 - Deep Learning Transformers and BERT/external-assets-links.txt
264 Bytes
04 - Machine Learning Classification + Time Series + Model Diagnostics/009 --------- Time Series -------------------.html
255 Bytes
06 - Natural Language Processing + Regularization/012 -------- Regularization ------------.html
218 Bytes
01 - Introduction/005 Course Material.html
130 Bytes
03 - Machine Learning Numpy + Scikit Learn/002 ----------- Numpy -------------.html
129 Bytes
01 - Introduction/[Tutorialsplanet.NET].url
128 Bytes
05 - Unsupervised Learning/[Tutorialsplanet.NET].url
128 Bytes
11 - Deep Learning Transfer Learning with PyTorch Lightning/[Tutorialsplanet.NET].url
128 Bytes
16 - Final Thoughts/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
10 - Deep Learning PyTorch Introduction/external-assets-links.txt
122 Bytes
04 - Machine Learning Classification + Time Series + Model Diagnostics/015 ------------ Model Diagnostics -----.html
112 Bytes
02 - Basic python + Pandas + Plotting/018 Plotting resources (notebooks).html
92 Bytes
03 - Machine Learning Numpy + Scikit Learn/007 ---------------- Scikit Learn -------------------------------------.html
72 Bytes
02 - Basic python + Pandas + Plotting/009 -------------------------------- Pandas --------------------------------.html
61 Bytes
12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/external-assets-links.txt
52 Bytes
02 - Basic python + Pandas + Plotting/017 ----- Plotting --------.html
47 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>