MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - Artificial Intelligence Reinforcement Learning in Python (12.2024)

磁力链接/BT种子名称

Udemy - Artificial Intelligence Reinforcement Learning in Python (12.2024)

磁力链接/BT种子简介

种子哈希:4f2926c74c9defdb3a78b51ee2316c51f65a1fb1
文件大小: 4.16G
已经下载:152次
下载速度:极快
收录时间:2025-07-05
最近下载:2025-09-05

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:4F2926C74C9DEFDB3A78B51EE2316C51F65A1FB1
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 她趣 TikTok成人版 PornHub 听泉鉴鲍 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

泡泡咕 御姐 91 花臂 吴梦梦 减肥 人妻教师【晨夕】 海角 漂亮表姐 小孩在边上洗澡也逃不过熊叔搓澡师 卫衣小少妇揉捏奶子吸吮张开双腿一顿舔逼大屁股骑乘抽插被发现扒套子 在校正在 小乔吃不饱 毒液原千人斩探花招牌双飞大战牛仔长裙美女浴室一起洗澡三 rin×sen+ran→sem cross mix 春うらら、裏切りと絶望の季節編 [中文字幕] kittycum 推特娇娇妻 fc2-ppv-752131 iranian+anal sone-951 黑帮大佬和 ntra 庆余年4k 台湾皮皮妹 详细过程 江浙沪真实顶级身材颜值淫妻患者【寒烟夫妻】高价完整 無許可++ 乱伦妈妈计划 ss+154 punishing 美乳气质小姐姐~摸完一波骚逼准备洗澡去 sone-894 【模特优优】

文件列表

  • 11 - Setting Up Your Environment (FAQ by Student Request)/2 -Anaconda Environment Setup.mp4 195.4 MB
  • 4 - Markov Decision Proccesses/11 -Bellman Examples.mp4 91.3 MB
  • 10 - Stock Trading Project with Reinforcement Learning/1 -Beginners, halt! Stop here if you skipped ahead.mp4 87.8 MB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/3 -Proof that using Jupyter Notebook is the same as not using it.mp4 82.1 MB
  • 8 - Approximation Methods/7 -Approximation Methods for Control Code.mp4 81.5 MB
  • 2 - Return of the Multi-Armed Bandit/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).mp4 78.1 MB
  • 5 - Dynamic Programming/5 -Iterative Policy Evaluation in Code.mp4 71.8 MB
  • 10 - Stock Trading Project with Reinforcement Learning/7 -Code pt 2.mp4 68.5 MB
  • 6 - Monte Carlo/5 -Monte Carlo Control in Code.mp4 67.5 MB
  • 1 - Welcome/5 -Warmup.mp4 65.6 MB
  • 8 - Approximation Methods/5 -Approximation Methods for Prediction Code.mp4 65.3 MB
  • 4 - Markov Decision Proccesses/5 -Markov Decision Processes (MDPs).mp4 64.7 MB
  • 5 - Dynamic Programming/2 -Iterative Policy Evaluation.mp4 63.7 MB
  • 5 - Dynamic Programming/10 -Policy Iteration in Code.mp4 59.1 MB
  • 4 - Markov Decision Proccesses/12 -Optimal Policy and Optimal Value Function (pt 1).mp4 58.8 MB
  • 2 - Return of the Multi-Armed Bandit/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).mp4 58.6 MB
  • 2 - Return of the Multi-Armed Bandit/12 -UCB1 Theory.mp4 58.2 MB
  • 3 - High Level Overview of Reinforcement Learning/1 -What is Reinforcement Learning.mp4 57.3 MB
  • 4 - Markov Decision Proccesses/2 -Gridworld.mp4 56.6 MB
  • 10 - Stock Trading Project with Reinforcement Learning/9 -Code pt 4.mp4 55.5 MB
  • 10 - Stock Trading Project with Reinforcement Learning/3 -Data and Environment.mp4 54.5 MB
  • 2 - Return of the Multi-Armed Bandit/1 -Section Introduction The Explore-Exploit Dilemma.mp4 54.5 MB
  • 6 - Monte Carlo/3 -Monte Carlo Policy Evaluation in Code.mp4 54.2 MB
  • 5 - Dynamic Programming/11 -Policy Iteration in Windy Gridworld.mp4 53.9 MB
  • 2 - Return of the Multi-Armed Bandit/2 -Applications of the Explore-Exploit Dilemma.mp4 53.7 MB
  • 2 - Return of the Multi-Armed Bandit/25 -(Optional) Alternative Bandit Designs.mp4 52.8 MB
  • 10 - Stock Trading Project with Reinforcement Learning/6 -Code pt 1.mp4 52.1 MB
  • 2 - Return of the Multi-Armed Bandit/19 -Thompson Sampling With Gaussian Reward Theory.mp4 50.9 MB
  • 8 - Approximation Methods/9 -CartPole Code.mp4 50.5 MB
  • 6 - Monte Carlo/1 -Monte Carlo Intro.mp4 49.9 MB
  • 6 - Monte Carlo/2 -Monte Carlo Policy Evaluation.mp4 49.4 MB
  • 5 - Dynamic Programming/7 -Iterative Policy Evaluation for Windy Gridworld in Code.mp4 49.2 MB
  • 5 - Dynamic Programming/4 -Gridworld in Code.mp4 49.1 MB
  • 8 - Approximation Methods/3 -Feature Engineering.mp4 48.1 MB
  • 5 - Dynamic Programming/13 -Value Iteration in Code.mp4 47.9 MB
  • 7 - Temporal Difference Learning/5 -SARSA in Code.mp4 47.1 MB
  • 10 - Stock Trading Project with Reinforcement Learning/4 -How to Model Q for Q-Learning.mp4 47.1 MB
  • 5 - Dynamic Programming/8 -Policy Improvement.mp4 46.1 MB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 46.0 MB
  • 2 - Return of the Multi-Armed Bandit/8 -Comparing Different Epsilons.mp4 45.8 MB
  • 2 - Return of the Multi-Armed Bandit/20 -Thompson Sampling With Gaussian Reward Code.mp4 45.5 MB
  • 5 - Dynamic Programming/6 -Windy Gridworld in Code.mp4 43.5 MB
  • 2 - Return of the Multi-Armed Bandit/7 -Epsilon-Greedy in Code.mp4 43.4 MB
  • 3 - High Level Overview of Reinforcement Learning/2 -From Bandits to Full Reinforcement Learning.mp4 43.2 MB
  • 6 - Monte Carlo/7 -Monte Carlo Control without Exploring Starts in Code.mp4 42.7 MB
  • 14 - Appendix FAQ Finale/2 -BONUS.mp4 42.5 MB
  • 1 - Welcome/2 -Course Outline and Big Picture.mp4 41.6 MB
  • 4 - Markov Decision Proccesses/6 -Future Rewards.mp4 41.4 MB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 40.8 MB
  • 7 - Temporal Difference Learning/7 -Q Learning in Code.mp4 40.4 MB
  • 9 - Interlude Common Beginner Questions/1 -This Course vs. RL Book What's the Difference.mp4 40.1 MB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 39.4 MB
  • 4 - Markov Decision Proccesses/1 -MDP Section Introduction.mp4 39.0 MB
  • 6 - Monte Carlo/4 -Monte Carlo Control.mp4 37.3 MB
  • 5 - Dynamic Programming/12 -Value Iteration.mp4 37.0 MB
  • 5 - Dynamic Programming/1 -Dynamic Programming Section Introduction.mp4 36.4 MB
  • 2 - Return of the Multi-Armed Bandit/24 -Bandit Summary, Real Data, and Online Learning.mp4 36.3 MB
  • 8 - Approximation Methods/4 -Approximation Methods for Prediction.mp4 36.0 MB
  • 1 - Welcome/1 -Introduction.mp4 35.9 MB
  • 5 - Dynamic Programming/9 -Policy Iteration.mp4 35.8 MB
  • 10 - Stock Trading Project with Reinforcement Learning/8 -Code pt 3.mp4 35.4 MB
  • 2 - Return of the Multi-Armed Bandit/18 -Thompson Sampling Code.mp4 34.4 MB
  • 4 - Markov Decision Proccesses/3 -Choosing Rewards.mp4 34.1 MB
  • 7 - Temporal Difference Learning/3 -TD(0) Prediction in Code.mp4 34.0 MB
  • 8 - Approximation Methods/2 -Linear Models for Reinforcement Learning.mp4 32.6 MB
  • 2 - Return of the Multi-Armed Bandit/23 -Nonstationary Bandits.mp4 32.5 MB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 30.7 MB
  • 2 - Return of the Multi-Armed Bandit/5 -Epsilon-Greedy Beginner's Exercise Prompt.mp4 30.1 MB
  • 2 - Return of the Multi-Armed Bandit/3 -Epsilon-Greedy Theory.mp4 29.7 MB
  • 4 - Markov Decision Proccesses/8 -The Bellman Equation (pt 1).mp4 29.1 MB
  • 2 - Return of the Multi-Armed Bandit/22 -Why don't we just use a library.mp4 28.7 MB
  • 2 - Return of the Multi-Armed Bandit/26 -Suggestion Box.mp4 28.5 MB
  • 8 - Approximation Methods/8 -CartPole.mp4 28.2 MB
  • 10 - Stock Trading Project with Reinforcement Learning/2 -Stock Trading Project Section Introduction.mp4 28.1 MB
  • 4 - Markov Decision Proccesses/9 -The Bellman Equation (pt 2).mp4 28.0 MB
  • 5 - Dynamic Programming/14 -Dynamic Programming Summary.mp4 26.3 MB
  • 4 - Markov Decision Proccesses/10 -The Bellman Equation (pt 3).mp4 25.9 MB
  • 2 - Return of the Multi-Armed Bandit/11 -Optimistic Initial Values Code.mp4 25.8 MB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/1 -How to Code by Yourself (part 1).mp4 25.7 MB
  • 2 - Return of the Multi-Armed Bandit/6 -Designing Your Bandit Program.mp4 25.7 MB
  • 2 - Return of the Multi-Armed Bandit/9 -Optimistic Initial Values Theory.mp4 24.7 MB
  • 6 - Monte Carlo/6 -Monte Carlo Control without Exploring Starts.mp4 24.5 MB
  • 10 - Stock Trading Project with Reinforcement Learning/5 -Design of the Program.mp4 24.4 MB
  • 2 - Return of the Multi-Armed Bandit/4 -Calculating a Sample Mean (pt 1).mp4 24.3 MB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/1 -Pre-Installation Check.mp4 23.8 MB
  • 1 - Welcome/3 -Where to get the Code.mp4 23.8 MB
  • 5 - Dynamic Programming/3 -Designing Your RL Program.mp4 23.4 MB
  • 8 - Approximation Methods/1 -Approximation Methods Section Introduction.mp4 23.1 MB
  • 4 - Markov Decision Proccesses/4 -The Markov Property.mp4 22.8 MB
  • 8 - Approximation Methods/11 -Approximation Methods Section Summary.mp4 22.8 MB
  • 2 - Return of the Multi-Armed Bandit/14 -UCB1 Code.mp4 21.7 MB
  • 7 - Temporal Difference Learning/6 -Q Learning.mp4 20.8 MB
  • 4 - Markov Decision Proccesses/13 -Optimal Policy and Optimal Value Function (pt 2).mp4 19.6 MB
  • 4 - Markov Decision Proccesses/7 -Value Functions.mp4 19.5 MB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1 -How to Succeed in this Course (Long Version).mp4 19.2 MB
  • 2 - Return of the Multi-Armed Bandit/17 -Thompson Sampling Beginner's Exercise Prompt.mp4 18.8 MB
  • 8 - Approximation Methods/6 -Approximation Methods for Control.mp4 18.4 MB
  • 8 - Approximation Methods/10 -Approximation Methods Exercise.mp4 18.4 MB
  • 1 - Welcome/4 -How to Succeed in this Course.mp4 17.1 MB
  • 7 - Temporal Difference Learning/4 -SARSA.mp4 17.0 MB
  • 7 - Temporal Difference Learning/2 -TD(0) Prediction.mp4 16.6 MB
  • 10 - Stock Trading Project with Reinforcement Learning/10 -Stock Trading Project Discussion.mp4 16.5 MB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/2 -How to Code by Yourself (part 2).mp4 15.5 MB
  • 7 - Temporal Difference Learning/1 -Temporal Difference Introduction.mp4 15.1 MB
  • 4 - Markov Decision Proccesses/14 -MDP Summary.mp4 15.0 MB
  • 2 - Return of the Multi-Armed Bandit/10 -Optimistic Initial Values Beginner's Exercise Prompt.mp4 14.4 MB
  • 2 - Return of the Multi-Armed Bandit/13 -UCB1 Beginner's Exercise Prompt.mp4 13.4 MB
  • 6 - Monte Carlo/8 -Monte Carlo Summary.mp4 12.0 MB
  • 7 - Temporal Difference Learning/8 -TD Learning Section Summary.mp4 10.5 MB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/4 -Python 2 vs Python 3.mp4 8.2 MB
  • 2 - Return of the Multi-Armed Bandit/21 -Exercise on Gaussian Rewards.mp4 7.2 MB
  • 14 - Appendix FAQ Finale/1 -What is the Appendix.mp4 5.7 MB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.fr_FR.vtt 32.5 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.de_DE.vtt 31.6 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.pt_BR.vtt 30.6 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.es_ES.vtt 30.5 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.it_IT.vtt 30.3 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28.4 kB
  • 4 - Markov Decision Proccesses/subtitles/11 -Bellman Examples.fr_FR.vtt 28.1 kB
  • 4 - Markov Decision Proccesses/subtitles/11 -Bellman Examples.de_DE.vtt 28.0 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/1 -How to Code by Yourself (part 1).vtt 28.0 kB
  • 4 - Markov Decision Proccesses/subtitles/11 -Bellman Examples.es_ES.vtt 26.4 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -How to Code by Yourself (part 1).fr_FR.vtt 26.3 kB
  • 4 - Markov Decision Proccesses/subtitles/11 -Bellman Examples.pt_BR.vtt 26.2 kB
  • 4 - Markov Decision Proccesses/subtitles/11 -Bellman Examples.it_IT.vtt 26.2 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -How to Code by Yourself (part 1).de_DE.vtt 25.3 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -How to Code by Yourself (part 1).pt_BR.vtt 24.8 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -How to Code by Yourself (part 1).es_ES.vtt 24.7 kB
  • 4 - Markov Decision Proccesses/11 -Bellman Examples.vtt 24.7 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).fr_FR.vtt 24.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).fr_FR.vtt 24.4 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -How to Code by Yourself (part 1).it_IT.vtt 24.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).de_DE.vtt 23.4 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).de_DE.vtt 23.1 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).es_ES.vtt 22.9 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).pt_BR.vtt 22.8 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).it_IT.vtt 22.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).it_IT.vtt 22.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).es_ES.vtt 22.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).pt_BR.vtt 22.3 kB
  • 5 - Dynamic Programming/subtitles/2 -Iterative Policy Evaluation.fr_FR.vtt 21.7 kB
  • 2 - Return of the Multi-Armed Bandit/16 -Bayesian Bandits Thompson Sampling Theory (pt 2).vtt 21.2 kB
  • 5 - Dynamic Programming/subtitles/2 -Iterative Policy Evaluation.de_DE.vtt 21.0 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/1 -Beginners, halt! Stop here if you skipped ahead.fr_FR.vtt 20.9 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/2 -Anaconda Environment Setup.fr_FR.vtt 20.8 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).vtt 20.7 kB
  • 5 - Dynamic Programming/subtitles/2 -Iterative Policy Evaluation.es_ES.vtt 20.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/12 -UCB1 Theory.fr_FR.vtt 20.4 kB
  • 5 - Dynamic Programming/subtitles/2 -Iterative Policy Evaluation.it_IT.vtt 20.3 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/2 -Anaconda Environment Setup.de_DE.vtt 20.2 kB
  • 5 - Dynamic Programming/subtitles/2 -Iterative Policy Evaluation.pt_BR.vtt 20.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/1 -Beginners, halt! Stop here if you skipped ahead.de_DE.vtt 20.1 kB
  • 4 - Markov Decision Proccesses/subtitles/5 -Markov Decision Processes (MDPs).fr_FR.vtt 20.1 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/12 -UCB1 Theory.de_DE.vtt 20.0 kB
  • 4 - Markov Decision Proccesses/subtitles/5 -Markov Decision Processes (MDPs).de_DE.vtt 19.9 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/1 -Beginners, halt! Stop here if you skipped ahead.es_ES.vtt 19.6 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/1 -Beginners, halt! Stop here if you skipped ahead.pt_BR.vtt 19.5 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/2 -Anaconda Environment Setup.es_ES.vtt 19.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/1 -Beginners, halt! Stop here if you skipped ahead.it_IT.vtt 19.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/12 -UCB1 Theory.it_IT.vtt 19.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/12 -UCB1 Theory.es_ES.vtt 19.1 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/2 -Anaconda Environment Setup.pt_BR.vtt 19.1 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/2 -Anaconda Environment Setup.it_IT.vtt 19.1 kB
  • 1 - Welcome/subtitles/5 -Warmup.fr_FR.vtt 18.9 kB
  • 5 - Dynamic Programming/2 -Iterative Policy Evaluation.vtt 18.9 kB
  • 4 - Markov Decision Proccesses/subtitles/5 -Markov Decision Processes (MDPs).es_ES.vtt 18.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/12 -UCB1 Theory.pt_BR.vtt 18.8 kB
  • 4 - Markov Decision Proccesses/subtitles/5 -Markov Decision Processes (MDPs).it_IT.vtt 18.7 kB
  • 4 - Markov Decision Proccesses/subtitles/5 -Markov Decision Processes (MDPs).pt_BR.vtt 18.5 kB
  • 1 - Welcome/subtitles/5 -Warmup.de_DE.vtt 18.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/1 -Beginners, halt! Stop here if you skipped ahead.vtt 18.4 kB
  • 2 - Return of the Multi-Armed Bandit/12 -UCB1 Theory.vtt 17.9 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/2 -Anaconda Environment Setup.vtt 17.8 kB
  • 1 - Welcome/subtitles/5 -Warmup.es_ES.vtt 17.6 kB
  • 4 - Markov Decision Proccesses/5 -Markov Decision Processes (MDPs).vtt 17.6 kB
  • 1 - Welcome/subtitles/5 -Warmup.it_IT.vtt 17.6 kB
  • 4 - Markov Decision Proccesses/subtitles/2 -Gridworld.fr_FR.vtt 17.5 kB
  • 1 - Welcome/subtitles/5 -Warmup.pt_BR.vtt 17.4 kB
  • 4 - Markov Decision Proccesses/subtitles/2 -Gridworld.de_DE.vtt 17.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).fr_FR.vtt 17.2 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/2 -How to Code by Yourself (part 2).vtt 17.1 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 17.0 kB
  • 1 - Welcome/5 -Warmup.vtt 16.8 kB
  • 5 - Dynamic Programming/subtitles/5 -Iterative Policy Evaluation in Code.fr_FR.vtt 16.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).de_DE.vtt 16.8 kB
  • 4 - Markov Decision Proccesses/subtitles/2 -Gridworld.es_ES.vtt 16.6 kB
  • 4 - Markov Decision Proccesses/subtitles/2 -Gridworld.it_IT.vtt 16.5 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).fr_FR.vtt 16.4 kB
  • 5 - Dynamic Programming/subtitles/5 -Iterative Policy Evaluation in Code.de_DE.vtt 16.3 kB
  • 5 - Dynamic Programming/subtitles/4 -Gridworld in Code.fr_FR.vtt 16.3 kB
  • 5 - Dynamic Programming/subtitles/4 -Gridworld in Code.de_DE.vtt 16.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).es_ES.vtt 16.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/3 -Data and Environment.fr_FR.vtt 16.1 kB
  • 4 - Markov Decision Proccesses/subtitles/2 -Gridworld.pt_BR.vtt 16.1 kB
  • 5 - Dynamic Programming/subtitles/5 -Iterative Policy Evaluation in Code.it_IT.vtt 16.1 kB
  • 5 - Dynamic Programming/subtitles/5 -Iterative Policy Evaluation in Code.es_ES.vtt 16.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).it_IT.vtt 16.0 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.fr_FR.vtt 15.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).pt_BR.vtt 15.8 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).de_DE.vtt 15.7 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to Code by Yourself (part 2).fr_FR.vtt 15.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/3 -Data and Environment.de_DE.vtt 15.7 kB
  • 5 - Dynamic Programming/subtitles/4 -Gridworld in Code.es_ES.vtt 15.7 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).es_ES.vtt 15.6 kB
  • 5 - Dynamic Programming/subtitles/5 -Iterative Policy Evaluation in Code.pt_BR.vtt 15.6 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to Code by Yourself (part 2).de_DE.vtt 15.5 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).it_IT.vtt 15.5 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).pt_BR.vtt 15.5 kB
  • 4 - Markov Decision Proccesses/2 -Gridworld.vtt 15.5 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.de_DE.vtt 15.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/19 -Thompson Sampling With Gaussian Reward Theory.fr_FR.vtt 15.4 kB
  • 5 - Dynamic Programming/subtitles/4 -Gridworld in Code.it_IT.vtt 15.3 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/3 -Data and Environment.es_ES.vtt 15.3 kB
  • 5 - Dynamic Programming/subtitles/8 -Policy Improvement.fr_FR.vtt 15.3 kB
  • 8 - Approximation Methods/subtitles/3 -Feature Engineering.fr_FR.vtt 15.2 kB
  • 5 - Dynamic Programming/subtitles/4 -Gridworld in Code.pt_BR.vtt 15.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/3 -Data and Environment.pt_BR.vtt 15.1 kB
  • 2 - Return of the Multi-Armed Bandit/15 -Bayesian Bandits Thompson Sampling Theory (pt 1).vtt 15.1 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/3 -Data and Environment.it_IT.vtt 15.0 kB
  • 6 - Monte Carlo/subtitles/2 -Monte Carlo Policy Evaluation.fr_FR.vtt 15.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/19 -Thompson Sampling With Gaussian Reward Theory.de_DE.vtt 15.0 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).fr_FR.vtt 14.9 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.pt_BR.vtt 14.9 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to Code by Yourself (part 2).pt_BR.vtt 14.9 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to Code by Yourself (part 2).es_ES.vtt 14.9 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.es_ES.vtt 14.8 kB
  • 6 - Monte Carlo/subtitles/2 -Monte Carlo Policy Evaluation.de_DE.vtt 14.8 kB
  • 5 - Dynamic Programming/subtitles/8 -Policy Improvement.de_DE.vtt 14.8 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to Code by Yourself (part 2).it_IT.vtt 14.6 kB
  • 8 - Approximation Methods/subtitles/3 -Feature Engineering.de_DE.vtt 14.6 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).de_DE.vtt 14.6 kB
  • 5 - Dynamic Programming/4 -Gridworld in Code.vtt 14.6 kB
  • 5 - Dynamic Programming/5 -Iterative Policy Evaluation in Code.vtt 14.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/25 -(Optional) Alternative Bandit Designs.fr_FR.vtt 14.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/19 -Thompson Sampling With Gaussian Reward Theory.es_ES.vtt 14.5 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/3 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.it_IT.vtt 14.5 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).vtt 14.4 kB
  • 8 - Approximation Methods/subtitles/3 -Feature Engineering.es_ES.vtt 14.3 kB
  • 6 - Monte Carlo/subtitles/2 -Monte Carlo Policy Evaluation.es_ES.vtt 14.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/19 -Thompson Sampling With Gaussian Reward Theory.pt_BR.vtt 14.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/19 -Thompson Sampling With Gaussian Reward Theory.it_IT.vtt 14.3 kB
  • 6 - Monte Carlo/subtitles/2 -Monte Carlo Policy Evaluation.it_IT.vtt 14.2 kB
  • 5 - Dynamic Programming/subtitles/8 -Policy Improvement.es_ES.vtt 14.2 kB
  • 8 - Approximation Methods/subtitles/3 -Feature Engineering.it_IT.vtt 14.2 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Proof that using Jupyter Notebook is the same as not using it.fr_FR.vtt 14.2 kB
  • 5 - Dynamic Programming/subtitles/8 -Policy Improvement.it_IT.vtt 14.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/3 -Data and Environment.vtt 14.1 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).pt_BR.vtt 14.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/25 -(Optional) Alternative Bandit Designs.de_DE.vtt 14.0 kB
  • 8 - Approximation Methods/subtitles/3 -Feature Engineering.pt_BR.vtt 14.0 kB
  • 5 - Dynamic Programming/subtitles/8 -Policy Improvement.pt_BR.vtt 13.9 kB
  • 6 - Monte Carlo/subtitles/2 -Monte Carlo Policy Evaluation.pt_BR.vtt 13.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/25 -(Optional) Alternative Bandit Designs.es_ES.vtt 13.8 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).es_ES.vtt 13.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/1 -Section Introduction The Explore-Exploit Dilemma.fr_FR.vtt 13.8 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Proof that using Jupyter Notebook is the same as not using it.de_DE.vtt 13.7 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).it_IT.vtt 13.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/25 -(Optional) Alternative Bandit Designs.it_IT.vtt 13.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/25 -(Optional) Alternative Bandit Designs.pt_BR.vtt 13.5 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Proof that using Jupyter Notebook is the same as not using it.es_ES.vtt 13.5 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Proof that using Jupyter Notebook is the same as not using it.pt_BR.vtt 13.5 kB
  • 2 - Return of the Multi-Armed Bandit/19 -Thompson Sampling With Gaussian Reward Theory.vtt 13.5 kB
  • 8 - Approximation Methods/subtitles/4 -Approximation Methods for Prediction.fr_FR.vtt 13.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/1 -Section Introduction The Explore-Exploit Dilemma.de_DE.vtt 13.3 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Proof that using Jupyter Notebook is the same as not using it.it_IT.vtt 13.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/1 -Section Introduction The Explore-Exploit Dilemma.es_ES.vtt 13.2 kB
  • 5 - Dynamic Programming/8 -Policy Improvement.vtt 13.2 kB
  • 4 - Markov Decision Proccesses/subtitles/6 -Future Rewards.fr_FR.vtt 13.2 kB
  • 6 - Monte Carlo/2 -Monte Carlo Policy Evaluation.vtt 13.2 kB
  • 6 - Monte Carlo/subtitles/1 -Monte Carlo Intro.fr_FR.vtt 13.1 kB
  • 13 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1 -How to Succeed in this Course (Long Version).vtt 13.1 kB
  • 4 - Markov Decision Proccesses/subtitles/6 -Future Rewards.de_DE.vtt 13.0 kB
  • 8 - Approximation Methods/3 -Feature Engineering.vtt 13.0 kB
  • 8 - Approximation Methods/subtitles/4 -Approximation Methods for Prediction.de_DE.vtt 13.0 kB
  • 2 - Return of the Multi-Armed Bandit/25 -(Optional) Alternative Bandit Designs.vtt 13.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/1 -Section Introduction The Explore-Exploit Dilemma.it_IT.vtt 12.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/1 -Section Introduction The Explore-Exploit Dilemma.pt_BR.vtt 12.8 kB
  • 8 - Approximation Methods/subtitles/4 -Approximation Methods for Prediction.es_ES.vtt 12.6 kB
  • 6 - Monte Carlo/subtitles/1 -Monte Carlo Intro.de_DE.vtt 12.6 kB
  • 4 - Markov Decision Proccesses/subtitles/6 -Future Rewards.es_ES.vtt 12.6 kB
  • 5 - Dynamic Programming/subtitles/1 -Dynamic Programming Section Introduction.fr_FR.vtt 12.5 kB
  • 8 - Approximation Methods/subtitles/4 -Approximation Methods for Prediction.it_IT.vtt 12.5 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/3 -Proof that using Jupyter Notebook is the same as not using it.vtt 12.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/4 -How to Model Q for Q-Learning.fr_FR.vtt 12.5 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/2 -From Bandits to Full Reinforcement Learning.fr_FR.vtt 12.5 kB
  • 4 - Markov Decision Proccesses/subtitles/6 -Future Rewards.it_IT.vtt 12.4 kB
  • 6 - Monte Carlo/subtitles/4 -Monte Carlo Control.fr_FR.vtt 12.4 kB
  • 5 - Dynamic Programming/subtitles/1 -Dynamic Programming Section Introduction.de_DE.vtt 12.2 kB
  • 6 - Monte Carlo/subtitles/5 -Monte Carlo Control in Code.fr_FR.vtt 12.2 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/2 -From Bandits to Full Reinforcement Learning.de_DE.vtt 12.2 kB
  • 4 - Markov Decision Proccesses/subtitles/6 -Future Rewards.pt_BR.vtt 12.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/4 -How to Model Q for Q-Learning.de_DE.vtt 12.2 kB
  • 8 - Approximation Methods/subtitles/4 -Approximation Methods for Prediction.pt_BR.vtt 12.1 kB
  • 6 - Monte Carlo/subtitles/1 -Monte Carlo Intro.it_IT.vtt 12.1 kB
  • 2 - Return of the Multi-Armed Bandit/1 -Section Introduction The Explore-Exploit Dilemma.vtt 12.1 kB
  • 6 - Monte Carlo/subtitles/1 -Monte Carlo Intro.es_ES.vtt 12.1 kB
  • 6 - Monte Carlo/subtitles/1 -Monte Carlo Intro.pt_BR.vtt 12.0 kB
  • 6 - Monte Carlo/subtitles/5 -Monte Carlo Control in Code.de_DE.vtt 12.0 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/7 -Code pt 2.fr_FR.vtt 11.9 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/7 -Code pt 2.de_DE.vtt 11.9 kB
  • 6 - Monte Carlo/subtitles/4 -Monte Carlo Control.de_DE.vtt 11.9 kB
  • 8 - Approximation Methods/subtitles/2 -Linear Models for Reinforcement Learning.fr_FR.vtt 11.9 kB
  • 4 - Markov Decision Proccesses/subtitles/12 -Optimal Policy and Optimal Value Function (pt 1).fr_FR.vtt 11.8 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/4 -How to Model Q for Q-Learning.it_IT.vtt 11.8 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/4 -How to Model Q for Q-Learning.es_ES.vtt 11.8 kB
  • 5 - Dynamic Programming/subtitles/1 -Dynamic Programming Section Introduction.es_ES.vtt 11.8 kB
  • 5 - Dynamic Programming/subtitles/1 -Dynamic Programming Section Introduction.it_IT.vtt 11.7 kB
  • 4 - Markov Decision Proccesses/subtitles/12 -Optimal Policy and Optimal Value Function (pt 1).de_DE.vtt 11.7 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/2 -From Bandits to Full Reinforcement Learning.es_ES.vtt 11.7 kB
  • 8 - Approximation Methods/subtitles/7 -Approximation Methods for Control Code.de_DE.vtt 11.6 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/2 -From Bandits to Full Reinforcement Learning.it_IT.vtt 11.6 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/7 -Code pt 2.it_IT.vtt 11.6 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/7 -Code pt 2.es_ES.vtt 11.6 kB
  • 5 - Dynamic Programming/subtitles/1 -Dynamic Programming Section Introduction.pt_BR.vtt 11.5 kB
  • 8 - Approximation Methods/subtitles/7 -Approximation Methods for Control Code.fr_FR.vtt 11.5 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/1 -What is Reinforcement Learning.fr_FR.vtt 11.5 kB
  • 8 - Approximation Methods/subtitles/2 -Linear Models for Reinforcement Learning.de_DE.vtt 11.5 kB
  • 6 - Monte Carlo/subtitles/5 -Monte Carlo Control in Code.it_IT.vtt 11.5 kB
  • 6 - Monte Carlo/subtitles/5 -Monte Carlo Control in Code.es_ES.vtt 11.5 kB
  • 5 - Dynamic Programming/subtitles/10 -Policy Iteration in Code.fr_FR.vtt 11.5 kB
  • 4 - Markov Decision Proccesses/subtitles/12 -Optimal Policy and Optimal Value Function (pt 1).it_IT.vtt 11.4 kB
  • 4 - Markov Decision Proccesses/6 -Future Rewards.vtt 11.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/4 -How to Model Q for Q-Learning.pt_BR.vtt 11.4 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/2 -From Bandits to Full Reinforcement Learning.pt_BR.vtt 11.3 kB
  • 6 - Monte Carlo/subtitles/4 -Monte Carlo Control.es_ES.vtt 11.3 kB
  • 6 - Monte Carlo/1 -Monte Carlo Intro.vtt 11.3 kB
  • 8 - Approximation Methods/4 -Approximation Methods for Prediction.vtt 11.3 kB
  • 8 - Approximation Methods/subtitles/5 -Approximation Methods for Prediction Code.fr_FR.vtt 11.3 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/7 -Code pt 2.pt_BR.vtt 11.2 kB
  • 6 - Monte Carlo/subtitles/4 -Monte Carlo Control.it_IT.vtt 11.2 kB
  • 8 - Approximation Methods/subtitles/2 -Linear Models for Reinforcement Learning.es_ES.vtt 11.2 kB
  • 5 - Dynamic Programming/subtitles/11 -Policy Iteration in Windy Gridworld.fr_FR.vtt 11.2 kB
  • 4 - Markov Decision Proccesses/subtitles/8 -The Bellman Equation (pt 1).de_DE.vtt 11.2 kB
  • 4 - Markov Decision Proccesses/subtitles/8 -The Bellman Equation (pt 1).fr_FR.vtt 11.2 kB
  • 6 - Monte Carlo/subtitles/4 -Monte Carlo Control.pt_BR.vtt 11.2 kB
  • 4 - Markov Decision Proccesses/subtitles/12 -Optimal Policy and Optimal Value Function (pt 1).es_ES.vtt 11.2 kB
  • 5 - Dynamic Programming/subtitles/11 -Policy Iteration in Windy Gridworld.de_DE.vtt 11.2 kB
  • 8 - Approximation Methods/subtitles/7 -Approximation Methods for Control Code.es_ES.vtt 11.1 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/2 -Applications of the Explore-Exploit Dilemma.fr_FR.vtt 11.1 kB
  • 8 - Approximation Methods/subtitles/7 -Approximation Methods for Control Code.it_IT.vtt 11.1 kB
  • 5 - Dynamic Programming/1 -Dynamic Programming Section Introduction.vtt 11.1 kB
  • 5 - Dynamic Programming/subtitles/10 -Policy Iteration in Code.de_DE.vtt 11.1 kB
  • 6 - Monte Carlo/subtitles/5 -Monte Carlo Control in Code.pt_BR.vtt 11.1 kB
  • 4 - Markov Decision Proccesses/subtitles/12 -Optimal Policy and Optimal Value Function (pt 1).pt_BR.vtt 11.1 kB
  • 8 - Approximation Methods/subtitles/2 -Linear Models for Reinforcement Learning.it_IT.vtt 11.0 kB
  • 8 - Approximation Methods/subtitles/5 -Approximation Methods for Prediction Code.de_DE.vtt 11.0 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/1 -What is Reinforcement Learning.de_DE.vtt 11.0 kB
  • 5 - Dynamic Programming/subtitles/9 -Policy Iteration.fr_FR.vtt 11.0 kB
  • 6 - Monte Carlo/subtitles/3 -Monte Carlo Policy Evaluation in Code.fr_FR.vtt 11.0 kB
  • 8 - Approximation Methods/subtitles/2 -Linear Models for Reinforcement Learning.pt_BR.vtt 10.9 kB
  • 6 - Monte Carlo/subtitles/3 -Monte Carlo Policy Evaluation in Code.de_DE.vtt 10.9 kB
  • 5 - Dynamic Programming/subtitles/10 -Policy Iteration in Code.it_IT.vtt 10.9 kB
  • 3 - High Level Overview of Reinforcement Learning/2 -From Bandits to Full Reinforcement Learning.vtt 10.9 kB
  • 10 - Stock Trading Project with Reinforcement Learning/4 -How to Model Q for Q-Learning.vtt 10.8 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/1 -What is Reinforcement Learning.it_IT.vtt 10.8 kB
  • 5 - Dynamic Programming/subtitles/10 -Policy Iteration in Code.es_ES.vtt 10.8 kB
  • 1 - Welcome/subtitles/2 -Course Outline and Big Picture.fr_FR.vtt 10.7 kB
  • 5 - Dynamic Programming/subtitles/9 -Policy Iteration.de_DE.vtt 10.7 kB
  • 8 - Approximation Methods/subtitles/7 -Approximation Methods for Control Code.pt_BR.vtt 10.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/2 -Applications of the Explore-Exploit Dilemma.de_DE.vtt 10.7 kB
  • 5 - Dynamic Programming/subtitles/6 -Windy Gridworld in Code.de_DE.vtt 10.7 kB
  • 8 - Approximation Methods/subtitles/5 -Approximation Methods for Prediction Code.es_ES.vtt 10.7 kB
  • 5 - Dynamic Programming/subtitles/6 -Windy Gridworld in Code.fr_FR.vtt 10.7 kB
  • 8 - Approximation Methods/subtitles/5 -Approximation Methods for Prediction Code.it_IT.vtt 10.7 kB
  • 4 - Markov Decision Proccesses/subtitles/8 -The Bellman Equation (pt 1).es_ES.vtt 10.7 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/1 -What is Reinforcement Learning.pt_BR.vtt 10.7 kB
  • 5 - Dynamic Programming/subtitles/11 -Policy Iteration in Windy Gridworld.es_ES.vtt 10.6 kB
  • 5 - Dynamic Programming/subtitles/11 -Policy Iteration in Windy Gridworld.it_IT.vtt 10.6 kB
  • 3 - High Level Overview of Reinforcement Learning/subtitles/1 -What is Reinforcement Learning.es_ES.vtt 10.6 kB
  • 4 - Markov Decision Proccesses/subtitles/8 -The Bellman Equation (pt 1).it_IT.vtt 10.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/2 -Applications of the Explore-Exploit Dilemma.it_IT.vtt 10.6 kB
  • 9 - Interlude Common Beginner Questions/subtitles/1 -This Course vs. RL Book What's the Difference.fr_FR.vtt 10.5 kB
  • 6 - Monte Carlo/subtitles/3 -Monte Carlo Policy Evaluation in Code.es_ES.vtt 10.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/7 -Code pt 2.vtt 10.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/2 -Applications of the Explore-Exploit Dilemma.es_ES.vtt 10.5 kB
  • 5 - Dynamic Programming/subtitles/10 -Policy Iteration in Code.pt_BR.vtt 10.5 kB
  • 6 - Monte Carlo/4 -Monte Carlo Control.vtt 10.4 kB
  • 6 - Monte Carlo/subtitles/3 -Monte Carlo Policy Evaluation in Code.it_IT.vtt 10.4 kB
  • 5 - Dynamic Programming/subtitles/11 -Policy Iteration in Windy Gridworld.pt_BR.vtt 10.4 kB
  • 4 - Markov Decision Proccesses/12 -Optimal Policy and Optimal Value Function (pt 1).vtt 10.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/2 -Applications of the Explore-Exploit Dilemma.pt_BR.vtt 10.4 kB
  • 4 - Markov Decision Proccesses/subtitles/8 -The Bellman Equation (pt 1).pt_BR.vtt 10.3 kB
  • 8 - Approximation Methods/2 -Linear Models for Reinforcement Learning.vtt 10.3 kB
  • 6 - Monte Carlo/subtitles/3 -Monte Carlo Policy Evaluation in Code.pt_BR.vtt 10.3 kB
  • 8 - Approximation Methods/subtitles/5 -Approximation Methods for Prediction Code.pt_BR.vtt 10.2 kB
  • 9 - Interlude Common Beginner Questions/subtitles/1 -This Course vs. RL Book What's the Difference.de_DE.vtt 10.2 kB
  • 1 - Welcome/subtitles/2 -Course Outline and Big Picture.de_DE.vtt 10.2 kB
  • 5 - Dynamic Programming/subtitles/6 -Windy Gridworld in Code.es_ES.vtt 10.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/6 -Code pt 1.fr_FR.vtt 10.2 kB
  • 5 - Dynamic Programming/subtitles/9 -Policy Iteration.it_IT.vtt 10.2 kB
  • 1 - Welcome/subtitles/2 -Course Outline and Big Picture.es_ES.vtt 10.1 kB
  • 5 - Dynamic Programming/subtitles/6 -Windy Gridworld in Code.it_IT.vtt 10.1 kB
  • 5 - Dynamic Programming/subtitles/12 -Value Iteration.fr_FR.vtt 10.1 kB
  • 6 - Monte Carlo/5 -Monte Carlo Control in Code.vtt 10.1 kB
  • 5 - Dynamic Programming/subtitles/9 -Policy Iteration.es_ES.vtt 10.1 kB
  • 1 - Welcome/subtitles/2 -Course Outline and Big Picture.it_IT.vtt 10.0 kB
  • 1 - Welcome/subtitles/2 -Course Outline and Big Picture.pt_BR.vtt 10.0 kB
  • 5 - Dynamic Programming/subtitles/7 -Iterative Policy Evaluation for Windy Gridworld in Code.fr_FR.vtt 10.0 kB
  • 5 - Dynamic Programming/subtitles/12 -Value Iteration.de_DE.vtt 10.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/23 -Nonstationary Bandits.fr_FR.vtt 10.0 kB
  • 4 - Markov Decision Proccesses/8 -The Bellman Equation (pt 1).vtt 10.0 kB
  • 5 - Dynamic Programming/subtitles/9 -Policy Iteration.pt_BR.vtt 10.0 kB
  • 9 - Interlude Common Beginner Questions/subtitles/1 -This Course vs. RL Book What's the Difference.it_IT.vtt 10.0 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/6 -Code pt 1.de_DE.vtt 10.0 kB
  • 5 - Dynamic Programming/subtitles/7 -Iterative Policy Evaluation for Windy Gridworld in Code.de_DE.vtt 10.0 kB
  • 5 - Dynamic Programming/subtitles/6 -Windy Gridworld in Code.pt_BR.vtt 9.9 kB
  • 8 - Approximation Methods/7 -Approximation Methods for Control Code.vtt 9.9 kB
  • 5 - Dynamic Programming/11 -Policy Iteration in Windy Gridworld.vtt 9.8 kB
  • 3 - High Level Overview of Reinforcement Learning/1 -What is Reinforcement Learning.vtt 9.8 kB
  • 9 - Interlude Common Beginner Questions/subtitles/1 -This Course vs. RL Book What's the Difference.es_ES.vtt 9.8 kB
  • 2 - Return of the Multi-Armed Bandit/2 -Applications of the Explore-Exploit Dilemma.vtt 9.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/3 -Epsilon-Greedy Theory.fr_FR.vtt 9.8 kB
  • 9 - Interlude Common Beginner Questions/subtitles/1 -This Course vs. RL Book What's the Difference.pt_BR.vtt 9.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/23 -Nonstationary Bandits.de_DE.vtt 9.7 kB
  • 5 - Dynamic Programming/subtitles/12 -Value Iteration.it_IT.vtt 9.7 kB
  • 5 - Dynamic Programming/10 -Policy Iteration in Code.vtt 9.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/6 -Code pt 1.es_ES.vtt 9.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/3 -Epsilon-Greedy Theory.de_DE.vtt 9.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/6 -Code pt 1.it_IT.vtt 9.5 kB
  • 6 - Monte Carlo/3 -Monte Carlo Policy Evaluation in Code.vtt 9.5 kB
  • 8 - Approximation Methods/5 -Approximation Methods for Prediction Code.vtt 9.5 kB
  • 5 - Dynamic Programming/subtitles/7 -Iterative Policy Evaluation for Windy Gridworld in Code.es_ES.vtt 9.5 kB
  • 5 - Dynamic Programming/subtitles/12 -Value Iteration.es_ES.vtt 9.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/24 -Bandit Summary, Real Data, and Online Learning.fr_FR.vtt 9.5 kB
  • 1 - Welcome/2 -Course Outline and Big Picture.vtt 9.4 kB
  • 5 - Dynamic Programming/subtitles/7 -Iterative Policy Evaluation for Windy Gridworld in Code.it_IT.vtt 9.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/23 -Nonstationary Bandits.es_ES.vtt 9.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/6 -Code pt 1.pt_BR.vtt 9.4 kB
  • 5 - Dynamic Programming/6 -Windy Gridworld in Code.vtt 9.4 kB
  • 5 - Dynamic Programming/9 -Policy Iteration.vtt 9.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/23 -Nonstationary Bandits.it_IT.vtt 9.3 kB
  • 9 - Interlude Common Beginner Questions/1 -This Course vs. RL Book What's the Difference.vtt 9.3 kB
  • 5 - Dynamic Programming/subtitles/7 -Iterative Policy Evaluation for Windy Gridworld in Code.pt_BR.vtt 9.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/23 -Nonstationary Bandits.pt_BR.vtt 9.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/3 -Epsilon-Greedy Theory.es_ES.vtt 9.2 kB
  • 5 - Dynamic Programming/subtitles/12 -Value Iteration.pt_BR.vtt 9.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/3 -Epsilon-Greedy Theory.it_IT.vtt 9.2 kB
  • 5 - Dynamic Programming/subtitles/13 -Value Iteration in Code.fr_FR.vtt 9.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/24 -Bandit Summary, Real Data, and Online Learning.de_DE.vtt 9.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/7 -Epsilon-Greedy in Code.fr_FR.vtt 9.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/7 -Epsilon-Greedy in Code.de_DE.vtt 9.0 kB
  • 4 - Markov Decision Proccesses/subtitles/9 -The Bellman Equation (pt 2).fr_FR.vtt 8.9 kB
  • 5 - Dynamic Programming/subtitles/13 -Value Iteration in Code.de_DE.vtt 8.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/3 -Epsilon-Greedy Theory.pt_BR.vtt 8.8 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/9 -Code pt 4.fr_FR.vtt 8.8 kB
  • 5 - Dynamic Programming/7 -Iterative Policy Evaluation for Windy Gridworld in Code.vtt 8.7 kB
  • 5 - Dynamic Programming/12 -Value Iteration.vtt 8.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/6 -Code pt 1.vtt 8.7 kB
  • 5 - Dynamic Programming/subtitles/13 -Value Iteration in Code.es_ES.vtt 8.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/5 -Design of the Program.fr_FR.vtt 8.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/9 -Code pt 4.de_DE.vtt 8.7 kB
  • 5 - Dynamic Programming/subtitles/13 -Value Iteration in Code.it_IT.vtt 8.7 kB
  • 4 - Markov Decision Proccesses/subtitles/9 -The Bellman Equation (pt 2).de_DE.vtt 8.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/24 -Bandit Summary, Real Data, and Online Learning.pt_BR.vtt 8.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/24 -Bandit Summary, Real Data, and Online Learning.es_ES.vtt 8.7 kB
  • 2 - Return of the Multi-Armed Bandit/23 -Nonstationary Bandits.vtt 8.6 kB
  • 4 - Markov Decision Proccesses/subtitles/1 -MDP Section Introduction.fr_FR.vtt 8.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/24 -Bandit Summary, Real Data, and Online Learning.it_IT.vtt 8.6 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/5 -Design of the Program.de_DE.vtt 8.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/7 -Epsilon-Greedy in Code.es_ES.vtt 8.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/7 -Epsilon-Greedy in Code.it_IT.vtt 8.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/5 -Design of the Program.es_ES.vtt 8.5 kB
  • 2 - Return of the Multi-Armed Bandit/3 -Epsilon-Greedy Theory.vtt 8.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/5 -Design of the Program.it_IT.vtt 8.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/9 -Code pt 4.es_ES.vtt 8.4 kB
  • 5 - Dynamic Programming/subtitles/13 -Value Iteration in Code.pt_BR.vtt 8.3 kB
  • 14 - Appendix FAQ Finale/subtitles/2 -BONUS.de_DE.vtt 8.3 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/9 -Code pt 4.it_IT.vtt 8.3 kB
  • 4 - Markov Decision Proccesses/subtitles/1 -MDP Section Introduction.de_DE.vtt 8.3 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/5 -Design of the Program.pt_BR.vtt 8.3 kB
  • 4 - Markov Decision Proccesses/subtitles/9 -The Bellman Equation (pt 2).es_ES.vtt 8.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/7 -Epsilon-Greedy in Code.pt_BR.vtt 8.2 kB
  • 4 - Markov Decision Proccesses/subtitles/9 -The Bellman Equation (pt 2).pt_BR.vtt 8.2 kB
  • 2 - Return of the Multi-Armed Bandit/24 -Bandit Summary, Real Data, and Online Learning.vtt 8.2 kB
  • 4 - Markov Decision Proccesses/subtitles/4 -The Markov Property.fr_FR.vtt 8.1 kB
  • 4 - Markov Decision Proccesses/subtitles/9 -The Bellman Equation (pt 2).it_IT.vtt 8.1 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/9 -Code pt 4.pt_BR.vtt 8.1 kB
  • 4 - Markov Decision Proccesses/subtitles/4 -The Markov Property.de_DE.vtt 8.1 kB
  • 7 - Temporal Difference Learning/subtitles/5 -SARSA in Code.fr_FR.vtt 8.1 kB
  • 7 - Temporal Difference Learning/subtitles/5 -SARSA in Code.de_DE.vtt 8.0 kB
  • 4 - Markov Decision Proccesses/subtitles/1 -MDP Section Introduction.es_ES.vtt 8.0 kB
  • 4 - Markov Decision Proccesses/subtitles/10 -The Bellman Equation (pt 3).de_DE.vtt 8.0 kB
  • 4 - Markov Decision Proccesses/subtitles/1 -MDP Section Introduction.pt_BR.vtt 8.0 kB
  • 4 - Markov Decision Proccesses/subtitles/4 -The Markov Property.es_ES.vtt 7.9 kB
  • 4 - Markov Decision Proccesses/subtitles/1 -MDP Section Introduction.it_IT.vtt 7.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/22 -Why don't we just use a library.fr_FR.vtt 7.9 kB
  • 4 - Markov Decision Proccesses/subtitles/4 -The Markov Property.pt_BR.vtt 7.9 kB
  • 5 - Dynamic Programming/13 -Value Iteration in Code.vtt 7.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/4 -Calculating a Sample Mean (pt 1).fr_FR.vtt 7.8 kB
  • 4 - Markov Decision Proccesses/subtitles/10 -The Bellman Equation (pt 3).fr_FR.vtt 7.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/4 -Calculating a Sample Mean (pt 1).de_DE.vtt 7.8 kB
  • 8 - Approximation Methods/subtitles/8 -CartPole.fr_FR.vtt 7.8 kB
  • 4 - Markov Decision Proccesses/subtitles/4 -The Markov Property.it_IT.vtt 7.8 kB
  • 2 - Return of the Multi-Armed Bandit/7 -Epsilon-Greedy in Code.vtt 7.8 kB
  • 4 - Markov Decision Proccesses/9 -The Bellman Equation (pt 2).vtt 7.7 kB
  • 7 - Temporal Difference Learning/subtitles/5 -SARSA in Code.es_ES.vtt 7.7 kB
  • 6 - Monte Carlo/subtitles/7 -Monte Carlo Control without Exploring Starts in Code.fr_FR.vtt 7.7 kB
  • 8 - Approximation Methods/subtitles/8 -CartPole.de_DE.vtt 7.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/5 -Design of the Program.vtt 7.7 kB
  • 7 - Temporal Difference Learning/subtitles/5 -SARSA in Code.it_IT.vtt 7.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/22 -Why don't we just use a library.de_DE.vtt 7.6 kB
  • 4 - Markov Decision Proccesses/1 -MDP Section Introduction.vtt 7.5 kB
  • 4 - Markov Decision Proccesses/subtitles/10 -The Bellman Equation (pt 3).es_ES.vtt 7.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/9 -Optimistic Initial Values Theory.fr_FR.vtt 7.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/20 -Thompson Sampling With Gaussian Reward Code.fr_FR.vtt 7.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/22 -Why don't we just use a library.pt_BR.vtt 7.4 kB
  • 8 - Approximation Methods/subtitles/9 -CartPole Code.fr_FR.vtt 7.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/9 -Code pt 4.vtt 7.4 kB
  • 6 - Monte Carlo/subtitles/7 -Monte Carlo Control without Exploring Starts in Code.de_DE.vtt 7.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/22 -Why don't we just use a library.es_ES.vtt 7.4 kB
  • 4 - Markov Decision Proccesses/subtitles/10 -The Bellman Equation (pt 3).it_IT.vtt 7.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/20 -Thompson Sampling With Gaussian Reward Code.de_DE.vtt 7.4 kB
  • 8 - Approximation Methods/subtitles/8 -CartPole.es_ES.vtt 7.4 kB
  • 7 - Temporal Difference Learning/subtitles/5 -SARSA in Code.pt_BR.vtt 7.4 kB
  • 8 - Approximation Methods/subtitles/9 -CartPole Code.de_DE.vtt 7.4 kB
  • 7 - Temporal Difference Learning/subtitles/2 -TD(0) Prediction.fr_FR.vtt 7.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/22 -Why don't we just use a library.it_IT.vtt 7.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/9 -Optimistic Initial Values Theory.de_DE.vtt 7.3 kB
  • 8 - Approximation Methods/subtitles/8 -CartPole.it_IT.vtt 7.2 kB
  • 4 - Markov Decision Proccesses/4 -The Markov Property.vtt 7.2 kB
  • 4 - Markov Decision Proccesses/subtitles/10 -The Bellman Equation (pt 3).pt_BR.vtt 7.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/4 -Calculating a Sample Mean (pt 1).es_ES.vtt 7.2 kB
  • 6 - Monte Carlo/subtitles/7 -Monte Carlo Control without Exploring Starts in Code.es_ES.vtt 7.2 kB
  • 8 - Approximation Methods/subtitles/9 -CartPole Code.es_ES.vtt 7.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/4 -Calculating a Sample Mean (pt 1).it_IT.vtt 7.2 kB
  • 6 - Monte Carlo/subtitles/7 -Monte Carlo Control without Exploring Starts in Code.it_IT.vtt 7.1 kB
  • 8 - Approximation Methods/subtitles/8 -CartPole.pt_BR.vtt 7.1 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/20 -Thompson Sampling With Gaussian Reward Code.es_ES.vtt 7.1 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/4 -Calculating a Sample Mean (pt 1).pt_BR.vtt 7.1 kB
  • 7 - Temporal Difference Learning/subtitles/2 -TD(0) Prediction.de_DE.vtt 7.1 kB
  • 6 - Monte Carlo/subtitles/7 -Monte Carlo Control without Exploring Starts in Code.pt_BR.vtt 7.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/20 -Thompson Sampling With Gaussian Reward Code.it_IT.vtt 7.0 kB
  • 4 - Markov Decision Proccesses/10 -The Bellman Equation (pt 3).vtt 7.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/9 -Optimistic Initial Values Theory.es_ES.vtt 7.0 kB
  • 7 - Temporal Difference Learning/5 -SARSA in Code.vtt 6.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/9 -Optimistic Initial Values Theory.pt_BR.vtt 6.9 kB
  • 7 - Temporal Difference Learning/subtitles/2 -TD(0) Prediction.es_ES.vtt 6.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/8 -Comparing Different Epsilons.fr_FR.vtt 6.9 kB
  • 5 - Dynamic Programming/subtitles/14 -Dynamic Programming Summary.fr_FR.vtt 6.9 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/2 -Stock Trading Project Section Introduction.fr_FR.vtt 6.9 kB
  • 8 - Approximation Methods/subtitles/9 -CartPole Code.pt_BR.vtt 6.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/20 -Thompson Sampling With Gaussian Reward Code.pt_BR.vtt 6.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/9 -Optimistic Initial Values Theory.it_IT.vtt 6.8 kB
  • 7 - Temporal Difference Learning/subtitles/2 -TD(0) Prediction.it_IT.vtt 6.8 kB
  • 8 - Approximation Methods/subtitles/9 -CartPole Code.it_IT.vtt 6.8 kB
  • 2 - Return of the Multi-Armed Bandit/22 -Why don't we just use a library.vtt 6.8 kB
  • 5 - Dynamic Programming/subtitles/3 -Designing Your RL Program.fr_FR.vtt 6.8 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/2 -Stock Trading Project Section Introduction.de_DE.vtt 6.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/8 -Comparing Different Epsilons.de_DE.vtt 6.8 kB
  • 2 - Return of the Multi-Armed Bandit/4 -Calculating a Sample Mean (pt 1).vtt 6.8 kB
  • 5 - Dynamic Programming/subtitles/14 -Dynamic Programming Summary.de_DE.vtt 6.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/2 -Stock Trading Project Section Introduction.es_ES.vtt 6.6 kB
  • 7 - Temporal Difference Learning/subtitles/6 -Q Learning.fr_FR.vtt 6.6 kB
  • 5 - Dynamic Programming/subtitles/3 -Designing Your RL Program.de_DE.vtt 6.6 kB
  • 7 - Temporal Difference Learning/subtitles/2 -TD(0) Prediction.pt_BR.vtt 6.6 kB
  • 4 - Markov Decision Proccesses/subtitles/7 -Value Functions.de_DE.vtt 6.6 kB
  • 8 - Approximation Methods/8 -CartPole.vtt 6.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/5 -Epsilon-Greedy Beginner's Exercise Prompt.fr_FR.vtt 6.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/8 -Comparing Different Epsilons.es_ES.vtt 6.6 kB
  • 4 - Markov Decision Proccesses/subtitles/7 -Value Functions.fr_FR.vtt 6.6 kB
  • 7 - Temporal Difference Learning/subtitles/4 -SARSA.fr_FR.vtt 6.5 kB
  • 7 - Temporal Difference Learning/subtitles/6 -Q Learning.de_DE.vtt 6.5 kB
  • 2 - Return of the Multi-Armed Bandit/20 -Thompson Sampling With Gaussian Reward Code.vtt 6.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/5 -Epsilon-Greedy Beginner's Exercise Prompt.de_DE.vtt 6.5 kB
  • 5 - Dynamic Programming/subtitles/14 -Dynamic Programming Summary.it_IT.vtt 6.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/2 -Stock Trading Project Section Introduction.pt_BR.vtt 6.5 kB
  • 6 - Monte Carlo/7 -Monte Carlo Control without Exploring Starts in Code.vtt 6.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/2 -Stock Trading Project Section Introduction.it_IT.vtt 6.5 kB
  • 2 - Return of the Multi-Armed Bandit/9 -Optimistic Initial Values Theory.vtt 6.5 kB
  • 4 - Markov Decision Proccesses/subtitles/7 -Value Functions.es_ES.vtt 6.4 kB
  • 7 - Temporal Difference Learning/subtitles/3 -TD(0) Prediction in Code.fr_FR.vtt 6.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/8 -Comparing Different Epsilons.it_IT.vtt 6.4 kB
  • 7 - Temporal Difference Learning/subtitles/7 -Q Learning in Code.de_DE.vtt 6.4 kB
  • 5 - Dynamic Programming/subtitles/3 -Designing Your RL Program.it_IT.vtt 6.4 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.fr_FR.vtt 6.4 kB
  • 8 - Approximation Methods/9 -CartPole Code.vtt 6.4 kB
  • 5 - Dynamic Programming/subtitles/3 -Designing Your RL Program.es_ES.vtt 6.4 kB
  • 5 - Dynamic Programming/subtitles/14 -Dynamic Programming Summary.es_ES.vtt 6.4 kB
  • 7 - Temporal Difference Learning/subtitles/7 -Q Learning in Code.fr_FR.vtt 6.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/8 -Comparing Different Epsilons.pt_BR.vtt 6.4 kB
  • 5 - Dynamic Programming/subtitles/3 -Designing Your RL Program.pt_BR.vtt 6.3 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -Python 2 vs Python 3.fr_FR.vtt 6.3 kB
  • 7 - Temporal Difference Learning/subtitles/4 -SARSA.de_DE.vtt 6.3 kB
  • 1 - Welcome/subtitles/3 -Where to get the Code.fr_FR.vtt 6.3 kB
  • 7 - Temporal Difference Learning/subtitles/6 -Q Learning.es_ES.vtt 6.3 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.de_DE.vtt 6.3 kB
  • 7 - Temporal Difference Learning/subtitles/3 -TD(0) Prediction in Code.de_DE.vtt 6.3 kB
  • 1 - Welcome/subtitles/3 -Where to get the Code.de_DE.vtt 6.3 kB
  • 7 - Temporal Difference Learning/subtitles/6 -Q Learning.it_IT.vtt 6.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/5 -Epsilon-Greedy Beginner's Exercise Prompt.es_ES.vtt 6.3 kB
  • 5 - Dynamic Programming/subtitles/14 -Dynamic Programming Summary.pt_BR.vtt 6.3 kB
  • 4 - Markov Decision Proccesses/subtitles/7 -Value Functions.pt_BR.vtt 6.2 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -Python 2 vs Python 3.de_DE.vtt 6.2 kB
  • 4 - Markov Decision Proccesses/subtitles/7 -Value Functions.it_IT.vtt 6.2 kB
  • 7 - Temporal Difference Learning/2 -TD(0) Prediction.vtt 6.2 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.pt_BR.vtt 6.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/5 -Epsilon-Greedy Beginner's Exercise Prompt.it_IT.vtt 6.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/5 -Epsilon-Greedy Beginner's Exercise Prompt.pt_BR.vtt 6.2 kB
  • 7 - Temporal Difference Learning/subtitles/6 -Q Learning.pt_BR.vtt 6.2 kB
  • 7 - Temporal Difference Learning/subtitles/7 -Q Learning in Code.it_IT.vtt 6.1 kB
  • 10 - Stock Trading Project with Reinforcement Learning/2 -Stock Trading Project Section Introduction.vtt 6.1 kB
  • 7 - Temporal Difference Learning/subtitles/7 -Q Learning in Code.es_ES.vtt 6.1 kB
  • 8 - Approximation Methods/subtitles/1 -Approximation Methods Section Introduction.fr_FR.vtt 6.1 kB
  • 7 - Temporal Difference Learning/subtitles/4 -SARSA.es_ES.vtt 6.1 kB
  • 2 - Return of the Multi-Armed Bandit/8 -Comparing Different Epsilons.vtt 6.1 kB
  • 6 - Monte Carlo/subtitles/6 -Monte Carlo Control without Exploring Starts.fr_FR.vtt 6.1 kB
  • 7 - Temporal Difference Learning/subtitles/3 -TD(0) Prediction in Code.es_ES.vtt 6.1 kB
  • 8 - Approximation Methods/subtitles/6 -Approximation Methods for Control.fr_FR.vtt 6.1 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -Python 2 vs Python 3.pt_BR.vtt 6.0 kB
  • 1 - Welcome/subtitles/3 -Where to get the Code.es_ES.vtt 6.0 kB
  • 4 - Markov Decision Proccesses/subtitles/13 -Optimal Policy and Optimal Value Function (pt 2).fr_FR.vtt 6.0 kB
  • 7 - Temporal Difference Learning/subtitles/4 -SARSA.it_IT.vtt 6.0 kB
  • 7 - Temporal Difference Learning/subtitles/3 -TD(0) Prediction in Code.it_IT.vtt 6.0 kB
  • 5 - Dynamic Programming/3 -Designing Your RL Program.vtt 6.0 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.es_ES.vtt 6.0 kB
  • 4 - Markov Decision Proccesses/7 -Value Functions.vtt 6.0 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -Python 2 vs Python 3.es_ES.vtt 5.9 kB
  • 6 - Monte Carlo/subtitles/6 -Monte Carlo Control without Exploring Starts.de_DE.vtt 5.9 kB
  • 5 - Dynamic Programming/14 -Dynamic Programming Summary.vtt 5.9 kB
  • 1 - Welcome/subtitles/3 -Where to get the Code.it_IT.vtt 5.9 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/1 -Pre-Installation Check.vtt 5.9 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -Python 2 vs Python 3.it_IT.vtt 5.9 kB
  • 7 - Temporal Difference Learning/subtitles/7 -Q Learning in Code.pt_BR.vtt 5.8 kB
  • 7 - Temporal Difference Learning/subtitles/3 -TD(0) Prediction in Code.pt_BR.vtt 5.8 kB
  • 4 - Markov Decision Proccesses/subtitles/13 -Optimal Policy and Optimal Value Function (pt 2).es_ES.vtt 5.8 kB
  • 8 - Approximation Methods/subtitles/6 -Approximation Methods for Control.it_IT.vtt 5.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/18 -Thompson Sampling Code.fr_FR.vtt 5.8 kB
  • 8 - Approximation Methods/subtitles/6 -Approximation Methods for Control.es_ES.vtt 5.8 kB
  • 1 - Welcome/subtitles/3 -Where to get the Code.pt_BR.vtt 5.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/6 -Designing Your Bandit Program.fr_FR.vtt 5.8 kB
  • 7 - Temporal Difference Learning/subtitles/4 -SARSA.pt_BR.vtt 5.8 kB
  • 4 - Markov Decision Proccesses/subtitles/13 -Optimal Policy and Optimal Value Function (pt 2).de_DE.vtt 5.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/18 -Thompson Sampling Code.de_DE.vtt 5.8 kB
  • 8 - Approximation Methods/subtitles/6 -Approximation Methods for Control.de_DE.vtt 5.8 kB
  • 8 - Approximation Methods/subtitles/1 -Approximation Methods Section Introduction.de_DE.vtt 5.8 kB
  • 2 - Return of the Multi-Armed Bandit/5 -Epsilon-Greedy Beginner's Exercise Prompt.vtt 5.8 kB
  • 11 - Setting Up Your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.it_IT.vtt 5.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/6 -Designing Your Bandit Program.de_DE.vtt 5.7 kB
  • 8 - Approximation Methods/subtitles/1 -Approximation Methods Section Introduction.es_ES.vtt 5.7 kB
  • 7 - Temporal Difference Learning/6 -Q Learning.vtt 5.7 kB
  • 4 - Markov Decision Proccesses/subtitles/13 -Optimal Policy and Optimal Value Function (pt 2).pt_BR.vtt 5.7 kB
  • 8 - Approximation Methods/subtitles/1 -Approximation Methods Section Introduction.it_IT.vtt 5.7 kB
  • 6 - Monte Carlo/subtitles/6 -Monte Carlo Control without Exploring Starts.es_ES.vtt 5.6 kB
  • 1 - Welcome/3 -Where to get the Code.vtt 5.6 kB
  • 6 - Monte Carlo/subtitles/6 -Monte Carlo Control without Exploring Starts.pt_BR.vtt 5.6 kB
  • 8 - Approximation Methods/subtitles/6 -Approximation Methods for Control.pt_BR.vtt 5.6 kB
  • 4 - Markov Decision Proccesses/subtitles/3 -Choosing Rewards.fr_FR.vtt 5.6 kB
  • 6 - Monte Carlo/subtitles/6 -Monte Carlo Control without Exploring Starts.it_IT.vtt 5.6 kB
  • 4 - Markov Decision Proccesses/subtitles/13 -Optimal Policy and Optimal Value Function (pt 2).it_IT.vtt 5.5 kB
  • 8 - Approximation Methods/subtitles/1 -Approximation Methods Section Introduction.pt_BR.vtt 5.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/8 -Code pt 3.fr_FR.vtt 5.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/6 -Designing Your Bandit Program.es_ES.vtt 5.5 kB
  • 8 - Approximation Methods/subtitles/10 -Approximation Methods Exercise.fr_FR.vtt 5.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/18 -Thompson Sampling Code.it_IT.vtt 5.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/8 -Code pt 3.de_DE.vtt 5.5 kB
  • 7 - Temporal Difference Learning/subtitles/1 -Temporal Difference Introduction.fr_FR.vtt 5.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/18 -Thompson Sampling Code.es_ES.vtt 5.5 kB
  • 12 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/4 -Python 2 vs Python 3.vtt 5.5 kB
  • 7 - Temporal Difference Learning/7 -Q Learning in Code.vtt 5.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/6 -Designing Your Bandit Program.it_IT.vtt 5.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/6 -Designing Your Bandit Program.pt_BR.vtt 5.4 kB
  • 7 - Temporal Difference Learning/3 -TD(0) Prediction in Code.vtt 5.4 kB
  • 7 - Temporal Difference Learning/4 -SARSA.vtt 5.4 kB
  • 4 - Markov Decision Proccesses/subtitles/3 -Choosing Rewards.de_DE.vtt 5.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/11 -Optimistic Initial Values Code.fr_FR.vtt 5.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/8 -Code pt 3.es_ES.vtt 5.4 kB
  • 8 - Approximation Methods/subtitles/10 -Approximation Methods Exercise.de_DE.vtt 5.3 kB
  • 4 - Markov Decision Proccesses/subtitles/3 -Choosing Rewards.it_IT.vtt 5.3 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/8 -Code pt 3.it_IT.vtt 5.3 kB
  • 4 - Markov Decision Proccesses/subtitles/3 -Choosing Rewards.es_ES.vtt 5.3 kB
  • 4 - Markov Decision Proccesses/13 -Optimal Policy and Optimal Value Function (pt 2).vtt 5.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/18 -Thompson Sampling Code.pt_BR.vtt 5.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/11 -Optimistic Initial Values Code.de_DE.vtt 5.3 kB
  • 8 - Approximation Methods/1 -Approximation Methods Section Introduction.vtt 5.2 kB
  • 6 - Monte Carlo/6 -Monte Carlo Control without Exploring Starts.vtt 5.2 kB
  • 7 - Temporal Difference Learning/subtitles/1 -Temporal Difference Introduction.de_DE.vtt 5.2 kB
  • 8 - Approximation Methods/subtitles/10 -Approximation Methods Exercise.es_ES.vtt 5.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/8 -Code pt 3.pt_BR.vtt 5.2 kB
  • 4 - Markov Decision Proccesses/subtitles/3 -Choosing Rewards.pt_BR.vtt 5.2 kB
  • 8 - Approximation Methods/6 -Approximation Methods for Control.vtt 5.2 kB
  • 8 - Approximation Methods/subtitles/10 -Approximation Methods Exercise.it_IT.vtt 5.1 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/11 -Optimistic Initial Values Code.es_ES.vtt 5.1 kB
  • 2 - Return of the Multi-Armed Bandit/6 -Designing Your Bandit Program.vtt 5.1 kB
  • 2 - Return of the Multi-Armed Bandit/18 -Thompson Sampling Code.vtt 5.1 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/11 -Optimistic Initial Values Code.it_IT.vtt 5.0 kB
  • 8 - Approximation Methods/subtitles/10 -Approximation Methods Exercise.pt_BR.vtt 5.0 kB
  • 7 - Temporal Difference Learning/subtitles/1 -Temporal Difference Introduction.es_ES.vtt 5.0 kB
  • 7 - Temporal Difference Learning/subtitles/1 -Temporal Difference Introduction.it_IT.vtt 5.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/11 -Optimistic Initial Values Code.pt_BR.vtt 4.9 kB
  • 4 - Markov Decision Proccesses/3 -Choosing Rewards.vtt 4.9 kB
  • 10 - Stock Trading Project with Reinforcement Learning/8 -Code pt 3.vtt 4.9 kB
  • 7 - Temporal Difference Learning/subtitles/1 -Temporal Difference Introduction.pt_BR.vtt 4.8 kB
  • 8 - Approximation Methods/10 -Approximation Methods Exercise.vtt 4.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/26 -Suggestion Box.fr_FR.vtt 4.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/26 -Suggestion Box.de_DE.vtt 4.7 kB
  • 7 - Temporal Difference Learning/1 -Temporal Difference Introduction.vtt 4.7 kB
  • 2 - Return of the Multi-Armed Bandit/11 -Optimistic Initial Values Code.vtt 4.7 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/10 -Stock Trading Project Discussion.fr_FR.vtt 4.6 kB
  • 1 - Welcome/subtitles/4 -How to Succeed in this Course.de_DE.vtt 4.6 kB
  • 1 - Welcome/subtitles/4 -How to Succeed in this Course.fr_FR.vtt 4.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/26 -Suggestion Box.pt_BR.vtt 4.5 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/10 -Stock Trading Project Discussion.de_DE.vtt 4.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/26 -Suggestion Box.it_IT.vtt 4.4 kB
  • 1 - Welcome/subtitles/1 -Introduction.fr_FR.vtt 4.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/26 -Suggestion Box.es_ES.vtt 4.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/10 -Stock Trading Project Discussion.es_ES.vtt 4.4 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/10 -Stock Trading Project Discussion.pt_BR.vtt 4.3 kB
  • 1 - Welcome/subtitles/4 -How to Succeed in this Course.es_ES.vtt 4.3 kB
  • 1 - Welcome/subtitles/4 -How to Succeed in this Course.pt_BR.vtt 4.3 kB
  • 8 - Approximation Methods/subtitles/11 -Approximation Methods Section Summary.fr_FR.vtt 4.3 kB
  • 2 - Return of the Multi-Armed Bandit/26 -Suggestion Box.vtt 4.2 kB
  • 10 - Stock Trading Project with Reinforcement Learning/subtitles/10 -Stock Trading Project Discussion.it_IT.vtt 4.2 kB
  • 1 - Welcome/subtitles/4 -How to Succeed in this Course.it_IT.vtt 4.2 kB
  • 1 - Welcome/subtitles/1 -Introduction.de_DE.vtt 4.2 kB
  • 1 - Welcome/subtitles/1 -Introduction.it_IT.vtt 4.1 kB
  • 8 - Approximation Methods/subtitles/11 -Approximation Methods Section Summary.it_IT.vtt 4.1 kB
  • 1 - Welcome/subtitles/1 -Introduction.es_ES.vtt 4.0 kB
  • 8 - Approximation Methods/subtitles/11 -Approximation Methods Section Summary.es_ES.vtt 4.0 kB
  • 1 - Welcome/4 -How to Succeed in this Course.vtt 4.0 kB
  • 1 - Welcome/subtitles/1 -Introduction.pt_BR.vtt 4.0 kB
  • 8 - Approximation Methods/subtitles/11 -Approximation Methods Section Summary.de_DE.vtt 4.0 kB
  • 10 - Stock Trading Project with Reinforcement Learning/10 -Stock Trading Project Discussion.vtt 3.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/14 -UCB1 Code.de_DE.vtt 3.9 kB
  • 8 - Approximation Methods/subtitles/11 -Approximation Methods Section Summary.pt_BR.vtt 3.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/14 -UCB1 Code.fr_FR.vtt 3.8 kB
  • 1 - Welcome/1 -Introduction.vtt 3.8 kB
  • 14 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.fr_FR.vtt 3.8 kB
  • 4 - Markov Decision Proccesses/subtitles/14 -MDP Summary.fr_FR.vtt 3.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/14 -UCB1 Code.es_ES.vtt 3.7 kB
  • 14 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.de_DE.vtt 3.7 kB
  • 4 - Markov Decision Proccesses/subtitles/14 -MDP Summary.de_DE.vtt 3.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/14 -UCB1 Code.it_IT.vtt 3.7 kB
  • 8 - Approximation Methods/11 -Approximation Methods Section Summary.vtt 3.6 kB
  • 4 - Markov Decision Proccesses/subtitles/14 -MDP Summary.it_IT.vtt 3.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/14 -UCB1 Code.pt_BR.vtt 3.5 kB
  • 14 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.es_ES.vtt 3.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/17 -Thompson Sampling Beginner's Exercise Prompt.fr_FR.vtt 3.5 kB
  • 14 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.it_IT.vtt 3.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/17 -Thompson Sampling Beginner's Exercise Prompt.de_DE.vtt 3.5 kB
  • 4 - Markov Decision Proccesses/subtitles/14 -MDP Summary.es_ES.vtt 3.5 kB
  • 14 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.pt_BR.vtt 3.5 kB
  • 4 - Markov Decision Proccesses/subtitles/14 -MDP Summary.pt_BR.vtt 3.4 kB
  • 2 - Return of the Multi-Armed Bandit/14 -UCB1 Code.vtt 3.4 kB
  • 14 - Appendix FAQ Finale/1 -What is the Appendix.vtt 3.4 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/17 -Thompson Sampling Beginner's Exercise Prompt.es_ES.vtt 3.3 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/17 -Thompson Sampling Beginner's Exercise Prompt.it_IT.vtt 3.3 kB
  • 4 - Markov Decision Proccesses/14 -MDP Summary.vtt 3.3 kB
  • 7 - Temporal Difference Learning/subtitles/8 -TD Learning Section Summary.fr_FR.vtt 3.2 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/17 -Thompson Sampling Beginner's Exercise Prompt.pt_BR.vtt 3.2 kB
  • 2 - Return of the Multi-Armed Bandit/17 -Thompson Sampling Beginner's Exercise Prompt.vtt 3.1 kB
  • 7 - Temporal Difference Learning/subtitles/8 -TD Learning Section Summary.es_ES.vtt 3.0 kB
  • 7 - Temporal Difference Learning/subtitles/8 -TD Learning Section Summary.it_IT.vtt 3.0 kB
  • 7 - Temporal Difference Learning/subtitles/8 -TD Learning Section Summary.de_DE.vtt 3.0 kB
  • 7 - Temporal Difference Learning/subtitles/8 -TD Learning Section Summary.pt_BR.vtt 2.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/10 -Optimistic Initial Values Beginner's Exercise Prompt.fr_FR.vtt 2.9 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/10 -Optimistic Initial Values Beginner's Exercise Prompt.de_DE.vtt 2.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/13 -UCB1 Beginner's Exercise Prompt.de_DE.vtt 2.8 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/13 -UCB1 Beginner's Exercise Prompt.fr_FR.vtt 2.7 kB
  • 7 - Temporal Difference Learning/8 -TD Learning Section Summary.vtt 2.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/10 -Optimistic Initial Values Beginner's Exercise Prompt.pt_BR.vtt 2.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/10 -Optimistic Initial Values Beginner's Exercise Prompt.it_IT.vtt 2.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/10 -Optimistic Initial Values Beginner's Exercise Prompt.es_ES.vtt 2.6 kB
  • 2 - Return of the Multi-Armed Bandit/10 -Optimistic Initial Values Beginner's Exercise Prompt.vtt 2.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/13 -UCB1 Beginner's Exercise Prompt.it_IT.vtt 2.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/13 -UCB1 Beginner's Exercise Prompt.es_ES.vtt 2.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/13 -UCB1 Beginner's Exercise Prompt.pt_BR.vtt 2.6 kB
  • 2 - Return of the Multi-Armed Bandit/13 -UCB1 Beginner's Exercise Prompt.vtt 2.5 kB
  • 6 - Monte Carlo/subtitles/8 -Monte Carlo Summary.fr_FR.vtt 2.3 kB
  • 6 - Monte Carlo/subtitles/8 -Monte Carlo Summary.de_DE.vtt 2.2 kB
  • 6 - Monte Carlo/subtitles/8 -Monte Carlo Summary.it_IT.vtt 2.1 kB
  • 6 - Monte Carlo/subtitles/8 -Monte Carlo Summary.es_ES.vtt 2.1 kB
  • 6 - Monte Carlo/subtitles/8 -Monte Carlo Summary.pt_BR.vtt 2.1 kB
  • 6 - Monte Carlo/8 -Monte Carlo Summary.vtt 2.0 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/21 -Exercise on Gaussian Rewards.fr_FR.vtt 1.7 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/21 -Exercise on Gaussian Rewards.de_DE.vtt 1.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/21 -Exercise on Gaussian Rewards.it_IT.vtt 1.6 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/21 -Exercise on Gaussian Rewards.es_ES.vtt 1.5 kB
  • 2 - Return of the Multi-Armed Bandit/subtitles/21 -Exercise on Gaussian Rewards.pt_BR.vtt 1.5 kB
  • 2 - Return of the Multi-Armed Bandit/21 -Exercise on Gaussian Rewards.vtt 1.4 kB
  • 1 - Welcome/3 -Github Link.url 82 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!