搜索
[GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子名称
[GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子简介
种子哈希:
522ff132043fe187b1696d636476559fdb0bcb19
文件大小:
21.1G
已经下载:
95
次
下载速度:
极快
收录时间:
2022-03-18
最近下载:
2024-12-05
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:522FF132043FE187B1696D636476559FDB0BCB19
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
the-legend-of-zelda-breath-of-the-wild
精品推荐 国产cd系列伪娘
southside johnny 24
easeus todo backup
大连 外国
1896148
avatar.the.last.airbender.2024.s01.2160p
accurate
cp all
变态 捆绑
crystal rush 2160p
大四了还像个小学妹,颜值不老学姐,逼逼还没怎么开发过
owls.vr
不雅视频泄露
男人叫床
玩弄+潮
ad vitam
case5.鹽見彩
taxi sex
眼镜大奶美女
洋子+啪啪
anina
手机发现
寻花高颜值气质妹子
fc2 ppv 1527841
30 day
有声小说
发现儿子在偷看色杂誌,为了帮儿子排解压力不得已答应了过分的要求
老师穴
极品技师黑丝
文件列表
19 Understand and design CNNs/005 Examine feature map activations.mp4
273.2 MB
22 Style transfer/004 Transferring the screaming bathtub.mp4
227.4 MB
19 Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4
211.1 MB
19 Understand and design CNNs/002 CNN to classify MNIST digits.mp4
210.1 MB
07 ANNs/013 Multi-output ANN (iris dataset).mp4
195.8 MB
19 Understand and design CNNs/004 Classify Gaussian blurs.mp4
194.1 MB
09 Regularization/004 Dropout regularization in practice.mp4
192.1 MB
16 Autoencoders/006 Autoencoder with tied weights.mp4
186.4 MB
18 Convolution and transformations/003 Convolution in code.mp4
181.5 MB
08 Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4
180.7 MB
23 Generative adversarial networks/002 Linear GAN with MNIST.mp4
178.2 MB
07 ANNs/009 Learning rates comparison.mp4
176.8 MB
12 More on data/003 CodeChallenge_ unbalanced data.mp4
174.3 MB
11 FFNs/003 FFN to classify digits.mp4
169.7 MB
16 Autoencoders/005 The latent code of MNIST.mp4
169.7 MB
07 ANNs/018 Model depth vs. breadth.mp4
166.6 MB
12 More on data/007 Data feature augmentation.mp4
166.0 MB
21 Transfer learning/007 Pretraining with autoencoders.mp4
164.2 MB
14 FFN milestone projects/004 Project 2_ My solution.mp4
163.3 MB
21 Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4
160.8 MB
07 ANNs/008 ANN for classifying qwerties.mp4
158.5 MB
21 Transfer learning/005 Transfer learning with ResNet-18.mp4
155.7 MB
19 Understand and design CNNs/008 Do autoencoders clean Gaussians_.mp4
155.1 MB
15 Weight inits and investigations/009 Learning-related changes in weights.mp4
153.9 MB
07 ANNs/010 Multilayer ANN.mp4
151.7 MB
10 Metaparameters (activations, optimizers)/002 The _wine quality_ dataset.mp4
150.5 MB
08 Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4
149.8 MB
25 Where to go from here_/002 How to read academic DL papers.mp4
148.7 MB
18 Convolution and transformations/012 Creating and using custom DataLoaders.mp4
146.3 MB
07 ANNs/007 CodeChallenge_ manipulate regression slopes.mp4
145.9 MB
16 Autoencoders/004 AEs for occlusion.mp4
144.9 MB
10 Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4
144.8 MB
19 Understand and design CNNs/011 Discover the Gaussian parameters.mp4
143.3 MB
09 Regularization/003 Dropout regularization.mp4
142.6 MB
12 More on data/001 Anatomy of a torch dataset and dataloader.mp4
142.4 MB
23 Generative adversarial networks/004 CNN GAN with Gaussians.mp4
142.3 MB
12 More on data/002 Data size and network size.mp4
142.3 MB
06 Gradient descent/007 Parametric experiments on g.d.mp4
142.2 MB
07 ANNs/006 ANN for regression.mp4
142.1 MB
16 Autoencoders/003 CodeChallenge_ How many units_.mp4
142.0 MB
15 Weight inits and investigations/005 Xavier and Kaiming initializations.mp4
140.6 MB
19 Understand and design CNNs/010 CodeChallenge_ Custom loss functions.mp4
139.3 MB
07 ANNs/016 Depth vs. breadth_ number of parameters.mp4
138.5 MB
18 Convolution and transformations/011 Image transforms.mp4
136.2 MB
15 Weight inits and investigations/006 CodeChallenge_ Xavier vs. Kaiming.mp4
132.6 MB
12 More on data/010 Save the best-performing model.mp4
132.6 MB
12 More on data/005 Data oversampling in MNIST.mp4
128.5 MB
10 Metaparameters (activations, optimizers)/013 CodeChallenge_ Predict sugar.mp4
128.0 MB
15 Weight inits and investigations/002 A surprising demo of weight initializations.mp4
127.5 MB
03 Concepts in deep learning/003 The role of DL in science and knowledge.mp4
127.5 MB
19 Understand and design CNNs/006 CodeChallenge_ Softcode internal parameters.mp4
125.9 MB
06 Gradient descent/003 Gradient descent in 1D.mp4
125.1 MB
10 Metaparameters (activations, optimizers)/003 CodeChallenge_ Minibatch size in the wine dataset.mp4
124.6 MB
21 Transfer learning/003 CodeChallenge_ letters to numbers.mp4
124.5 MB
20 CNN milestone projects/002 Project 1_ My solution.mp4
124.4 MB
16 Autoencoders/002 Denoising MNIST.mp4
124.3 MB
11 FFNs/006 Distributions of weights pre- and post-learning.mp4
121.9 MB
03 Concepts in deep learning/005 Are artificial _neurons_ like biological neurons_.mp4
120.2 MB
06 Gradient descent/008 CodeChallenge_ fixed vs. dynamic learning rate.mp4
120.1 MB
09 Regularization/007 L2 regularization in practice.mp4
115.8 MB
29 Python intro_ Functions/008 Classes and object-oriented programming.mp4
113.4 MB
31 Python intro_ Text and plots/004 Making the graphs look nicer.mp4
112.9 MB
13 Measuring model performance/004 APRF example 1_ wine quality.mp4
112.6 MB
12 More on data/006 Data noise augmentation (with devset+test).mp4
111.2 MB
05 Math, numpy, PyTorch/010 Entropy and cross-entropy.mp4
111.1 MB
15 Weight inits and investigations/004 CodeChallenge_ Weight variance inits.mp4
109.0 MB
11 FFNs/002 The MNIST dataset.mp4
106.4 MB
18 Convolution and transformations/005 The Conv2 class in PyTorch.mp4
105.1 MB
30 Python intro_ Flow control/010 Function error checking and handling.mp4
104.7 MB
10 Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4
104.6 MB
14 FFN milestone projects/002 Project 1_ My solution.mp4
104.6 MB
09 Regularization/008 L1 regularization in practice.mp4
104.3 MB
13 Measuring model performance/005 APRF example 2_ MNIST.mp4
103.4 MB
08 Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4
103.1 MB
10 Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4
102.8 MB
18 Convolution and transformations/001 Convolution_ concepts.mp4
102.8 MB
10 Metaparameters (activations, optimizers)/009 Activation functions.mp4
101.7 MB
10 Metaparameters (activations, optimizers)/023 Learning rate decay.mp4
101.6 MB
21 Transfer learning/001 Transfer learning_ What, why, and when_.mp4
101.3 MB
11 FFNs/005 CodeChallenge_ Data normalization.mp4
100.9 MB
05 Math, numpy, PyTorch/008 Softmax.mp4
100.6 MB
06 Gradient descent/005 Gradient descent in 2D.mp4
100.6 MB
09 Regularization/012 CodeChallenge_ Effects of mini-batch size.mp4
100.1 MB
11 FFNs/007 CodeChallenge_ MNIST and breadth vs. depth.mp4
99.8 MB
07 ANNs/014 CodeChallenge_ more qwerties!.mp4
99.7 MB
31 Python intro_ Text and plots/001 Printing and string interpolation.mp4
99.4 MB
19 Understand and design CNNs/007 CodeChallenge_ How wide the FC_.mp4
98.6 MB
31 Python intro_ Text and plots/006 Images.mp4
98.1 MB
15 Weight inits and investigations/008 Freezing weights during learning.mp4
97.7 MB
18 Convolution and transformations/007 Transpose convolution.mp4
97.4 MB
19 Understand and design CNNs/015 CodeChallenge_ Varying number of channels.mp4
96.9 MB
10 Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4
95.9 MB
30 Python intro_ Flow control/002 If-else statements, part 2.mp4
95.5 MB
30 Python intro_ Flow control/008 while loops.mp4
95.5 MB
30 Python intro_ Flow control/006 Initializing variables.mp4
95.5 MB
21 Transfer learning/002 Transfer learning_ MNIST -_ FMNIST.mp4
94.7 MB
10 Metaparameters (activations, optimizers)/014 Loss functions.mp4
94.7 MB
23 Generative adversarial networks/001 GAN_ What, why, and how.mp4
94.1 MB
07 ANNs/017 Defining models using sequential vs. class.mp4
93.8 MB
19 Understand and design CNNs/009 CodeChallenge_ AEs and occluded Gaussians.mp4
93.8 MB
09 Regularization/010 Batch training in action.mp4
93.4 MB
18 Convolution and transformations/008 Max_mean pooling.mp4
93.4 MB
17 Running models on a GPU/001 What is a GPU and why use it_.mp4
93.0 MB
29 Python intro_ Functions/005 Creating functions.mp4
92.7 MB
05 Math, numpy, PyTorch/011 Min_max and argmin_argmax.mp4
92.5 MB
08 Overfitting and cross-validation/002 Cross-validation.mp4
92.5 MB
15 Weight inits and investigations/007 CodeChallenge_ Identically random weights.mp4
92.4 MB
30 Python intro_ Flow control/003 For loops.mp4
91.4 MB
10 Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4
91.1 MB
31 Python intro_ Text and plots/003 Subplot geometry.mp4
91.0 MB
05 Math, numpy, PyTorch/007 Matrix multiplication.mp4
89.8 MB
05 Math, numpy, PyTorch/013 Random sampling and sampling variability.mp4
89.6 MB
09 Regularization/006 Weight regularization (L1_L2)_ math.mp4
89.6 MB
07 ANNs/001 The perceptron and ANN architecture.mp4
87.7 MB
19 Understand and design CNNs/013 Dropout in CNNs.mp4
86.7 MB
13 Measuring model performance/007 Computation time.mp4
85.7 MB
05 Math, numpy, PyTorch/015 The t-test.mp4
85.3 MB
29 Python intro_ Functions/003 Python libraries (pandas).mp4
85.1 MB
18 Convolution and transformations/009 Pooling in PyTorch.mp4
85.0 MB
05 Math, numpy, PyTorch/012 Mean and variance.mp4
84.5 MB
05 Math, numpy, PyTorch/016 Derivatives_ intuition and polynomials.mp4
84.2 MB
09 Regularization/001 Regularization_ Concept and methods.mp4
83.9 MB
15 Weight inits and investigations/003 Theory_ Why and how to initialize weights.mp4
83.3 MB
08 Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4
83.1 MB
27 Python intro_ Data types/003 Math and printing.mp4
82.3 MB
11 FFNs/010 Shifted MNIST.mp4
81.7 MB
27 Python intro_ Data types/002 Variables.mp4
81.3 MB
06 Gradient descent/004 CodeChallenge_ unfortunate starting value.mp4
80.8 MB
27 Python intro_ Data types/007 Booleans.mp4
80.6 MB
10 Metaparameters (activations, optimizers)/006 Batch normalization.mp4
80.5 MB
10 Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4
80.5 MB
17 Running models on a GPU/002 Implementation.mp4
80.3 MB
20 CNN milestone projects/005 Project 4_ Psychometric functions in CNNs.mp4
80.0 MB
14 FFN milestone projects/006 Project 3_ My solution.mp4
79.1 MB
24 Ethics of deep learning/004 Will deep learning take our jobs_.mp4
78.8 MB
30 Python intro_ Flow control/007 Single-line loops (list comprehension).mp4
78.8 MB
03 Concepts in deep learning/004 Running experiments to understand DL.mp4
78.5 MB
11 FFNs/011 CodeChallenge_ The mystery of the missing 7.mp4
77.9 MB
10 Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4
77.5 MB
08 Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_.mp4
76.7 MB
03 Concepts in deep learning/002 How models _learn_.mp4
76.3 MB
13 Measuring model performance/002 Accuracy, precision, recall, F1.mp4
76.1 MB
07 ANNs/015 Comparing the number of hidden units.mp4
74.6 MB
30 Python intro_ Flow control/009 Broadcasting in numpy.mp4
74.5 MB
07 ANNs/002 A geometric view of ANNs.mp4
74.3 MB
18 Convolution and transformations/002 Feature maps and convolution kernels.mp4
73.8 MB
24 Ethics of deep learning/005 Accountability and making ethical AI.mp4
73.5 MB
05 Math, numpy, PyTorch/014 Reproducible randomness via seeding.mp4
73.1 MB
15 Weight inits and investigations/001 Explanation of weight matrix sizes.mp4
72.3 MB
06 Gradient descent/001 Overview of gradient descent.mp4
71.8 MB
22 Style transfer/003 The style transfer algorithm.mp4
70.6 MB
06 Gradient descent/002 What about local minima_.mp4
70.3 MB
18 Convolution and transformations/004 Convolution parameters (stride, padding).mp4
70.2 MB
30 Python intro_ Flow control/001 If-else statements.mp4
70.0 MB
22 Style transfer/002 The Gram matrix (feature activation covariance).mp4
69.7 MB
24 Ethics of deep learning/003 Some other possible ethical scenarios.mp4
69.5 MB
29 Python intro_ Functions/006 Global and local variable scopes.mp4
69.2 MB
24 Ethics of deep learning/001 Will AI save us or destroy us_.mp4
69.1 MB
03 Concepts in deep learning/001 What is an artificial neural network_.mp4
68.6 MB
10 Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4
67.8 MB
10 Metaparameters (activations, optimizers)/012 CodeChallenge_ Compare relu variants.mp4
67.1 MB
29 Python intro_ Functions/002 Python libraries (numpy).mp4
66.5 MB
23 Generative adversarial networks/003 CodeChallenge_ Linear GAN with FMNIST.mp4
65.8 MB
13 Measuring model performance/006 CodeChallenge_ MNIST with unequal groups.mp4
65.4 MB
09 Regularization/009 Training in mini-batches.mp4
65.1 MB
10 Metaparameters (activations, optimizers)/018 SGD with momentum.mp4
65.1 MB
10 Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4
64.8 MB
10 Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4
64.7 MB
23 Generative adversarial networks/007 CodeChallenge_ CNN GAN with CIFAR.mp4
63.7 MB
08 Overfitting and cross-validation/008 Cross-validation on regression.mp4
63.3 MB
11 FFNs/009 Scrambled MNIST.mp4
63.1 MB
09 Regularization/011 The importance of equal batch sizes.mp4
63.0 MB
10 Metaparameters (activations, optimizers)/004 Data normalization.mp4
62.7 MB
31 Python intro_ Text and plots/005 Seaborn.mp4
62.6 MB
18 Convolution and transformations/006 CodeChallenge_ Choose the parameters.mp4
61.6 MB
30 Python intro_ Flow control/004 Enumerate and zip.mp4
61.4 MB
07 ANNs/021 Reflection_ Are DL models understandable yet_.mp4
61.4 MB
19 Understand and design CNNs/003 CNN on shifted MNIST.mp4
61.2 MB
07 ANNs/003 ANN math part 1 (forward prop).mp4
60.7 MB
19 Understand and design CNNs/001 The canonical CNN architecture.mp4
58.5 MB
12 More on data/009 Save and load trained models.mp4
58.4 MB
05 Math, numpy, PyTorch/018 Derivatives_ product and chain rules.mp4
58.3 MB
18 Convolution and transformations/010 To pool or to stride_.mp4
58.2 MB
19 Understand and design CNNs/014 CodeChallenge_ How low can you go_.mp4
58.0 MB
27 Python intro_ Data types/004 Lists (1 of 2).mp4
57.7 MB
01 Introduction/001 How to learn from this course.mp4
57.6 MB
23 Generative adversarial networks/006 CNN GAN with FMNIST.mp4
57.2 MB
01 Introduction/002 Using Udemy like a pro.mp4
57.0 MB
12 More on data/004 What to do about unbalanced designs_.mp4
56.8 MB
09 Regularization/005 Dropout example 2.mp4
56.5 MB
31 Python intro_ Text and plots/002 Plotting dots and lines.mp4
56.5 MB
22 Style transfer/005 CodeChallenge_ Style transfer with AlexNet.mp4
56.1 MB
23 Generative adversarial networks/005 CodeChallenge_ Gaussians with fewer layers.mp4
55.6 MB
10 Metaparameters (activations, optimizers)/022 CodeChallenge_ Adam with L2 regularization.mp4
55.6 MB
17 Running models on a GPU/003 CodeChallenge_ Run an experiment on the GPU.mp4
55.6 MB
24 Ethics of deep learning/002 Example case studies.mp4
55.5 MB
07 ANNs/005 ANN math part 3 (backprop).mp4
55.5 MB
13 Measuring model performance/003 APRF in code.mp4
54.3 MB
07 ANNs/019 CodeChallenge_ convert sequential to class.mp4
53.9 MB
28 Python intro_ Indexing, slicing/001 Indexing.mp4
53.6 MB
05 Math, numpy, PyTorch/002 Spectral theories in mathematics.mp4
53.5 MB
27 Python intro_ Data types/008 Dictionaries.mp4
53.1 MB
14 FFN milestone projects/003 Project 2_ Predicting heart disease.mp4
53.1 MB
07 ANNs/011 Linear solutions to linear problems.mp4
52.8 MB
05 Math, numpy, PyTorch/006 OMG it's the dot product!.mp4
52.5 MB
10 Metaparameters (activations, optimizers)/021 CodeChallenge_ Optimizers and... something.mp4
52.2 MB
11 FFNs/012 Universal approximation theorem.mp4
51.6 MB
16 Autoencoders/001 What are autoencoders and what do they do_.mp4
51.4 MB
29 Python intro_ Functions/004 Getting help on functions.mp4
51.0 MB
14 FFN milestone projects/001 Project 1_ A gratuitously complex adding machine.mp4
50.9 MB
07 ANNs/004 ANN math part 2 (errors, loss, cost).mp4
50.8 MB
28 Python intro_ Indexing, slicing/002 Slicing.mp4
50.8 MB
20 CNN milestone projects/001 Project 1_ Import and classify CIFAR10.mp4
50.7 MB
27 Python intro_ Data types/005 Lists (2 of 2).mp4
49.0 MB
11 FFNs/008 CodeChallenge_ Optimizers and MNIST.mp4
48.5 MB
02 Download all course materials/001 Downloading and using the code.mp4
47.9 MB
05 Math, numpy, PyTorch/017 Derivatives find minima.mp4
47.7 MB
14 FFN milestone projects/005 Project 3_ FFN for missing data interpolation.mp4
47.6 MB
13 Measuring model performance/008 Better performance in test than train_.mp4
47.0 MB
05 Math, numpy, PyTorch/009 Logarithms.mp4
46.0 MB
12 More on data/008 Getting data into colab.mp4
45.9 MB
31 Python intro_ Text and plots/007 Export plots in low and high resolution.mp4
45.7 MB
25 Where to go from here_/001 How to learn topic _X_ in deep learning_.mp4
44.1 MB
12 More on data/011 Where to find online datasets.mp4
43.7 MB
10 Metaparameters (activations, optimizers)/008 CodeChallenge_ Batch-normalize the qwerties.mp4
43.4 MB
21 Transfer learning/004 Famous CNN architectures.mp4
43.3 MB
11 FFNs/004 CodeChallenge_ Binarized MNIST images.mp4
42.8 MB
22 Style transfer/001 What is style transfer and how does it work_.mp4
42.5 MB
13 Measuring model performance/001 Two perspectives of the world.mp4
42.0 MB
06 Gradient descent/006 CodeChallenge_ 2D gradient ascent.mp4
41.3 MB
09 Regularization/002 train() and eval() modes.mp4
40.2 MB
05 Math, numpy, PyTorch/003 Terms and datatypes in math and computers.mp4
39.9 MB
05 Math, numpy, PyTorch/005 Vector and matrix transpose.mp4
39.5 MB
27 Python intro_ Data types/006 Tuples.mp4
37.5 MB
20 CNN milestone projects/003 Project 2_ CIFAR-autoencoder.mp4
35.0 MB
05 Math, numpy, PyTorch/004 Converting reality to numbers.mp4
34.8 MB
30 Python intro_ Flow control/005 Continue.mp4
34.6 MB
10 Metaparameters (activations, optimizers)/001 What are _metaparameters__.mp4
34.3 MB
08 Overfitting and cross-validation/003 Generalization.mp4
34.0 MB
06 Gradient descent/009 Vanishing and exploding gradients.mp4
31.7 MB
29 Python intro_ Functions/001 Inputs and outputs.mp4
30.9 MB
15 Weight inits and investigations/010 Use default inits or apply your own_.mp4
29.4 MB
07 ANNs/012 Why multilayer linear models don't exist.mp4
27.7 MB
20 CNN milestone projects/004 Project 3_ FMNIST.mp4
27.7 MB
11 FFNs/001 What are fully-connected and feedforward networks_.mp4
26.8 MB
29 Python intro_ Functions/007 Copies and referents of variables.mp4
24.9 MB
04 About the Python tutorial/001 Should you watch the Python tutorial_.mp4
24.9 MB
06 Gradient descent/010 Tangent_ Notebook revision history.mp4
23.3 MB
27 Python intro_ Data types/001 How to learn from the Python tutorial.mp4
23.0 MB
19 Understand and design CNNs/016 So many possibilities! How to create a CNN_.mp4
22.1 MB
21 Transfer learning/006 CodeChallenge_ VGG-16.mp4
21.3 MB
05 Math, numpy, PyTorch/001 Introduction to this section.mp4
11.7 MB
02 Download all course materials/002 My policy on code-sharing.mp4
10.7 MB
02 Download all course materials/003 DUDL_PythonCode.zip
717.6 kB
19 Understand and design CNNs/005 Examine feature map activations.en.srt
41.5 kB
19 Understand and design CNNs/002 CNN to classify MNIST digits.en.srt
38.9 kB
07 ANNs/013 Multi-output ANN (iris dataset).en.srt
38.4 kB
07 ANNs/009 Learning rates comparison.en.srt
37.1 kB
19 Understand and design CNNs/012 The EMNIST dataset (letter recognition).en.srt
37.0 kB
07 ANNs/006 ANN for regression.en.srt
36.7 kB
16 Autoencoders/006 Autoencoder with tied weights.en.srt
35.7 kB
19 Understand and design CNNs/004 Classify Gaussian blurs.en.srt
35.1 kB
07 ANNs/008 ANN for classifying qwerties.en.srt
34.8 kB
09 Regularization/004 Dropout regularization in practice.en.srt
34.2 kB
11 FFNs/003 FFN to classify digits.en.srt
33.7 kB
15 Weight inits and investigations/009 Learning-related changes in weights.en.srt
33.6 kB
18 Convolution and transformations/001 Convolution_ concepts.en.srt
33.3 kB
22 Style transfer/004 Transferring the screaming bathtub.en.srt
33.1 kB
23 Generative adversarial networks/002 Linear GAN with MNIST.en.srt
32.8 kB
16 Autoencoders/005 The latent code of MNIST.en.srt
32.4 kB
09 Regularization/003 Dropout regularization.en.srt
31.9 kB
07 ANNs/018 Model depth vs. breadth.en.srt
31.6 kB
29 Python intro_ Functions/005 Creating functions.en.srt
31.6 kB
18 Convolution and transformations/003 Convolution in code.en.srt
31.3 kB
08 Overfitting and cross-validation/005 Cross-validation -- scikitlearn.en.srt
31.2 kB
19 Understand and design CNNs/010 CodeChallenge_ Custom loss functions.en.srt
30.6 kB
07 ANNs/010 Multilayer ANN.en.srt
30.1 kB
12 More on data/003 CodeChallenge_ unbalanced data.en.srt
30.0 kB
16 Autoencoders/003 CodeChallenge_ How many units_.en.srt
29.6 kB
21 Transfer learning/007 Pretraining with autoencoders.en.srt
29.4 kB
08 Overfitting and cross-validation/006 Cross-validation -- DataLoader.en.srt
29.3 kB
12 More on data/007 Data feature augmentation.en.srt
29.0 kB
07 ANNs/007 CodeChallenge_ manipulate regression slopes.en.srt
29.0 kB
30 Python intro_ Flow control/008 while loops.en.srt
28.6 kB
14 FFN milestone projects/004 Project 2_ My solution.en.srt
28.4 kB
27 Python intro_ Data types/007 Booleans.en.srt
28.4 kB
05 Math, numpy, PyTorch/008 Softmax.en.srt
28.4 kB
27 Python intro_ Data types/002 Variables.en.srt
27.9 kB
06 Gradient descent/007 Parametric experiments on g.d.en.srt
27.8 kB
09 Regularization/006 Weight regularization (L1_L2)_ math.en.srt
27.7 kB
31 Python intro_ Text and plots/004 Making the graphs look nicer.en.srt
27.6 kB
10 Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.en.srt
27.5 kB
07 ANNs/001 The perceptron and ANN architecture.en.srt
27.4 kB
27 Python intro_ Data types/003 Math and printing.en.srt
27.4 kB
18 Convolution and transformations/008 Max_mean pooling.en.srt
27.3 kB
29 Python intro_ Functions/008 Classes and object-oriented programming.en.srt
27.2 kB
18 Convolution and transformations/012 Creating and using custom DataLoaders.en.srt
27.1 kB
10 Metaparameters (activations, optimizers)/009 Activation functions.en.srt
27.1 kB
12 More on data/001 Anatomy of a torch dataset and dataloader.en.srt
27.1 kB
21 Transfer learning/008 CIFAR10 with autoencoder-pretrained model.en.srt
26.5 kB
31 Python intro_ Text and plots/006 Images.en.srt
26.4 kB
07 ANNs/016 Depth vs. breadth_ number of parameters.en.srt
26.4 kB
10 Metaparameters (activations, optimizers)/002 The _wine quality_ dataset.en.srt
26.3 kB
30 Python intro_ Flow control/006 Initializing variables.en.srt
26.2 kB
25 Where to go from here_/002 How to read academic DL papers.en.srt
26.0 kB
16 Autoencoders/004 AEs for occlusion.en.srt
26.0 kB
30 Python intro_ Flow control/010 Function error checking and handling.en.srt
26.0 kB
30 Python intro_ Flow control/003 For loops.en.srt
25.8 kB
19 Understand and design CNNs/006 CodeChallenge_ Softcode internal parameters.en.srt
25.6 kB
10 Metaparameters (activations, optimizers)/013 CodeChallenge_ Predict sugar.en.srt
25.6 kB
08 Overfitting and cross-validation/002 Cross-validation.en.srt
25.6 kB
21 Transfer learning/001 Transfer learning_ What, why, and when_.en.srt
25.4 kB
06 Gradient descent/003 Gradient descent in 1D.en.srt
25.3 kB
15 Weight inits and investigations/006 CodeChallenge_ Xavier vs. Kaiming.en.srt
25.2 kB
21 Transfer learning/005 Transfer learning with ResNet-18.en.srt
25.2 kB
11 FFNs/005 CodeChallenge_ Data normalization.en.srt
25.1 kB
05 Math, numpy, PyTorch/016 Derivatives_ intuition and polynomials.en.srt
25.0 kB
19 Understand and design CNNs/008 Do autoencoders clean Gaussians_.en.srt
25.0 kB
31 Python intro_ Text and plots/001 Printing and string interpolation.en.srt
24.9 kB
10 Metaparameters (activations, optimizers)/014 Loss functions.en.srt
24.8 kB
03 Concepts in deep learning/005 Are artificial _neurons_ like biological neurons_.en.srt
24.7 kB
12 More on data/005 Data oversampling in MNIST.en.srt
24.7 kB
18 Convolution and transformations/011 Image transforms.en.srt
24.5 kB
15 Weight inits and investigations/002 A surprising demo of weight initializations.en.srt
24.5 kB
23 Generative adversarial networks/001 GAN_ What, why, and how.en.srt
24.1 kB
12 More on data/002 Data size and network size.en.srt
23.9 kB
03 Concepts in deep learning/003 The role of DL in science and knowledge.en.srt
23.9 kB
19 Understand and design CNNs/011 Discover the Gaussian parameters.en.srt
23.8 kB
31 Python intro_ Text and plots/003 Subplot geometry.en.srt
23.7 kB
06 Gradient descent/008 CodeChallenge_ fixed vs. dynamic learning rate.en.srt
23.6 kB
10 Metaparameters (activations, optimizers)/003 CodeChallenge_ Minibatch size in the wine dataset.en.srt
23.6 kB
30 Python intro_ Flow control/002 If-else statements, part 2.en.srt
23.5 kB
16 Autoencoders/002 Denoising MNIST.en.srt
23.3 kB
15 Weight inits and investigations/005 Xavier and Kaiming initializations.en.srt
23.1 kB
05 Math, numpy, PyTorch/012 Mean and variance.en.srt
23.0 kB
17 Running models on a GPU/001 What is a GPU and why use it_.en.srt
23.0 kB
23 Generative adversarial networks/004 CNN GAN with Gaussians.en.srt
22.7 kB
10 Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).en.srt
22.6 kB
11 FFNs/006 Distributions of weights pre- and post-learning.en.srt
22.6 kB
12 More on data/010 Save the best-performing model.en.srt
22.5 kB
30 Python intro_ Flow control/007 Single-line loops (list comprehension).en.srt
22.3 kB
30 Python intro_ Flow control/001 If-else statements.en.srt
22.2 kB
06 Gradient descent/005 Gradient descent in 2D.en.srt
21.9 kB
30 Python intro_ Flow control/009 Broadcasting in numpy.en.srt
21.9 kB
03 Concepts in deep learning/001 What is an artificial neural network_.en.srt
21.8 kB
06 Gradient descent/001 Overview of gradient descent.en.srt
21.4 kB
05 Math, numpy, PyTorch/007 Matrix multiplication.en.srt
21.1 kB
21 Transfer learning/003 CodeChallenge_ letters to numbers.en.srt
21.0 kB
27 Python intro_ Data types/004 Lists (1 of 2).en.srt
21.0 kB
10 Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.en.srt
20.8 kB
29 Python intro_ Functions/003 Python libraries (pandas).en.srt
20.8 kB
29 Python intro_ Functions/002 Python libraries (numpy).en.srt
20.5 kB
18 Convolution and transformations/007 Transpose convolution.en.srt
20.4 kB
10 Metaparameters (activations, optimizers)/004 Data normalization.en.srt
20.2 kB
29 Python intro_ Functions/006 Global and local variable scopes.en.srt
20.1 kB
18 Convolution and transformations/009 Pooling in PyTorch.en.srt
20.1 kB
19 Understand and design CNNs/015 CodeChallenge_ Varying number of channels.en.srt
20.1 kB
05 Math, numpy, PyTorch/015 The t-test.en.srt
19.9 kB
07 ANNs/002 A geometric view of ANNs.en.srt
19.8 kB
13 Measuring model performance/004 APRF example 1_ wine quality.en.srt
19.7 kB
15 Weight inits and investigations/008 Freezing weights during learning.en.srt
19.7 kB
03 Concepts in deep learning/004 Running experiments to understand DL.en.srt
19.7 kB
07 ANNs/017 Defining models using sequential vs. class.en.srt
19.6 kB
09 Regularization/001 Regularization_ Concept and methods.en.srt
19.5 kB
09 Regularization/007 L2 regularization in practice.en.srt
19.4 kB
18 Convolution and transformations/005 The Conv2 class in PyTorch.en.srt
19.4 kB
03 Concepts in deep learning/002 How models _learn_.en.srt
19.2 kB
11 FFNs/002 The MNIST dataset.en.srt
19.2 kB
10 Metaparameters (activations, optimizers)/006 Batch normalization.en.srt
19.1 kB
12 More on data/006 Data noise augmentation (with devset+test).en.srt
19.1 kB
08 Overfitting and cross-validation/004 Cross-validation -- manual separation.en.srt
19.0 kB
15 Weight inits and investigations/004 CodeChallenge_ Weight variance inits.en.srt
18.9 kB
08 Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_.en.srt
18.8 kB
15 Weight inits and investigations/003 Theory_ Why and how to initialize weights.en.srt
18.7 kB
05 Math, numpy, PyTorch/011 Min_max and argmin_argmax.en.srt
18.6 kB
28 Python intro_ Indexing, slicing/001 Indexing.en.srt
18.5 kB
09 Regularization/012 CodeChallenge_ Effects of mini-batch size.en.srt
18.5 kB
18 Convolution and transformations/004 Convolution parameters (stride, padding).en.srt
18.5 kB
13 Measuring model performance/002 Accuracy, precision, recall, F1.en.srt
18.5 kB
28 Python intro_ Indexing, slicing/002 Slicing.en.srt
18.4 kB
15 Weight inits and investigations/007 CodeChallenge_ Identically random weights.en.srt
18.4 kB
10 Metaparameters (activations, optimizers)/023 Learning rate decay.en.srt
18.3 kB
07 ANNs/014 CodeChallenge_ more qwerties!.en.srt
18.2 kB
11 FFNs/007 CodeChallenge_ MNIST and breadth vs. depth.en.srt
18.2 kB
31 Python intro_ Text and plots/002 Plotting dots and lines.en.srt
18.1 kB
09 Regularization/008 L1 regularization in practice.en.srt
17.9 kB
07 ANNs/003 ANN math part 1 (forward prop).en.srt
17.8 kB
15 Weight inits and investigations/001 Explanation of weight matrix sizes.en.srt
17.6 kB
06 Gradient descent/002 What about local minima_.en.srt
17.6 kB
13 Measuring model performance/005 APRF example 2_ MNIST.en.srt
17.6 kB
20 CNN milestone projects/002 Project 1_ My solution.en.srt
17.6 kB
27 Python intro_ Data types/008 Dictionaries.en.srt
17.5 kB
14 FFN milestone projects/002 Project 1_ My solution.en.srt
17.4 kB
10 Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.en.srt
17.4 kB
16 Autoencoders/001 What are autoencoders and what do they do_.en.srt
17.3 kB
20 CNN milestone projects/005 Project 4_ Psychometric functions in CNNs.en.srt
17.3 kB
09 Regularization/009 Training in mini-batches.en.srt
17.3 kB
22 Style transfer/002 The Gram matrix (feature activation covariance).en.srt
17.2 kB
24 Ethics of deep learning/005 Accountability and making ethical AI.en.srt
17.1 kB
10 Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.en.srt
17.0 kB
19 Understand and design CNNs/007 CodeChallenge_ How wide the FC_.en.srt
16.9 kB
11 FFNs/010 Shifted MNIST.en.srt
16.9 kB
05 Math, numpy, PyTorch/013 Random sampling and sampling variability.en.srt
16.8 kB
30 Python intro_ Flow control/004 Enumerate and zip.en.srt
16.4 kB
06 Gradient descent/004 CodeChallenge_ unfortunate starting value.en.srt
16.4 kB
11 FFNs/011 CodeChallenge_ The mystery of the missing 7.en.srt
16.2 kB
31 Python intro_ Text and plots/005 Seaborn.en.srt
16.1 kB
19 Understand and design CNNs/001 The canonical CNN architecture.en.srt
16.1 kB
09 Regularization/010 Batch training in action.en.srt
16.0 kB
07 ANNs/005 ANN math part 3 (backprop).en.srt
15.6 kB
24 Ethics of deep learning/003 Some other possible ethical scenarios.en.srt
15.6 kB
22 Style transfer/003 The style transfer algorithm.en.srt
15.5 kB
24 Ethics of deep learning/004 Will deep learning take our jobs_.en.srt
15.3 kB
17 Running models on a GPU/002 Implementation.en.srt
15.2 kB
10 Metaparameters (activations, optimizers)/020 Optimizers comparison.en.srt
15.0 kB
07 ANNs/015 Comparing the number of hidden units.en.srt
15.0 kB
21 Transfer learning/002 Transfer learning_ MNIST -_ FMNIST.en.srt
14.9 kB
27 Python intro_ Data types/005 Lists (2 of 2).en.srt
14.9 kB
14 FFN milestone projects/005 Project 3_ FFN for missing data interpolation.en.srt
14.7 kB
24 Ethics of deep learning/001 Will AI save us or destroy us_.en.srt
14.7 kB
18 Convolution and transformations/010 To pool or to stride_.en.srt
14.6 kB
13 Measuring model performance/007 Computation time.en.srt
14.6 kB
19 Understand and design CNNs/013 Dropout in CNNs.en.srt
14.5 kB
19 Understand and design CNNs/009 CodeChallenge_ AEs and occluded Gaussians.en.srt
14.4 kB
18 Convolution and transformations/002 Feature maps and convolution kernels.en.srt
14.3 kB
05 Math, numpy, PyTorch/006 OMG it's the dot product!.en.srt
14.3 kB
07 ANNs/004 ANN math part 2 (errors, loss, cost).en.srt
14.2 kB
23 Generative adversarial networks/003 CodeChallenge_ Linear GAN with FMNIST.en.srt
14.2 kB
08 Overfitting and cross-validation/007 Splitting data into train, devset, test.en.srt
14.2 kB
10 Metaparameters (activations, optimizers)/005 The importance of data normalization.en.srt
14.1 kB
10 Metaparameters (activations, optimizers)/011 Activation functions comparison.en.srt
13.9 kB
05 Math, numpy, PyTorch/002 Spectral theories in mathematics.en.srt
13.9 kB
05 Math, numpy, PyTorch/018 Derivatives_ product and chain rules.en.srt
13.9 kB
13 Measuring model performance/006 CodeChallenge_ MNIST with unequal groups.en.srt
13.0 kB
07 ANNs/021 Reflection_ Are DL models understandable yet_.en.srt
12.7 kB
01 Introduction/002 Using Udemy like a pro.en.srt
12.6 kB
25 Where to go from here_/001 How to learn topic _X_ in deep learning_.en.srt
12.6 kB
05 Math, numpy, PyTorch/017 Derivatives find minima.en.srt
12.5 kB
07 ANNs/011 Linear solutions to linear problems.en.srt
12.5 kB
19 Understand and design CNNs/003 CNN on shifted MNIST.en.srt
12.4 kB
27 Python intro_ Data types/006 Tuples.en.srt
12.3 kB
08 Overfitting and cross-validation/008 Cross-validation on regression.en.srt
12.3 kB
13 Measuring model performance/008 Better performance in test than train_.en.srt
12.2 kB
14 FFN milestone projects/006 Project 3_ My solution.en.srt
12.2 kB
05 Math, numpy, PyTorch/014 Reproducible randomness via seeding.en.srt
12.0 kB
11 FFNs/012 Universal approximation theorem.en.srt
12.0 kB
23 Generative adversarial networks/007 CodeChallenge_ CNN GAN with CIFAR.en.srt
11.9 kB
10 Metaparameters (activations, optimizers)/018 SGD with momentum.en.srt
11.9 kB
05 Math, numpy, PyTorch/009 Logarithms.en.srt
11.8 kB
31 Python intro_ Text and plots/007 Export plots in low and high resolution.en.srt
11.6 kB
10 Metaparameters (activations, optimizers)/012 CodeChallenge_ Compare relu variants.en.srt
11.6 kB
11 FFNs/009 Scrambled MNIST.en.srt
11.5 kB
29 Python intro_ Functions/004 Getting help on functions.en.srt
11.3 kB
10 Metaparameters (activations, optimizers)/007 Batch normalization in practice.en.srt
11.3 kB
14 FFN milestone projects/003 Project 2_ Predicting heart disease.en.srt
11.3 kB
14 FFN milestone projects/001 Project 1_ A gratuitously complex adding machine.en.srt
11.0 kB
05 Math, numpy, PyTorch/003 Terms and datatypes in math and computers.en.srt
10.9 kB
29 Python intro_ Functions/001 Inputs and outputs.en.srt
10.8 kB
20 CNN milestone projects/001 Project 1_ Import and classify CIFAR10.en.srt
10.8 kB
22 Style transfer/005 CodeChallenge_ Style transfer with AlexNet.en.srt
10.7 kB
13 Measuring model performance/001 Two perspectives of the world.en.srt
10.6 kB
10 Metaparameters (activations, optimizers)/022 CodeChallenge_ Adam with L2 regularization.en.srt
10.6 kB
09 Regularization/002 train() and eval() modes.en.srt
10.4 kB
18 Convolution and transformations/006 CodeChallenge_ Choose the parameters.en.srt
10.4 kB
30 Python intro_ Flow control/005 Continue.en.srt
10.3 kB
05 Math, numpy, PyTorch/005 Vector and matrix transpose.en.srt
10.3 kB
19 Understand and design CNNs/014 CodeChallenge_ How low can you go_.en.srt
10.2 kB
11 FFNs/008 CodeChallenge_ Optimizers and MNIST.en.srt
10.2 kB
17 Running models on a GPU/003 CodeChallenge_ Run an experiment on the GPU.en.srt
10.0 kB
07 ANNs/019 CodeChallenge_ convert sequential to class.en.srt
10.0 kB
05 Math, numpy, PyTorch/004 Converting reality to numbers.en.srt
9.8 kB
09 Regularization/011 The importance of equal batch sizes.en.srt
9.7 kB
02 Download all course materials/001 Downloading and using the code.en.srt
9.6 kB
13 Measuring model performance/003 APRF in code.en.srt
9.6 kB
10 Metaparameters (activations, optimizers)/021 CodeChallenge_ Optimizers and... something.en.srt
9.6 kB
23 Generative adversarial networks/006 CNN GAN with FMNIST.en.srt
9.4 kB
07 ANNs/012 Why multilayer linear models don't exist.en.srt
9.4 kB
09 Regularization/005 Dropout example 2.en.srt
9.4 kB
24 Ethics of deep learning/002 Example case studies.en.srt
9.4 kB
06 Gradient descent/009 Vanishing and exploding gradients.en.srt
9.3 kB
12 More on data/009 Save and load trained models.en.srt
9.2 kB
23 Generative adversarial networks/005 CodeChallenge_ Gaussians with fewer layers.en.srt
9.2 kB
12 More on data/008 Getting data into colab.en.srt
9.1 kB
08 Overfitting and cross-validation/003 Generalization.en.srt
9.0 kB
21 Transfer learning/004 Famous CNN architectures.en.srt
8.9 kB
12 More on data/011 Where to find online datasets.en.srt
8.4 kB
06 Gradient descent/006 CodeChallenge_ 2D gradient ascent.en.srt
7.7 kB
10 Metaparameters (activations, optimizers)/008 CodeChallenge_ Batch-normalize the qwerties.en.srt
7.7 kB
11 FFNs/004 CodeChallenge_ Binarized MNIST images.en.srt
7.5 kB
10 Metaparameters (activations, optimizers)/001 What are _metaparameters__.en.srt
7.5 kB
29 Python intro_ Functions/007 Copies and referents of variables.en.srt
7.4 kB
20 CNN milestone projects/003 Project 2_ CIFAR-autoencoder.en.srt
7.2 kB
11 FFNs/001 What are fully-connected and feedforward networks_.en.srt
7.1 kB
19 Understand and design CNNs/016 So many possibilities! How to create a CNN_.en.srt
6.7 kB
22 Style transfer/001 What is style transfer and how does it work_.en.srt
6.5 kB
15 Weight inits and investigations/010 Use default inits or apply your own_.en.srt
6.5 kB
04 About the Python tutorial/001 Should you watch the Python tutorial_.en.srt
6.3 kB
20 CNN milestone projects/004 Project 3_ FMNIST.en.srt
5.2 kB
21 Transfer learning/006 CodeChallenge_ VGG-16.en.srt
5.2 kB
27 Python intro_ Data types/001 How to learn from the Python tutorial.en.srt
4.9 kB
26 Bonus section/001 Bonus content.html
4.6 kB
05 Math, numpy, PyTorch/001 Introduction to this section.en.srt
3.0 kB
06 Gradient descent/010 Tangent_ Notebook revision history.en.srt
2.8 kB
02 Download all course materials/002 My policy on code-sharing.en.srt
2.6 kB
07 ANNs/020 Diversity of ANN visual representations.html
1.4 kB
0. Websites you may like/[CourseClub.Me].url
122 Bytes
06 Gradient descent/[CourseClub.Me].url
122 Bytes
13 Measuring model performance/[CourseClub.Me].url
122 Bytes
21 Transfer learning/[CourseClub.Me].url
122 Bytes
30 Python intro_ Flow control/[CourseClub.Me].url
122 Bytes
[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
06 Gradient descent/[GigaCourse.Com].url
49 Bytes
13 Measuring model performance/[GigaCourse.Com].url
49 Bytes
21 Transfer learning/[GigaCourse.Com].url
49 Bytes
30 Python intro_ Flow control/[GigaCourse.Com].url
49 Bytes
[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>