搜索
GetFreeCourses.Co-Udemy-2023 Become AWS SageMaker ML Engineer in 30 Days + ChatGPT
磁力链接/BT种子名称
GetFreeCourses.Co-Udemy-2023 Become AWS SageMaker ML Engineer in 30 Days + ChatGPT
磁力链接/BT种子简介
种子哈希:
52e612f0a0ccc33686659fe4e9db5e99d0c07ec6
文件大小:
19.21G
已经下载:
1417
次
下载速度:
极快
收录时间:
2023-12-18
最近下载:
2024-11-24
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:52E612F0A0CCC33686659FE4E9DB5E99D0C07EC6
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
台湾写真
微微重口
mlde011
佟丽娅 放飞
摄像头偷拍+
natr-104
galaxy quest 1999 sdr
11yo
猛鬼山坟
包养大学
调教
名模
ppv-4404507
小人书
fc2-ppv-3061573
hog wild 1980
我爸
海角亲姐姐
糖心tx 05
bonnie e clyde
贵妇
寻欢作乐小猪泡良佳作
直播乱伦父女
ringo starr look up
海蒂
美穴
cyber shot 03.13
红豆
王羽
jukujo-club-6600
文件列表
21 - Day 16 XG-Boost Regression in Scikit-Learn/007 XG-Boost Algorithm Deep Dive (with examples).mp4
392.3 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/003 Artificial Intelligence (AI) Vs. Machine Learning (ML) Vs. Deep Learning (DL).mp4
266.6 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/005 Key Ingredients to Build Machine Learning Models.mp4
258.2 MB
14 - Day 10 Amazon SageMaker Data Wrangler/007 Normalization vs. Standardization (Feature Scaling in Machine Learning).mp4
256.6 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/009 Coding Task #3 - Train a Linear Learner Model in SageMaker.mp4
241.8 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/005 Data Sources and Types.mp4
220.7 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/006 Bias Variance Tradeoff.mp4
215.6 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/004 SageMaker Built-in XG-Boost Algorithm.mp4
200.8 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/017 Final Capstone Project Solution.mp4
191.6 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/004 AWS SageMaker Linear Learner Algorithm Overview.mp4
188.3 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/003 Intro to SageMaker.mp4
179.2 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/009 Identity and Access Management (IAM) & Multifactor Authentication (MFA).mp4
159.9 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/003 What is AWS & Cloud Computing Who Uses them What are their benefits.mp4
157.4 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/006 Invoke a Lambda Function Using Boto3 SDK.mp4
152.8 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/004 Machine Learning The Big Picture.mp4
150.5 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/004 K Nearest Neighbors Algorithm 101.mp4
149.1 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/008 Coding Task 2 - Perform Data Visualization.mp4
142.6 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/010 Practice Opportunity #3.mp4
137.4 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/007 L2 Regularization (Ridge Regression).mp4
133.5 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/006 Coding Task #3 - Train a Linear Learner Model in SageMaker (Multiple Regression).mp4
131.7 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/004 Amazon SageMaker Autopilot.mp4
131.5 MB
14 - Day 10 Amazon SageMaker Data Wrangler/004 Data Wrangler 101.mp4
130.8 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/004 Data Visualization 101.mp4
128.1 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/005 Define a Lambda Function Using Boto3 SDK.mp4
127.8 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/004 Hyperparameters 101.mp4
127.6 MB
14 - Day 10 Amazon SageMaker Data Wrangler/017 Final Capstone Project - Solutions.mp4
121.6 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/008 Coding Task 4 - Deploy Trained SageMaker Built-in XG-Boost Algorithm.mp4
119.4 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/024 Final End of Day Capstone Project Solutions.mp4
115.6 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/008 Elastic Compute Cloud (EC2) Deep Dive & Demo.mp4
114.8 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/006 Coding Task 3 - Train an XG-Boost Algo (without Hyperparameters Optimization).mp4
110.0 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/005 What is Boosting.mp4
109.5 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/011 Final End-of-Day Capstone Project Solution.mp4
108.9 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/010 AWS SageMaker GroundTruth Demo Part 2.mp4
107.7 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/007 Demo Launch a Training Job in AWS SageMaker Console.mp4
106.5 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/006 Scikit-Learn Library Overview.mp4
105.1 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/009 AWS SageMaker GroundTruth Demo Part 1.mp4
104.2 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/011 Coding Task #4 - Deploy Endpoint.mp4
103.9 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/020 Final Capstone Project Solution Part 2.mp4
103.7 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/003 Exploratory Data Analysis (EDA) 101.mp4
103.4 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/004 Synchronous Vs. Asynchronous Invocations.mp4
101.9 MB
38 - Day 29 Lambda Functions Using AWS Console/005 AWS Lambda Functions 101.mp4
101.1 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/005 Coding Task #2 - Perform EDA and Visualization.mp4
100.3 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/008 L1 Regularization (Lasso Regression).mp4
100.0 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/015 Coding Task 4 - Train Models with AutoGluon.mp4
97.6 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/014 Final Capstone Project Solution.mp4
95.4 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/013 Coding Task 6 - Train SageMaker Built-in KNN Algorithm.mp4
93.6 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/021 Coding Task 8 - Plot Correlation Heatmaps, Displot and Pairplot.mp4
90.9 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/008 Coding Task 2 - Perform Exploratory Data Analysis.mp4
90.6 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/005 Jupyter Notebooks and SageMaker Studio Setup.mp4
90.6 MB
23 - Day 18 AWS SageMaker JumpStart/009 JumpStart Demo Part 4 - Invoke Endpoint.mp4
90.5 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/007 SageMaker Demo 4 - SageMaker Studio 101.mp4
90.4 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/013 Coding Task 5 - Train XG-Boost SageMaker.mp4
89.0 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/011 Final Capstone Project Solution Part 1.mp4
88.5 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/012 Final Capstone Project Solution - Part 2.mp4
86.9 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/005 Hyperparameters Optimization Strategies.mp4
86.3 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/008 Coding Task 5 - Perform HyperParameters Optimization in SageMaker.mp4
86.0 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/006 Ensemble Learning.mp4
85.9 MB
38 - Day 29 Lambda Functions Using AWS Console/004 Machine Learning Workflows 101.mp4
84.8 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/006 Coding Task 2 - Train SageMaker Built-in XG-Boost Algorithm - Part 1.mp4
84.4 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/007 SageMaker Autopilot Demo 3 - Candidate Notebooks & Model Deployment.mp4
84.3 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/010 Final Capstone Project Solution Part 2.mp4
83.5 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/016 Coding Task 7 - Correlations and Histograms.mp4
82.9 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/011 Final Capstone Project Solution 2.mp4
82.6 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/020 Capstone Project Solutions.mp4
81.7 MB
14 - Day 10 Amazon SageMaker Data Wrangler/013 Data Wrangler Demo 6 - Perform Custom and Feature Scaling.mp4
81.1 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/014 Final Capstone Project Solution Part 1.mp4
81.0 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/004 SageMaker Demo 1 - Walkthrough & Create Notebook instance.mp4
78.3 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/006 SageMaker Demo 3 - AWS Marketplace (Yolo V3 Object Detector).mp4
77.6 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/007 AutoGluon 101.mp4
77.4 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/006 Seaborn Overview.mp4
77.2 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/005 AutoGluon for Classification Tasks.mp4
77.2 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/009 Final Capstone Project Solution Part 1.mp4
75.1 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/004 XG-Boost 101 [Review].mp4
74.7 MB
23 - Day 18 AWS SageMaker JumpStart/006 JumpStart Demo Part 1 - Data Upload.mp4
74.7 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/003 Project Overview and Card.mp4
74.4 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/003 Project Overview.mp4
74.0 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/011 Final Capstone Project Solution - Part 1.mp4
73.6 MB
23 - Day 18 AWS SageMaker JumpStart/005 Data Split for SageMaker JumpStart.mp4
72.9 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/003 Project Overview.mp4
71.6 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/005 Practice Opportunity.mp4
71.5 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/009 Demo Deploy an Endpoint.mp4
70.3 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/007 Coding Task 1 - Plot line plot in Matplotlib.mp4
70.3 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/010 Coding Task 2 - Perform EDA and Visualization.mp4
70.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/006 Regression Recap.mp4
69.6 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/006 Why Do We Need Labeled Datasets.mp4
69.2 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/006 Coding Task 2 - Perform Data Visualization.mp4
69.1 MB
38 - Day 29 Lambda Functions Using AWS Console/012 Final Capstone Project Solution.mp4
67.9 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/014 Coding Task 7 - Evaluate trained model performance.mp4
67.5 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/013 Appendix Review Classification Models KPIs.mp4
66.6 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/005 Classifier Models KPIs.mp4
66.6 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/010 Classifier Models Key Performance Indicators (KPIs) & Metrics.mp4
66.6 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/004 Success Stories Price Prediction with AIML.mp4
66.6 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/009 SageMaker GroundTruth Pricing.mp4
66.5 MB
31 - Day 24 ChatGPT for Programmers/007 Leverage ChatGPT to Add New Features to Your Code.mp4
66.2 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/007 Semantic Segmentation in Groundtruth Demo #1.mp4
66.0 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/012 Final Capstone Project - Solution.mp4
65.8 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/004 AWS Signup and AWS Management Console Tour.mp4
65.7 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/007 Coding Task 3 - Train SageMaker Built-in XG-Boost Algorithm - Part 2.mp4
65.7 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/010 Final Capstone Project Solution 1.mp4
65.5 MB
31 - Day 24 ChatGPT for Programmers/002 Prepare a Study Plan and Find Best Resources (CoursesBooks) with ChatGPT.mp4
65.2 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/008 Json Lines and Manifest Files 101.mp4
65.1 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/016 Coding Task 5 - Evaluate Trained Models.mp4
65.1 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/008 Project Demo Part 3 - Model Evaluation and Analysis.mp4
64.8 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/007 Regression Metrics - Part #2.mp4
64.6 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/019 Final Capstone Projects - Solutions.mp4
64.6 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/007 Coding Task #1 - Import Libraries and Datasets.mp4
64.3 MB
31 - Day 24 ChatGPT for Programmers/006 Conduct Code Review With ChatGPT.mp4
64.3 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/009 Deploy Best Model and Assess its Performance.mp4
64.2 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/004 Introduction to XG-Boost Algorithm.mp4
64.1 MB
14 - Day 10 Amazon SageMaker Data Wrangler/012 Data Wrangler Demo 5 - Data Impute, Handle Missing and 1-Hot Encoding.mp4
63.3 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/005 Practice Opportunity 1.mp4
62.9 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/012 Practice Opportunity #4.mp4
62.7 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/008 Coding Task #4 - Deploy an Endpoint.mp4
62.5 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/011 Coding Task 2 - Perform Data Cleaning.mp4
61.9 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/014 Coding Task 7 - K Nearest Neighbors (KNN).mp4
61.5 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/006 What's Included in the AWS Free Tier.mp4
61.2 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/011 Coding Task #2 - EDA and Data Visualization.mp4
60.9 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/006 Coding Task 2 - Access Elements in Pandas DataFrame.mp4
60.8 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/019 Coding Task 7 - Plot Countplot and Scatterplot in Seaborn.mp4
60.5 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/003 Project Overview.mp4
60.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/004 AI Applications in Business.mp4
59.8 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/014 Coding Task 6 - Deploy and Test XG-Boost Model.mp4
59.4 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/007 Coding Task #2 - Import Libraries and Datasets.mp4
59.3 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/008 AutoGluon Presets and Fit Parameters.mp4
58.9 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/005 Regions Vs. Availability Zones.mp4
58.3 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/017 Coding Task 6 - Hyperparameters Optimization Using GridSearchCV.mp4
58.2 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/017 Final Capstone Project Solution Part 1.mp4
57.9 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/008 Semantic Segmentation in Groundtruth Demo #2.mp4
57.3 MB
23 - Day 18 AWS SageMaker JumpStart/012 Final Capstone Project Solution Part 2.mp4
57.0 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/003 Project Overview and AWS Groundtruth.mp4
57.0 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/008 Demo Analyze Training Job Outputs and Metrics.mp4
57.0 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/005 Least Sum of Squares.mp4
56.9 MB
31 - Day 24 ChatGPT for Programmers/004 Perform Code Debugging Using ChatGPT.mp4
56.9 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/007 Practice Opportunity #1.mp4
56.7 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/004 Labeling Text Data in SageMaker GroundTruth - Demo Part #1.mp4
56.0 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/013 Coding Task #3 - EDA and Data Visualization 2.mp4
55.9 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/008 Practice Opportunity #2.mp4
55.2 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/012 Coding Task 5 - Pandas Operations and Filtering.mp4
55.0 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/007 Billing Dashboard and Alarm Setup.mp4
54.4 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/008 SageMaker Demo 5 - SageMaker Canvas 101.mp4
53.9 MB
23 - Day 18 AWS SageMaker JumpStart/011 Final Capstone Project Solution Part 1.mp4
53.6 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/012 Coding Task 3 - Perform Data Visualization.mp4
53.4 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/012 Coding Task 5 - Support Vector Machines (SVM).mp4
53.1 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/011 Coding Task #3 - Perform Data Visualization.mp4
52.8 MB
14 - Day 10 Amazon SageMaker Data Wrangler/011 Data Wrangler Demo 4 - Bias Report, Remove Duplicates & Feature Importance.mp4
52.3 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/007 Coding Task 4 - DeployTest XG-Boost Algo (without Hyperparameters Optimization).mp4
52.2 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/022 Practice Opportunity 8.mp4
51.8 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/007 Practice Opportunity 1.mp4
51.6 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/009 Coding Task #1 - Import Key LibrariesDatasets.mp4
51.4 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/008 Request Service Limit Increase.mp4
51.3 MB
31 - Day 24 ChatGPT for Programmers/009 Perform Code Documentation With ChatGPT.mp4
51.0 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/022 Final Capstone Project Solution.mp4
50.7 MB
14 - Day 10 Amazon SageMaker Data Wrangler/008 Data Wrangler Demo 1 - Import Data From S3.mp4
50.7 MB
31 - Day 24 ChatGPT for Programmers/005 Optimize Your Code With ChatGPT.mp4
50.6 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/006 Regression Metrics - Part #1.mp4
50.3 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/007 Lambda Invocation with EventBridge.mp4
50.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/019 Final Capstone Project Solution Part 1.mp4
50.0 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/020 Final Capstone Project - Solution.mp4
49.8 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/016 Practice Opportunity 5.mp4
49.8 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/003 Overview of AWS SageMaker Built-in Algorithms.mp4
49.7 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/005 K Nearest Neighbors in SageMaker.mp4
49.6 MB
14 - Day 10 Amazon SageMaker Data Wrangler/009 Data Wrangler Demo 2 - Change Datatypes & Generate Summary Table.mp4
49.4 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/003 Project Overview.mp4
49.0 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/009 Practice Opportunity 3.mp4
48.9 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/015 Final Capstone Project Solution Part 2.mp4
48.8 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/009 Practice Opportunity 1.mp4
48.1 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/016 Coding Task 8 - Naïve Bayes Classifier Models.mp4
47.9 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/013 Final Capstone Project Solution.mp4
47.8 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/005 Coding Task 1 - Import datalibraries and Perform EDA.mp4
47.8 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/018 Practice Opportunity #5.mp4
47.4 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/004 Coding Task 1 - Import and Explore Dataset.mp4
46.3 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/018 Final Capstone Project Solution Part 2.mp4
46.2 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/006 Coding Task 2 - Deal with Missing Dataset.mp4
45.8 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/007 Simple Storage Service (S3) Deep Dive & Demo.mp4
45.1 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/010 Coding Task 4 - Pandas and Functions.mp4
45.0 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/005 SageMaker Demo 2 - Write your first code.mp4
44.8 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/004 AWS SageMaker Canvas 101.mp4
44.7 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/005 Matplotlib Overview.mp4
44.2 MB
38 - Day 29 Lambda Functions Using AWS Console/008 Demo #2 Part #1 Define a Lambda Function.mp4
44.2 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/011 Final End-of-Day Capstone Project Solution.mp4
44.2 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/011 Coding Task 4 - Train and Evaluate XG-Boost.mp4
43.7 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/005 Coding Task 2 - Visualize Data.mp4
43.6 MB
38 - Day 29 Lambda Functions Using AWS Console/010 Demo #2 Part #3 Monitor a Lambda Function.mp4
43.5 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/013 Additional Topic GroundTruth Plus and Auto-Labeling.mp4
43.3 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/010 Coding Task 4 - Label-based Indexing with .Loc().mp4
43.3 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/013 Coding Task 6 - Random Forest Classifier Model.mp4
43.2 MB
23 - Day 18 AWS SageMaker JumpStart/004 AWS SageMaker JumpStart Overview.mp4
43.0 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/023 Final End of Day Capstone Project Questions.mp4
42.6 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/010 SageMaker Demo 7 - Train Machine Learning Model.mp4
42.5 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/010 Coding Task 3 - Train Classification Model using AutoGluon.mp4
41.9 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/013 Coding Task #4 - Prepare the Data Before Model Training.mp4
41.7 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/006 Coding Task 1 - Define Pandas DataFrame.mp4
41.6 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/004 21st Century New Gold!.mp4
41.4 MB
14 - Day 10 Amazon SageMaker Data Wrangler/005 Feature Engineering 101.mp4
41.3 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/013 Coding Task 3 - Visualize Dataset.mp4
40.8 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/005 Coding Task #1 - Problem Overview.mp4
40.2 MB
31 - Day 24 ChatGPT for Programmers/008 Use ChatGPT to Test and Validate Your Code.mp4
40.1 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/003 Project Overview and Project Card.mp4
40.0 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/011 Coding Task 4 - Evaluate Classification Model using AutoGluon.mp4
39.7 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/012 Final Capstone Project Solution Part 2.mp4
39.7 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/021 Final Capstone Project Solution Part 3.mp4
39.6 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/014 Coding Task 4 - Split the Data into TrainingTesting.mp4
39.6 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/016 Final Capstone Project Question.mp4
39.3 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/006 Key AIML Components in AWS.mp4
39.2 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/017 Practice Opportunity 5.mp4
39.0 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/016 Final Capstone Project Solution.mp4
38.9 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/004 The Rise of Machine Learning in Higher Education.mp4
38.7 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/018 Practice Opportunity #6.mp4
38.5 MB
31 - Day 24 ChatGPT for Programmers/001 Find the Proper Programming Language Syntax Using ChatGPT and GPT-4.mp4
38.0 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/014 Final Capstone Project Solution Part 4.mp4
37.9 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/012 Final Capstone Project - Solution.mp4
37.9 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/018 Practice Opportunity 4.mp4
37.8 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/015 Practice Opportunity 4.mp4
37.8 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/017 Practice Opportunity 7.mp4
37.7 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/006 Project Demo Part 1 - Upload data to S3 and Launch Canvas.mp4
37.3 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/015 Practice Opportunity 6.mp4
37.0 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/012 Final Capstone Project Solution.mp4
35.9 MB
14 - Day 10 Amazon SageMaker Data Wrangler/014 Data Wrangler Demo 7 - Export Dataflow.mp4
35.7 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/017 Practice Opportunity 4.mp4
35.5 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/003 Project Overview.mp4
35.3 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/003 Project Overview.mp4
35.2 MB
31 - Day 24 ChatGPT for Programmers/010 Convert from One Programming Language to Another Using ChatGPT.mp4
35.1 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/004 Coding Task 1 - Import Datasets.mp4
34.9 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/012 Practice Opportunity 3.mp4
34.9 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/020 Coding Task 8 - Hyperparameters Optimization Using Bayesian Optimizers.mp4
34.8 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/007 Practice Opportunity 1.mp4
33.3 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/005 SageMaker Autopilot Demo 1 - Upload Data and Train Model.mp4
33.2 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/012 Practice Opportunity #2.mp4
33.2 MB
14 - Day 10 Amazon SageMaker Data Wrangler/006 One-Hot Encoding 101.mp4
33.1 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/009 Coding Task 1 - Import AutoGluon and data Import.mp4
32.9 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/005 Multiple Linear Regression 101.mp4
32.9 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/013 Coding Task 4 - Plot Scatterplots in Matplotlib.mp4
32.8 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/006 Labeling Text Data in SageMaker GroundTruth - Demo Part #3.mp4
32.8 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/005 Success Stories in Human Resources.mp4
32.5 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/008 Coding Task 2 - Perform Data Visualization.mp4
32.1 MB
31 - Day 24 ChatGPT for Programmers/003 Perform Code Generation and Design Using ChatGPT.mp4
32.0 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/004 Classification Models KPIs [ReviewSkip if Familiar].mp4
32.0 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/009 SageMaker Demo 6 - Upload data to S3.mp4
31.9 MB
01 - Introduction/001 Welcome To the Course!.mp4
31.7 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/012 Coding Task 5 - Integer-based Indexing with .iLoc().mp4
31.5 MB
14 - Day 10 Amazon SageMaker Data Wrangler/010 Data Wrangler Demo 3 - Data Visualization.mp4
31.3 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/008 Coding Task 3 - Plot Feature Importance.mp4
31.3 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/012 Final Capstone Project Question.mp4
30.6 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/004 Coding Task 1 - Import and Clean Datasets.mp4
30.4 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/006 Coding Task 1 - Import Libraries and Datasets.mp4
30.3 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/011 Practice Opportunity 4.mp4
30.3 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/008 Coding Task 3 - Delete and Add Columns.mp4
30.1 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/010 Practice Opportunity - GroundTruth Pricing.mp4
29.9 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/014 Practice Opportunity #3.mp4
29.6 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/007 Practice Opportunity 2.mp4
29.3 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/010 Coding Task 3 - SetReset Index in Pandas.mp4
28.6 MB
38 - Day 29 Lambda Functions Using AWS Console/007 Demo #1 Define and Test AWS Lambda Function.mp4
28.3 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/005 Simple and Multiple Linear Regression [Recap].mp4
28.2 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/012 Practice Opportunity 3.mp4
28.1 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/017 Coding Task #5 - Train ML Model in Scikit-Learn.mp4
28.1 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/006 SageMaker Autopilot Demo 2 - Analyze Trained Models.mp4
28.0 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/007 Project Demo Part 2 - Train the Model.mp4
27.9 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/006 Coding Task 1 - Import Datasets and AutoGloun.mp4
27.7 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/009 Coding Task 4 - Logistic Regression.mp4
27.5 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/015 Coding Task 5 - Plot Pie Charts in Matplotlib.mp4
27.4 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/010 Final Capstone Project - Solutions.mp4
27.4 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/003 Project Overview and Key Learning Outcomes.mp4
27.2 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/003 Introduction and Project Overview.mp4
27.2 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/010 Practice Opportunity #2.mp4
27.0 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/013 Practice Opportunity 5.mp4
26.5 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/013 Final Capstone Project Solution Part 3.mp4
26.3 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/015 Train a Simple Linear Regression Model in SK-Learn.mp4
26.1 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/015 Coding Task 5 - Train an XG-Boost Algorithm in SKLearn.mp4
26.1 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/018 Coding Task 9 - Compare Classifier Models.mp4
26.1 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/011 Practice Opportunity 4.mp4
25.8 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/014 Coding Task 6 - Perform EDA on Both Classes.mp4
25.5 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/009 Practice Opportunity 2.mp4
25.3 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/017 Practice Opportunity 7.mp4
25.3 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/003 Project Overview and Card.mp4
24.8 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/013 Practice Opportunity 5.mp4
24.6 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/016 Coding Task 7 - Sorting Pandas DataFrames.mp4
24.6 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/017 Coding Task 6 - Plot Histograms in Matplotlib.mp4
24.6 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/019 Capstone Project Questions.mp4
24.4 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/010 Final End-of-Day Capstone Project Question.mp4
24.3 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/010 Practice Opportunity #1.mp4
23.9 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/014 Coding Task 6 - Broadcasting Operation.mp4
23.6 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/006 Practice Opportunity #1.mp4
23.4 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/017 Evaluate Trained Model Performance.mp4
23.2 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/007 Practice Opportunity 1.mp4
23.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/014 Practice Opportunity 3.mp4
22.8 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/004 Coding Task #1 - Notebook Walkthrough Project Overview.mp4
22.8 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/015 Coding Task #4 - Prepare the Data For Model Training.mp4
22.5 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/014 Coding Task 4 - Train and Test XG-Boost Algorithm.mp4
22.1 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/008 Coding Task 2 - Load CSV and Statistical Analysis.mp4
21.7 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/015 Practice Opportunity 6.mp4
21.7 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/004 Simple Linear Regression 101.mp4
21.6 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/005 Practice Opportunity 1.mp4
21.5 MB
38 - Day 29 Lambda Functions Using AWS Console/009 Demo #2 Part #2 Test a Lambda Function.mp4
21.4 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/012 Practice Opportunity 3.mp4
21.3 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/004 Coding Task 1 - Import Libraries and Datasets.mp4
21.3 MB
23 - Day 18 AWS SageMaker JumpStart/010 Final Capstone Project Question.mp4
21.2 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/011 Practice Opportunity 3.mp4
21.0 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/016 Practice Opportunity #4.mp4
20.8 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/019 Coding Task 7 - Hyperparameters Using Random Search.mp4
20.8 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/010 Final Capstone Project Question.mp4
20.6 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/001 Day Welcome Message.mp4
20.1 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/016 Final Capstone Project Solution Part 3.mp4
19.8 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/009 Practice Opportunity 2.mp4
19.7 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/018 Final Capstone Project Question.mp4
19.6 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/008 Coding Task 3 - Change Pandas DataFrame datatypes.mp4
19.4 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/009 Coding Task 1 - Import Libraries and Datasets.mp4
19.3 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/007 Practice Opportunity 2.mp4
18.9 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/010 Coding Task 3 - Prepare the data for Model Training.mp4
18.9 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/011 Practice Opportunity 2.mp4
18.7 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/006 Practice Opportunity 1.mp4
18.4 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/006 Coding Task 1 - Understand the Problem Statement and Load Data.mp4
18.1 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/008 Coding Task 1 - Project Overview and Import data.mp4
18.0 MB
38 - Day 29 Lambda Functions Using AWS Console/006 AWS Lambda Functions Anatomy.mp4
17.8 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/008 Practice Opportunity 1.mp4
17.7 MB
23 - Day 18 AWS SageMaker JumpStart/007 JumpStart Demo Part 2 - Train the Model.mp4
17.5 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/003 Project Overview.mp4
17.4 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/001 Day Welcome Message.mp4
17.4 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/013 Final Capstone Project Question.mp4
17.3 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/003 Project Overview.mp4
17.3 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/003 Project Overview.mp4
17.2 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/003 Project Overview.mp4
17.2 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/007 Data Labeling Challenges and Applications.mp4
16.9 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/004 Project Overview - EDA with Pandas.mp4
16.7 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/013 Practice Opportunity 2.mp4
16.6 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/018 Final Capstone Projects - Questions.mp4
16.4 MB
38 - Day 29 Lambda Functions Using AWS Console/003 Introduction to AWS Lambda and Key Learning Outcomes.mp4
16.3 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/011 Final Capstone Project - Question.mp4
16.3 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/010 Practice Opportunity 1.mp4
16.2 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/009 Practice Opportunity 2.mp4
15.8 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/011 Coding Task 4 - Train KNN Model in SKLearn.mp4
15.8 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/018 Practice Opportunity 6.mp4
15.5 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/003 Introduction and Key Learning Outcomes.mp4
15.5 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/009 Project Demo Part 4 - Generate Predictions.mp4
15.2 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/002 Text-Bounding-Boxes-Semantic-Labeling.zip
14.9 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/011 Coding Task 2 - Perform Exploratory Data Analysis (EDA).mp4
14.8 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/005 Practice Opportunity 1.mp4
14.8 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/019 Final Capstone Project - Questions.mp4
14.6 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/014 Practice Opportunity #4.mp4
14.4 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/011 Coding Task 3 - Plot Subplots in Matplotlib.mp4
14.3 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/013 Final Capstone Project Questions.mp4
14.1 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/013 Practice Opportunity 3.mp4
14.0 MB
38 - Day 29 Lambda Functions Using AWS Console/011 Final Capstone Project Question.mp4
13.8 MB
14 - Day 10 Amazon SageMaker Data Wrangler/015 Data Wrangler Demo 8 - Shutdown Resources.mp4
13.8 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/008 Practice Opportunity #1.mp4
13.8 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/010 Final End-of-Day Capstone Project Question.mp4
13.7 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/010 Practice Opportunity 1.mp4
13.4 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/012 Coding Task 5 - Evaluate Trained Model Performance.mp4
13.2 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/007 Practice Opportunity 1.mp4
13.2 MB
23 - Day 18 AWS SageMaker JumpStart/008 JumpStart Demo Part 3 - Deploy an Endpoint.mp4
13.1 MB
14 - Day 10 Amazon SageMaker Data Wrangler/003 Project Overview.mp4
13.0 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/008 SageMaker Studio Domain Setup.mp4
13.0 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/011 Practice Opportunity 3.mp4
12.9 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/007 Practice Opportunity 2.mp4
12.7 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/009 Practice Opportunity 3.mp4
12.7 MB
14 - Day 10 Amazon SageMaker Data Wrangler/002 Data-Wrangler.zip
12.5 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/011 Final Capstone Project Question.mp4
12.4 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/012 Practice Opportunity #3.mp4
12.4 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/009 Coding Task 2 - Plot Multiple Line Plots in Matplotlib.mp4
12.2 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/010 Practice Opportunity 2.mp4
12.2 MB
23 - Day 18 AWS SageMaker JumpStart/003 Project Introduction and Key Learning Outcomes.mp4
12.2 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/003 Project Card [Skip If Familiar].mp4
12.1 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/005 Labeling Text Data in SageMaker GroundTruth - Demo Part #2.mp4
12.0 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/002 AWS-Essentials-Starter-Pack-Part-2.zip
11.8 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/002 AWS-Essentials-Starter-Pack-Part-3.zip
11.8 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/003 Project Overview.mp4
11.3 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/008 Final Capstone Project Question.mp4
11.3 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/009 Coding Task #2 - Explore the Data.mp4
11.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/012 Practice Opportunity 2.mp4
11.1 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/002 XGboost-in-SKLearn.zip
11.1 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/016 Practice Opportunity #5.mp4
10.8 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/015 Practice Opportunity 4.mp4
10.7 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/002 Labeling-Images-in-SageMaker-GroundTruth.zip
10.5 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/015 Practice Opportunity 4.mp4
10.5 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/003 Project Overview & AutoGluon for Tabular Data.mp4
10.3 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/002 AWS-Essentials-Starter-Pack-Part-1.pptx
9.9 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/012 Coding Task 3 - Prepare the Data for Model Training.mp4
9.5 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/010 Coding Task 3 - Split the data.mp4
9.4 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/009 Practice Opportunity 1.mp4
9.0 MB
14 - Day 10 Amazon SageMaker Data Wrangler/016 Final Capstone Project - Questions.mp4
8.9 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/001 Day Welcome Message.mp4
8.6 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/003 Project Overview and Key Learning Outcomes.mp4
8.5 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/009 Practice Opportunity 2.mp4
8.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/001 Day Welcome Message.mp4
8.2 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/016 Practice Opportunity 3.mp4
8.1 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/002 XG-Boost-Classification.zip
8.1 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/001 Day Welcome Message.mp4
8.1 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/014 Practice Opportunity 4.mp4
8.0 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/001 Day Welcome Message.mp4
7.8 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/001 Day Welcome Message.mp4
7.6 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/001 Day Welcome Message.mp4
7.4 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/010 Final Capstone Project Question.mp4
7.2 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/001 Day Welcome Message.mp4
7.2 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/001 Day Welcome Message.mp4
7.1 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/019 Coding Task 10 - Concluding Remarks.mp4
6.9 MB
14 - Day 10 Amazon SageMaker Data Wrangler/001 Day Welcome Message.mp4
6.8 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/021 Final Capstone Project Question.mp4
6.8 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/001 Day Welcome Message.mp4
6.8 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/001 Day Welcome Message.mp4
6.7 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/011 Final Capstone Project - Question.mp4
6.7 MB
23 - Day 18 AWS SageMaker JumpStart/002 AWS-SageMaker-JumpStart.zip
6.6 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/001 Day Welcome Message.mp4
6.5 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/020 Practice Opportunity 7.mp4
6.4 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/001 Day Welcome Message.mp4
6.3 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/008 Resources Cleanup [Important].mp4
6.3 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/002 Training-Job-from-SageMaker-Console.zip
6.2 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/002 AutoGluon-for-Tabular-ML-Regression.zip
6.1 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/001 Day Welcome Message.mp4
6.0 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/002 AutoGluon-for-Tabular-ML-Classification.zip
5.8 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/001 Day Welcome Message.mp4
5.6 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/001 Day Welcome Message.mp4
5.6 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/001 Day Welcome Message.mp4
5.5 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/001 Day Welcome Message.mp4
5.5 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/001 Day Welcome Message.mp4
5.5 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/016 Final Capstone Project Question.mp4
5.5 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/001 Day Welcome Message.mp4
5.4 MB
38 - Day 29 Lambda Functions Using AWS Console/001 Day Welcome Message.mp4
5.3 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/009 Final Capstone Project - Questions.mp4
5.3 MB
38 - Day 29 Lambda Functions Using AWS Console/002 AWS-Lambda-Functions-1.pptx
5.3 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/002 Multiple-Linear-Regression-in-SKLearn.zip
5.1 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/002 Hyperparameters-Optimization-Using-SageMaker.zip
5.0 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/009 Final Capstone Project Question.mp4
4.9 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/001 Day Welcome Message.mp4
4.9 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/001 Day Welcome Message.mp4
4.9 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/002 Compare-SKLearn-Classifier-Models.zip
4.7 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/015 Final Capstone Project Question.mp4
4.7 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/002 XG-Boost-in-SageMaker.zip
4.6 MB
23 - Day 18 AWS SageMaker JumpStart/001 Day Welcome Message.mp4
4.5 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/002 SageMaker-Autopilot.zip
4.3 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/001 Day Welcome Message.mp4
4.1 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/002 Data-Visualization.zip
4.1 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/002 No-Code-with-AWS-SageMaker-Canvas.zip
4.0 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/002 AWS-Lambda-Functions-2.zip
4.0 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/001 Day Welcome Message.mp4
3.9 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/002 Simple-Linear-Regression-in-SKLearn.zip
3.9 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/002 Hyperparameters-Optimization-SKLearn.zip
3.7 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/001 Day Welcome Message.mp4
3.7 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/002 EDA-Part-1-Crash-Course-Pandas.zip
3.4 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/002 KNN-for-Classification.zip
3.1 MB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/011 Day End Message.mp4
2.9 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/014 Day End Message.mp4
2.8 MB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/022 Day End Message.mp4
2.8 MB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/017 Day End Message.mp4
2.7 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/002 Simple-Linear-Regression-with-AWS-Linear-Learner.zip
2.6 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/002 Multiple-Linear-Regression-with-SageMaker-Linear-Learner.zip
2.6 MB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/013 Day End Message.mp4
2.6 MB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/014 Day End Message.mp4
2.4 MB
16 - Day 11 Simple Linear Regression in Scikit-Learn/021 Day End Message.mp4
2.3 MB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/021 Day End Message.mp4
2.2 MB
26 - Day 20 Hyperparameters Optimization in SageMaker/015 Day End Message.mp4
2.2 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/002 EDA-Part-3-Crash-Course-on-Pandas-3.zip
2.1 MB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/023 Day End Message.mp4
2.1 MB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/012 Shutting Down SageMaker Canvas [Important].mp4
2.1 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/002 EDA-Part-2-Crash-Course-on-Pandas-2.zip
2.1 MB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/010 Day End Message.mp4
2.1 MB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/013 Day End Message.mp4
2.0 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/014 Day End Message.mp4
2.0 MB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/013 Shutdown Canvas.mp4
2.0 MB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/009 Day End Message.mp4
1.8 MB
38 - Day 29 Lambda Functions Using AWS Console/013 Day End Message.mp4
1.7 MB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/020 Day End Message.mp4
1.6 MB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/012 Day End Message.mp4
1.5 MB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/015 Day End Message.mp4
1.4 MB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/018 Day End Message.mp4
1.4 MB
23 - Day 18 AWS SageMaker JumpStart/013 Day End Message.mp4
1.4 MB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/012 Day End Message.mp4
1.4 MB
14 - Day 10 Amazon SageMaker Data Wrangler/018 Day End Message.mp4
1.3 MB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/017 Day End Message.mp4
1.3 MB
21 - Day 16 XG-Boost Regression in Scikit-Learn/018 Day End Message.mp4
1.2 MB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/014 Day End Message.mp4
1.2 MB
29 - Day 22 XG-Boost Classification in AWS SageMaker/019 Day End Message.mp4
1.1 MB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/020 Day End Message.mp4
1.1 MB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/025 Day End Message.mp4
1.0 MB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/011 Day End Message.mp4
734.6 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/009 Coding Task #3 - Train a Linear Learner Model in SageMaker_en.srt
36.0 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/007 XG-Boost Algorithm Deep Dive (with examples)_en.srt
35.7 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/005 Define a Lambda Function Using Boto3 SDK_en.srt
31.6 kB
14 - Day 10 Amazon SageMaker Data Wrangler/007 Normalization vs. Standardization (Feature Scaling in Machine Learning)_en.srt
30.3 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/009 Identity and Access Management (IAM) & Multifactor Authentication (MFA)_en.srt
30.3 kB
14 - Day 10 Amazon SageMaker Data Wrangler/017 Final Capstone Project - Solutions_en.srt
27.6 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/007 Demo Launch a Training Job in AWS SageMaker Console_en.srt
26.9 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/006 Invoke a Lambda Function Using Boto3 SDK_en.srt
26.5 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/017 Final Capstone Project Solution_en.srt
26.4 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/008 Coding Task 2 - Perform Data Visualization_en.srt
26.4 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/010 AWS SageMaker GroundTruth Demo Part 2_en.srt
24.9 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/011 Final End-of-Day Capstone Project Solution_en.srt
23.8 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/008 Elastic Compute Cloud (EC2) Deep Dive & Demo_en.srt
22.9 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/007 SageMaker Demo 4 - SageMaker Studio 101_en.srt
22.7 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/006 Bias Variance Tradeoff_en.srt
22.7 kB
38 - Day 29 Lambda Functions Using AWS Console/012 Final Capstone Project Solution_en.srt
21.9 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/011 Final End-of-Day Capstone Project Solution_en.srt
21.8 kB
14 - Day 10 Amazon SageMaker Data Wrangler/013 Data Wrangler Demo 6 - Perform Custom and Feature Scaling_en.srt
21.6 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/004 AWS SageMaker Linear Learner Algorithm Overview_en.srt
21.5 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/007 Simple Storage Service (S3) Deep Dive & Demo_en.srt
21.4 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/004 Amazon SageMaker Autopilot_en.srt
21.1 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/009 AWS SageMaker GroundTruth Demo Part 1_en.srt
20.7 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/016 Coding Task 8 - Naïve Bayes Classifier Models_en.srt
20.6 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/006 Coding Task 3 - Train an XG-Boost Algo (without Hyperparameters Optimization)_en.srt
20.5 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/008 Project Demo Part 3 - Model Evaluation and Analysis_en.srt
20.3 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/003 Artificial Intelligence (AI) Vs. Machine Learning (ML) Vs. Deep Learning (DL)_en.srt
20.3 kB
31 - Day 24 ChatGPT for Programmers/005 Optimize Your Code With ChatGPT_en.srt
20.3 kB
23 - Day 18 AWS SageMaker JumpStart/006 JumpStart Demo Part 1 - Data Upload_en.srt
20.0 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/010 Classifier Models Key Performance Indicators (KPIs) & Metrics_en.srt
19.9 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/005 Classifier Models KPIs_en.srt
19.9 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/013 Appendix Review Classification Models KPIs_en.srt
19.9 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/020 Final Capstone Project - Solution_en.srt
19.5 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/005 Key Ingredients to Build Machine Learning Models_en.srt
19.4 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/013 Coding Task 6 - Train SageMaker Built-in KNN Algorithm_en.srt
19.4 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/007 Project Demo Part 2 - Train the Model_en.srt
19.3 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/009 Demo Deploy an Endpoint_en.srt
19.1 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/005 Data Sources and Types_en.srt
18.9 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/004 SageMaker Demo 1 - Walkthrough & Create Notebook instance_en.srt
18.8 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/003 Intro to SageMaker_en.srt
18.7 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/013 Coding Task 5 - Train XG-Boost SageMaker_en.srt
18.6 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/006 Coding Task #3 - Train a Linear Learner Model in SageMaker (Multiple Regression)_en.srt
18.6 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/009 Final Capstone Project Solution Part 1_en.srt
18.5 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/005 SageMaker Autopilot Demo 1 - Upload Data and Train Model_en.srt
18.3 kB
38 - Day 29 Lambda Functions Using AWS Console/005 AWS Lambda Functions 101_en.srt
18.3 kB
23 - Day 18 AWS SageMaker JumpStart/009 JumpStart Demo Part 4 - Invoke Endpoint_en.srt
18.3 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/006 Regression Metrics - Part #1_en.srt
18.3 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/008 AutoGluon Presets and Fit Parameters_en.srt
17.8 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/005 Least Sum of Squares_en.srt
17.7 kB
31 - Day 24 ChatGPT for Programmers/001 Find the Proper Programming Language Syntax Using ChatGPT and GPT-4_en.srt
17.6 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/004 SageMaker Built-in XG-Boost Algorithm_en.srt
17.2 kB
31 - Day 24 ChatGPT for Programmers/006 Conduct Code Review With ChatGPT_en.srt
17.2 kB
31 - Day 24 ChatGPT for Programmers/007 Leverage ChatGPT to Add New Features to Your Code_en.srt
17.2 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/011 Coding Task #4 - Deploy Endpoint_en.srt
17.1 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/012 Final Capstone Project - Solution_en.srt
17.1 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/008 Coding Task 4 - Deploy Trained SageMaker Built-in XG-Boost Algorithm_en.srt
17.0 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/010 Final Capstone Project Solution Part 2_en.srt
16.6 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/005 SageMaker Demo 2 - Write your first code_en.srt
16.2 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/024 Final End of Day Capstone Project Solutions_en.srt
16.2 kB
31 - Day 24 ChatGPT for Programmers/002 Prepare a Study Plan and Find Best Resources (CoursesBooks) with ChatGPT_en.srt
16.2 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/007 Practice Opportunity 1_en.srt
16.1 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/006 Coding Task 2 - Train SageMaker Built-in XG-Boost Algorithm - Part 1_en.srt
16.0 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/010 Practice Opportunity #3_en.srt
15.9 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/005 What is Boosting_en.srt
15.9 kB
31 - Day 24 ChatGPT for Programmers/008 Use ChatGPT to Test and Validate Your Code_en.srt
15.9 kB
31 - Day 24 ChatGPT for Programmers/004 Perform Code Debugging Using ChatGPT_en.srt
15.8 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/003 Project Overview and AWS Groundtruth_en.srt
15.7 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/009 Coding Task #1 - Import Key LibrariesDatasets_en.srt
15.6 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/012 Final Capstone Project - Solution_en.srt
15.6 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/016 Final Capstone Project Solution_en.srt
15.5 kB
23 - Day 18 AWS SageMaker JumpStart/004 AWS SageMaker JumpStart Overview_en.srt
15.5 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/004 Machine Learning The Big Picture_en.srt
15.4 kB
31 - Day 24 ChatGPT for Programmers/003 Perform Code Generation and Design Using ChatGPT_en.srt
15.2 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/006 Ensemble Learning_en.srt
15.0 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/005 Hyperparameters Optimization Strategies_en.srt
14.8 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/010 Coding Task 2 - Perform EDA and Visualization_en.srt
14.7 kB
38 - Day 29 Lambda Functions Using AWS Console/004 Machine Learning Workflows 101_en.srt
14.6 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/015 Coding Task 4 - Train Models with AutoGluon_en.srt
14.5 kB
23 - Day 18 AWS SageMaker JumpStart/012 Final Capstone Project Solution Part 2_en.srt
14.5 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/004 K Nearest Neighbors Algorithm 101_en.srt
14.5 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/006 Coding Task 1 - Define Pandas DataFrame_en.srt
14.4 kB
14 - Day 10 Amazon SageMaker Data Wrangler/005 Feature Engineering 101_en.srt
14.4 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/004 Labeling Text Data in SageMaker GroundTruth - Demo Part #1_en.srt
14.3 kB
31 - Day 24 ChatGPT for Programmers/009 Perform Code Documentation With ChatGPT_en.srt
14.3 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/011 Final Capstone Project Solution - Part 1_en.srt
14.2 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/004 AWS Signup and AWS Management Console Tour_en.srt
14.1 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/012 Final Capstone Project Solution - Part 2_en.srt
14.1 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/021 Coding Task 8 - Plot Correlation Heatmaps, Displot and Pairplot_en.srt
14.1 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/005 Regions Vs. Availability Zones_en.srt
14.0 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/007 Coding Task 1 - Plot line plot in Matplotlib_en.srt
13.9 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/004 Coding Task 1 - Import and Explore Dataset_en.srt
13.9 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/005 Coding Task #2 - Perform EDA and Visualization_en.srt
13.8 kB
38 - Day 29 Lambda Functions Using AWS Console/008 Demo #2 Part #1 Define a Lambda Function_en.srt
13.8 kB
38 - Day 29 Lambda Functions Using AWS Console/007 Demo #1 Define and Test AWS Lambda Function_en.srt
13.7 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/007 SageMaker Autopilot Demo 3 - Candidate Notebooks & Model Deployment_en.srt
13.7 kB
31 - Day 24 ChatGPT for Programmers/010 Convert from One Programming Language to Another Using ChatGPT_en.srt
13.7 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/008 SageMaker Demo 5 - SageMaker Canvas 101_en.srt
13.6 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/014 Coding Task 7 - K Nearest Neighbors (KNN)_en.srt
13.6 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/006 Coding Task 2 - Deal with Missing Dataset_en.srt
13.6 kB
23 - Day 18 AWS SageMaker JumpStart/005 Data Split for SageMaker JumpStart_en.srt
13.5 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/007 Billing Dashboard and Alarm Setup_en.srt
13.4 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/008 Coding Task 2 - Perform Exploratory Data Analysis_en.srt
13.4 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/003 Overview of AWS SageMaker Built-in Algorithms_en.srt
13.3 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/012 Coding Task 5 - Support Vector Machines (SVM)_en.srt
13.2 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/020 Final Capstone Project Solution Part 2_en.srt
13.1 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/007 L2 Regularization (Ridge Regression)_en.srt
13.1 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/008 Coding Task 5 - Perform HyperParameters Optimization in SageMaker_en.srt
13.0 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/004 Hyperparameters 101_en.srt
13.0 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/003 Project Overview_en.srt
12.9 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/007 AutoGluon 101_en.srt
12.9 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/004 AWS SageMaker Canvas 101_en.srt
12.9 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/007 Coding Task #1 - Import Libraries and Datasets_en.srt
12.8 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/007 Semantic Segmentation in Groundtruth Demo #1_en.srt
12.8 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/014 Final Capstone Project Solution_en.srt
12.8 kB
14 - Day 10 Amazon SageMaker Data Wrangler/011 Data Wrangler Demo 4 - Bias Report, Remove Duplicates & Feature Importance_en.srt
12.7 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/008 Demo Analyze Training Job Outputs and Metrics_en.srt
12.7 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/016 Coding Task 5 - Evaluate Trained Models_en.srt
12.7 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/010 Coding Task 4 - Label-based Indexing with .Loc()_en.srt
12.7 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/014 Coding Task 6 - Deploy and Test XG-Boost Model_en.srt
12.6 kB
14 - Day 10 Amazon SageMaker Data Wrangler/012 Data Wrangler Demo 5 - Data Impute, Handle Missing and 1-Hot Encoding_en.srt
12.5 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/017 Final Capstone Project Solution Part 1_en.srt
12.5 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/006 SageMaker Demo 3 - AWS Marketplace (Yolo V3 Object Detector)_en.srt
12.5 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/006 Coding Task 2 - Perform Data Visualization_en.srt
12.3 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/009 SageMaker GroundTruth Pricing_en.srt
12.1 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/007 Coding Task 3 - Train SageMaker Built-in XG-Boost Algorithm - Part 2_en.srt
12.1 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/006 Coding Task 2 - Access Elements in Pandas DataFrame_en.srt
12.1 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/011 Coding Task #2 - EDA and Data Visualization_en.srt
12.1 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/005 Matplotlib Overview_en.srt
12.0 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/009 Coding Task 4 - Logistic Regression_en.srt
12.0 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/003 What is AWS & Cloud Computing Who Uses them What are their benefits_en.srt
12.0 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/011 Final Capstone Project Solution 2_en.srt
12.0 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/004 XG-Boost 101 [Review]_en.srt
12.0 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/011 Coding Task #3 - Perform Data Visualization_en.srt
11.9 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/011 Final Capstone Project Solution Part 1_en.srt
11.8 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/010 SageMaker Demo 7 - Train Machine Learning Model_en.srt
11.7 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/012 Coding Task 3 - Perform Data Visualization_en.srt
11.7 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/014 Coding Task 7 - Evaluate trained model performance_en.srt
11.7 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/006 Scikit-Learn Library Overview_en.srt
11.6 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/007 Regression Metrics - Part #2_en.srt
11.5 kB
14 - Day 10 Amazon SageMaker Data Wrangler/009 Data Wrangler Demo 2 - Change Datatypes & Generate Summary Table_en.srt
11.3 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/005 Practice Opportunity_en.srt
11.3 kB
23 - Day 18 AWS SageMaker JumpStart/011 Final Capstone Project Solution Part 1_en.srt
11.3 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/020 Capstone Project Solutions_en.srt
11.2 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/004 Introduction to XG-Boost Algorithm_en.srt
11.2 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/016 Practice Opportunity 5_en.srt
11.2 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/012 Final Capstone Project Solution_en.srt
11.1 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/019 Coding Task 7 - Plot Countplot and Scatterplot in Seaborn_en.srt
11.1 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/006 What's Included in the AWS Free Tier_en.srt
11.1 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/008 Coding Task 2 - Perform Data Visualization_en.srt
11.0 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/006 SageMaker Autopilot Demo 2 - Analyze Trained Models_en.srt
11.0 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/005 Success Stories in Human Resources_en.srt
11.0 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/003 Exploratory Data Analysis (EDA) 101_en.srt
10.9 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/005 Jupyter Notebooks and SageMaker Studio Setup_en.srt
10.8 kB
14 - Day 10 Amazon SageMaker Data Wrangler/004 Data Wrangler 101_en.srt
10.8 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/017 Coding Task 6 - Hyperparameters Optimization Using GridSearchCV_en.srt
10.8 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/008 Semantic Segmentation in Groundtruth Demo #2_en.srt
10.7 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/006 Seaborn Overview_en.srt
10.7 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/006 Why Do We Need Labeled Datasets_en.srt
10.7 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/016 Final Capstone Project Question_en.srt
10.7 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/005 Practice Opportunity 1_en.srt
10.5 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/004 21st Century New Gold!_en.srt
10.5 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/010 Final Capstone Project Solution 1_en.srt
10.4 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/007 Lambda Invocation with EventBridge_en.srt
10.4 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/010 Practice Opportunity #2_en.srt
10.4 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/013 Coding Task 6 - Random Forest Classifier Model_en.srt
10.4 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/010 Coding Task 3 - SetReset Index in Pandas_en.srt
10.4 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/018 Final Capstone Project Solution Part 2_en.srt
10.3 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/008 Request Service Limit Increase_en.srt
10.1 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/004 Simple Linear Regression 101_en.srt
10.1 kB
14 - Day 10 Amazon SageMaker Data Wrangler/008 Data Wrangler Demo 1 - Import Data From S3_en.srt
10.0 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/011 Coding Task 4 - Train and Evaluate XG-Boost_en.srt
10.0 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/007 Coding Task #2 - Import Libraries and Datasets_en.srt
9.9 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/013 Additional Topic GroundTruth Plus and Auto-Labeling_en.srt
9.9 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/003 Introduction and Project Overview_en.srt
9.9 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/022 Final Capstone Project Solution_en.srt
9.9 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/008 Coding Task #4 - Deploy an Endpoint_en.srt
9.8 kB
14 - Day 10 Amazon SageMaker Data Wrangler/006 One-Hot Encoding 101_en.srt
9.7 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/005 AutoGluon for Classification Tasks_en.srt
9.7 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/009 SageMaker Demo 6 - Upload data to S3_en.srt
9.7 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/003 Project Overview_en.srt
9.7 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/004 Data Visualization 101_en.srt
9.7 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/012 Coding Task 5 - Pandas Operations and Filtering_en.srt
9.6 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/004 AI Applications in Business_en.srt
9.6 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/008 Coding Task 3 - Plot Feature Importance_en.srt
9.6 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/009 Project Demo Part 4 - Generate Predictions_en.srt
9.5 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/016 Coding Task 7 - Correlations and Histograms_en.srt
9.5 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/004 Classification Models KPIs [ReviewSkip if Familiar]_en.srt
9.4 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/017 Coding Task 6 - Plot Histograms in Matplotlib_en.srt
9.4 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/003 Project Overview and Card_en.srt
9.4 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/006 Project Demo Part 1 - Upload data to S3 and Launch Canvas_en.srt
9.3 kB
38 - Day 29 Lambda Functions Using AWS Console/010 Demo #2 Part #3 Monitor a Lambda Function_en.srt
9.2 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/005 Coding Task 1 - Import datalibraries and Perform EDA_en.srt
9.1 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/011 Coding Task 2 - Perform Data Cleaning_en.srt
9.1 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/008 L1 Regularization (Lasso Regression)_en.srt
9.1 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/019 Final Capstone Projects - Solutions_en.srt
9.0 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/003 Project Overview_en.srt
9.0 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/004 Coding Task 1 - Import and Clean Datasets_en.srt
9.0 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/005 K Nearest Neighbors in SageMaker_en.srt
8.9 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/004 Synchronous Vs. Asynchronous Invocations_en.srt
8.8 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/008 Coding Task 3 - Delete and Add Columns_en.srt
8.8 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/008 Coding Task 1 - Project Overview and Import data_en.srt
8.8 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/015 Train a Simple Linear Regression Model in SK-Learn_en.srt
8.8 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/012 Practice Opportunity #4_en.srt
8.7 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/003 Project Overview_en.srt
8.7 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/006 Key AIML Components in AWS_en.srt
8.7 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/014 Final Capstone Project Solution Part 1_en.srt
8.6 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/012 Coding Task 5 - Integer-based Indexing with .iLoc()_en.srt
8.6 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/018 Final Capstone Project Question_en.srt
8.6 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/018 Coding Task 9 - Compare Classifier Models_en.srt
8.6 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/019 Final Capstone Project Solution Part 1_en.srt
8.6 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/005 Coding Task 2 - Visualize Data_en.srt
8.6 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/014 Coding Task 4 - Train and Test XG-Boost Algorithm_en.srt
8.6 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/003 Project Overview and Card_en.srt
8.5 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/013 Final Capstone Project Solution_en.srt
8.5 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/015 Coding Task 5 - Train an XG-Boost Algorithm in SKLearn_en.srt
8.5 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/006 Labeling Text Data in SageMaker GroundTruth - Demo Part #3_en.srt
8.4 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/015 Coding Task 5 - Plot Pie Charts in Matplotlib_en.srt
8.4 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/018 Practice Opportunity #6_en.srt
8.3 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/022 Practice Opportunity 8_en.srt
8.3 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/014 Coding Task 4 - Split the Data into TrainingTesting_en.srt
8.2 kB
14 - Day 10 Amazon SageMaker Data Wrangler/010 Data Wrangler Demo 3 - Data Visualization_en.srt
8.2 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/017 Coding Task #5 - Train ML Model in Scikit-Learn_en.srt
8.2 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/013 Coding Task 3 - Visualize Dataset_en.srt
8.1 kB
23 - Day 18 AWS SageMaker JumpStart/007 JumpStart Demo Part 2 - Train the Model_en.srt
8.1 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/007 Coding Task 4 - DeployTest XG-Boost Algo (without Hyperparameters Optimization)_en.srt
8.1 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/010 Final Capstone Project - Solutions_en.srt
8.0 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/014 Coding Task 6 - Broadcasting Operation_en.srt
7.9 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/011 Coding Task 4 - Evaluate Classification Model using AutoGluon_en.srt
7.9 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/010 Coding Task 3 - Train Classification Model using AutoGluon_en.srt
7.9 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/005 Simple and Multiple Linear Regression [Recap]_en.srt
7.9 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/009 Practice Opportunity 3_en.srt
7.9 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/009 Deploy Best Model and Assess its Performance_en.srt
7.8 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/013 Coding Task #4 - Prepare the Data Before Model Training_en.srt
7.7 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/008 Coding Task 2 - Load CSV and Statistical Analysis_en.srt
7.7 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/008 Practice Opportunity #2_en.srt
7.7 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/009 Coding Task 1 - Import Libraries and Datasets_en.srt
7.7 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/009 Practice Opportunity 1_en.srt
7.6 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/014 Coding Task 6 - Perform EDA on Both Classes_en.srt
7.6 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/005 Labeling Text Data in SageMaker GroundTruth - Demo Part #2_en.srt
7.5 kB
14 - Day 10 Amazon SageMaker Data Wrangler/014 Data Wrangler Demo 7 - Export Dataflow_en.srt
7.5 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/007 Practice Opportunity #1_en.srt
7.4 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/003 Project Overview and Key Learning Outcomes_en.srt
7.4 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/004 Success Stories Price Prediction with AIML_en.srt
7.4 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/018 Practice Opportunity 4_en.srt
7.3 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/006 Coding Task 1 - Understand the Problem Statement and Load Data_en.srt
7.3 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/004 Coding Task 1 - Import Libraries and Datasets_en.srt
7.3 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/011 Practice Opportunity 4_en.srt
7.2 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/004 Coding Task 1 - Import Datasets_en.srt
7.2 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/013 Coding Task #3 - EDA and Data Visualization 2_en.srt
7.2 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/014 Final Capstone Project Solution Part 4_en.srt
7.2 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/017 Evaluate Trained Model Performance_en.srt
7.1 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/015 Practice Opportunity 4_en.srt
7.1 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/010 Coding Task 4 - Pandas and Functions_en.srt
7.1 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/003 Project Overview_en.srt
7.1 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/018 Practice Opportunity #5_en.srt
7.0 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/011 Coding Task 2 - Perform Exploratory Data Analysis (EDA)_en.srt
7.0 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/012 Practice Opportunity #2_en.srt
7.0 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/017 Practice Opportunity 4_en.srt
7.0 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/003 Project Overview and Project Card_en.srt
6.9 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/007 Practice Opportunity 1_en.srt
6.9 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/007 Practice Opportunity 2_en.srt
6.9 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/005 Coding Task #1 - Problem Overview_en.srt
6.9 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/016 Coding Task 7 - Sorting Pandas DataFrames_en.srt
6.9 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/020 Coding Task 8 - Hyperparameters Optimization Using Bayesian Optimizers_en.srt
6.7 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/015 Final Capstone Project Solution Part 2_en.srt
6.7 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/003 Project Overview_en.srt
6.7 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/009 Coding Task 1 - Import AutoGluon and data Import_en.srt
6.7 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/017 Practice Opportunity 5_en.srt
6.6 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/003 Project Overview_en.srt
6.6 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/019 Coding Task 7 - Hyperparameters Using Random Search_en.srt
6.6 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/006 Coding Task 1 - Import Libraries and Datasets_en.srt
6.5 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/015 Practice Opportunity 6_en.srt
6.5 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/006 Regression Recap_en.srt
6.4 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/012 Practice Opportunity 3_en.srt
6.4 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/003 Project Overview_en.srt
6.4 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/007 Practice Opportunity 2_en.srt
6.4 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/015 Practice Opportunity 6_en.srt
6.3 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/015 Coding Task #4 - Prepare the Data For Model Training_en.srt
6.3 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/010 Practice Opportunity - GroundTruth Pricing_en.srt
6.3 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/012 Final Capstone Project Solution Part 2_en.srt
6.2 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/012 Practice Opportunity 3_en.srt
6.2 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/003 Project Overview_en.srt
6.1 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/010 Final End-of-Day Capstone Project Question_en.srt
6.0 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/005 Multiple Linear Regression 101_en.srt
6.0 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/010 Coding Task 3 - Prepare the data for Model Training_en.srt
6.0 kB
23 - Day 18 AWS SageMaker JumpStart/008 JumpStart Demo Part 3 - Deploy an Endpoint_en.srt
6.0 kB
38 - Day 29 Lambda Functions Using AWS Console/003 Introduction to AWS Lambda and Key Learning Outcomes_en.srt
5.9 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/008 Json Lines and Manifest Files 101_en.srt
5.9 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/009 Practice Opportunity 2_en.srt
5.8 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/004 The Rise of Machine Learning in Higher Education_en.srt
5.8 kB
23 - Day 18 AWS SageMaker JumpStart/010 Final Capstone Project Question_en.srt
5.7 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/007 Data Labeling Challenges and Applications_en.srt
5.7 kB
38 - Day 29 Lambda Functions Using AWS Console/009 Demo #2 Part #2 Test a Lambda Function_en.srt
5.7 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/018 Practice Opportunity 6_en.srt
5.7 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/009 Coding Task #2 - Explore the Data_en.srt
5.7 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/007 Practice Opportunity 2_en.srt
5.7 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/008 Practice Opportunity #1_en.srt
5.6 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/017 Practice Opportunity 7_en.srt
5.6 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/018 Final Capstone Projects - Questions_en.srt
5.6 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/008 Practice Opportunity 1_en.srt
5.5 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/019 Capstone Project Questions_en.srt
5.5 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/014 Practice Opportunity #3_en.srt
5.5 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/008 Coding Task 3 - Change Pandas DataFrame datatypes_en.srt
5.5 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/012 Coding Task 5 - Evaluate Trained Model Performance_en.srt
5.5 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/014 Practice Opportunity #4_en.srt
5.5 kB
38 - Day 29 Lambda Functions Using AWS Console/006 AWS Lambda Functions Anatomy_en.srt
5.4 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/003 Project Card [Skip If Familiar]_en.srt
5.4 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/019 Final Capstone Project - Questions_en.srt
5.4 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/023 Final End of Day Capstone Project Questions_en.srt
5.4 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/006 Practice Opportunity 1_en.srt
5.3 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/003 Project Overview & AutoGluon for Tabular Data_en.srt
5.3 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/003 Introduction and Key Learning Outcomes_en.srt
5.3 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/011 Coding Task 4 - Train KNN Model in SKLearn_en.srt
5.2 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/009 Practice Opportunity 2_en.srt
5.2 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/011 Practice Opportunity 3_en.srt
5.1 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/021 Final Capstone Project Solution Part 3_en.srt
5.1 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/008 SageMaker Studio Domain Setup_en.srt
4.9 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/012 Final Capstone Project Question_en.srt
4.9 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/013 Coding Task 4 - Plot Scatterplots in Matplotlib_en.srt
4.9 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/004 Project Overview - EDA with Pandas_en.srt
4.9 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/007 Practice Opportunity 1_en.srt
4.9 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/011 Coding Task 3 - Plot Subplots in Matplotlib_en.srt
4.9 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/013 Final Capstone Project Solution Part 3_en.srt
4.8 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/012 Practice Opportunity #3_en.srt
4.7 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/013 Practice Opportunity 3_en.srt
4.7 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/015 Practice Opportunity 4_en.srt
4.5 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/006 Coding Task 1 - Import Datasets and AutoGloun_en.srt
4.5 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/014 Practice Opportunity 3_en.srt
4.5 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/010 Practice Opportunity #1_en.srt
4.5 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/011 Practice Opportunity 4_en.srt
4.4 kB
23 - Day 18 AWS SageMaker JumpStart/003 Project Introduction and Key Learning Outcomes_en.srt
4.4 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/011 Practice Opportunity 2_en.srt
4.4 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/011 Practice Opportunity 3_en.srt
4.4 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/013 Final Capstone Project Question_en.srt
4.4 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/006 Practice Opportunity #1_en.srt
4.4 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/016 Practice Opportunity 3_en.srt
4.3 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/007 Practice Opportunity 1_en.srt
4.3 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/012 Practice Opportunity 2_en.srt
4.3 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/013 Practice Opportunity 5_en.srt
4.3 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/004 Coding Task #1 - Notebook Walkthrough Project Overview_en.srt
4.2 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/003 Project Overview_en.srt
4.2 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/010 Final End-of-Day Capstone Project Question_en.srt
4.2 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/012 Practice Opportunity 3_en.srt
4.2 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/003 Project Overview_en.srt
4.2 kB
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/010 Final Capstone Project Question_en.srt
4.1 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/016 Practice Opportunity #4_en.srt
4.1 kB
14 - Day 10 Amazon SageMaker Data Wrangler/003 Project Overview_en.srt
4.1 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/017 Practice Opportunity 7_en.srt
4.1 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/005 Practice Opportunity 1_en.srt
4.0 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/005 Practice Opportunity 1_en.srt
4.0 kB
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/009 Practice Opportunity 3_en.srt
4.0 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/016 Practice Opportunity #5_en.srt
4.0 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/009 Coding Task 2 - Plot Multiple Line Plots in Matplotlib_en.srt
3.9 kB
38 - Day 29 Lambda Functions Using AWS Console/011 Final Capstone Project Question_en.srt
3.9 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/013 Practice Opportunity 5_en.srt
3.8 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/010 Coding Task 3 - Split the data_en.srt
3.8 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/010 Practice Opportunity 2_en.srt
3.8 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/012 Coding Task 3 - Prepare the Data for Model Training_en.srt
3.7 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/009 Practice Opportunity 1_en.srt
3.7 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/013 Practice Opportunity 2_en.srt
3.7 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/020 Practice Opportunity 7_en.srt
3.6 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/009 Practice Opportunity 2_en.srt
3.6 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/016 Final Capstone Project Solution Part 3_en.srt
3.5 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/013 Final Capstone Project Questions_en.srt
3.5 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/010 Practice Opportunity 1_en.srt
3.5 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/021 Final Capstone Project Question_en.srt
3.4 kB
14 - Day 10 Amazon SageMaker Data Wrangler/016 Final Capstone Project - Questions_en.srt
3.4 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/009 Practice Opportunity 2_en.srt
3.4 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/016 Final Capstone Project Question_en.srt
3.4 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/019 Coding Task 10 - Concluding Remarks_en.srt
3.4 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/011 Final Capstone Project - Question_en.srt
3.1 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/011 Final Capstone Project Question_en.srt
3.1 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/014 Practice Opportunity 4_en.srt
3.0 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/010 Practice Opportunity 1_en.srt
3.0 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/015 Practice Opportunity 4_en.srt
3.0 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/009 Final Capstone Project - Questions_en.srt
3.0 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/008 Final Capstone Project Question_en.srt
2.9 kB
14 - Day 10 Amazon SageMaker Data Wrangler/015 Data Wrangler Demo 8 - Shutdown Resources_en.srt
2.9 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/009 Final Capstone Project Question_en.srt
2.8 kB
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/003 Project Overview and Key Learning Outcomes_en.srt
2.8 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/008 Resources Cleanup [Important]_en.srt
2.8 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/015 Final Capstone Project Question_en.srt
2.8 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/010 Final Capstone Project Question_en.srt
2.6 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/011 Final Capstone Project - Question_en.srt
2.5 kB
01 - Introduction/001 Welcome To the Course!_en.srt
2.0 kB
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/001 Day Welcome Message_en.srt
1.9 kB
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/001 Day Welcome Message_en.srt
1.9 kB
09 - PART 3 EXPLORATORY DATA ANALYSIS/001 Welcome to Part 3 on Exploratory Data Analysis (EDA).html
1.9 kB
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/001 Day Welcome Message_en.srt
1.8 kB
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/001 Day Welcome Message_en.srt
1.8 kB
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/001 Day Welcome Message_en.srt
1.7 kB
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/001 Day Welcome Message_en.srt
1.7 kB
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/001 Day Welcome Message_en.srt
1.7 kB
02 - PART 1 AWS & ML STARTER PACK!/001 Welcome to Part 1 AWS and Machine Learning Starter Pack!.html
1.6 kB
16 - Day 11 Simple Linear Regression in Scikit-Learn/001 Day Welcome Message_en.srt
1.6 kB
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/001 Day Welcome Message_en.srt
1.6 kB
14 - Day 10 Amazon SageMaker Data Wrangler/001 Day Welcome Message_en.srt
1.6 kB
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/001 Day Welcome Message_en.srt
1.6 kB
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/001 Day Welcome Message_en.srt
1.6 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/001 Day Welcome Message_en.srt
1.6 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/012 Shutting Down SageMaker Canvas [Important]_en.srt
1.5 kB
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/001 Day Welcome Message_en.srt
1.5 kB
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/013 Shutdown Canvas_en.srt
1.5 kB
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/001 Day Welcome Message_en.srt
1.4 kB
21 - Day 16 XG-Boost Regression in Scikit-Learn/001 Day Welcome Message_en.srt
1.3 kB
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/001 Day Welcome Message_en.srt
1.3 kB
29 - Day 22 XG-Boost Classification in AWS SageMaker/001 Day Welcome Message_en.srt
1.3 kB
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/001 Day Welcome Message_en.srt
1.3 kB
18 - Day 13 Multiple Linear Regression in Scikit-Learn/001 Day Welcome Message_en.srt
1.2 kB
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/001 Day Welcome Message_en.srt
1.2 kB
38 - Day 29 Lambda Functions Using AWS Console/001 Day Welcome Message_en.srt
1.2 kB
26 - Day 20 Hyperparameters Optimization in SageMaker/001 Day Welcome Message_en.srt
1.2 kB
15 - PART 4 MACHINE LEARNING REGRESSION/001 Welcome to Part 4 on Machine Learning Regression.html
1.1 kB
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/001 Day Welcome Message_en.srt
1.1 kB
17 - Day 12 Regression Using AWS SageMaker Linear Learner/001 Day Welcome Message_en.srt
1.0 kB
23 - Day 18 AWS SageMaker JumpStart/001 Day Welcome Message_en.srt
995 Bytes
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/001 Day Welcome Message_en.srt
968 Bytes
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/001 Day Welcome Message_en.srt
937 Bytes
06 - PART 2 DATA LABELING IN AWS/001 Welcome to Part 2 on Data Labeling in AWS.html
913 Bytes
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/001 Day Welcome Message_en.srt
870 Bytes
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/014 Day End Message_en.srt
721 Bytes
16 - Day 11 Simple Linear Regression in Scikit-Learn/021 Day End Message_en.srt
684 Bytes
37 - PART 8 MACHINE LEARNING WORKFLOWS/001 Welcome to Part 8 on Machine Learning Workflows.html
684 Bytes
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/014 Day End Message_en.srt
675 Bytes
27 - PART 6 MACHINE LEARNING CLASSIFICATION & ChatGPT FOR PROGRAMMERS/001 Welcome to Part 6 on Machine Learning Classification.html
669 Bytes
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/010 Day End Message_en.srt
572 Bytes
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/009 Day End Message_en.srt
562 Bytes
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/013 Day End Message_en.srt
536 Bytes
23 - Day 18 AWS SageMaker JumpStart/002 Please Download Today's Materials.html
516 Bytes
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/002 Please Download Today's Materials.html
489 Bytes
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/020 Day End Message_en.srt
464 Bytes
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/018 Day End Message_en.srt
444 Bytes
18 - Day 13 Multiple Linear Regression in Scikit-Learn/021 Day End Message_en.srt
439 Bytes
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/011 Day End Message_en.srt
428 Bytes
14 - Day 10 Amazon SageMaker Data Wrangler/018 Day End Message_en.srt
411 Bytes
20 - Day 15 Launch ML Training Job from AWS Management Console (Regression)/012 Day End Message_en.srt
409 Bytes
17 - Day 12 Regression Using AWS SageMaker Linear Learner/015 Day End Message_en.srt
402 Bytes
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/014 Day End Message_en.srt
401 Bytes
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/012 Day End Message_en.srt
394 Bytes
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/020 Day End Message_en.srt
381 Bytes
32 - PART 7 AUTOML & NO-CODE ML/001 Welcome to Part 7 on AutoML and No-Code ML Development.html
377 Bytes
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/022 Day End Message_en.srt
377 Bytes
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/014 Day End Message_en.srt
377 Bytes
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/002 Please Download Today's Materials.html
376 Bytes
16 - Day 11 Simple Linear Regression in Scikit-Learn/002 Please Download Today's Materials.html
375 Bytes
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/017 Day End Message_en.srt
375 Bytes
23 - Day 18 AWS SageMaker JumpStart/013 Day End Message_en.srt
368 Bytes
18 - Day 13 Multiple Linear Regression in Scikit-Learn/002 Please Download Today's Materials.html
365 Bytes
21 - Day 16 XG-Boost Regression in Scikit-Learn/018 Day End Message_en.srt
353 Bytes
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/013 Day End Message_en.srt
350 Bytes
17 - Day 12 Regression Using AWS SageMaker Linear Learner/002 Please Download Today's Materials.html
345 Bytes
07 - Day 4 Labeling Data With AWS SageMaker GroundTruth/002 Please Download Today's Materials.html
343 Bytes
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/017 Day End Message_en.srt
341 Bytes
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/002 Please Download Today's Materials.html
335 Bytes
24 - PART 5 HYPERPARAMETERS OPTIMIZATION/001 Welcome to Part 5 on Hyperparameters Optimization.html
321 Bytes
34 - Day 26 No-Code ML - AutoGluon for Classification Type Problems/002 Please Download Today's Materials.html
299 Bytes
39 - Day 30 Lambda Functions Using AWS SageMaker Boto3 SDK/002 Please Download Today's Materials.html
296 Bytes
29 - Day 22 XG-Boost Classification in AWS SageMaker/019 Day End Message_en.srt
292 Bytes
33 - Day 25 No-Code ML - AutoGluon for Regression Type Problems/002 Please Download Today's Materials.html
292 Bytes
35 - Day 27 No-Code ML - Amazon SageMaker Autopilot/002 Please Download Today's Materials.html
288 Bytes
19 - Day 14 Multiple Linear Regression with AWS SageMaker Linear Learner/011 Day End Message_en.srt
284 Bytes
26 - Day 20 Hyperparameters Optimization in SageMaker/015 Day End Message_en.srt
279 Bytes
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/002 Please Download Today's Materials.html
271 Bytes
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/023 Day End Message_en.srt
271 Bytes
13 - Day 9 Exploratory Data Analysis (EDA) - Part #4 - Data Visualization/025 Day End Message_en.srt
268 Bytes
21 - Day 16 XG-Boost Regression in Scikit-Learn/002 Please Download Today's Materials.html
264 Bytes
25 - Day 19 Hyperparameters Optimization (GridSearch, Bayesian & Random)/002 Please Download Today's Materials.html
257 Bytes
29 - Day 22 XG-Boost Classification in AWS SageMaker/002 Please download today's Materials.html
257 Bytes
12 - Day 8 Exploratory Data Analysis (EDA) - Part #3 - Crash Course on Pandas/002 Please Download Today's Materials.html
248 Bytes
26 - Day 20 Hyperparameters Optimization in SageMaker/002 Please Download Today's Materials.html
248 Bytes
38 - Day 29 Lambda Functions Using AWS Console/013 Day End Message_en.srt
244 Bytes
10 - Day 6 Exploratory Data Analysis (EDA) Part #1 - Crash Course on Pandas/002 Please Download Today's Materials.html
240 Bytes
22 - Day 17 Built-in SageMaker XG-Boost Algorithm/002 Please Download Today's Materials.html
239 Bytes
05 - Day 3 AWS Essentials Starter Pack - Part 3 (Amazon SageMaker)/002 Please Download Today's Materials.html
238 Bytes
14 - Day 10 Amazon SageMaker Data Wrangler/002 Please Download Today's Materials.html
235 Bytes
28 - Day 21 Classifiers - SVM, KNN, Logistic Regression, Naive Bayes, Random Forest/002 Please Download Today's Materials.html
225 Bytes
11 - Day 7 Exploratory Data Analysis (EDA) - Part #2 - Crash Course on Pandas/002 Please Download Today's Materials.html
210 Bytes
30 - Day 23 K Nearest Neighbors (KNN) in SageMaker/002 Please download today's materials.html
192 Bytes
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/How you can help GetFreeCourses.Co.txt
182 Bytes
14 - Day 10 Amazon SageMaker Data Wrangler/How you can help GetFreeCourses.Co.txt
182 Bytes
24 - PART 5 HYPERPARAMETERS OPTIMIZATION/How you can help GetFreeCourses.Co.txt
182 Bytes
27 - PART 6 MACHINE LEARNING CLASSIFICATION & ChatGPT FOR PROGRAMMERS/How you can help GetFreeCourses.Co.txt
182 Bytes
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/002 Please Download Today's Materials.html
182 Bytes
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/How you can help GetFreeCourses.Co.txt
182 Bytes
How you can help GetFreeCourses.Co.txt
182 Bytes
04 - Day 2 AWS Essentials Starter Pack - Part 2 (AI, ML, DL, DS, S3, & EC2)/002 Please Download Today's Materials.html
128 Bytes
08 - Day 5 Labeling Text, Bounding Boxes, and Semantic Segmentation in GroundTruth/GetFreeCourses.Co.url
116 Bytes
14 - Day 10 Amazon SageMaker Data Wrangler/GetFreeCourses.Co.url
116 Bytes
24 - PART 5 HYPERPARAMETERS OPTIMIZATION/GetFreeCourses.Co.url
116 Bytes
27 - PART 6 MACHINE LEARNING CLASSIFICATION & ChatGPT FOR PROGRAMMERS/GetFreeCourses.Co.url
116 Bytes
36 - Day 28 No-Code ML - AWS SageMaker Canvas for Classification & Regression Tasks/GetFreeCourses.Co.url
116 Bytes
Download Paid Udemy Courses For Free.url
116 Bytes
GetFreeCourses.Co.url
116 Bytes
03 - Day 1 AWS Essentials Starter Pack - Part 1 (SignUp, Free Tier, Billing, & IAM)/002 Please Download Today's Materials.html
87 Bytes
38 - Day 29 Lambda Functions Using AWS Console/002 Please Download Today's Materials.html
67 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>