搜索
pgm
磁力链接/BT种子名称
pgm
磁力链接/BT种子简介
种子哈希:
5648d60c0afcfd91c0987ec1891949d63f645dc6
文件大小:
1.36G
已经下载:
4362
次
下载速度:
极快
收录时间:
2017-02-08
最近下载:
2025-08-31
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:5648D60C0AFCFD91C0987EC1891949D63F645DC6
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
她趣
TikTok成人版
PornHub
听泉鉴鲍
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
sdms682
aoz168
乳头割
江西南昌华东交通大学+️陆梦凡+私生活极度不检点+恋爱期间约炮被男友发现曝光私拍!
noah-102
midv-248
働くオ
桃乃木香奈660
midv7001
顶级约炮大神『mcreation』
木下凛凛子
anal+with+my+stepbrother
女儿有男友了+她打我说对不起她男朋友+带着哭腔说最后一次
matty.business
autum ren
蓝色禁区第一季
raiders lost ark eng
约操19岁高性价
an9-055
hegre++massaga
七彩主播-幼校老师+极品在校大奶老师
la mummia 1999
「艾希
无内
伸手 摸
暑假兼职赚学费,青春靓丽,无套内射
피트니스모델서리나그라비아촬영_현장
livesexlin
《泄密资源》韩国版果条果贷 极品美女大尺度掰b
獨家
文件列表
19 - 1 - Maximum Likelihood for Log-Linear Models (28-47).mp4
36.3 MB
23 - 1 - Class Summary (24-38).mp4
33.8 MB
15 - 1 - Maximum Expected Utility (25-57).mp4
30.4 MB
20 - 6 - Learning General Graphs- Heuristic Search (23-36).mp4
28.1 MB
21 - 5 - Latent Variables (22-00).mp4
28.0 MB
3 - 2 - Temporal Models - DBNs (23-02).mp4
27.3 MB
6 - 6 - Log-Linear Models (22-08).mp4
27.0 MB
22 - 1 - Summary- Learning (20-11).mp4
26.9 MB
6 - 3 - Conditional Random Fields (22-22).mp4
26.3 MB
21 - 1 - Learning With Incomplete Data - Overview (21-34).mp4
26.1 MB
7 - 1 - Knowledge Engineering (23-05).mp4
25.9 MB
1 - 2 - Overview and Motivation (19-17).mp4
24.1 MB
20 - 4 - Bayesian Scores (20-35).mp4
23.7 MB
3 - 4 - Plate Models (20-08).mp4
23.6 MB
6 - 5 - I-maps and perfect maps (20-59).mp4
23.5 MB
2 - 5 - Independencies in Bayesian Networks (18-18).mp4
22.6 MB
18 - 5 - Bayesian Estimation for Bayesian Networks (17-02).mp4
22.2 MB
4 - 2 - Moving Data Around (16-07).mp4
21.8 MB
15 - 2 - Utility Functions (18-15).mp4
20.6 MB
2 - 1 - Semantics & Factorization (17-20).mp4
20.5 MB
15 - 3 - Value of Perfect Information (17-14).mp4
20.2 MB
6 - 2 - General Gibbs Distribution (15-52).mp4
19.9 MB
20 - 2 - Likelihood Scores (16-49).mp4
19.6 MB
18 - 3 - Bayesian Estimation (15-27).mp4
19.6 MB
21 - 2 - Expectation Maximization - Intro (16-17).mp4
18.9 MB
18 - 2 - Maximum Likelihood Estimation for Bayesian Networks (15-49).mp4
18.6 MB
4 - 1 - Basic Operations (13-59).mp4
18.6 MB
20 - 7 - Learning General Graphs- Search and Decomposability (15-46).mp4
18.5 MB
17 - 1 - Learning- Overview (15-35).mp4
18.4 MB
13 - 5 - Metropolis Hastings Algorithm (27-06).mp4
17.7 MB
4 - 5 - Control Statements- for, while, if statements (12-55).mp4
17.3 MB
18 - 4 - Bayesian Prediction (13-40).mp4
17.0 MB
4 - 6 - Vectorization (13-48).mp4
16.9 MB
5 - 2 - Tree-Structured CPDs (14-37).mp4
16.8 MB
5 - 3 - Independence of Causal Influence (13-08).mp4
16.6 MB
2 - 4 - Conditional Independence (12-38).mp4
16.3 MB
2 - 3 - Flow of Probabilistic Influence (14-36).mp4
16.2 MB
5 - 4 - Continuous Variables (13-25).mp4
16.1 MB
4 - 3 - Computing On Data (13-15).mp4
16.0 MB
18 - 1 - Maximum Likelihood Estimation (14-59).mp4
15.9 MB
19 - 2 - Maximum Likelihood for Conditional Random Fields (13-24).mp4
15.8 MB
20 - 5 - Learning Tree Structured Networks (12-05).mp4
15.2 MB
16 - 4 - Model Selection and Train Validation Test Sets (12-03).mp4
14.8 MB
13 - 1 - Simple Sampling (23-37).mp4
14.4 MB
3 - 3 - Temporal Models - HMMs (12-01).mp4
14.2 MB
14 - 1 - Inference in Temporal Models (19-43).mp4
14.2 MB
4 - 4 - Plotting Data (09-38).mp4
14.0 MB
9 - 1 - Belief Propagation (21-21).mp4
13.9 MB
10 - 7 - Loopy BP and Message Decoding (21-42).mp4
13.8 MB
21 - 3 - Analysis of EM Algorithm (11-32).mp4
13.5 MB
2 - 8 - Knowledge Engineering Example - SAMIAM (14-14).mp4
13.4 MB
21 - 4 - EM in Practice (11-17).mp4
13.3 MB
11 - 1 - Max Sum Message Passing (20-27).mp4
13.3 MB
16 - 6 - Regularization and Bias Variance (11-20).mp4
13.2 MB
6 - 1 - Pairwise Markov Networks (10-59).mp4
13.2 MB
20 - 3 - BIC and Asymptotic Consistency (11-26).mp4
13.1 MB
13 - 4 - Gibbs Sampling (19-26).mp4
13.1 MB
16 - 2 - Regularization- Cost Function (10-10).mp4
12.2 MB
3 - 1 - Overview of Template Models (10-55).mp4
12.1 MB
2 - 7 - Application - Medical Diagnosis (09-19).mp4
12.1 MB
19 - 3 - MAP Estimation for MRFs and CRFs (9-59).mp4
11.8 MB
12 - 2 - Dual Decomposition - Intuition (17-46).mp4
11.7 MB
16 - 1 - Regularization- The Problem of Overfitting (09-42).mp4
11.7 MB
8 - 3 - Variable Elimination Algorithm (16-17).mp4
11.6 MB
2 - 2 - Reasoning Patterns (09-59).mp4
11.3 MB
2 - 6 - Naive Bayes (09-52).mp4
11.2 MB
10 - 5 - Clique Trees and VE (16-17).mp4
11.1 MB
10 - 2 - Clique Tree Algorithm - Correctness (18-23).mp4
11.0 MB
6 - 7 - Shared Features in Log-Linear Models (08-28).mp4
10.5 MB
12 - 3 - Dual Decomposition - Algorithm (16-16).mp4
10.2 MB
9 - 2 - Properties of Cluster Graphs (15-00).mp4
10.2 MB
12 - 1 - Tractable MAP Problems (15-04).mp4
10.2 MB
5 - 1 - Overview- Structured CPDs (08-00).mp4
10.1 MB
8 - 5 - Graph-Based Perspective on Variable Elimination (15-25).mp4
10.0 MB
13 - 3 - Using a Markov Chain (15-27).mp4
10.0 MB
10 - 4 - Clique Trees and Independence (15-21).mp4
10.0 MB
13 - 2 - Markov Chain Monte Carlo (14-18).mp4
9.7 MB
10 - 6 - BP In Practice (15-38).mp4
9.6 MB
8 - 1 - Overview- Conditional Probability Queries (15-22).mp4
9.5 MB
16 - 5 - Diagnosing Bias vs Variance (07-42).mp4
9.4 MB
8 - 6 - Finding Elimination Orderings (11-58).mp4
9.2 MB
10 - 3 - Clique Tree Algorithm - Computation (16-18).mp4
9.1 MB
8 - 4 - Complexity of Variable Elimination (12-48).mp4
9.0 MB
16 - 3 - Evaluating a Hypothesis (07-35).mp4
8.9 MB
14 - 2 - Inference- Summary (12-45).mp4
8.2 MB
1 - 4 - Factors (06-40).mp4
7.7 MB
1 - 1 - Welcome! (05-35).mp4
7.5 MB
20 - 1 - Structure Learning Overview (5-49).mp4
7.0 MB
8 - 2 - Overview- MAP Inference (09-42).mp4
6.2 MB
6 - 4 - Independencies in Markov Networks (04-48).mp4
6.1 MB
1 - 3 - Distributions (04-56).mp4
6.1 MB
10 - 1 - Properties of Belief Propagation (9-31).mp4
6.0 MB
4 - 7 - Working on and Submitting Programming Exercises (03-33).mp4
5.8 MB
11 - 2 - Finding a MAP Assignment (3-57).mp4
2.8 MB
13 - 5 - Metropolis Hastings Algorithm (27-06).srt
33.2 kB
19 - 1 - Maximum Likelihood for Log-Linear Models (28-47).srt
31.7 kB
20 - 6 - Learning General Graphs- Heuristic Search (23-36).srt
31.0 kB
15 - 1 - Maximum Expected Utility (25-57).srt
30.6 kB
7 - 1 - Knowledge Engineering (23-05).srt
28.9 kB
10 - 7 - Loopy BP and Message Decoding (21-42).srt
27.2 kB
6 - 6 - Log-Linear Models (22-08).srt
27.2 kB
3 - 2 - Temporal Models - DBNs (23-02).srt
27.0 kB
13 - 1 - Simple Sampling (23-37).srt
26.9 kB
21 - 5 - Latent Variables (22-00).srt
25.9 kB
14 - 1 - Inference in Temporal Models (19-43).srt
25.4 kB
1 - 2 - Overview and Motivation (19-17).srt
25.3 kB
21 - 1 - Learning With Incomplete Data - Overview (21-34).srt
25.1 kB
9 - 1 - Belief Propagation (21-21).srt
24.4 kB
20 - 4 - Bayesian Scores (20-35).srt
24.4 kB
6 - 3 - Conditional Random Fields (22-22).srt
24.0 kB
3 - 4 - Plate Models (20-08).srt
23.9 kB
2 - 8 - Knowledge Engineering Example - SAMIAM (14-14).srt
23.6 kB
2 - 5 - Independencies in Bayesian Networks (18-18).srt
23.5 kB
6 - 5 - I-maps and perfect maps (20-59).srt
23.1 kB
11 - 1 - Max Sum Message Passing (20-27).srt
22.8 kB
15 - 3 - Value of Perfect Information (17-14).srt
22.2 kB
2 - 1 - Semantics & Factorization (17-20).srt
21.6 kB
15 - 2 - Utility Functions (18-15).srt
21.5 kB
10 - 2 - Clique Tree Algorithm - Correctness (18-23).srt
20.6 kB
21 - 2 - Expectation Maximization - Intro (16-17).srt
20.5 kB
12 - 2 - Dual Decomposition - Intuition (17-46).srt
20.1 kB
13 - 4 - Gibbs Sampling (19-26).srt
20.0 kB
17 - 1 - Learning- Overview (15-35).srt
19.9 kB
20 - 7 - Learning General Graphs- Search and Decomposability (15-46).srt
19.4 kB
12 - 1 - Tractable MAP Problems (15-04).srt
19.4 kB
18 - 5 - Bayesian Estimation for Bayesian Networks (17-02).srt
19.4 kB
20 - 2 - Likelihood Scores (16-49).srt
19.3 kB
4 - 2 - Moving Data Around (16-07).srt
19.0 kB
12 - 3 - Dual Decomposition - Algorithm (16-16).srt
19.0 kB
13 - 3 - Using a Markov Chain (15-27).srt
18.3 kB
18 - 3 - Bayesian Estimation (15-27).srt
18.2 kB
10 - 5 - Clique Trees and VE (16-17).srt
18.1 kB
8 - 3 - Variable Elimination Algorithm (16-17).srt
17.9 kB
8 - 1 - Overview- Conditional Probability Queries (15-22).srt
17.9 kB
10 - 6 - BP In Practice (15-38).srt
17.7 kB
13 - 2 - Markov Chain Monte Carlo (14-18).srt
17.4 kB
10 - 4 - Clique Trees and Independence (15-21).srt
17.3 kB
5 - 2 - Tree-Structured CPDs (14-37).srt
17.2 kB
18 - 2 - Maximum Likelihood Estimation for Bayesian Networks (15-49).srt
17.1 kB
4 - 6 - Vectorization (13-48).srt
17.1 kB
9 - 2 - Properties of Cluster Graphs (15-00).srt
16.9 kB
4 - 1 - Basic Operations (13-59).srt
16.8 kB
14 - 2 - Inference- Summary (12-45).srt
16.7 kB
6 - 2 - General Gibbs Distribution (15-52).srt
16.7 kB
10 - 3 - Clique Tree Algorithm - Computation (16-18).srt
16.5 kB
16 - 4 - Model Selection and Train Validation Test Sets (12-03).srt
16.4 kB
4 - 3 - Computing On Data (13-15).srt
16.3 kB
19 - 2 - Maximum Likelihood for Conditional Random Fields (13-24).srt
16.1 kB
2 - 3 - Flow of Probabilistic Influence (14-36).srt
15.8 kB
18 - 1 - Maximum Likelihood Estimation (14-59).srt
15.8 kB
21 - 4 - EM in Practice (11-17).srt
15.5 kB
3 - 3 - Temporal Models - HMMs (12-01).srt
15.5 kB
4 - 5 - Control Statements- for, while, if statements (12-55).srt
15.5 kB
18 - 4 - Bayesian Prediction (13-40).srt
15.4 kB
2 - 4 - Conditional Independence (12-38).srt
15.3 kB
16 - 6 - Regularization and Bias Variance (11-20).srt
15.2 kB
8 - 5 - Graph-Based Perspective on Variable Elimination (15-25).srt
15.2 kB
5 - 4 - Continuous Variables (13-25).srt
14.9 kB
8 - 6 - Finding Elimination Orderings (11-58).srt
14.4 kB
20 - 5 - Learning Tree Structured Networks (12-05).srt
14.3 kB
5 - 3 - Independence of Causal Influence (13-08).srt
14.2 kB
20 - 3 - BIC and Asymptotic Consistency (11-26).srt
13.9 kB
6 - 1 - Pairwise Markov Networks (10-59).srt
13.8 kB
16 - 2 - Regularization- Cost Function (10-10).srt
13.6 kB
16 - 1 - Regularization- The Problem of Overfitting (09-42).srt
13.5 kB
21 - 3 - Analysis of EM Algorithm (11-32).srt
13.4 kB
8 - 4 - Complexity of Variable Elimination (12-48).srt
13.2 kB
3 - 1 - Overview of Template Models (10-55).srt
13.0 kB
19 - 3 - MAP Estimation for MRFs and CRFs (9-59).srt
12.7 kB
2 - 7 - Application - Medical Diagnosis (09-19).srt
12.4 kB
2 - 2 - Reasoning Patterns (09-59).srt
12.2 kB
4 - 4 - Plotting Data (09-38).srt
11.5 kB
8 - 2 - Overview- MAP Inference (09-42).srt
11.4 kB
2 - 6 - Naive Bayes (09-52).srt
11.4 kB
10 - 1 - Properties of Belief Propagation (9-31).srt
10.7 kB
16 - 5 - Diagnosing Bias vs Variance (07-42).srt
10.7 kB
1 - 1 - Welcome! (05-35).srt
10.3 kB
5 - 1 - Overview- Structured CPDs (08-00).srt
10.2 kB
16 - 3 - Evaluating a Hypothesis (07-35).srt
9.3 kB
6 - 7 - Shared Features in Log-Linear Models (08-28).srt
9.2 kB
1 - 4 - Factors (06-40).srt
8.7 kB
20 - 1 - Structure Learning Overview (5-49).srt
8.0 kB
1 - 3 - Distributions (04-56).srt
7.1 kB
6 - 4 - Independencies in Markov Networks (04-48).srt
5.5 kB
11 - 2 - Finding a MAP Assignment (3-57).srt
5.2 kB
4 - 7 - Working on and Submitting Programming Exercises (03-33).srt
4.6 kB
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!