搜索
Stanford机器学习课程
磁力链接/BT种子名称
Stanford机器学习课程
磁力链接/BT种子简介
种子哈希:
56f13bc4093278bcf9c9fd351c1d917f85a978d3
文件大小:
1.32G
已经下载:
19
次
下载速度:
极快
收录时间:
2017-08-03
最近下载:
2024-11-21
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:56F13BC4093278BCF9C9FD351C1D917F85A978D3
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
kidm-644b
百合川さら
겨울
a-day-in-the-life-of-teti-2160p.mp4
奇迹
allfinegirls 2022
老九门之番外二月开花
神似刘亦菲
luis and the aliens
已退圈
秘书+办公室
sikendar ka mukaddar
,高价良家云盘流出,【beauty】上,极品反差女友,爱旅游爱分享,日常生活照及性爱视频,精彩!
hidorirose+cosplay
舞蹈老师为了
x858
【少女】爸爸用小玩具诱惑自己的小女儿,诱骗女儿口爆12分钟
翻眼 玩脚 呼噜
二次元色图照片。
温柔乡
2022 8 10
10.000
助眠
ccdv-131
lotr
武汉理工大学已婚教授 张逸石 偷拍30g女性视频 偷拍视频遭全网疯传
江苏3p
ビートたけしのあと
2017.3
关注微信公众号zsbt666
文件列表
12 - 6 - Using An SVM (21 min).mkv
24.8 MB
12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mkv
22.6 MB
5 - 2 - Moving Data Around (16 min).mkv
21.5 MB
18 - 3 - Getting Lots of Data and Artificial Data (16 min).mkv
19.5 MB
6 - 6 - Advanced Optimization (14 min).mkv
18.8 MB
14 - 4 - Principal Component Analysis Algorithm (15 min).mkv
18.4 MB
5 - 1 - Basic Operations (14 min).mkv
18.4 MB
12 - 4 - Kernels I (16 min).mkv
18.2 MB
12 - 5 - Kernels II (16 min).mkv
18.0 MB
4 - 6 - Normal Equation (16 min).mkv
17.7 MB
16 - 2 - Content Based Recommendations (15 min).mkv
17.5 MB
6 - 3 - Decision Boundary (15 min).mkv
17.3 MB
1 - 4 - Unsupervised Learning (14 min).mkv
17.2 MB
12 - 1 - Optimization Objective (15 min).mkv
17.2 MB
18 - 2 - Sliding Windows (15 min).mkv
17.1 MB
5 - 5 - Control Statements_ for, while, if statements (13 min).mkv
17.1 MB
15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mkv
16.9 MB
9 - 7 - Putting It Together (14 min).mkv
16.9 MB
18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).mkv
16.7 MB
5 - 6 - Vectorization (14 min).mkv
16.6 MB
17 - 6 - Map Reduce and Data Parallelism (14 min).mkv
16.6 MB
11 - 4 - Trading Off Precision and Recall (14 min).mkv
16.5 MB
15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mkv
16.5 MB
9 - 3 - Backpropagation Intuition (13 min).mkv
16.0 MB
11 - 2 - Error Analysis (13 min).mkv
16.0 MB
17 - 2 - Stochastic Gradient Descent (13 min).mkv
15.9 MB
5 - 3 - Computing on Data (13 min).mkv
15.8 MB
15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mkv
15.7 MB
10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mkv
15.6 MB
9 - 8 - Autonomous Driving (7 min).mkv
15.5 MB
3 - 3 - Matrix Vector Multiplication (14 min).mkv
15.5 MB
17 - 5 - Online Learning (13 min).mkv
15.4 MB
14 - 7 - Advice for Applying PCA (13 min).mkv
15.2 MB
14 - 1 - Motivation I_ Data Compression (10 min).mkv
14.8 MB
15 - 6 - Choosing What Features to Use (12 min).mkv
14.6 MB
8 - 6 - Examples and Intuitions II (10 min).mkv
14.5 MB
15 - 3 - Algorithm (12 min).mkv
14.4 MB
9 - 2 - Backpropagation Algorithm (12 min).mkv
14.4 MB
13 - 2 - K-Means Algorithm (13 min).mkv
14.3 MB
8 - 3 - Model Representation I (12 min).mkv
14.0 MB
9 - 5 - Gradient Checking (12 min).mkv
14.0 MB
2 - 5 - Gradient Descent (11 min).mkv
14.0 MB
8 - 4 - Model Representation II (12 min).mkv
13.9 MB
1 - 3 - Supervised Learning (12 min).mkv
13.9 MB
5 - 4 - Plotting Data (10 min).mkv
13.8 MB
17 - 4 - Stochastic Gradient Descent Convergence (12 min).mkv
13.8 MB
11 - 3 - Error Metrics for Skewed Classes (12 min).mkv
13.7 MB
6 - 4 - Cost Function (11 min).mkv
13.5 MB
2 - 6 - Gradient Descent Intuition (12 min).mkv
13.5 MB
10 - 6 - Learning Curves (12 min).mkv
13.4 MB
11 - 5 - Data For Machine Learning (11 min).mkv
13.3 MB
3 - 6 - Inverse and Transpose (11 min).mkv
13.3 MB
3 - 4 - Matrix Matrix Multiplication (11 min).mkv
13.0 MB
10 - 5 - Regularization and Bias_Variance (11 min).mkv
13.0 MB
2 - 3 - Cost Function - Intuition I (11 min).mkv
12.6 MB
2 - 7 - GradientDescentForLinearRegression (6 min).mkv
12.6 MB
7 - 3 - Regularized Linear Regression (11 min).mkv
12.4 MB
6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mkv
12.4 MB
1 - 1 - Welcome (7 min).mkv
12.3 MB
14 - 5 - Choosing the Number of Principal Components (11 min).mkv
12.2 MB
12 - 2 - Large Margin Intuition (11 min).mkv
12.2 MB
16 - 3 - Collaborative Filtering (10 min).mkv
12.2 MB
15 - 2 - Gaussian Distribution (10 min).mkv
12.1 MB
7 - 2 - Cost Function (10 min).mkv
12.0 MB
2 - 4 - Cost Function - Intuition II (9 min).mkv
11.8 MB
11 - 1 - Prioritizing What to Work On (10 min).mkv
11.6 MB
7 - 1 - The Problem of Overfitting (10 min).mkv
11.5 MB
7 - 4 - Regularized Logistic Regression (9 min).mkv
11.3 MB
8 - 1 - Non-linear Hypotheses (10 min).mkv
11.3 MB
16 - 1 - Problem Formulation (8 min).mkv
11.1 MB
14 - 3 - Principal Component Analysis Problem Formulation (9 min).mkv
10.8 MB
16 - 4 - Collaborative Filtering Algorithm (9 min).mkv
10.7 MB
8 - 2 - Neurons and the Brain (8 min).mkv
10.2 MB
3 - 5 - Matrix Multiplication Properties (9 min).mkv
10.1 MB
16 - 6 - Implementational Detail_ Mean Normalization (9 min).mkv
10.0 MB
16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).mkv
10.0 MB
3 - 1 - Matrices and Vectors (9 min).mkv
9.9 MB
4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv
9.8 MB
13 - 5 - Choosing the Number of Clusters (8 min).mkv
9.7 MB
9 - 4 - Implementation Note_ Unrolling Parameters (8 min).mkv
9.7 MB
1 - 2 - What is Machine Learning_ (7 min).mkv
9.7 MB
15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mkv
9.6 MB
4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv
9.6 MB
2 - 2 - Cost Function (8 min).mkv
9.3 MB
2 - 1 - Model Representation (8 min).mkv
9.3 MB
10 - 4 - Diagnosing Bias vs. Variance (8 min).mkv
9.3 MB
4 - 1 - Multiple Features (8 min).mkv
9.1 MB
6 - 1 - Classification (8 min).mkv
9.1 MB
13 - 4 - Random Initialization (8 min).mkv
9.0 MB
10 - 2 - Evaluating a Hypothesis (8 min).mkv
8.8 MB
15 - 1 - Problem Motivation (8 min).mkv
8.6 MB
6 - 2 - Hypothesis Representation (7 min).mkv
8.6 MB
4 - 5 - Features and Polynomial Regression (8 min).mkv
8.5 MB
10 - 7 - Deciding What to Do Next Revisited (7 min).mkv
8.5 MB
13 - 3 - Optimization Objective (7 min)(1).mkv
8.4 MB
13 - 3 - Optimization Objective (7 min).mkv
8.4 MB
18 - 1 - Problem Description and Pipeline (7 min).mkv
8.2 MB
8 - 5 - Examples and Intuitions I (7 min).mkv
8.2 MB
9 - 1 - Cost Function (7 min).mkv
7.9 MB
9 - 6 - Random Initialization (7 min).mkv
7.8 MB
3 - 2 - Addition and Scalar Multiplication (7 min).mkv
7.7 MB
17 - 3 - Mini-Batch Gradient Descent (6 min).mkv
7.6 MB
6 - 7 - Multiclass Classification_ One-vs-all (6 min).mkv
7.2 MB
10 - 1 - Deciding What to Try Next (6 min).mkv
7.1 MB
17 - 1 - Learning With Large Datasets (6 min).mkv
6.7 MB
14 - 2 - Motivation II_ Visualization (6 min).mkv
6.5 MB
4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv
6.5 MB
19 - 1 - Summary and Thank You (5 min).mkv
6.3 MB
2 - 8 - What_'s Next (6 min).mkv
6.3 MB
4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
6.0 MB
5 - 7 - Working on and Submitting Programming Exercises (4 min).mkv
5.7 MB
14 - 6 - Reconstruction from Compressed Representation (4 min).mkv
5.2 MB
8 - 7 - Multiclass Classification (4 min).mkv
5.0 MB
13 - 1 - Unsupervised Learning_ Introduction (3 min).mkv
3.9 MB
搬运自.txt
33 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>