搜索
GetFreeCourses.Co-Udemy-Time Series Analysis, Forecasting, and Machine Learning
磁力链接/BT种子名称
GetFreeCourses.Co-Udemy-Time Series Analysis, Forecasting, and Machine Learning
磁力链接/BT种子简介
种子哈希:
5a09a383a63c7f01e08784052833d37bc841544b
文件大小:
6.82G
已经下载:
2906
次
下载速度:
极快
收录时间:
2023-12-18
最近下载:
2024-11-29
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:5A09A383A63C7F01E08784052833D37BC841544B
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
催眠剧情
the days of the jackal
汉服洛丽塔
艦○れ
绝对领域
天然粉嫩极品
reallusion iclone
mistressglamorous
tara rico
terminator 2009 dv
厕拍美女换衣
中国女大学生
胡言乱语
山崎真弓
艾儿
熊猫tv女主播
bogren digital
传媒新
gx
成人 写真
endoscop
ebwh-063
山千明
韩国+口交+系列
ballbusting
fermata america
上逼环
mxbd195
sone
女优合集189期+作品+高清无水印
文件列表
5. ARIMA/5. ARIMA in Code.mp4
127.5 MB
16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
113.4 MB
5. ARIMA/15. Auto ARIMA in Code (Stocks).mp4
110.3 MB
5. ARIMA/14. Auto ARIMA in Code.mp4
108.2 MB
9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.mp4
101.5 MB
12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).mp4
95.5 MB
13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.mp4
95.4 MB
8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.mp4
90.7 MB
7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).mp4
90.4 MB
10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).mp4
83.9 MB
16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
83.5 MB
9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.mp4
82.1 MB
9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.mp4
77.6 MB
8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.mp4
74.4 MB
4. Exponential Smoothing and ETS Methods/8. SES Code.mp4
72.9 MB
15. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.mp4
72.9 MB
7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.mp4
72.3 MB
3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.mp4
71.4 MB
13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.mp4
71.2 MB
13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.mp4
71.1 MB
8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.mp4
71.0 MB
8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.mp4
70.8 MB
5. ARIMA/17. Auto ARIMA in Code (Sales Data).mp4
68.6 MB
7. Machine Learning Methods/8. Extrapolation and Stock Prices.mp4
67.9 MB
13. VIP Facebook Prophet/3. Prophet Code Preparation.mp4
67.0 MB
12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).mp4
66.4 MB
10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.mp4
65.4 MB
6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).mp4
64.6 MB
5. ARIMA/7. Stationarity in Code.mp4
64.5 MB
4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.mp4
63.2 MB
6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.mp4
62.1 MB
8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.mp4
60.3 MB
10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).mp4
58.2 MB
13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.mp4
57.9 MB
5. ARIMA/6. Stationarity.mp4
57.8 MB
13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.mp4
57.4 MB
12. VIP AWS Forecast/6. Code pt 3 (Building your Model).mp4
57.1 MB
4. Exponential Smoothing and ETS Methods/4. SMA Code.mp4
56.7 MB
8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.mp4
56.6 MB
5. ARIMA/2. Autoregressive Models - AR(p).mp4
55.1 MB
6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).mp4
54.8 MB
11. VIP GARCH/9. GARCH Code (pt 2).mp4
54.5 MB
2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).mp4
53.3 MB
6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).mp4
53.3 MB
10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).mp4
52.7 MB
8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.mp4
52.5 MB
8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.mp4
52.4 MB
12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).mp4
52.3 MB
4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).mp4
52.2 MB
7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).mp4
51.8 MB
6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).mp4
51.7 MB
15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).mp4
51.6 MB
12. VIP AWS Forecast/2. Data Model.mp4
51.3 MB
9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.mp4
51.1 MB
4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).mp4
49.9 MB
9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.mp4
48.6 MB
11. VIP GARCH/13. A Deep Learning Approach to GARCH.mp4
48.3 MB
5. ARIMA/13. Model Selection, AIC and BIC.mp4
48.1 MB
6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).mp4
47.6 MB
3. Time Series Basics/9. Financial Time Series Primer.mp4
47.1 MB
8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.mp4
47.0 MB
4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.mp4
46.5 MB
10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.mp4
46.2 MB
11. VIP GARCH/10. GARCH Code (pt 3).mp4
46.1 MB
8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.mp4
46.0 MB
3. Time Series Basics/8. Forecasting Metrics.mp4
45.8 MB
8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.mp4
45.7 MB
14. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
45.7 MB
12. VIP AWS Forecast/1. AWS Forecast Section Introduction.mp4
45.7 MB
7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.mp4
45.6 MB
5. ARIMA/16. ACF and PACF for Stock Returns.mp4
45.6 MB
7. Machine Learning Methods/12. Application Sales Data.mp4
44.2 MB
13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.mp4
44.0 MB
3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.mp4
43.5 MB
5. ARIMA/4. ARIMA.mp4
43.4 MB
5. ARIMA/10. ACF and PACF in Code (pt 1).mp4
43.3 MB
11. VIP GARCH/11. GARCH Code (pt 4).mp4
43.3 MB
13. VIP Facebook Prophet/2. How does Prophet work.mp4
42.7 MB
2. Getting Set Up/1. Where to Get the Code.mp4
42.5 MB
4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.mp4
42.5 MB
4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.mp4
42.1 MB
10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN Elman Unit (pt 2).mp4
42.0 MB
11. VIP GARCH/7. GARCH Code Preparation (pt 2).mp4
42.0 MB
5. ARIMA/12. Auto ARIMA and SARIMAX.mp4
41.4 MB
4. Exponential Smoothing and ETS Methods/6. EWMA Code.mp4
41.3 MB
16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.8 MB
10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN Elman Unit (pt 1).mp4
40.6 MB
13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.mp4
39.8 MB
5. ARIMA/18. How to Forecast with ARIMA.mp4
39.8 MB
11. VIP GARCH/6. GARCH Code Preparation (pt 1).mp4
39.8 MB
17. Appendix FAQ Finale/2. BONUS Lecture.mp4
39.7 MB
7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.mp4
39.2 MB
6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).mp4
39.0 MB
5. ARIMA/8. ACF (Autocorrelation Function).mp4
38.8 MB
8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.mp4
37.8 MB
4. Exponential Smoothing and ETS Methods/5. EWMA Theory.mp4
37.6 MB
4. Exponential Smoothing and ETS Methods/7. SES Theory.mp4
37.3 MB
10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.mp4
35.8 MB
5. ARIMA/11. ACF and PACF in Code (pt 2).mp4
35.5 MB
3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.mp4
34.9 MB
11. VIP GARCH/8. GARCH Code (pt 1).mp4
34.9 MB
4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).mp4
34.8 MB
3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.mp4
34.2 MB
7. Machine Learning Methods/3. Autoregressive Machine Learning Models.mp4
34.0 MB
3. Time Series Basics/2. What is a Time Series.mp4
33.8 MB
7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.mp4
33.6 MB
6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.mp4
33.6 MB
11. VIP GARCH/12. GARCH Code (pt 5).mp4
33.5 MB
7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.mp4
33.3 MB
8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.mp4
32.8 MB
11. VIP GARCH/14. GARCH Section Summary.mp4
32.3 MB
8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.mp4
32.2 MB
1. Welcome/1. Introduction and Outline.mp4
32.2 MB
9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).mp4
31.9 MB
3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.mp4
31.6 MB
3. Time Series Basics/4. Why Do We Care About Shapes.mp4
30.9 MB
4. Exponential Smoothing and ETS Methods/15. Application Sales Data.mp4
30.9 MB
14. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.mp4
29.2 MB
9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.mp4
28.8 MB
11. VIP GARCH/5. GARCH Theory.mp4
28.8 MB
11. VIP GARCH/3. ARCH Theory (pt 2).mp4
28.5 MB
3. Time Series Basics/15. Suggestion Box.mp4
28.5 MB
7. Machine Learning Methods/14. Application Predicting Stock Movements.mp4
27.6 MB
12. VIP AWS Forecast/9. AWS Forecast Section Summary.mp4
26.7 MB
5. ARIMA/9. PACF (Partial Autocorrelation Funtion).mp4
26.3 MB
15. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).mp4
25.8 MB
4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.mp4
25.1 MB
12. VIP AWS Forecast/3. Creating an IAM Role.mp4
25.0 MB
9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).mp4
24.8 MB
9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.mp4
24.8 MB
3. Time Series Basics/5. Types of Tasks.mp4
24.7 MB
1. Welcome/2. Warmup (Optional).mp4
24.3 MB
5. ARIMA/1. ARIMA Section Introduction.mp4
24.1 MB
6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.mp4
23.5 MB
7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.mp4
22.9 MB
8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.mp4
21.9 MB
10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.mp4
21.5 MB
11. VIP GARCH/4. ARCH Theory (pt 3).mp4
20.5 MB
11. VIP GARCH/2. ARCH Theory (pt 1).mp4
20.5 MB
8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.mp4
20.4 MB
4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.mp4
20.3 MB
4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.mp4
20.0 MB
4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).mp4
20.0 MB
7. Machine Learning Methods/10. Forecasting with Differencing.mp4
19.9 MB
6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.mp4
19.6 MB
10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.mp4
19.5 MB
3. Time Series Basics/10. Price Simulations in Code.mp4
19.2 MB
11. VIP GARCH/1. GARCH Section Introduction.mp4
19.1 MB
7. Machine Learning Methods/1. Machine Learning Section Introduction.mp4
18.4 MB
3. Time Series Basics/1. Time Series Basics Section Introduction.mp4
18.3 MB
17. Appendix FAQ Finale/1. What is the Appendix.mp4
17.2 MB
10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.mp4
16.7 MB
10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.mp4
16.2 MB
9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.mp4
16.2 MB
4. Exponential Smoothing and ETS Methods/3. SMA Theory.mp4
16.0 MB
13. VIP Facebook Prophet/1. Prophet Section Introduction.mp4
15.2 MB
9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.mp4
15.0 MB
12. VIP AWS Forecast/8. AWS Forecast Exercise.mp4
14.4 MB
4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.mp4
14.2 MB
3. Time Series Basics/3. Modeling vs. Predicting.mp4
14.1 MB
13. VIP Facebook Prophet/11. Prophet Section Summary.mp4
14.1 MB
5. ARIMA/20. ARIMA Section Summary.mp4
13.4 MB
16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4
13.2 MB
6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.mp4
13.0 MB
3. Time Series Basics/14. Time Series Basics Section Summary.mp4
12.7 MB
4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.mp4
12.2 MB
8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.mp4
11.5 MB
5. ARIMA/3. Moving Average Models - MA(q).mp4
11.4 MB
7. Machine Learning Methods/15. Machine Learning Section Summary.mp4
10.9 MB
5. ARIMA/19. Forecasting Out-Of-Sample.mp4
7.1 MB
9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.srt
32.8 kB
16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
32.6 kB
16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
24.1 kB
5. ARIMA/5. ARIMA in Code.srt
23.4 kB
8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.srt
23.4 kB
10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).srt
23.4 kB
15. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).srt
23.2 kB
9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.srt
21.3 kB
9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.srt
21.2 kB
14. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.srt
20.8 kB
3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.srt
19.8 kB
7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.srt
19.4 kB
6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.srt
18.2 kB
5. ARIMA/6. Stationarity.srt
18.0 kB
5. ARIMA/15. Auto ARIMA in Code (Stocks).srt
17.5 kB
16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
17.2 kB
5. ARIMA/2. Autoregressive Models - AR(p).srt
17.1 kB
12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).srt
16.8 kB
8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.srt
16.7 kB
13. VIP Facebook Prophet/3. Prophet Code Preparation.srt
16.6 kB
5. ARIMA/14. Auto ARIMA in Code.srt
16.1 kB
3. Time Series Basics/8. Forecasting Metrics.srt
15.6 kB
11. VIP GARCH/13. A Deep Learning Approach to GARCH.srt
15.4 kB
3. Time Series Basics/9. Financial Time Series Primer.srt
15.4 kB
4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).srt
15.4 kB
7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).srt
15.3 kB
10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).srt
15.2 kB
6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).srt
15.1 kB
16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt
15.0 kB
4. Exponential Smoothing and ETS Methods/5. EWMA Theory.srt
14.9 kB
4. Exponential Smoothing and ETS Methods/8. SES Code.srt
14.9 kB
4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.srt
14.6 kB
14. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
14.6 kB
8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.srt
14.5 kB
15. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.srt
14.4 kB
13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.srt
14.3 kB
4. Exponential Smoothing and ETS Methods/7. SES Theory.srt
14.2 kB
5. ARIMA/4. ARIMA.srt
14.1 kB
5. ARIMA/13. Model Selection, AIC and BIC.srt
13.8 kB
8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.srt
13.8 kB
15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).srt
13.5 kB
7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.srt
13.5 kB
5. ARIMA/8. ACF (Autocorrelation Function).srt
13.3 kB
2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).srt
13.3 kB
10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN Elman Unit (pt 2).srt
13.2 kB
12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).srt
13.2 kB
8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.srt
13.0 kB
8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.srt
12.8 kB
4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.srt
12.6 kB
5. ARIMA/12. Auto ARIMA and SARIMAX.srt
12.6 kB
12. VIP AWS Forecast/2. Data Model.srt
12.5 kB
5. ARIMA/18. How to Forecast with ARIMA.srt
12.4 kB
8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.srt
12.0 kB
10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN Elman Unit (pt 1).srt
11.8 kB
13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.srt
11.6 kB
10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.srt
11.4 kB
8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.srt
11.4 kB
13. VIP Facebook Prophet/2. How does Prophet work.srt
11.1 kB
5. ARIMA/7. Stationarity in Code.srt
11.0 kB
8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.srt
11.0 kB
12. VIP AWS Forecast/1. AWS Forecast Section Introduction.srt
10.9 kB
2. Getting Set Up/1. Where to Get the Code.srt
10.8 kB
11. VIP GARCH/6. GARCH Code Preparation (pt 1).srt
10.7 kB
6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).srt
10.7 kB
11. VIP GARCH/7. GARCH Code Preparation (pt 2).srt
10.6 kB
5. ARIMA/17. Auto ARIMA in Code (Sales Data).srt
10.4 kB
7. Machine Learning Methods/3. Autoregressive Machine Learning Models.srt
10.4 kB
4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).srt
10.3 kB
4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.srt
10.3 kB
10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).srt
10.2 kB
7. Machine Learning Methods/8. Extrapolation and Stock Prices.srt
10.0 kB
6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).srt
9.9 kB
4. Exponential Smoothing and ETS Methods/4. SMA Code.srt
9.9 kB
13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.srt
9.9 kB
13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.srt
9.9 kB
11. VIP GARCH/5. GARCH Theory.srt
9.8 kB
11. VIP GARCH/3. ARCH Theory (pt 2).srt
9.8 kB
4. Exponential Smoothing and ETS Methods/6. EWMA Code.srt
9.8 kB
4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).srt
9.8 kB
5. ARIMA/10. ACF and PACF in Code (pt 1).srt
9.6 kB
13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.srt
9.5 kB
12. VIP AWS Forecast/6. Code pt 3 (Building your Model).srt
9.5 kB
3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.srt
9.4 kB
10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.srt
9.4 kB
7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.srt
9.3 kB
8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.srt
9.2 kB
7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.srt
9.2 kB
3. Time Series Basics/5. Types of Tasks.srt
9.1 kB
11. VIP GARCH/14. GARCH Section Summary.srt
8.9 kB
11. VIP GARCH/9. GARCH Code (pt 2).srt
8.9 kB
12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).srt
8.9 kB
8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.srt
8.8 kB
9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).srt
8.8 kB
6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).srt
8.7 kB
3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.srt
8.5 kB
3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.srt
8.3 kB
5. ARIMA/11. ACF and PACF in Code (pt 2).srt
8.2 kB
5. ARIMA/9. PACF (Partial Autocorrelation Funtion).srt
8.2 kB
9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.srt
8.1 kB
8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.srt
8.1 kB
17. Appendix FAQ Finale/2. BONUS Lecture.srt
8.1 kB
3. Time Series Basics/4. Why Do We Care About Shapes.srt
7.8 kB
1. Welcome/1. Introduction and Outline.srt
7.7 kB
5. ARIMA/16. ACF and PACF for Stock Returns.srt
7.7 kB
6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).srt
7.6 kB
8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.srt
7.4 kB
4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.srt
7.4 kB
5. ARIMA/1. ARIMA Section Introduction.srt
7.3 kB
11. VIP GARCH/10. GARCH Code (pt 3).srt
7.3 kB
6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).srt
7.2 kB
9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).srt
7.1 kB
3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.srt
7.0 kB
12. VIP AWS Forecast/9. AWS Forecast Section Summary.srt
7.0 kB
9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.srt
6.9 kB
7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).srt
6.8 kB
11. VIP GARCH/4. ARCH Theory (pt 3).srt
6.8 kB
7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.srt
6.6 kB
9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.srt
6.6 kB
9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.srt
6.6 kB
10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.srt
6.5 kB
3. Time Series Basics/2. What is a Time Series.srt
6.5 kB
11. VIP GARCH/2. ARCH Theory (pt 1).srt
6.5 kB
4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.srt
6.5 kB
11. VIP GARCH/8. GARCH Code (pt 1).srt
6.3 kB
13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.srt
6.2 kB
1. Welcome/2. Warmup (Optional).srt
6.2 kB
3. Time Series Basics/1. Time Series Basics Section Introduction.srt
6.0 kB
11. VIP GARCH/11. GARCH Code (pt 4).srt
6.0 kB
8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.srt
5.6 kB
10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.srt
5.6 kB
4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.srt
5.5 kB
7. Machine Learning Methods/1. Machine Learning Section Introduction.srt
5.5 kB
7. Machine Learning Methods/12. Application Sales Data.srt
5.5 kB
6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.srt
5.4 kB
7. Machine Learning Methods/10. Forecasting with Differencing.srt
5.4 kB
4. Exponential Smoothing and ETS Methods/15. Application Sales Data.srt
5.3 kB
11. VIP GARCH/1. GARCH Section Introduction.srt
5.3 kB
4. Exponential Smoothing and ETS Methods/3. SMA Theory.srt
5.0 kB
7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.srt
4.9 kB
12. VIP AWS Forecast/3. Creating an IAM Role.srt
4.9 kB
3. Time Series Basics/15. Suggestion Box.srt
4.9 kB
6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.srt
4.8 kB
5. ARIMA/20. ARIMA Section Summary.srt
4.7 kB
13. VIP Facebook Prophet/11. Prophet Section Summary.srt
4.6 kB
7. Machine Learning Methods/14. Application Predicting Stock Movements.srt
4.6 kB
8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.srt
4.5 kB
10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.srt
4.5 kB
3. Time Series Basics/14. Time Series Basics Section Summary.srt
4.4 kB
5. ARIMA/3. Moving Average Models - MA(q).srt
4.3 kB
13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.srt
4.3 kB
4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.srt
4.3 kB
10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.srt
4.3 kB
9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.srt
4.3 kB
13. VIP Facebook Prophet/1. Prophet Section Introduction.srt
4.2 kB
11. VIP GARCH/12. GARCH Code (pt 5).srt
4.2 kB
9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.srt
4.1 kB
4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.srt
4.0 kB
10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.srt
3.9 kB
17. Appendix FAQ Finale/1. What is the Appendix.srt
3.9 kB
12. VIP AWS Forecast/8. AWS Forecast Exercise.srt
3.7 kB
6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.srt
3.6 kB
4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).srt
3.5 kB
3. Time Series Basics/10. Price Simulations in Code.srt
3.5 kB
3. Time Series Basics/3. Modeling vs. Predicting.srt
3.4 kB
6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.srt
3.2 kB
8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.srt
3.1 kB
7. Machine Learning Methods/15. Machine Learning Section Summary.srt
3.1 kB
4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.srt
2.9 kB
8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.srt
2.9 kB
5. ARIMA/19. Forecasting Out-Of-Sample.srt
1.7 kB
13. VIP Facebook Prophet/How you can help GetFreeCourses.Co.txt
182 Bytes
4. Exponential Smoothing and ETS Methods/How you can help GetFreeCourses.Co.txt
182 Bytes
9. Deep Learning Convolutional Neural Networks (CNN)/How you can help GetFreeCourses.Co.txt
182 Bytes
How you can help GetFreeCourses.Co.txt
182 Bytes
2. Getting Set Up/1.1 Data Links.html
157 Bytes
2. Getting Set Up/1.2 Github Link.html
143 Bytes
13. VIP Facebook Prophet/GetFreeCourses.Co.url
116 Bytes
4. Exponential Smoothing and ETS Methods/GetFreeCourses.Co.url
116 Bytes
9. Deep Learning Convolutional Neural Networks (CNN)/GetFreeCourses.Co.url
116 Bytes
Download Paid Udemy Courses For Free.url
116 Bytes
GetFreeCourses.Co.url
116 Bytes
9. Deep Learning Convolutional Neural Networks (CNN)/11.1 Convert a Time Series Into an Image with Gramian Angular Fields and Markov Transition Fields.html
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>