搜索
[ WebToolTip.com ] Deep Learning with Python, Third Edition, Video Edition
磁力链接/BT种子名称
[ WebToolTip.com ] Deep Learning with Python, Third Edition, Video Edition
磁力链接/BT种子简介
种子哈希:
5a721563edf334b9afdeb08a4ce0c5a00d9666d0
文件大小:
2.48G
已经下载:
1
次
下载速度:
极快
收录时间:
2025-12-08
最近下载:
2025-12-08
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:5A721563EDF334B9AFDEB08A4CE0C5A00D9666D0
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
小蓝俱乐部
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
母狗园
51动漫
91短视频
抖音Max
海王TV
TikTok成人版
PornHub
暗网Xvideo
草榴社区
哆哔涩漫
呦乐园
萝莉岛
搜同
91暗网
最近搜索
性爱大片
gvh-653
俄罗斯
厉害多了
the+guts
泰国御姐
cawd-163+uncensored
真珠
【村花论坛】
七天极品探花精品作之瑜伽裤大学生
丸の内 みずき
付费高端群
直男系列
武松
【良家女神】
按摩被坐
极品性
ai
模 肛
(空城原创)大神市场尾随偷拍美女裙底风光极品美艳少妇和家人逛街,骚丁夹进逼缝
sone-290
越狱第4季
黑色面具
鬼束直]+オーバーキル
futari+no+hakuoro
巨乳透明
kink
先破动漫
全裸悬吊
约了个高颜值
文件列表
~Get Your Files Here !/070. Chapter 13. Recurrent neural networks.mp4
76.5 MB
~Get Your Files Here !/102. Chapter 19. The missing ingredients - Search and symbols.mp4
73.8 MB
~Get Your Files Here !/103. Chapter 20. Conclusions.mp4
69.9 MB
~Get Your Files Here !/081. Chapter 15. The Transformer architecture.mp4
66.3 MB
~Get Your Files Here !/016. Chapter 2. The engine of neural networks - Gradient-based optimization.mp4
63.2 MB
~Get Your Files Here !/035. Chapter 6. The universal workflow of machine learning.mp4
63.1 MB
~Get Your Files Here !/077. Chapter 14. Sequence models.mp4
60.3 MB
~Get Your Files Here !/101. Chapter 19. How to build intelligence.mp4
59.0 MB
~Get Your Files Here !/086. Chapter 16. Training a mini-GPT.mp4
56.3 MB
~Get Your Files Here !/030. Chapter 5. Fundamentals of machine learning.mp4
54.3 MB
~Get Your Files Here !/100. Chapter 19. Scale isn t all you need.mp4
52.1 MB
~Get Your Files Here !/045. Chapter 8. Training a ConvNet from scratch on a small dataset.mp4
50.7 MB
~Get Your Files Here !/024. Chapter 3. Introduction to Keras.mp4
50.6 MB
~Get Your Files Here !/026. Chapter 4. Classification and regression.mp4
50.1 MB
~Get Your Files Here !/044. Chapter 8. Image classification.mp4
50.1 MB
~Get Your Files Here !/088. Chapter 16. Going further with LLMs.mp4
48.8 MB
~Get Your Files Here !/095. Chapter 18. Best practices for the real world.mp4
48.7 MB
~Get Your Files Here !/099. Chapter 19. The future of AI.mp4
45.4 MB
~Get Your Files Here !/046. Chapter 8. Using a pretrained model.mp4
44.5 MB
~Get Your Files Here !/096. Chapter 18. Scaling up model training with multiple devices.mp4
43.8 MB
~Get Your Files Here !/074. Chapter 14. Preparing text data.mp4
42.8 MB
~Get Your Files Here !/033. Chapter 5. Improving generalization.mp4
42.4 MB
~Get Your Files Here !/065. Chapter 12. Training a YOLO model from scratch.mp4
41.6 MB
~Get Your Files Here !/069. Chapter 13. A temperature forecasting example.mp4
41.2 MB
~Get Your Files Here !/042. Chapter 7. Writing your own training and evaluation loops.mp4
40.4 MB
~Get Your Files Here !/037. Chapter 6. Deploying your model.mp4
39.7 MB
~Get Your Files Here !/091. Chapter 17. Image generation.mp4
38.9 MB
~Get Your Files Here !/021. Chapter 3. Introduction to TensorFlow.mp4
37.2 MB
~Get Your Files Here !/082. Chapter 15. Classification with a pretrained Transformer.mp4
35.1 MB
~Get Your Files Here !/087. Chapter 16. Using a pretrained LLM.mp4
34.9 MB
~Get Your Files Here !/014. Chapter 2. Data representations for neural networks.mp4
34.1 MB
~Get Your Files Here !/040. Chapter 7. Different ways to build Keras models.mp4
34.1 MB
~Get Your Files Here !/036. Chapter 6. Developing a model.mp4
33.3 MB
~Get Your Files Here !/092. Chapter 17. Diffusion models.mp4
33.2 MB
~Get Your Files Here !/097. Chapter 18. Speeding up training and inference with lower-precision computation.mp4
32.2 MB
~Get Your Files Here !/015. Chapter 2. The gears of neural networks - Tensor operations.mp4
32.2 MB
~Get Your Files Here !/079. Chapter 15. Language models and the Transformer.mp4
30.8 MB
~Get Your Files Here !/080. Chapter 15. Sequence-to-sequence learning.mp4
30.4 MB
~Get Your Files Here !/073. Chapter 14. Text classification.mp4
29.2 MB
~Get Your Files Here !/023. Chapter 3. Introduction to JAX.mp4
28.8 MB
~Get Your Files Here !/022. Chapter 3. Introduction to PyTorch.mp4
28.2 MB
~Get Your Files Here !/031. Chapter 5. Evaluating machine-learning models.mp4
26.5 MB
~Get Your Files Here !/076. Chapter 14. Set models.mp4
26.5 MB
~Get Your Files Here !/083. Chapter 15. What makes the Transformer effective.mp4
26.5 MB
~Get Your Files Here !/028. Chapter 4. Predicting house prices - A regression example.mp4
26.2 MB
~Get Your Files Here !/085. Chapter 16. Text generation.mp4
26.1 MB
~Get Your Files Here !/041. Chapter 7. Using built-in training and evaluation loops.mp4
25.8 MB
~Get Your Files Here !/048. Chapter 9. ConvNet architecture patterns.mp4
25.3 MB
~Get Your Files Here !/061. Chapter 11. Training a segmentation model from scratch.mp4
24.9 MB
~Get Your Files Here !/027. Chapter 4. Classifying newswires - A multiclass classification example.mp4
24.8 MB
~Get Your Files Here !/093. Chapter 17. Text-to-image models.mp4
24.7 MB
~Get Your Files Here !/013. Chapter 2. The mathematical building blocks of neural networks.mp4
23.3 MB
~Get Your Files Here !/055. Chapter 10. Interpreting what ConvNets learn.mp4
22.9 MB
~Get Your Files Here !/062. Chapter 11. Using a pretrained segmentation model.mp4
21.8 MB
~Get Your Files Here !/019. Chapter 3. Introduction to TensorFlow, PyTorch, JAX, and Keras.mp4
21.0 MB
~Get Your Files Here !/017. Chapter 2. Looking back at our first example.mp4
20.2 MB
~Get Your Files Here !/056. Chapter 10. Visualizing ConvNet filters.mp4
18.6 MB
~Get Your Files Here !/051. Chapter 9. Depthwise separable convolutions.mp4
18.1 MB
~Get Your Files Here !/004. Chapter 1. Learning rules and representations from data.mp4
17.8 MB
~Get Your Files Here !/032. Chapter 5. Improving model fit.mp4
16.4 MB
~Get Your Files Here !/057. Chapter 10. Visualizing heatmaps of class activation.mp4
16.4 MB
~Get Your Files Here !/010. Chapter 1. Beware of the short-term hype.mp4
15.8 MB
~Get Your Files Here !/064. Chapter 12. Object detection.mp4
15.0 MB
~Get Your Files Here !/075. Chapter 14. Sets vs. sequences.mp4
14.0 MB
~Get Your Files Here !/050. Chapter 9. Batch normalization.mp4
13.2 MB
~Get Your Files Here !/003. Chapter 1. Machine learning.mp4
13.2 MB
~Get Your Files Here !/060. Chapter 11. Image segmentation.mp4
12.8 MB
~Get Your Files Here !/106. Chapter 20. Staying up to date in a fast-moving field.mp4
12.1 MB
~Get Your Files Here !/066. Chapter 12. Using a pretrained RetinaNet detector.mp4
11.6 MB
~Get Your Files Here !/011. Chapter 1. Summer can turn to winter.mp4
11.6 MB
~Get Your Files Here !/039. Chapter 7. A deep dive on Keras.mp4
11.5 MB
~Get Your Files Here !/005. Chapter 1. The deep in deep learning .mp4
10.3 MB
~Get Your Files Here !/089. Chapter 16. Where are LLMs heading next.mp4
9.8 MB
~Get Your Files Here !/104. Chapter 20. Limitations of deep learning.mp4
9.1 MB
~Get Your Files Here !/049. Chapter 9. Residual connections.mp4
8.9 MB
~Get Your Files Here !/012. Chapter 1. The promise of AI.mp4
8.9 MB
~Get Your Files Here !/058. Chapter 10. Visualizing the latent space of a ConvNet.mp4
8.4 MB
~Get Your Files Here !/007. Chapter 1. Understanding how deep learning works, in three figures.mp4
8.3 MB
~Get Your Files Here !/068. Chapter 13. Timeseries forecasting.mp4
8.1 MB
~Get Your Files Here !/002. Chapter 1. Artificial intelligence.mp4
7.9 MB
~Get Your Files Here !/084. Chapter 15. Summary.mp4
7.6 MB
~Get Your Files Here !/105. Chapter 20. What might lie ahead.mp4
7.3 MB
~Get Your Files Here !/071. Chapter 13. Going even further.mp4
7.2 MB
~Get Your Files Here !/006. Chapter 1. Understanding how deep learning works, in three figures.mp4
7.2 MB
~Get Your Files Here !/034. Chapter 5. Summary.mp4
7.2 MB
~Get Your Files Here !/009. Chapter 1. What deep learning has achieved so far.mp4
6.8 MB
~Get Your Files Here !/053. Chapter 9. Beyond convolution - Vision Transformers.mp4
6.4 MB
~Get Your Files Here !/020. Chapter 3. How these frameworks relate to each other.mp4
6.2 MB
~Get Your Files Here !/052. Chapter 9. Putting it together - A mini Xception-like model.mp4
6.2 MB
~Get Your Files Here !/001. Chapter 1. What is deep learning.mp4
5.2 MB
~Get Your Files Here !/072. Chapter 13. Summary.mp4
5.2 MB
~Get Your Files Here !/018. Chapter 2. Summary.mp4
4.7 MB
~Get Your Files Here !/008. Chapter 1. The age of generative AI.mp4
4.6 MB
~Get Your Files Here !/094. Chapter 17. Summary.mp4
4.2 MB
~Get Your Files Here !/025. Chapter 3. Summary.mp4
4.2 MB
~Get Your Files Here !/043. Chapter 7. Summary.mp4
4.2 MB
~Get Your Files Here !/038. Chapter 6. Summary.mp4
4.1 MB
~Get Your Files Here !/090. Chapter 16. Summary.mp4
4.1 MB
~Get Your Files Here !/078. Chapter 14. Summary.mp4
3.7 MB
~Get Your Files Here !/067. Chapter 12. Summary.mp4
3.4 MB
~Get Your Files Here !/098. Chapter 18. Summary.mp4
3.4 MB
~Get Your Files Here !/047. Chapter 8. Summary.mp4
3.0 MB
~Get Your Files Here !/063. Chapter 11. Summary.mp4
2.3 MB
~Get Your Files Here !/029. Chapter 4. Summary.mp4
2.2 MB
~Get Your Files Here !/054. Chapter 9. Summary.mp4
1.8 MB
~Get Your Files Here !/059. Chapter 10. Summary.mp4
1.7 MB
~Get Your Files Here !/107. Chapter 20. Final words.mp4
1.6 MB
~Get Your Files Here !/070. Chapter 13. Recurrent neural networks.en.srt
46.1 kB
~Get Your Files Here !/081. Chapter 15. The Transformer architecture.en.srt
38.5 kB
~Get Your Files Here !/102. Chapter 19. The missing ingredients - Search and symbols.en.srt
37.0 kB
~Get Your Files Here !/077. Chapter 14. Sequence models.en.srt
36.4 kB
~Get Your Files Here !/016. Chapter 2. The engine of neural networks - Gradient-based optimization.en.srt
36.0 kB
~Get Your Files Here !/030. Chapter 5. Fundamentals of machine learning.en.srt
33.5 kB
~Get Your Files Here !/095. Chapter 18. Best practices for the real world.en.srt
32.8 kB
~Get Your Files Here !/103. Chapter 20. Conclusions.en.srt
31.8 kB
~Get Your Files Here !/035. Chapter 6. The universal workflow of machine learning.en.srt
30.8 kB
~Get Your Files Here !/086. Chapter 16. Training a mini-GPT.en.srt
30.6 kB
~Get Your Files Here !/101. Chapter 19. How to build intelligence.en.srt
28.9 kB
~Get Your Files Here !/024. Chapter 3. Introduction to Keras.en.srt
28.7 kB
~Get Your Files Here !/026. Chapter 4. Classification and regression.en.srt
28.6 kB
~Get Your Files Here !/088. Chapter 16. Going further with LLMs.en.srt
28.3 kB
~Get Your Files Here !/045. Chapter 8. Training a ConvNet from scratch on a small dataset.en.srt
28.1 kB
~Get Your Files Here !/044. Chapter 8. Image classification.en.srt
27.6 kB
~Get Your Files Here !/096. Chapter 18. Scaling up model training with multiple devices.en.srt
26.0 kB
~Get Your Files Here !/033. Chapter 5. Improving generalization.en.srt
25.6 kB
~Get Your Files Here !/015. Chapter 2. The gears of neural networks - Tensor operations.en.srt
24.3 kB
~Get Your Files Here !/042. Chapter 7. Writing your own training and evaluation loops.en.srt
24.3 kB
~Get Your Files Here !/046. Chapter 8. Using a pretrained model.en.srt
24.2 kB
~Get Your Files Here !/074. Chapter 14. Preparing text data.en.srt
24.2 kB
~Get Your Files Here !/100. Chapter 19. Scale isn t all you need.en.srt
22.7 kB
~Get Your Files Here !/099. Chapter 19. The future of AI.en.srt
22.2 kB
~Get Your Files Here !/037. Chapter 6. Deploying your model.en.srt
22.1 kB
~Get Your Files Here !/069. Chapter 13. A temperature forecasting example.en.srt
21.9 kB
~Get Your Files Here !/021. Chapter 3. Introduction to TensorFlow.en.srt
21.7 kB
~Get Your Files Here !/087. Chapter 16. Using a pretrained LLM.en.srt
21.7 kB
~Get Your Files Here !/091. Chapter 17. Image generation.en.srt
20.8 kB
~Get Your Files Here !/040. Chapter 7. Different ways to build Keras models.en.srt
20.7 kB
~Get Your Files Here !/065. Chapter 12. Training a YOLO model from scratch.en.srt
20.2 kB
~Get Your Files Here !/082. Chapter 15. Classification with a pretrained Transformer.en.srt
19.5 kB
~Get Your Files Here !/036. Chapter 6. Developing a model.en.srt
19.0 kB
~Get Your Files Here !/097. Chapter 18. Speeding up training and inference with lower-precision computation.en.srt
18.9 kB
~Get Your Files Here !/022. Chapter 3. Introduction to PyTorch.en.srt
18.3 kB
~Get Your Files Here !/014. Chapter 2. Data representations for neural networks.en.srt
18.2 kB
~Get Your Files Here !/092. Chapter 17. Diffusion models.en.srt
18.0 kB
~Get Your Files Here !/023. Chapter 3. Introduction to JAX.en.srt
17.9 kB
~Get Your Files Here !/079. Chapter 15. Language models and the Transformer.en.srt
16.6 kB
~Get Your Files Here !/028. Chapter 4. Predicting house prices - A regression example.en.srt
15.9 kB
~Get Your Files Here !/041. Chapter 7. Using built-in training and evaluation loops.en.srt
15.1 kB
~Get Your Files Here !/013. Chapter 2. The mathematical building blocks of neural networks.en.srt
15.0 kB
~Get Your Files Here !/031. Chapter 5. Evaluating machine-learning models.en.srt
15.0 kB
~Get Your Files Here !/080. Chapter 15. Sequence-to-sequence learning.en.srt
14.9 kB
~Get Your Files Here !/027. Chapter 4. Classifying newswires - A multiclass classification example.en.srt
14.8 kB
~Get Your Files Here !/062. Chapter 11. Using a pretrained segmentation model.en.srt
14.1 kB
~Get Your Files Here !/085. Chapter 16. Text generation.en.srt
14.0 kB
~Get Your Files Here !/076. Chapter 14. Set models.en.srt
14.0 kB
~Get Your Files Here !/093. Chapter 17. Text-to-image models.en.srt
13.8 kB
~Get Your Files Here !/073. Chapter 14. Text classification.en.srt
12.7 kB
~Get Your Files Here !/083. Chapter 15. What makes the Transformer effective.en.srt
12.3 kB
~Get Your Files Here !/048. Chapter 9. ConvNet architecture patterns.en.srt
11.9 kB
~Get Your Files Here !/017. Chapter 2. Looking back at our first example.en.srt
11.6 kB
~Get Your Files Here !/055. Chapter 10. Interpreting what ConvNets learn.en.srt
11.3 kB
~Get Your Files Here !/056. Chapter 10. Visualizing ConvNet filters.en.srt
11.2 kB
~Get Your Files Here !/061. Chapter 11. Training a segmentation model from scratch.en.srt
10.5 kB
~Get Your Files Here !/004. Chapter 1. Learning rules and representations from data.en.srt
9.8 kB
~Get Your Files Here !/032. Chapter 5. Improving model fit.en.srt
9.7 kB
~Get Your Files Here !/019. Chapter 3. Introduction to TensorFlow, PyTorch, JAX, and Keras.en.srt
9.6 kB
~Get Your Files Here !/057. Chapter 10. Visualizing heatmaps of class activation.en.srt
8.4 kB
~Get Your Files Here !/064. Chapter 12. Object detection.en.srt
8.2 kB
~Get Your Files Here !/075. Chapter 14. Sets vs. sequences.en.srt
8.0 kB
~Get Your Files Here !/051. Chapter 9. Depthwise separable convolutions.en.srt
7.8 kB
~Get Your Files Here !/050. Chapter 9. Batch normalization.en.srt
7.1 kB
~Get Your Files Here !/010. Chapter 1. Beware of the short-term hype.en.srt
6.7 kB
~Get Your Files Here !/060. Chapter 11. Image segmentation.en.srt
6.5 kB
~Get Your Files Here !/003. Chapter 1. Machine learning.en.srt
6.2 kB
~Get Your Files Here !/066. Chapter 12. Using a pretrained RetinaNet detector.en.srt
5.9 kB
~Get Your Files Here !/039. Chapter 7. A deep dive on Keras.en.srt
5.8 kB
~Get Your Files Here !/106. Chapter 20. Staying up to date in a fast-moving field.en.srt
5.8 kB
~Get Your Files Here !/089. Chapter 16. Where are LLMs heading next.en.srt
5.2 kB
~Get Your Files Here !/058. Chapter 10. Visualizing the latent space of a ConvNet.en.srt
4.9 kB
~Get Your Files Here !/049. Chapter 9. Residual connections.en.srt
4.8 kB
~Get Your Files Here !/104. Chapter 20. Limitations of deep learning.en.srt
4.7 kB
~Get Your Files Here !/005. Chapter 1. The deep in deep learning .en.srt
4.6 kB
~Get Your Files Here !/006. Chapter 1. Understanding how deep learning works, in three figures.en.srt
4.4 kB
~Get Your Files Here !/011. Chapter 1. Summer can turn to winter.en.srt
4.4 kB
~Get Your Files Here !/012. Chapter 1. The promise of AI.en.srt
4.4 kB
~Get Your Files Here !/071. Chapter 13. Going even further.en.srt
4.1 kB
~Get Your Files Here !/068. Chapter 13. Timeseries forecasting.en.srt
3.9 kB
~Get Your Files Here !/002. Chapter 1. Artificial intelligence.en.srt
3.9 kB
~Get Your Files Here !/007. Chapter 1. Understanding how deep learning works, in three figures.en.srt
3.8 kB
~Get Your Files Here !/053. Chapter 9. Beyond convolution - Vision Transformers.en.srt
3.6 kB
~Get Your Files Here !/105. Chapter 20. What might lie ahead.en.srt
3.4 kB
~Get Your Files Here !/008. Chapter 1. The age of generative AI.en.srt
3.1 kB
~Get Your Files Here !/020. Chapter 3. How these frameworks relate to each other.en.srt
3.1 kB
~Get Your Files Here !/052. Chapter 9. Putting it together - A mini Xception-like model.en.srt
3.0 kB
~Get Your Files Here !/034. Chapter 5. Summary.en.srt
3.0 kB
~Get Your Files Here !/018. Chapter 2. Summary.en.srt
3.0 kB
~Get Your Files Here !/084. Chapter 15. Summary.en.srt
2.9 kB
~Get Your Files Here !/009. Chapter 1. What deep learning has achieved so far.en.srt
2.7 kB
~Get Your Files Here !/090. Chapter 16. Summary.en.srt
2.5 kB
~Get Your Files Here !/001. Chapter 1. What is deep learning.en.srt
2.4 kB
~Get Your Files Here !/078. Chapter 14. Summary.en.srt
2.1 kB
~Get Your Files Here !/094. Chapter 17. Summary.en.srt
2.0 kB
~Get Your Files Here !/038. Chapter 6. Summary.en.srt
1.9 kB
~Get Your Files Here !/067. Chapter 12. Summary.en.srt
1.8 kB
~Get Your Files Here !/072. Chapter 13. Summary.en.srt
1.7 kB
~Get Your Files Here !/029. Chapter 4. Summary.en.srt
1.4 kB
~Get Your Files Here !/025. Chapter 3. Summary.en.srt
1.4 kB
~Get Your Files Here !/043. Chapter 7. Summary.en.srt
1.3 kB
~Get Your Files Here !/098. Chapter 18. Summary.en.srt
1.1 kB
~Get Your Files Here !/047. Chapter 8. Summary.en.srt
1.1 kB
~Get Your Files Here !/063. Chapter 11. Summary.en.srt
856 Bytes
~Get Your Files Here !/059. Chapter 10. Summary.en.srt
789 Bytes
~Get Your Files Here !/107. Chapter 20. Final words.en.srt
764 Bytes
~Get Your Files Here !/054. Chapter 9. Summary.en.srt
716 Bytes
Get Bonus Downloads Here.url
180 Bytes
~Get Your Files Here !/Bonus Resources.txt
70 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!