搜索
GetFreeCourses.Co-Udemy-Complete 2022 Data Science & Machine Learning Bootcamp
磁力链接/BT种子名称
GetFreeCourses.Co-Udemy-Complete 2022 Data Science & Machine Learning Bootcamp
磁力链接/BT种子简介
种子哈希:
5ecdbfd6bcf6cf5af358e0bf56bf83558535e425
文件大小:
12.53G
已经下载:
1060
次
下载速度:
极快
收录时间:
2023-12-20
最近下载:
2025-01-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:5ECDBFD6BCF6CF5AF358E0BF56BF83558535E425
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
+gio2352
试衣间深喉
extras 2005
极品一线天校花
怜+巨乳
摇摇车
情侣泄密套图
ipzz-071
眼镜阿姨
紫色面具
妻+套图
厕 收藏
ml compa.
明星合成ai换脸视频452部合集
the waevecity lights
jasminej9966
orphan black
1zmm
穷小子大翻身 沈芯语
媚中
国产 剪
巨乳自拍
lyh mybb
ylwn-195
the lady boss is done pretending
美谷朱里aphrodite
厕拍
k+klixen
1006611
1285309
文件列表
04 - Introduction to Optimisation and the Gradient Descent Algorithm/007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4
240.6 MB
12 - Serving a Tensorflow Model through a Website/014 Calculating the Centre of Mass and Shifting the Image.mp4
220.7 MB
05 - Predict House Prices with Multivariable Linear Regression/031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4
210.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/012 Model Evaluation and the Confusion Matrix.mp4
202.6 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/009 Understanding the Learning Rate.mp4
199.4 MB
03 - Python Programming for Data Science and Machine Learning/008 [Python] - Module Imports.mp4
195.9 MB
12 - Serving a Tensorflow Model through a Website/007 Loading a Tensorflow.js Model and Starting your own Server.mp4
183.9 MB
05 - Predict House Prices with Multivariable Linear Regression/014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4
183.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/010 Use the Model to Make Predictions.mp4
182.3 MB
11 - Use Tensorflow to Classify Handwritten Digits/012 Different Model Architectures Experimenting with Dropout.mp4
182.3 MB
12 - Serving a Tensorflow Model through a Website/009 Styling an HTML Canvas.mp4
181.1 MB
12 - Serving a Tensorflow Model through a Website/010 Drawing on an HTML Canvas.mp4
167.0 MB
12 - Serving a Tensorflow Model through a Website/016 Adding the Game Logic.mp4
165.9 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4
159.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/010 How to Create 3-Dimensional Charts.mp4
159.4 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/006 Visualising the Decision Boundary.mp4
156.7 MB
12 - Serving a Tensorflow Model through a Website/013 Resizing and Adding Padding to Images.mp4
155.0 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/011 A Naive Bayes Implementation using SciKit Learn.mp4
152.8 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4
152.3 MB
03 - Python Programming for Data Science and Machine Learning/013 How to Make Sense of Python Documentation for Data Visualisation.mp4
144.8 MB
12 - Serving a Tensorflow Model through a Website/006 HTML and CSS Styling.mp4
143.4 MB
03 - Python Programming for Data Science and Machine Learning/014 Working with Python Objects to Analyse Data.mp4
142.0 MB
12 - Serving a Tensorflow Model through a Website/012 Introduction to OpenCV.mp4
139.7 MB
05 - Predict House Prices with Multivariable Linear Regression/027 Making Predictions (Part 1) MSE & R-Squared.mp4
132.7 MB
03 - Python Programming for Data Science and Machine Learning/012 [Python] - Objects - Understanding Attributes and Methods.mp4
131.4 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/002 Layers, Feature Generation and Learning.mp4
130.4 MB
05 - Predict House Prices with Multivariable Linear Regression/023 Model Simplification & Baysian Information Criterion.mp4
125.5 MB
11 - Use Tensorflow to Classify Handwritten Digits/006 Creating Tensors and Setting up the Neural Network Architecture.mp4
116.0 MB
05 - Predict House Prices with Multivariable Linear Regression/011 Visualising Correlations with a Heatmap.mp4
113.7 MB
05 - Predict House Prices with Multivariable Linear Regression/004 Clean and Explore the Data (Part 2) Find Missing Values.mp4
112.7 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/013 [Python] - Loops and Performance Considerations.mp4
111.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/028 Styling the Word Cloud with a Mask.mp4
111.1 MB
05 - Predict House Prices with Multivariable Linear Regression/022 Understanding VIF & Testing for Multicollinearity.mp4
110.5 MB
02 - Predict Movie Box Office Revenue with Linear Regression/003 Explore & Visualise the Data with Python.mp4
110.2 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/002 Create a Full Matrix.mp4
109.9 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/011 [Python] - Generator Functions & the yield Keyword.mp4
109.3 MB
05 - Predict House Prices with Multivariable Linear Regression/007 Working with Index Data, Pandas Series, and Dummy Variables.mp4
108.8 MB
12 - Serving a Tensorflow Model through a Website/002 Saving Tensorflow Models.mp4
108.7 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/006 Making Predictions using InceptionResNet.mp4
108.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/011 Understanding Partial Derivatives and How to use SymPy.mp4
107.7 MB
05 - Predict House Prices with Multivariable Linear Regression/029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4
107.6 MB
03 - Python Programming for Data Science and Machine Learning/007 [Python & Pandas] - Dataframes and Series.mp4
106.3 MB
03 - Python Programming for Data Science and Machine Learning/010 [Python] - Functions - Part 2 Arguments & Parameters.mp4
104.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/030 Styling Word Clouds with Custom Fonts.mp4
104.3 MB
05 - Predict House Prices with Multivariable Linear Regression/026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4
104.0 MB
11 - Use Tensorflow to Classify Handwritten Digits/009 Tensorboard Summaries and the Filewriter.mp4
103.5 MB
12 - Serving a Tensorflow Model through a Website/015 Making a Prediction from a Digit drawn on the HTML Canvas.mp4
103.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4
101.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/002 Gathering Email Data and Working with Archives & Text Editors.mp4
100.7 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/014 Reshaping and Slicing N-Dimensional Arrays.mp4
99.7 MB
12 - Serving a Tensorflow Model through a Website/004 Converting a Model to Tensorflow.js.mp4
98.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/006 [Python] - Loops and the Gradient Descent Algorithm.mp4
97.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/019 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4
97.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/035 Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4
96.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4
94.7 MB
05 - Predict House Prices with Multivariable Linear Regression/030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4
94.5 MB
11 - Use Tensorflow to Classify Handwritten Digits/010 Understanding the Tensorflow Graph Nodes and Edges.mp4
93.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/006 Joint & Conditional Probability.mp4
92.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/009 Reading Files (Part 2) Stream Objects and Email Structure.mp4
92.0 MB
11 - Use Tensorflow to Classify Handwritten Digits/013 Prediction and Model Evaluation.mp4
91.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/021 Removing HTML tags with BeautifulSoup.mp4
90.8 MB
12 - Serving a Tensorflow Model through a Website/003 Loading a SavedModel.mp4
89.2 MB
05 - Predict House Prices with Multivariable Linear Regression/012 Techniques to Style Scatter Plots.mp4
87.9 MB
05 - Predict House Prices with Multivariable Linear Regression/010 Calculating Correlations and the Problem posed by Multicollinearity.mp4
86.5 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/007 Coding Challenge Solution Using other Keras Models.mp4
86.0 MB
05 - Predict House Prices with Multivariable Linear Regression/025 Residual Analysis (Part 1) Predicted vs Actual Values.mp4
85.4 MB
05 - Predict House Prices with Multivariable Linear Regression/020 Improving the Model by Transforming the Data.mp4
85.4 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/004 Exploring the CIFAR Data.mp4
85.1 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/003 Costs and Disadvantages of Neural Networks.mp4
80.3 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4
80.3 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4
79.7 MB
02 - Predict Movie Box Office Revenue with Linear Regression/005 Analyse and Evaluate the Results.mp4
79.1 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/038 Checkpoint Understanding the Data.mp4
78.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/021 Running Gradient Descent with a MSE Cost Function.mp4
77.9 MB
11 - Use Tensorflow to Classify Handwritten Digits/008 TensorFlow Sessions and Batching Data.mp4
77.2 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/031 Create the Vocabulary for the Spam Classifier.mp4
73.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/016 Data Visualisation (Part 1) Pie Charts.mp4
73.5 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/004 Preprocessing Image Data and How RGB Works.mp4
72.6 MB
12 - Serving a Tensorflow Model through a Website/005 Introducing the Website Project and Tooling.mp4
72.1 MB
03 - Python Programming for Data Science and Machine Learning/015 [Python] - Tips, Code Style and Naming Conventions.mp4
70.4 MB
11 - Use Tensorflow to Classify Handwritten Digits/011 Name Scoping and Image Visualisation in Tensorboard.mp4
70.1 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/012 Implementing Batch Gradient Descent with SymPy.mp4
68.7 MB
05 - Predict House Prices with Multivariable Linear Regression/028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4
66.8 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/003 Count the Tokens to Train the Naive Bayes Model.mp4
66.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/005 Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4
64.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4
64.3 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/005 Understanding the Power Rule & Creating Charts with Subplots.mp4
62.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/034 Sparse Matrix (Part 1) Split the Training and Testing Data.mp4
60.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/017 Transposing and Reshaping Arrays.mp4
60.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/025 [Python] - Logical Operators to Create Subsets and Indices.mp4
60.2 MB
05 - Predict House Prices with Multivariable Linear Regression/003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4
59.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/024 Advanced Subsetting on DataFrames the apply() Function.mp4
57.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/018 Implementing a MSE Cost Function.mp4
57.2 MB
03 - Python Programming for Data Science and Machine Learning/011 [Python] - Functions - Part 3 Results & Return Values.mp4
56.8 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/001 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4
56.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/007 Bayes Theorem.mp4
53.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/026 Word Clouds & How to install Additional Python Packages.mp4
52.5 MB
11 - Use Tensorflow to Classify Handwritten Digits/007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4
52.0 MB
11 - Use Tensorflow to Classify Handwritten Digits/004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4
51.7 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/005 Importing Keras Models and the Tensorflow Graph.mp4
51.6 MB
05 - Predict House Prices with Multivariable Linear Regression/021 How to Interpret Coefficients using p-Values and Statistical Significance.mp4
51.4 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/019 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4
51.3 MB
05 - Predict House Prices with Multivariable Linear Regression/002 Gathering the Boston House Price Data.mp4
49.9 MB
03 - Python Programming for Data Science and Machine Learning/005 [Python] - Variables and Types.mp4
49.9 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/002 Joint Conditional Probability (Part 1) Dot Product.mp4
49.3 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/004 LaTeX Markdown and Generating Data with Numpy.mp4
49.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/029 Solving the Hamlet Challenge.mp4
49.1 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/020 Word Stemming & Removing Punctuation.mp4
48.9 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/014 Cleaning Data (Part 2) Working with a DataFrame Index.mp4
48.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/003 Joint Conditional Probablity (Part 2) Priors.mp4
48.0 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/007 Interacting with the Operating System and the Python Try-Catch Block.mp4
48.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/027 Creating your First Word Cloud.mp4
47.8 MB
05 - Predict House Prices with Multivariable Linear Regression/016 How to Shuffle and Split Training & Testing Data.mp4
47.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/015 Saving a JSON File with Pandas.mp4
45.5 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/016 Introduction to the Mean Squared Error (MSE).mp4
45.3 MB
05 - Predict House Prices with Multivariable Linear Regression/005 Visualising Data (Part 1) Historams, Distributions & Outliers.mp4
44.7 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/007 False Positive vs False Negatives.mp4
43.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/033 Coding Challenge Find the Longest Email.mp4
43.1 MB
05 - Predict House Prices with Multivariable Linear Regression/008 Understanding Descriptive Statistics the Mean vs the Median.mp4
43.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/017 Data Visualisation (Part 2) Donut Charts.mp4
42.9 MB
02 - Predict Movie Box Office Revenue with Linear Regression/002 Gather & Clean the Data.mp4
42.8 MB
01 - Introduction to the Course/001 What is Machine Learning.mp4
42.3 MB
05 - Predict House Prices with Multivariable Linear Regression/017 Running a Multivariable Regression.mp4
42.2 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/011 Model Evaluation and the Confusion Matrix.mp4
42.0 MB
01 - Introduction to the Course/002 What is Data Science.mp4
41.8 MB
11 - Use Tensorflow to Classify Handwritten Digits/002 Getting the Data and Loading it into Numpy Arrays.mp4
41.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/008 Reading Files (Part 1) Absolute Paths and Relative Paths.mp4
41.5 MB
03 - Python Programming for Data Science and Machine Learning/002 Mac Users - Install Anaconda.mp4
41.0 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/003 Introduction to Cost Functions.mp4
40.9 MB
11 - Use Tensorflow to Classify Handwritten Digits/005 What is a Tensor.mp4
39.7 MB
05 - Predict House Prices with Multivariable Linear Regression/006 Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4
39.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/018 Introduction to Natural Language Processing (NLP).mp4
39.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/012 Create a Pandas DataFrame of Email Bodies.mp4
39.2 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/004 Making Predictions Comparing Joint Probabilities.mp4
38.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/022 Visualising the Optimisation on a 3D Surface.mp4
37.3 MB
12 - Serving a Tensorflow Model through a Website/001 What you'll make.mp4
37.2 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/005 Calculate the Token Probabilities and Save the Trained Model.mp4
37.0 MB
03 - Python Programming for Data Science and Machine Learning/006 [Python] - Lists and Arrays.mp4
36.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/009 The Precision Metric.mp4
36.1 MB
12 - Serving a Tensorflow Model through a Website/017 Publish and Share your Website!.mp4
34.9 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/001 The Human Brain and the Inspiration for Artificial Neural Networks.mp4
34.3 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/015 Concatenating Numpy Arrays.mp4
34.1 MB
03 - Python Programming for Data Science and Machine Learning/001 Windows Users - Install Anaconda.mp4
33.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/002 Installing Tensorflow and Keras for Jupyter.mp4
33.5 MB
05 - Predict House Prices with Multivariable Linear Regression/015 Understanding Multivariable Regression.mp4
33.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/001 How to Translate a Business Problem into a Machine Learning Problem.mp4
32.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/010 Extracting the Text in the Email Body.mp4
32.0 MB
05 - Predict House Prices with Multivariable Linear Regression/001 Defining the Problem.mp4
31.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4
30.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/005 The Accuracy Metric.mp4
30.1 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/006 Coding Challenge Prepare the Test Data.mp4
30.0 MB
05 - Predict House Prices with Multivariable Linear Regression/024 How to Analyse and Plot Regression Residuals.mp4
29.4 MB
03 - Python Programming for Data Science and Machine Learning/009 [Python] - Functions - Part 1 Defining and Calling Functions.mp4
28.7 MB
02 - Predict Movie Box Office Revenue with Linear Regression/001 Introduction to Linear Regression & Specifying the Problem.mp4
27.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/022 Creating a Function for Text Processing.mp4
27.6 MB
12 - Serving a Tensorflow Model through a Website/011 Data Pre-Processing for Tensorflow.js.mp4
26.8 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/004 Sum the Tokens across the Spam and Ham Subsets.mp4
25.6 MB
12 - Serving a Tensorflow Model through a Website/008 Adding a Favicon.mp4
25.5 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/18190700-SpamData.zip
23.9 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/18190704-SpamData.zip
23.4 MB
05 - Predict House Prices with Multivariable Linear Regression/018 How to Calculate the Model Fit with R-Squared.mp4
22.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/18190724-SpamData.zip
22.3 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/003 Gathering the CIFAR 10 Dataset.mp4
21.6 MB
11 - Use Tensorflow to Classify Handwritten Digits/003 Data Exploration and Understanding the Structure of the Input Data.mp4
21.6 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/001 Set up the Testing Notebook.mp4
20.9 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/001 Solving a Business Problem with Image Classification.mp4
20.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/003 How to Add the Lesson Resources to the Project.mp4
19.9 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/037 Coding Challenge Solution Preparing the Test Data.mp4
19.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/008 The Recall Metric.mp4
19.3 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/010 The F-score or F1 Metric.mp4
17.3 MB
03 - Python Programming for Data Science and Machine Learning/003 Does LSD Make You Better at Maths.mp4
16.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/032 Coding Challenge Check for Membership in a Collection.mp4
15.6 MB
11 - Use Tensorflow to Classify Handwritten Digits/18194656-MNIST.zip
15.5 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/001 What's Coming Up.mp4
13.5 MB
05 - Predict House Prices with Multivariable Linear Regression/009 Introduction to Correlation Understanding Strength & Direction.mp4
13.5 MB
02 - Predict Movie Box Office Revenue with Linear Regression/004 The Intuition behind the Linear Regression Model.mp4
13.5 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/002 How a Machine Learns.mp4
11.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/005 Basic Probability.mp4
9.9 MB
05 - Predict House Prices with Multivariable Linear Regression/019 Introduction to Model Evaluation.mp4
7.7 MB
11 - Use Tensorflow to Classify Handwritten Digits/001 What's coming up.mp4
5.5 MB
12 - Serving a Tensorflow Model through a Website/21028926-math-garden-stub-complete.zip
4.3 MB
12 - Serving a Tensorflow Model through a Website/21028932-math-garden-stub-12.12-checkpoint.zip
4.3 MB
05 - Predict House Prices with Multivariable Linear Regression/18179918-04-Multivariable-Regression.ipynb.zip
3.7 MB
12 - Serving a Tensorflow Model through a Website/21028876-MNIST-Model-Load-Files.zip
3.0 MB
03 - Python Programming for Data Science and Machine Learning/18204473-12-Rules-to-Learn-to-Code.pdf
2.4 MB
12 - Serving a Tensorflow Model through a Website/21028894-TFJS.zip
1.6 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/18179908-03-Gradient-Descent.ipynb.zip
1.2 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/18179924-06-Bayes-Classifier-Pre-Processing.ipynb.zip
1.0 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/18180490-09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip
585.6 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/18188466-TF-Keras-Classification-Images.zip
513.1 kB
02 - Predict Movie Box Office Revenue with Linear Regression/9246634-cost-revenue-dirty.csv
383.7 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/18180294-07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip
248.9 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/18187728-10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip
123.0 kB
01 - Introduction to the Course/18162714-ML-Data-Science-Syllabus.pdf
106.5 kB
02 - Predict Movie Box Office Revenue with Linear Regression/9249290-cost-revenue-clean.csv
93.0 kB
02 - Predict Movie Box Office Revenue with Linear Regression/18175146-01-Linear-Regression-complete.ipynb.zip
77.1 kB
12 - Serving a Tensorflow Model through a Website/21028914-math-garden-stub.zip
45.1 kB
02 - Predict Movie Box Office Revenue with Linear Regression/18175084-01-Linear-Regression-checkpoint.ipynb.zip
38.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/006 [Python] - Loops and the Gradient Descent Algorithm_en.vtt
38.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1)_en.vtt
38.1 kB
03 - Python Programming for Data Science and Machine Learning/18179882-02-Python-Intro.ipynb.zip
37.3 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/012 Model Evaluation and the Confusion Matrix_en.vtt
36.3 kB
12 - Serving a Tensorflow Model through a Website/009 Styling an HTML Canvas_en.vtt
36.2 kB
12 - Serving a Tensorflow Model through a Website/012 Introduction to OpenCV_en.vtt
35.3 kB
12 - Serving a Tensorflow Model through a Website/006 HTML and CSS Styling_en.vtt
34.7 kB
12 - Serving a Tensorflow Model through a Website/007 Loading a Tensorflow.js Model and Starting your own Server_en.vtt
34.5 kB
12 - Serving a Tensorflow Model through a Website/016 Adding the Game Logic_en.vtt
34.4 kB
12 - Serving a Tensorflow Model through a Website/010 Drawing on an HTML Canvas_en.vtt
34.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/009 Understanding the Learning Rate_en.vtt
33.3 kB
12 - Serving a Tensorflow Model through a Website/014 Calculating the Centre of Mass and Shifting the Image_en.vtt
32.9 kB
03 - Python Programming for Data Science and Machine Learning/008 [Python] - Module Imports_en.vtt
32.2 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/006 Visualising the Decision Boundary_en.vtt
31.0 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/010 Use the Model to Make Predictions_en.vtt
30.9 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/011 A Naive Bayes Implementation using SciKit Learn_en.vtt
30.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2)_en.vtt
29.7 kB
11 - Use Tensorflow to Classify Handwritten Digits/012 Different Model Architectures Experimenting with Dropout_en.vtt
27.7 kB
02 - Predict Movie Box Office Revenue with Linear Regression/003 Explore & Visualise the Data with Python_en.vtt
27.6 kB
11 - Use Tensorflow to Classify Handwritten Digits/006 Creating Tensors and Setting up the Neural Network Architecture_en.vtt
26.8 kB
03 - Python Programming for Data Science and Machine Learning/012 [Python] - Objects - Understanding Attributes and Methods_en.vtt
26.5 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques_en.vtt
25.7 kB
05 - Predict House Prices with Multivariable Linear Regression/014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques_en.vtt
25.6 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/002 Layers, Feature Generation and Learning_en.vtt
25.2 kB
05 - Predict House Prices with Multivariable Linear Regression/031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module_en.vtt
25.1 kB
03 - Python Programming for Data Science and Machine Learning/007 [Python & Pandas] - Dataframes and Series_en.vtt
25.0 kB
12 - Serving a Tensorflow Model through a Website/013 Resizing and Adding Padding to Images_en.vtt
24.8 kB
11 - Use Tensorflow to Classify Handwritten Digits/011 Name Scoping and Image Visualisation in Tensorboard_en.vtt
24.4 kB
03 - Python Programming for Data Science and Machine Learning/014 Working with Python Objects to Analyse Data_en.vtt
24.1 kB
12 - Serving a Tensorflow Model through a Website/003 Loading a SavedModel_en.vtt
23.7 kB
03 - Python Programming for Data Science and Machine Learning/013 How to Make Sense of Python Documentation for Data Visualisation_en.vtt
23.6 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/010 How to Create 3-Dimensional Charts_en.vtt
23.1 kB
05 - Predict House Prices with Multivariable Linear Regression/022 Understanding VIF & Testing for Multicollinearity_en.vtt
22.8 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/007 Interacting with the Operating System and the Python Try-Catch Block_en.vtt
22.0 kB
11 - Use Tensorflow to Classify Handwritten Digits/009 Tensorboard Summaries and the Filewriter_en.vtt
21.8 kB
05 - Predict House Prices with Multivariable Linear Regression/011 Visualising Correlations with a Heatmap_en.vtt
21.7 kB
05 - Predict House Prices with Multivariable Linear Regression/027 Making Predictions (Part 1) MSE & R-Squared_en.vtt
21.0 kB
05 - Predict House Prices with Multivariable Linear Regression/023 Model Simplification & Baysian Information Criterion_en.vtt
20.7 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/014 Reshaping and Slicing N-Dimensional Arrays_en.vtt
20.4 kB
05 - Predict House Prices with Multivariable Linear Regression/026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals_en.vtt
20.2 kB
02 - Predict Movie Box Office Revenue with Linear Regression/005 Analyse and Evaluate the Results_en.vtt
20.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/011 [Python] - Generator Functions & the yield Keyword_en.vtt
19.9 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/035 Sparse Matrix (Part 2) Data Munging with Nested Loops_en.vtt
19.9 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/021 Running Gradient Descent with a MSE Cost Function_en.vtt
19.7 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/002 Create a Full Matrix_en.vtt
19.6 kB
12 - Serving a Tensorflow Model through a Website/002 Saving Tensorflow Models_en.vtt
19.5 kB
12 - Serving a Tensorflow Model through a Website/004 Converting a Model to Tensorflow.js_en.vtt
19.2 kB
05 - Predict House Prices with Multivariable Linear Regression/020 Improving the Model by Transforming the Data_en.vtt
19.2 kB
11 - Use Tensorflow to Classify Handwritten Digits/010 Understanding the Tensorflow Graph Nodes and Edges_en.vtt
19.0 kB
05 - Predict House Prices with Multivariable Linear Regression/030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2)_en.vtt
18.9 kB
11 - Use Tensorflow to Classify Handwritten Digits/008 TensorFlow Sessions and Batching Data_en.vtt
18.7 kB
03 - Python Programming for Data Science and Machine Learning/010 [Python] - Functions - Part 2 Arguments & Parameters_en.vtt
18.6 kB
05 - Predict House Prices with Multivariable Linear Regression/012 Techniques to Style Scatter Plots_en.vtt
18.5 kB
05 - Predict House Prices with Multivariable Linear Regression/007 Working with Index Data, Pandas Series, and Dummy Variables_en.vtt
18.4 kB
05 - Predict House Prices with Multivariable Linear Regression/029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays_en.vtt
18.3 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/005 Pre-processing Scaling Inputs and Creating a Validation Dataset_en.vtt
18.2 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/011 Understanding Partial Derivatives and How to use SymPy_en.vtt
18.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/006 Joint & Conditional Probability_en.vtt
17.7 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/006 Making Predictions using InceptionResNet_en.vtt
17.5 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/003 Costs and Disadvantages of Neural Networks_en.vtt
17.4 kB
11 - Use Tensorflow to Classify Handwritten Digits/013 Prediction and Model Evaluation_en.vtt
17.2 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function_en.vtt
17.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/019 Tokenizing, Removing Stop Words and the Python Set Data Structure_en.vtt
17.0 kB
05 - Predict House Prices with Multivariable Linear Regression/004 Clean and Explore the Data (Part 2) Find Missing Values_en.vtt
16.7 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/003 Count the Tokens to Train the Naive Bayes Model_en.vtt
16.6 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/004 Exploring the CIFAR Data_en.vtt
16.5 kB
05 - Predict House Prices with Multivariable Linear Regression/025 Residual Analysis (Part 1) Predicted vs Actual Values_en.vtt
16.1 kB
12 - Serving a Tensorflow Model through a Website/005 Introducing the Website Project and Tooling_en.vtt
16.1 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/013 [Python] - Loops and Performance Considerations_en.vtt
16.1 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/005 Understanding the Power Rule & Creating Charts with Subplots_en.vtt
16.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries_en.vtt
15.9 kB
05 - Predict House Prices with Multivariable Linear Regression/010 Calculating Correlations and the Problem posed by Multicollinearity_en.vtt
15.9 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/031 Create the Vocabulary for the Spam Classifier_en.vtt
15.8 kB
12 - Serving a Tensorflow Model through a Website/015 Making a Prediction from a Digit drawn on the HTML Canvas_en.vtt
15.7 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2)_en.vtt
15.3 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/004 LaTeX Markdown and Generating Data with Numpy_en.vtt
15.2 kB
03 - Python Programming for Data Science and Machine Learning/015 [Python] - Tips, Code Style and Naming Conventions_en.vtt
15.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/028 Styling the Word Cloud with a Mask_en.vtt
14.8 kB
03 - Python Programming for Data Science and Machine Learning/005 [Python] - Variables and Types_en.vtt
14.8 kB
03 - Python Programming for Data Science and Machine Learning/011 [Python] - Functions - Part 3 Results & Return Values_en.vtt
14.8 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/004 Preprocessing Image Data and How RGB Works_en.vtt
14.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/016 Data Visualisation (Part 1) Pie Charts_en.vtt
14.4 kB
05 - Predict House Prices with Multivariable Linear Regression/003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset_en.vtt
14.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/025 [Python] - Logical Operators to Create Subsets and Indices_en.vtt
13.7 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/18180296-08-Naive-Bayes-with-scikit-learn.ipynb.zip
13.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/007 Bayes Theorem_en.vtt
13.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/034 Sparse Matrix (Part 1) Split the Training and Testing Data_en.vtt
13.5 kB
05 - Predict House Prices with Multivariable Linear Regression/028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals_en.vtt
13.2 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/030 Styling Word Clouds with Custom Fonts_en.vtt
13.2 kB
05 - Predict House Prices with Multivariable Linear Regression/024 How to Analyse and Plot Regression Residuals_en.vtt
13.2 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems_en.vtt
13.1 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/009 Reading Files (Part 2) Stream Objects and Email Structure_en.vtt
13.1 kB
11 - Use Tensorflow to Classify Handwritten Digits/007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics_en.vtt
13.0 kB
05 - Predict House Prices with Multivariable Linear Regression/005 Visualising Data (Part 1) Historams, Distributions & Outliers_en.vtt
12.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/002 Gathering Email Data and Working with Archives & Text Editors_en.vtt
12.6 kB
02 - Predict Movie Box Office Revenue with Linear Regression/002 Gather & Clean the Data_en.vtt
12.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/019 Understanding Nested Loops and Plotting the MSE Function (Part 1)_en.vtt
12.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/027 Creating your First Word Cloud_en.vtt
12.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/038 Checkpoint Understanding the Data_en.vtt
12.2 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/007 Coding Challenge Solution Using other Keras Models_en.vtt
12.1 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/024 Advanced Subsetting on DataFrames the apply() Function_en.vtt
12.1 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/018 Implementing a MSE Cost Function_en.vtt
12.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/017 Transposing and Reshaping Arrays_en.vtt
12.0 kB
11 - Use Tensorflow to Classify Handwritten Digits/004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset_en.vtt
11.8 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/007 False Positive vs False Negatives_en.vtt
11.7 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/012 Implementing Batch Gradient Descent with SymPy_en.vtt
11.5 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/002 Joint Conditional Probability (Part 1) Dot Product_en.vtt
11.3 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/016 Introduction to the Mean Squared Error (MSE)_en.vtt
11.3 kB
12 - Serving a Tensorflow Model through a Website/011 Data Pre-Processing for Tensorflow.js_en.vtt
11.0 kB
05 - Predict House Prices with Multivariable Linear Regression/008 Understanding Descriptive Statistics the Mean vs the Median_en.vtt
10.9 kB
03 - Python Programming for Data Science and Machine Learning/006 [Python] - Lists and Arrays_en.vtt
10.8 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/026 Word Clouds & How to install Additional Python Packages_en.vtt
10.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files_en.vtt
10.7 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/005 Importing Keras Models and the Tensorflow Graph_en.vtt
10.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/008 Reading Files (Part 1) Absolute Paths and Relative Paths_en.vtt
10.5 kB
05 - Predict House Prices with Multivariable Linear Regression/016 How to Shuffle and Split Training & Testing Data_en.vtt
10.2 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/001 The Human Brain and the Inspiration for Artificial Neural Networks_en.vtt
10.2 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/001 Setting up the Notebook and Understanding Delimiters in a Dataset_en.vtt
10.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/021 Removing HTML tags with BeautifulSoup_en.vtt
10.0 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/011 Model Evaluation and the Confusion Matrix_en.vtt
9.8 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/003 Joint Conditional Probablity (Part 2) Priors_en.vtt
9.8 kB
05 - Predict House Prices with Multivariable Linear Regression/021 How to Interpret Coefficients using p-Values and Statistical Significance_en.vtt
9.7 kB
02 - Predict Movie Box Office Revenue with Linear Regression/004 The Intuition behind the Linear Regression Model_en.vtt
9.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/020 Word Stemming & Removing Punctuation_en.vtt
9.6 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/022 Visualising the Optimisation on a 3D Surface_en.vtt
9.6 kB
03 - Python Programming for Data Science and Machine Learning/009 [Python] - Functions - Part 1 Defining and Calling Functions_en.vtt
9.4 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/004 Making Predictions Comparing Joint Probabilities_en.vtt
9.0 kB
12 - Serving a Tensorflow Model through a Website/001 What you'll make_en.vtt
8.9 kB
05 - Predict House Prices with Multivariable Linear Regression/017 Running a Multivariable Regression_en.vtt
8.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/001 How to Translate a Business Problem into a Machine Learning Problem_en.vtt
8.7 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/009 The Precision Metric_en.vtt
8.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/017 Data Visualisation (Part 2) Donut Charts_en.vtt
8.5 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/005 Calculate the Token Probabilities and Save the Trained Model_en.vtt
8.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/003 Introduction to Cost Functions_en.vtt
8.4 kB
12 - Serving a Tensorflow Model through a Website/017 Publish and Share your Website!_en.vtt
8.4 kB
11 - Use Tensorflow to Classify Handwritten Digits/002 Getting the Data and Loading it into Numpy Arrays_en.vtt
8.4 kB
11 - Use Tensorflow to Classify Handwritten Digits/005 What is a Tensor_en.vtt
8.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/014 Cleaning Data (Part 2) Working with a DataFrame Index_en.vtt
8.1 kB
05 - Predict House Prices with Multivariable Linear Regression/006 Visualising Data (Part 2) Seaborn and Probability Density Functions_en.vtt
8.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/015 Concatenating Numpy Arrays_en.vtt
8.0 kB
03 - Python Programming for Data Science and Machine Learning/001 Windows Users - Install Anaconda_en.vtt
7.9 kB
02 - Predict Movie Box Office Revenue with Linear Regression/001 Introduction to Linear Regression & Specifying the Problem_en.vtt
7.8 kB
05 - Predict House Prices with Multivariable Linear Regression/002 Gathering the Boston House Price Data_en.vtt
7.7 kB
05 - Predict House Prices with Multivariable Linear Regression/009 Introduction to Correlation Understanding Strength & Direction_en.vtt
7.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/018 Introduction to Natural Language Processing (NLP)_en.vtt
7.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/022 Creating a Function for Text Processing_en.vtt
7.4 kB
03 - Python Programming for Data Science and Machine Learning/002 Mac Users - Install Anaconda_en.vtt
7.2 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/004 Sum the Tokens across the Spam and Ham Subsets_en.vtt
7.1 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/005 The Accuracy Metric_en.vtt
6.8 kB
11 - Use Tensorflow to Classify Handwritten Digits/18187740-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
6.8 kB
05 - Predict House Prices with Multivariable Linear Regression/015 Understanding Multivariable Regression_en.vtt
6.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/033 Coding Challenge Find the Longest Email_en.vtt
6.7 kB
12 - Serving a Tensorflow Model through a Website/008 Adding a Favicon_en.vtt
6.7 kB
03 - Python Programming for Data Science and Machine Learning/003 Does LSD Make You Better at Maths_en.vtt
6.6 kB
12 - Serving a Tensorflow Model through a Website/21028850-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
6.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/002 How a Machine Learns_en.vtt
6.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/012 Create a Pandas DataFrame of Email Bodies_en.vtt
6.4 kB
12 - Serving a Tensorflow Model through a Website/21028968-12-TF-SavedModel-Export-Completed.ipynb.zip
6.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/015 Saving a JSON File with Pandas_en.vtt
6.2 kB
01 - Introduction to the Course/001 What is Machine Learning_en.vtt
6.2 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/002 Installing Tensorflow and Keras for Jupyter_en.vtt
6.0 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/18180042-07-Bayes-Classifier-Training.ipynb.zip
6.0 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/008 The Recall Metric_en.vtt
5.9 kB
11 - Use Tensorflow to Classify Handwritten Digits/003 Data Exploration and Understanding the Structure of the Input Data_en.vtt
5.9 kB
05 - Predict House Prices with Multivariable Linear Regression/001 Defining the Problem_en.vtt
5.7 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/003 Gathering the CIFAR 10 Dataset_en.vtt
5.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier_en.vtt
5.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/032 Coding Challenge Check for Membership in a Collection_en.vtt
5.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/029 Solving the Hamlet Challenge_en.vtt
5.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/010 Extracting the Text in the Email Body_en.vtt
5.3 kB
01 - Introduction to the Course/002 What is Data Science_en.vtt
5.2 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/005 Basic Probability_en.vtt
4.7 kB
12 - Serving a Tensorflow Model through a Website/21028978-x-test0-ylabel7.txt
4.7 kB
12 - Serving a Tensorflow Model through a Website/21028982-x-test1-ylabel2.txt
4.7 kB
12 - Serving a Tensorflow Model through a Website/21028988-x-test2-ylabel1.txt
4.7 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/006 Coding Challenge Prepare the Test Data_en.vtt
4.7 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/001 Solving a Business Problem with Image Classification_en.vtt
4.6 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/010 The F-score or F1 Metric_en.vtt
4.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/003 How to Add the Lesson Resources to the Project_en.vtt
4.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/037 Coding Challenge Solution Preparing the Test Data_en.vtt
4.0 kB
13 - Next Steps/001 Where next.html
4.0 kB
05 - Predict House Prices with Multivariable Linear Regression/018 How to Calculate the Model Fit with R-Squared_en.vtt
3.9 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/001 What's Coming Up_en.vtt
3.4 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/001 Set up the Testing Notebook_en.vtt
3.4 kB
05 - Predict House Prices with Multivariable Linear Regression/019 Introduction to Model Evaluation_en.vtt
3.4 kB
05 - Predict House Prices with Multivariable Linear Regression/18905386-boston-valuation.py
3.1 kB
05 - Predict House Prices with Multivariable Linear Regression/18179928-04-Valuation-Tool.ipynb.zip
3.0 kB
11 - Use Tensorflow to Classify Handwritten Digits/001 What's coming up_en.vtt
2.4 kB
01 - Introduction to the Course/004 Top Tips for Succeeding on this Course.html
2.1 kB
03 - Python Programming for Data Science and Machine Learning/004 Download the 12 Rules to Learn to Code.html
1.1 kB
01 - Introduction to the Course/005 Course Resources List.html
1.1 kB
13 - Next Steps/003 Stay in Touch!.html
1.1 kB
01 - Introduction to the Course/003 Download the Syllabus.html
994 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/007 Join the Student Community.html
715 Bytes
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/008 Any Feedback on this Section.html
527 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/009 Any Feedback on this Section.html
526 Bytes
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/014 Any Feedback on this Section.html
521 Bytes
04 - Introduction to Optimisation and the Gradient Descent Algorithm/024 Any Feedback on this Section.html
520 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/040 Any Feedback on this Section.html
519 Bytes
03 - Python Programming for Data Science and Machine Learning/017 Any Feedback on this Section.html
513 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/008 Any Feedback on this Section.html
512 Bytes
05 - Predict House Prices with Multivariable Linear Regression/033 Any Feedback on this Section.html
512 Bytes
08 - Test and Evaluate a Naive Bayes Classifier Part 3/013 Any Feedback on this Section.html
509 Bytes
12 - Serving a Tensorflow Model through a Website/018 Any Feedback on this Section.html
500 Bytes
11 - Use Tensorflow to Classify Handwritten Digits/015 Any Feedback on this Section.html
499 Bytes
05 - Predict House Prices with Multivariable Linear Regression/013 A Note for the Next Lesson.html
476 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/023 A Note for the Next Lesson.html
476 Bytes
13 - Next Steps/002 What Modules Do You Want to See.html
431 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/008 Download the Complete Notebook Here.html
264 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/006 Download the Complete Notebook Here.html
242 Bytes
03 - Python Programming for Data Science and Machine Learning/016 Download the Complete Notebook Here.html
242 Bytes
04 - Introduction to Optimisation and the Gradient Descent Algorithm/023 Download the Complete Notebook Here.html
242 Bytes
05 - Predict House Prices with Multivariable Linear Regression/032 Download the Complete Notebook Here.html
242 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/039 Download the Complete Notebook Here.html
242 Bytes
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/007 Download the Complete Notebook Here.html
242 Bytes
08 - Test and Evaluate a Naive Bayes Classifier Part 3/012 Download the Complete Notebook Here.html
242 Bytes
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/013 Download the Complete Notebook Here.html
242 Bytes
11 - Use Tensorflow to Classify Handwritten Digits/014 Download the Complete Notebook Here.html
242 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/external-assets-links.txt
212 Bytes
03 - Python Programming for Data Science and Machine Learning/18877814-lsd-math-score-data.csv
155 Bytes
01 - Introduction to the Course/external-assets-links.txt
120 Bytes
03 - Python Programming for Data Science and Machine Learning/GetFreeCourses.Co.url
116 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/GetFreeCourses.Co.url
116 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/GetFreeCourses.Co.url
116 Bytes
12 - Serving a Tensorflow Model through a Website/GetFreeCourses.Co.url
116 Bytes
Download Paid Udemy Courses For Free.url
116 Bytes
GetFreeCourses.Co.url
116 Bytes
03 - Python Programming for Data Science and Machine Learning/external-assets-links.txt
83 Bytes
04 - Introduction to Optimisation and the Gradient Descent Algorithm/external-assets-links.txt
83 Bytes
05 - Predict House Prices with Multivariable Linear Regression/external-assets-links.txt
83 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/external-assets-links.txt
83 Bytes
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/external-assets-links.txt
83 Bytes
08 - Test and Evaluate a Naive Bayes Classifier Part 3/external-assets-links.txt
83 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/external-assets-links.txt
83 Bytes
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/external-assets-links.txt
83 Bytes
11 - Use Tensorflow to Classify Handwritten Digits/external-assets-links.txt
83 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>