搜索
[Tutorialsplanet.NET] Udemy - Hyperparameter Optimization for Machine Learning
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Hyperparameter Optimization for Machine Learning
磁力链接/BT种子简介
种子哈希:
5ef832da0adc23cba563f05484f1aac881bdfb61
文件大小:
3.61G
已经下载:
101
次
下载速度:
极快
收录时间:
2024-02-01
最近下载:
2024-12-05
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:5EF832DA0ADC23CBA563F05484F1AAC881BDFB61
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
淫空姐
性感吊带黑丝
婚纱店操萝莉音
练习惩罚中文字幕
健身私教
篠田ゆう
无情中出
狗头萝莉+事件
厕b
양정원
妹妹apk
风尘女子
水奸
素人渔夫林书辞
scxp-114
00后孕妇
精华剪辑
⭐私房首发⭐推特h杯巨乳福利姬⭐小r⭐520裸舞群视频合集
好用
公鸡俱乐部 新人
最推理
julyjailbait
spring+break
woman boy
神秘洞
tmpa-por-qu-se-inunda-valencia-explicaci-n-geogr-f
honb-219
myfirstsexteacher 11
matebook
电子书++公务员
文件列表
6. Bayesian Optimization/6. Sequential Model-Based Optimization.mp4
119.6 MB
8. Scikit-Optimize/13. Optimizing Hyperparameters of a CNN.mp4
116.8 MB
6. Bayesian Optimization/16. Scikit-Optimize - Neuronal Networks.mp4
116.8 MB
7. Other SMBO Algorithms/2. SMAC Demo.mp4
104.4 MB
6. Bayesian Optimization/12. Scikit-Optimize - 1-Dimension.mp4
101.9 MB
9. Hyperopt/3. Search space configuration and distributions.mp4
98.6 MB
10. Optuna/6. Optimizing hyperparameters of a CNN.mp4
89.4 MB
6. Bayesian Optimization/8. Multivariate Gaussian Distribution.mp4
88.0 MB
6. Bayesian Optimization/11. Acquisition Functions.mp4
86.3 MB
5. Basic Search Algorithms/9. Random Search with Hyperopt.mp4
85.1 MB
4. Cross-Validation/2. Cross-Validation schemes.mp4
83.7 MB
6. Bayesian Optimization/9. Gaussian Process.mp4
79.9 MB
10. Optuna/8. Evaluating the search with Optuna's built in functions.mp4
74.5 MB
6. Bayesian Optimization/5. Bayes Rule.mp4
71.1 MB
9. Hyperopt/7. Optimizing multiple ML models simultaneously.mp4
69.8 MB
4. Cross-Validation/3. Estimating the model generalization error with CV - Demo.mp4
69.0 MB
9. Hyperopt/5. Search algorithms.mp4
68.0 MB
3. Performance metrics/5. Creating your own metrics.mp4
67.6 MB
10. Optuna/4. Search algorithms.mp4
66.6 MB
2. Hyperparameter Tuning - Overview/1. Parameters and Hyperparameters.mp4
65.3 MB
1. Introduction/1. Introduction.mp4
64.7 MB
5. Basic Search Algorithms/4. Grid Search - Demo.mp4
62.3 MB
10. Optuna/5. Optimizing multiple ML models with simultaneously.mp4
61.1 MB
4. Cross-Validation/1. Cross-Validation.mp4
60.5 MB
4. Cross-Validation/4. Cross-Validation for Hyperparameter Tuning - Demo.mp4
59.6 MB
9. Hyperopt/6. Evaluating the search.mp4
58.9 MB
4. Cross-Validation/8. Nested Cross-Validation - Demo.mp4
58.0 MB
2. Hyperparameter Tuning - Overview/2. Hyperparameter Optimization.mp4
53.3 MB
7. Other SMBO Algorithms/7. TPE with Hyperopt.mp4
52.4 MB
4. Cross-Validation/7. Nested Cross-Validation.mp4
52.3 MB
5. Basic Search Algorithms/8. Random Search with Scikit-Optimize.mp4
50.7 MB
6. Bayesian Optimization/4. Joint and Conditional Probabilities.mp4
48.4 MB
3. Performance metrics/4. Scikit-learn metrics.mp4
48.1 MB
5. Basic Search Algorithms/7. Random Search with Scikit-learn.mp4
46.3 MB
6. Bayesian Optimization/3. Bayesian Inference - Introduction.mp4
45.5 MB
4. Cross-Validation/6. Group Cross-Validation - Demo.mp4
45.4 MB
5. Basic Search Algorithms/2. Manual Search.mp4
45.2 MB
3. Performance metrics/2. Classification Metrics (Optional).mp4
45.0 MB
7. Other SMBO Algorithms/4. TPE Procedure.mp4
44.4 MB
10. Optuna/2. Optuna main functions.mp4
43.6 MB
5. Basic Search Algorithms/6. Random Search.mp4
43.0 MB
4. Cross-Validation/5. Special Cross-Validation schemes.mp4
42.9 MB
8. Scikit-Optimize/6. Random search.mp4
40.0 MB
10. Optuna/7. Optimizing a CNN - extended.mp4
39.0 MB
8. Scikit-Optimize/14. Analyzing the CNN search.mp4
38.9 MB
6. Bayesian Optimization/17. Scikit-Optimize - CNN - Search Analysis.mp4
38.9 MB
9. Hyperopt/1. Hyperopt.mp4
38.1 MB
6. Bayesian Optimization/13. Scikit-Optimize - Manual Search.mp4
37.7 MB
8. Scikit-Optimize/7. Bayesian search with Gaussian processes.mp4
36.9 MB
1. Introduction/2. Course curriculum.mp4
36.6 MB
6. Bayesian Optimization/7. Gaussian Distribution.mp4
36.3 MB
7. Other SMBO Algorithms/1. SMAC.mp4
34.2 MB
6. Bayesian Optimization/14. Scikit-Optimize - Automatic Search.mp4
32.4 MB
8. Scikit-Optimize/11. Bayesian search with Scikit-learn wrapper.mp4
32.4 MB
6. Bayesian Optimization/1. Sequential Search.mp4
32.1 MB
6. Bayesian Optimization/10. Kernels.mp4
31.8 MB
9. Hyperopt/4. Sampling from nested spaces.mp4
30.1 MB
8. Scikit-Optimize/10. Parallelizing a Bayesian search.mp4
27.4 MB
7. Other SMBO Algorithms/6. TPE - why tree-structured.mp4
27.1 MB
5. Basic Search Algorithms/1. Basic Search Algorithms - Introduction.mp4
26.7 MB
8. Scikit-Optimize/12. Changing the kernel of a Gaussian Process.mp4
26.3 MB
6. Bayesian Optimization/15. Scikit-Optimize - Alternative Kernel.mp4
26.2 MB
8. Scikit-Optimize/1. Scikit-Optimize.mp4
26.0 MB
8. Scikit-Optimize/3. Hyperparameter Distributions.mp4
25.3 MB
7. Other SMBO Algorithms/5. TPE hyperparameters.mp4
24.4 MB
8. Scikit-Optimize/9. Bayesian search with GBMs.mp4
24.1 MB
8. Scikit-Optimize/8. Bayesian search with Random Forests.mp4
24.1 MB
6. Bayesian Optimization/2. Bayesian Optimization.mp4
23.5 MB
10. Optuna/1. Optuna.mp4
22.3 MB
7. Other SMBO Algorithms/3. Tree-structured Parzen Estimators - TPE.mp4
20.2 MB
5. Basic Search Algorithms/5. Grid Search with different hyperparameter spaces.mp4
19.3 MB
3. Performance metrics/6. Using Scikit-learn metrics.mp4
18.7 MB
8. Scikit-Optimize/4. Defining the hyperparameter space.mp4
18.0 MB
3. Performance metrics/3. Regression Metrics (Optional).mp4
17.4 MB
5. Basic Search Algorithms/3. Grid Search.mp4
17.1 MB
1. Introduction/3. Course aim and knowledge requirements.mp4
16.3 MB
8. Scikit-Optimize/2. Section content.mp4
13.1 MB
8. Scikit-Optimize/5. Defining the objective function.mp4
11.1 MB
1. Introduction/4. Course material.mp4
10.6 MB
9. Hyperopt/2. Section content.mp4
7.2 MB
3. Performance metrics/1. Performance Metrics - Introduction.mp4
6.1 MB
10. Optuna/3. Section content.mp4
4.2 MB
6. Bayesian Optimization/6. Sequential Model-Based Optimization-en_US.srt
19.0 kB
6. Bayesian Optimization/8. Multivariate Gaussian Distribution-en_US.srt
18.4 kB
6. Bayesian Optimization/12. Scikit-Optimize - 1-Dimension-en_US.srt
17.9 kB
6. Bayesian Optimization/16. Scikit-Optimize - Neuronal Networks-en_US.srt
17.5 kB
8. Scikit-Optimize/13. Optimizing Hyperparameters of a CNN-en_US.srt
17.5 kB
9. Hyperopt/3. Search space configuration and distributions-en_US.srt
16.3 kB
4. Cross-Validation/2. Cross-Validation schemes-en_US.srt
16.1 kB
6. Bayesian Optimization/9. Gaussian Process-en_US.srt
15.3 kB
6. Bayesian Optimization/11. Acquisition Functions-en_US.srt
15.2 kB
6. Bayesian Optimization/5. Bayes Rule-en_US.srt
13.4 kB
7. Other SMBO Algorithms/2. SMAC Demo-en_US.srt
13.2 kB
2. Hyperparameter Tuning - Overview/1. Parameters and Hyperparameters-en_US.srt
13.1 kB
5. Basic Search Algorithms/9. Random Search with Hyperopt-en_US.srt
12.5 kB
10. Optuna/6. Optimizing hyperparameters of a CNN-en_US.srt
11.2 kB
10. Optuna/8. Evaluating the search with Optuna's built in functions-en_US.srt
11.1 kB
4. Cross-Validation/1. Cross-Validation-en_US.srt
10.9 kB
9. Hyperopt/7. Optimizing multiple ML models simultaneously-en_US.srt
10.8 kB
3. Performance metrics/5. Creating your own metrics-en_US.srt
10.6 kB
2. Hyperparameter Tuning - Overview/2. Hyperparameter Optimization-en_US.srt
10.3 kB
4. Cross-Validation/3. Estimating the model generalization error with CV - Demo-en_US.srt
10.2 kB
9. Hyperopt/6. Evaluating the search-en_US.srt
9.9 kB
5. Basic Search Algorithms/4. Grid Search - Demo-en_US.srt
9.7 kB
9. Hyperopt/1. Hyperopt-en_US.srt
9.6 kB
4. Cross-Validation/4. Cross-Validation for Hyperparameter Tuning - Demo-en_US.srt
9.3 kB
5. Basic Search Algorithms/8. Random Search with Scikit-Optimize-en_US.srt
9.3 kB
9. Hyperopt/5. Search algorithms-en_US.srt
9.3 kB
3. Performance metrics/2. Classification Metrics (Optional)-en_US.srt
9.2 kB
5. Basic Search Algorithms/6. Random Search-en_US.srt
9.1 kB
7. Other SMBO Algorithms/4. TPE Procedure-en_US.srt
9.0 kB
6. Bayesian Optimization/3. Bayesian Inference - Introduction-en_US.srt
8.8 kB
5. Basic Search Algorithms/2. Manual Search-en_US.srt
8.7 kB
6. Bayesian Optimization/4. Joint and Conditional Probabilities-en_US.srt
8.7 kB
4. Cross-Validation/7. Nested Cross-Validation-en_US.srt
8.6 kB
10. Optuna/4. Search algorithms-en_US.srt
8.5 kB
10. Optuna/5. Optimizing multiple ML models with simultaneously-en_US.srt
8.5 kB
10. Optuna/2. Optuna main functions-en_US.srt
8.3 kB
6. Bayesian Optimization/7. Gaussian Distribution-en_US.srt
8.3 kB
4. Cross-Validation/5. Special Cross-Validation schemes-en_US.srt
8.3 kB
4. Cross-Validation/8. Nested Cross-Validation - Demo-en_US.srt
8.2 kB
3. Performance metrics/4. Scikit-learn metrics-en_US.srt
7.6 kB
6. Bayesian Optimization/17. Scikit-Optimize - CNN - Search Analysis-en_US.srt
7.5 kB
8. Scikit-Optimize/14. Analyzing the CNN search-en_US.srt
7.5 kB
1. Introduction/2. Course curriculum-en_US.srt
7.5 kB
6. Bayesian Optimization/10. Kernels-en_US.srt
7.5 kB
7. Other SMBO Algorithms/7. TPE with Hyperopt-en_US.srt
7.4 kB
7. Other SMBO Algorithms/1. SMAC-en_US.srt
7.0 kB
6. Bayesian Optimization/13. Scikit-Optimize - Manual Search-en_US.srt
6.9 kB
6. Bayesian Optimization/1. Sequential Search-en_US.srt
6.7 kB
8. Scikit-Optimize/1. Scikit-Optimize-en_US.srt
6.7 kB
5. Basic Search Algorithms/7. Random Search with Scikit-learn-en_US.srt
6.5 kB
8. Scikit-Optimize/7. Bayesian search with Gaussian processes-en_US.srt
6.4 kB
5. Basic Search Algorithms/1. Basic Search Algorithms - Introduction-en_US.srt
6.3 kB
8. Scikit-Optimize/6. Random search-en_US.srt
6.1 kB
4. Cross-Validation/6. Group Cross-Validation - Demo-en_US.srt
6.0 kB
10. Optuna/7. Optimizing a CNN - extended-en_US.srt
5.5 kB
6. Bayesian Optimization/2. Bayesian Optimization-en_US.srt
5.4 kB
10. Optuna/1. Optuna-en_US.srt
5.3 kB
6. Bayesian Optimization/14. Scikit-Optimize - Automatic Search-en_US.srt
5.2 kB
8. Scikit-Optimize/11. Bayesian search with Scikit-learn wrapper-en_US.srt
5.2 kB
7. Other SMBO Algorithms/5. TPE hyperparameters-en_US.srt
5.0 kB
8. Scikit-Optimize/3. Hyperparameter Distributions-en_US.srt
4.9 kB
7. Other SMBO Algorithms/6. TPE - why tree-structured-en_US.srt
4.6 kB
9. Hyperopt/4. Sampling from nested spaces-en_US.srt
4.5 kB
6. Bayesian Optimization/15. Scikit-Optimize - Alternative Kernel-en_US.srt
4.3 kB
8. Scikit-Optimize/12. Changing the kernel of a Gaussian Process-en_US.srt
4.3 kB
5. Basic Search Algorithms/3. Grid Search-en_US.srt
4.3 kB
1. Introduction/1. Introduction-en_US.srt
4.1 kB
7. Other SMBO Algorithms/3. Tree-structured Parzen Estimators - TPE-en_US.srt
4.1 kB
3. Performance metrics/3. Regression Metrics (Optional)-en_US.srt
3.9 kB
8. Scikit-Optimize/8. Bayesian search with Random Forests-en_US.srt
3.6 kB
8. Scikit-Optimize/9. Bayesian search with GBMs-en_US.srt
3.5 kB
8. Scikit-Optimize/10. Parallelizing a Bayesian search-en_US.srt
3.2 kB
1. Introduction/FAQ.html
3.0 kB
8. Scikit-Optimize/4. Defining the hyperparameter space-en_US.srt
2.9 kB
1. Introduction/3. Course aim and knowledge requirements-en_US.srt
2.8 kB
5. Basic Search Algorithms/5. Grid Search with different hyperparameter spaces-en_US.srt
2.8 kB
8. Scikit-Optimize/2. Section content-en_US.srt
2.7 kB
8. Scikit-Optimize/5. Defining the objective function-en_US.srt
2.4 kB
3. Performance metrics/6. Using Scikit-learn metrics-en_US.srt
2.3 kB
9. Hyperopt/2. Section content-en_US.srt
2.2 kB
1. Introduction/4. Course material-en_US.srt
2.2 kB
3. Performance metrics/1. Performance Metrics - Introduction-en_US.srt
1.4 kB
6. Bayesian Optimization/Additional Reading Resources.html
1.4 kB
10. Optuna/3. Section content-en_US.srt
1.1 kB
1. Introduction/Jupyter notebooks.html
931 Bytes
1. Introduction/Set up your computer - required packages.html
736 Bytes
11. Moving Forward/What's next.html
707 Bytes
1. Introduction/Datasets.html
598 Bytes
9. Hyperopt/Optimizing Hyperparameters of a CNN.html
448 Bytes
9. Hyperopt/References.html
424 Bytes
8. Scikit-Optimize/Optimizing xgboost.html
371 Bytes
1. Introduction/Presentations.html
286 Bytes
4. Cross-Validation/Bias vs Variance (Optional).html
196 Bytes
10. Optuna/References.html
181 Bytes
0. Websites you may like/[Tutorialsplanet.NET].url
128 Bytes
2. Hyperparameter Tuning - Overview/[Tutorialsplanet.NET].url
128 Bytes
5. Basic Search Algorithms/[Tutorialsplanet.NET].url
128 Bytes
9. Hyperopt/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>