搜索
[FreeCourseSite.com] Udemy - Artificial Neural Networks (ANN) with Keras in Python and R
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Artificial Neural Networks (ANN) with Keras in Python and R
磁力链接/BT种子简介
种子哈希:
64f133147741e9443960077c3a2c7b7cf603f1ab
文件大小:
4.03G
已经下载:
936
次
下载速度:
极快
收录时间:
2022-01-09
最近下载:
2024-11-14
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:64F133147741E9443960077C3A2C7B7CF603F1AB
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
最弱的
coreldraw+technical+suite
coreldraw 2024
小姨子的诱惑
user
特软
余裕三連發
极品美乳人妻
神豪
国产女王 合集
短的
逆转
美穴精
妈妈在客厅
悠悠素人
奈落の孕姫
naughtyamericavr
写真集 zip
金主调教学生
艳照门
草b
sneak
明星 照片
abw-187-u
artofzoo
swimsuit women
jackal s01e5
+sedona+reign
shemaleyum
在操逼
文件列表
15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4
226.6 MB
12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.mp4
163.4 MB
14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4
159.0 MB
13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.mp4
137.5 MB
11. R - Building and training the Model/1. Building,Compiling and Training.mp4
137.1 MB
5. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4
128.1 MB
9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.mp4
117.2 MB
18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4
105.4 MB
11. R - Building and training the Model/2. Evaluating and Predicting.mp4
104.1 MB
18. Add on Data Preprocessing/8. EDD in R.mp4
101.7 MB
3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.mp4
101.5 MB
12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.mp4
96.6 MB
4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp4
90.8 MB
3. Setting up R Studio and R Crash Course/3. Packages in R.mp4
87.0 MB
10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp4
85.6 MB
13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.mp4
83.4 MB
10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp4
83.0 MB
19. Test Train Split/4. Test train split in R.mp4
79.3 MB
18. Add on Data Preprocessing/10. Outlier Treatment in Python.mp4
73.7 MB
10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp4
73.3 MB
18. Add on Data Preprocessing/3. The Data and the Data Dictionary.mp4
72.7 MB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.mp4
68.4 MB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.mp4
67.6 MB
6. Important concepts Common Interview questions/1. Some Important Concepts.mp4
65.2 MB
18. Add on Data Preprocessing/7. EDD in Python.mp4
64.8 MB
17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4
63.6 MB
16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4
63.6 MB
5. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4
63.3 MB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.mp4
63.2 MB
3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.mp4
63.0 MB
9. Dataset for classification problem/1. Python - Dataset for classification problem.mp4
58.9 MB
18. Add on Data Preprocessing/18. Variable transformation in R.mp4
58.1 MB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.mp4
49.2 MB
7. Standard Model Parameters/1. Hyperparameters.mp4
47.6 MB
19. Test Train Split/3. Test train split in Python.mp4
47.0 MB
4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4
46.9 MB
9. Dataset for classification problem/2. Python - Normalization and Test-Train split.mp4
46.3 MB
18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.mp4
46.3 MB
18. Add on Data Preprocessing/22. Dummy variable creation in R.mp4
46.1 MB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.mp4
46.0 MB
3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.mp4
44.0 MB
19. Test Train Split/1. Test-train split.mp4
43.9 MB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.mp4
42.9 MB
3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.mp4
42.7 MB
5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4
42.4 MB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.mp4
42.3 MB
3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.mp4
40.7 MB
18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4
38.6 MB
3. Setting up R Studio and R Crash Course/1. Installing R and R studio.mp4
37.4 MB
4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4
36.3 MB
18. Add on Data Preprocessing/11. Outlier Treatment in R.mp4
32.2 MB
1. Introduction/1. Introduction.mp4
30.5 MB
18. Add on Data Preprocessing/4. Importing Data in Python.mp4
29.2 MB
18. Add on Data Preprocessing/21. Dummy variable creation in Python.mp4
27.8 MB
18. Add on Data Preprocessing/14. Missing Value imputation in R.mp4
27.3 MB
3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.mp4
26.7 MB
19. Test Train Split/2. Bias Variance trade-off.mp4
26.3 MB
18. Add on Data Preprocessing/12. Missing Value imputation.mp4
26.2 MB
18. Add on Data Preprocessing/9. Outlier Treatment.mp4
25.7 MB
18. Add on Data Preprocessing/6. Univariate Analysis and EDD.mp4
25.4 MB
18. Add on Data Preprocessing/13. Missing Value Imputation in Python.mp4
24.5 MB
8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.mp4
23.9 MB
18. Add on Data Preprocessing/1. Gathering Business Knowledge.mp4
23.4 MB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.mp4
21.7 MB
18. Add on Data Preprocessing/2. Data Exploration.mp4
21.5 MB
18. Add on Data Preprocessing/19. Non Usable Variables.mp4
21.2 MB
8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.mp4
21.0 MB
18. Add on Data Preprocessing/15. Seasonality in Data.mp4
17.9 MB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4
17.1 MB
8. Tensorflow and Keras/1. Keras and Tensorflow.mp4
15.6 MB
18. Add on Data Preprocessing/5. Importing the dataset into R.mp4
13.7 MB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.mp4
13.4 MB
20. Bonus Section/1. The final milestone!.mp4
12.4 MB
10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp4
11.3 MB
2. Setting up Python and Jupyter Notebook/9.2 Product.txt
142.8 kB
2. Setting up Python and Jupyter Notebook/9.1 Customer.csv
65.6 kB
18. Add on Data Preprocessing/3.1 House_Price.csv
54.8 kB
5. Neural Networks - Stacking cells to create network/3. Back Propagation.srt
23.3 kB
12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.srt
22.2 kB
15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt
20.9 kB
14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt
19.2 kB
18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.srt
18.7 kB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.srt
17.4 kB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.srt
16.8 kB
11. R - Building and training the Model/1. Building,Compiling and Training.srt
15.8 kB
4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.srt
14.9 kB
3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.srt
13.7 kB
6. Important concepts Common Interview questions/1. Some Important Concepts.srt
13.4 kB
13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.srt
13.4 kB
18. Add on Data Preprocessing/10. Outlier Treatment in Python.srt
13.3 kB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.srt
12.6 kB
9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.srt
12.4 kB
10. Python - Building and training the Model/2. Building the Neural Network using Keras.srt
12.2 kB
5. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt
12.2 kB
18. Add on Data Preprocessing/8. EDD in R.srt
11.8 kB
12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.srt
11.8 kB
3. Setting up R Studio and R Crash Course/3. Packages in R.srt
11.7 kB
3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.srt
11.1 kB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.srt
10.7 kB
18. Add on Data Preprocessing/7. EDD in Python.srt
10.6 kB
19. Test Train Split/1. Test-train split.srt
10.3 kB
4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.srt
9.9 kB
10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.srt
9.8 kB
5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt
9.7 kB
16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.srt
9.7 kB
17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.srt
9.7 kB
11. R - Building and training the Model/2. Evaluating and Predicting.srt
9.7 kB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.srt
9.4 kB
18. Add on Data Preprocessing/18. Variable transformation in R.srt
9.3 kB
10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.srt
9.2 kB
7. Standard Model Parameters/1. Hyperparameters.srt
9.2 kB
19. Test Train Split/4. Test train split in R.srt
8.6 kB
13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.srt
8.5 kB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.srt
8.3 kB
19. Test Train Split/3. Test train split in Python.srt
8.2 kB
4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.srt
8.0 kB
18. Add on Data Preprocessing/3. The Data and the Data Dictionary.srt
8.0 kB
18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.srt
7.7 kB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.srt
7.7 kB
9. Dataset for classification problem/1. Python - Dataset for classification problem.srt
7.3 kB
3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.srt
6.5 kB
19. Test Train Split/2. Bias Variance trade-off.srt
6.5 kB
3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.srt
6.0 kB
9. Dataset for classification problem/2. Python - Normalization and Test-Train split.srt
5.9 kB
3. Setting up R Studio and R Crash Course/1. Installing R and R studio.srt
5.8 kB
18. Add on Data Preprocessing/4. Importing Data in Python.srt
5.7 kB
18. Add on Data Preprocessing/21. Dummy variable creation in Python.srt
5.6 kB
18. Add on Data Preprocessing/19. Non Usable Variables.srt
5.5 kB
18. Add on Data Preprocessing/22. Dummy variable creation in R.srt
5.3 kB
18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt
5.0 kB
1. Introduction/1. Introduction.srt
4.7 kB
18. Add on Data Preprocessing/9. Outlier Treatment.srt
4.6 kB
18. Add on Data Preprocessing/11. Outlier Treatment in R.srt
4.4 kB
18. Add on Data Preprocessing/12. Missing Value imputation.srt
4.2 kB
18. Add on Data Preprocessing/13. Missing Value Imputation in Python.srt
4.2 kB
3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.srt
4.1 kB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.srt
4.1 kB
18. Add on Data Preprocessing/1. Gathering Business Knowledge.srt
4.0 kB
8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.srt
3.9 kB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.srt
3.9 kB
18. Add on Data Preprocessing/15. Seasonality in Data.srt
3.9 kB
18. Add on Data Preprocessing/2. Data Exploration.srt
3.7 kB
8. Tensorflow and Keras/1. Keras and Tensorflow.srt
3.6 kB
18. Add on Data Preprocessing/14. Missing Value imputation in R.srt
3.5 kB
18. Add on Data Preprocessing/6. Univariate Analysis and EDD.srt
3.5 kB
8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.srt
3.0 kB
3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.srt
3.0 kB
18. Add on Data Preprocessing/5. Importing the dataset into R.srt
2.7 kB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt
2.6 kB
10. Python - Building and training the Model/1. Different ways to create ANN using Keras.srt
1.9 kB
20. Bonus Section/1. The final milestone!.srt
1.8 kB
20. Bonus Section/2. Congratulations & About your certificate.html
1.6 kB
9. Dataset for classification problem/4. More about test-train split.html
559 Bytes
1. Introduction/2. Course Resources.html
327 Bytes
6. Important concepts Common Interview questions/2. Quiz.html
206 Bytes
7. Standard Model Parameters/2. Quiz.html
206 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>