搜索
Udemy - Master statistics & machine learning intuition, math, code (3.2025)
磁力链接/BT种子名称
Udemy - Master statistics & machine learning intuition, math, code (3.2025)
磁力链接/BT种子简介
种子哈希:
65dc0cbe2b0e2976d6a9564f3a8c85b85c1d619b
文件大小:
12.98G
已经下载:
143
次
下载速度:
极快
收录时间:
2025-07-30
最近下载:
2025-09-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:65DC0CBE2B0E2976D6A9564F3A8C85B85C1D619B
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
她趣
TikTok成人版
PornHub
听泉鉴鲍
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
女儿婷宝
电报群++
未经
外卖小哥一边送外卖
公司厕
creampieinasia
a.barefoot.dream.2010
颜值女神【清野】
dass-476
集美巨乳
如何调教性奴
hit 2025
精舞社子沫
한국녀
丝袜旗袍
多角度
蒂法+ai
献给
春行
菊花和逼
harmony reigns nurse calisi ink dirtyhospital
暴龙娜塔莎
苏
大教室
相爱三年南京大学
夫妻露出
御姐少妇自慰
深喉吞精
对话
伟大的
文件列表
06. Descriptive statistics/4. Code data from different distributions.mp4
317.8 MB
16. Clustering and dimension-reduction/6. Code dbscan.mp4
302.1 MB
12. Correlation/6. Code correlation matrix.mp4
296.2 MB
06. Descriptive statistics/12. Code Computing dispersion.mp4
279.0 MB
18. A real-world data journey/7. Python Import and clean the marriage data.mp4
262.0 MB
10. The t-test family/13. Code permutation testing.mp4
252.6 MB
16. Clustering and dimension-reduction/2. Code k-means clustering.mp4
241.5 MB
12. Correlation/3. Code correlation coefficient.mp4
224.5 MB
10. The t-test family/6. Code Two-samples t-test.mp4
221.6 MB
18. A real-world data journey/3. MATLAB Import and clean the marriage data.mp4
211.1 MB
12. Correlation/18. Code Kendall correlation.mp4
193.2 MB
16. Clustering and dimension-reduction/11. Code PCA.mp4
183.6 MB
13. Analysis of Variance (ANOVA)/8. Code One-way ANOVA (independent samples).mp4
181.1 MB
14. Regression/9. Code Multiple regression.mp4
179.3 MB
08. Probability theory/21. Code Law of Large Numbers in action.mp4
173.7 MB
10. The t-test family/9. Code Signed-rank test.mp4
169.7 MB
10. The t-test family/3. Code One-sample t-test.mp4
165.6 MB
08. Probability theory/15. Code sampling variability.mp4
162.3 MB
08. Probability theory/4. Code compute probabilities.mp4
155.6 MB
13. Analysis of Variance (ANOVA)/1. ANOVA intro, part1.mp4
144.4 MB
18. A real-world data journey/8. Python Import the divorce data.mp4
143.8 MB
07. Data normalizations and outliers/10. Code z-score for outlier removal.mp4
143.5 MB
11. Confidence intervals on parameters/5. Code bootstrapping confidence intervals.mp4
143.4 MB
08. Probability theory/7. Probability mass vs. density.mp4
140.7 MB
05. Visualizing data/7. Code histograms.mp4
140.0 MB
13. Analysis of Variance (ANOVA)/6. The two-way ANOVA.mp4
136.9 MB
14. Regression/11. Code polynomial modeling.mp4
135.4 MB
08. Probability theory/12. Creating sample estimate distributions.mp4
130.9 MB
14. Regression/15. Under- and over-fitting.mp4
126.7 MB
12. Correlation/1. Motivation and description of correlation.mp4
124.2 MB
06. Descriptive statistics/19. Code Histogram bins.mp4
123.9 MB
18. A real-world data journey/9. Python Inferential statistics.mp4
121.2 MB
08. Probability theory/18. Code conditional probabilities.mp4
120.7 MB
13. Analysis of Variance (ANOVA)/11. Code Two-way mixed ANOVA.mp4
119.7 MB
18. A real-world data journey/6. MATLAB Inferential statistics.mp4
119.0 MB
16. Clustering and dimension-reduction/9. Code KNN.mp4
113.6 MB
12. Correlation/10. Code partial correlation.mp4
113.5 MB
17. Signal detection theory/6. F-score.mp4
112.5 MB
09. Hypothesis testing/4. P-values definition, tails, and misinterpretations.mp4
111.6 MB
08. Probability theory/14. Sampling variability, noise, and other annoyances.mp4
111.2 MB
06. Descriptive statistics/21. Code violin plots.mp4
110.1 MB
12. Correlation/22. Code Cosine similarity vs. Pearson correlation.mp4
107.2 MB
16. Clustering and dimension-reduction/5. Clustering via dbscan.mp4
105.2 MB
05. Visualizing data/2. Code bar plots.mp4
104.9 MB
06. Descriptive statistics/24. Code entropy.mp4
101.5 MB
18. A real-world data journey/4. MATLAB Import the divorce data.mp4
101.0 MB
08. Probability theory/10. Code cdfs and pdfs.mp4
100.6 MB
11. Confidence intervals on parameters/3. Code compute confidence intervals by formula.mp4
98.9 MB
10. The t-test family/5. Two-samples t-test.mp4
98.4 MB
08. Probability theory/23. Code the CLT in action.mp4
97.9 MB
09. Hypothesis testing/1. IVs, DVs, models, and other stats lingo.mp4
95.6 MB
06. Descriptive statistics/16. Code QQ plots.mp4
94.7 MB
09. Hypothesis testing/8. Parametric vs. non-parametric tests.mp4
91.7 MB
08. Probability theory/17. Conditional probability.mp4
89.8 MB
05. Visualizing data/4. Code box plots.mp4
87.7 MB
06. Descriptive statistics/14. Code IQR.mp4
87.4 MB
14. Regression/14. Code Logistic regression.mp4
85.2 MB
05. Visualizing data/10. Code pie charts.mp4
82.8 MB
09. Hypothesis testing/9. Multiple comparisons and Bonferroni correction.mp4
79.1 MB
14. Regression/8. Standardizing regression coefficients.mp4
78.8 MB
13. Analysis of Variance (ANOVA)/2. ANOVA intro, part 2.mp4
77.5 MB
16. Clustering and dimension-reduction/14. Code ICA.mp4
76.9 MB
13. Analysis of Variance (ANOVA)/9. Code One-way repeated-measures ANOVA.mp4
76.7 MB
12. Correlation/4. Code Simulate data with specified correlation.mp4
73.5 MB
17. Signal detection theory/3. Code d-prime.mp4
72.9 MB
07. Data normalizations and outliers/3. Code z-score.mp4
70.0 MB
06. Descriptive statistics/9. Code computing central tendency.mp4
69.8 MB
08. Probability theory/8. Code compute probability mass functions.mp4
69.4 MB
07. Data normalizations and outliers/15. Code Data trimming to remove outliers.mp4
68.5 MB
17. Signal detection theory/7. Receiver operating characteristics (ROC).mp4
67.5 MB
10. The t-test family/12. Permutation testing for t-test significance.mp4
66.6 MB
13. Analysis of Variance (ANOVA)/5. The omnibus F-test and post-hoc comparisons.mp4
66.4 MB
14. Regression/3. Evaluating regression models R2 and F.mp4
65.8 MB
14. Regression/1. Introduction to GLM regression.mp4
65.0 MB
17. Signal detection theory/2. d-prime.mp4
62.5 MB
08. Probability theory/16. Expected value.mp4
62.5 MB
04. What are (is) data/3. Types of data categorical, numerical, etc.mp4
62.3 MB
12. Correlation/9. Partial correlation.mp4
62.2 MB
06. Descriptive statistics/11. Measures of dispersion (variance, standard deviation).mp4
59.7 MB
17. Signal detection theory/8. Code ROC curves.mp4
57.3 MB
16. Clustering and dimension-reduction/1. K-means clustering.mp4
56.9 MB
11. Confidence intervals on parameters/4. Confidence intervals via bootstrapping (resampling).mp4
56.9 MB
10. The t-test family/2. One-sample t-test.mp4
56.6 MB
18. A real-world data journey/2. Introduction.mp4
55.6 MB
14. Regression/13. Logistic regression.mp4
55.3 MB
14. Regression/5. Code simple regression.mp4
54.8 MB
10. The t-test family/11. Code Mann-Whitney U test.mp4
54.6 MB
03. IMPORTANT Download course materials/1. Download materials for the entire course!.mp4
53.7 MB
09. Hypothesis testing/2. What is an hypothesis and how do you specify one.mp4
51.5 MB
01. Introductions/3. Statistics guessing game!.mp4
50.7 MB
14. Regression/10. Polynomial regression models.mp4
50.5 MB
04. What are (is) data/4. Code representing types of data on computers.mp4
50.2 MB
09. Hypothesis testing/7. Type 1 and Type 2 errors.mp4
48.1 MB
13. Analysis of Variance (ANOVA)/3. Sum of squares.mp4
48.1 MB
16. Clustering and dimension-reduction/13. Independent components analysis (ICA).mp4
47.7 MB
08. Probability theory/9. Cumulative distribution functions.mp4
47.6 MB
14. Regression/7. Multiple regression.mp4
47.3 MB
01. Introductions/1. Important Getting the most out of this course.mp4
47.0 MB
13. Analysis of Variance (ANOVA)/7. One-way ANOVA example.mp4
46.5 MB
18. A real-world data journey/10. Take-home messages.mp4
45.9 MB
09. Hypothesis testing/3. Sample distributions under null and alternative hypotheses.mp4
45.9 MB
05. Visualizing data/6. Histograms.mp4
45.9 MB
07. Data normalizations and outliers/13. Code Euclidean distance for outlier removal.mp4
45.8 MB
07. Data normalizations and outliers/7. What are outliers and why are they dangerous.mp4
45.1 MB
12. Correlation/14. Code Spearman correlation and Fisher-Z.mp4
44.8 MB
16. Clustering and dimension-reduction/10. Principal components analysis (PCA).mp4
44.6 MB
09. Hypothesis testing/12. Statistical significance vs. classification accuracy.mp4
44.6 MB
14. Regression/2. Least-squares solution to the GLM.mp4
43.4 MB
14. Regression/17. Comparing nested models.mp4
43.3 MB
08. Probability theory/1. What is probability.mp4
43.1 MB
08. Probability theory/20. The Law of Large Numbers.mp4
42.5 MB
07. Data normalizations and outliers/5. Code min-max scaling.mp4
42.4 MB
15. Statistical power and sample sizes/1. What is statistical power and why is it important.mp4
42.2 MB
12. Correlation/2. Covariance and correlation formulas.mp4
41.9 MB
06. Descriptive statistics/7. Measures of central tendency (mean).mp4
40.6 MB
08. Probability theory/3. Computing probabilities.mp4
39.3 MB
08. Probability theory/2. Probability vs. proportion.mp4
39.3 MB
05. Visualizing data/13. Code line plots.mp4
39.1 MB
04. What are (is) data/5. Sample vs. population data.mp4
38.9 MB
05. Visualizing data/1. Bar plots.mp4
38.6 MB
14. Regression/4. Simple regression.mp4
38.6 MB
07. Data normalizations and outliers/2. Z-score standardization.mp4
38.0 MB
15. Statistical power and sample sizes/2. Estimating statistical power and sample size.mp4
37.8 MB
13. Analysis of Variance (ANOVA)/10. Two-way ANOVA example.mp4
37.7 MB
04. What are (is) data/2. Where do data come from and what do they mean.mp4
37.3 MB
18. A real-world data journey/5. MATLAB More data visualizations.mp4
36.0 MB
06. Descriptive statistics/8. Measures of central tendency (median, mode).mp4
35.9 MB
07. Data normalizations and outliers/17. Nonlinear data transformations.mp4
35.3 MB
07. Data normalizations and outliers/8. Removing outliers z-score method.mp4
35.1 MB
06. Descriptive statistics/23. Shannon entropy.mp4
34.7 MB
09. Hypothesis testing/6. Degrees of freedom.mp4
34.5 MB
10. The t-test family/14. Unsupervised learning How many permutations.mp4
34.1 MB
12. Correlation/17. Kendall's correlation for ordinal data.mp4
34.0 MB
10. The t-test family/1. Purpose and interpretation of the t-test.mp4
33.7 MB
06. Descriptive statistics/3. Data distributions.mp4
33.5 MB
15. Statistical power and sample sizes/3. Compute power and sample size using GPower.mp4
32.7 MB
12. Correlation/5. Correlation matrix.mp4
32.5 MB
11. Confidence intervals on parameters/1. What are confidence intervals and why do we need them.mp4
31.3 MB
10. The t-test family/4. Unsupervised learning The role of variance.mp4
30.0 MB
12. Correlation/13. Fisher-Z transformation for correlations.mp4
29.9 MB
02. Math prerequisites/1. Should you memorize statistical formulas.mp4
29.4 MB
09. Hypothesis testing/11. Cross-validation.mp4
29.3 MB
08. Probability theory/22. The Central Limit Theorem.mp4
28.0 MB
10. The t-test family/8. Wilcoxon signed-rank (nonparametric t-test).mp4
27.2 MB
05. Visualizing data/12. Linear vs. logarithmic axis scaling.mp4
26.9 MB
06. Descriptive statistics/2. Accuracy, precision, resolution.mp4
26.7 MB
07. Data normalizations and outliers/12. Multivariate outlier detection.mp4
26.3 MB
01. Introductions/4. Using the Q&A forum.mp4
25.5 MB
12. Correlation/12. Nonparametric correlation Spearman rank.mp4
24.9 MB
06. Descriptive statistics/18. Histograms part 2 Number of bins.mp4
24.6 MB
07. Data normalizations and outliers/16. Non-parametric solutions to outliers.mp4
24.1 MB
17. Signal detection theory/5. Code Response bias.mp4
23.9 MB
17. Signal detection theory/4. Response bias.mp4
22.9 MB
06. Descriptive statistics/17. Statistical moments.mp4
22.7 MB
12. Correlation/20. The subgroups correlation paradox.mp4
22.6 MB
06. Descriptive statistics/1. Descriptive vs. inferential statistics.mp4
22.5 MB
10. The t-test family/10. Mann-Whitney U test (nonparametric t-test).mp4
21.3 MB
16. Clustering and dimension-reduction/7. Unsupervised learning dbscan vs. k-means.mp4
20.9 MB
13. Analysis of Variance (ANOVA)/4. The F-test and the ANOVA table.mp4
20.9 MB
04. What are (is) data/7. The ethics of making up data.mp4
20.6 MB
09. Hypothesis testing/10. Statistical vs. theoretical vs. clinical significance.mp4
20.0 MB
11. Confidence intervals on parameters/7. Misconceptions about confidence intervals.mp4
19.5 MB
12. Correlation/7. Unsupervised learning average correlation matrices.mp4
19.4 MB
05. Visualizing data/11. When to use lines instead of bars.mp4
18.9 MB
02. Math prerequisites/7. The logistic function.mp4
18.8 MB
04. What are (is) data/6. Samples, case reports, and anecdotes.mp4
18.7 MB
07. Data normalizations and outliers/18. An outlier lecture on personal accountability.mp4
18.6 MB
02. Math prerequisites/6. Natural exponent and logarithm.mp4
18.5 MB
11. Confidence intervals on parameters/2. Computing confidence intervals via formula.mp4
18.2 MB
06. Descriptive statistics/22. Unsupervised learning asymmetric violin plots.mp4
18.2 MB
09. Hypothesis testing/5. P-z combinations that you should memorize.mp4
18.2 MB
07. Data normalizations and outliers/14. Removing outliers by data trimming.mp4
17.7 MB
10. The t-test family/7. Unsupervised learning Importance of N for t-test.mp4
17.6 MB
06. Descriptive statistics/10. Unsupervised learning central tendencies with outliers.mp4
17.6 MB
12. Correlation/11. The problem with Pearson.mp4
17.4 MB
05. Visualizing data/9. Pie charts.mp4
17.3 MB
06. Descriptive statistics/15. QQ plots.mp4
17.0 MB
14. Regression/18. What to do about missing data.mp4
16.8 MB
12. Correlation/15. Unsupervised learning Spearman correlation.mp4
16.7 MB
12. Correlation/19. Unsupervised learning Does Kendall vs. Pearson matter.mp4
15.7 MB
12. Correlation/21. Cosine similarity.mp4
14.9 MB
17. Signal detection theory/1. The two perspectives of the world.mp4
14.6 MB
02. Math prerequisites/8. Rank and tied-rank.mp4
14.3 MB
08. Probability theory/19. Tree diagrams for conditional probabilities.mp4
14.2 MB
16. Clustering and dimension-reduction/3. Unsupervised learning K-means and normalization.mp4
13.5 MB
02. Math prerequisites/3. Scientific notation.mp4
13.5 MB
16. Clustering and dimension-reduction/8. K-nearest neighbor classification.mp4
13.1 MB
08. Probability theory/5. Probability and odds.mp4
12.6 MB
05. Visualizing data/8. Unsupervised learning Histogram proportion.mp4
12.4 MB
07. Data normalizations and outliers/4. Min-max scaling.mp4
12.3 MB
07. Data normalizations and outliers/1. Garbage in, garbage out (GIGO).mp4
12.1 MB
01. Introductions/2. About using MATLAB or Python.mp4
12.1 MB
16. Clustering and dimension-reduction/12. Unsupervised learning K-means on PC data.mp4
12.1 MB
17. Signal detection theory/9. Unsupervised learning Make this plot look nicer!.mp4
12.1 MB
05. Visualizing data/3. Box-and-whisker plots.mp4
11.7 MB
04. What are (is) data/1. Is data singular or plural!!!!.mp4
11.5 MB
12. Correlation/16. Unsupervised learning confidence interval on correlation.mp4
10.8 MB
06. Descriptive statistics/6. The beauty and simplicity of Normal.mp4
10.7 MB
06. Descriptive statistics/5. Unsupervised learning histograms of distributions.mp4
10.7 MB
12. Correlation/8. Unsupervised learning correlation to covariance matrix.mp4
10.6 MB
06. Descriptive statistics/13. Interquartile range (IQR).mp4
10.3 MB
07. Data normalizations and outliers/9. The modified z-score method.mp4
10.1 MB
08. Probability theory/24. Unsupervised learning Averaging pairs of numbers.mp4
9.9 MB
08. Probability theory/11. Unsupervised learning cdf's for various distributions.mp4
9.8 MB
07. Data normalizations and outliers/11. Unsupervised learning z vs. modified-z.mp4
9.5 MB
08. Probability theory/13. Monte Carlo sampling.mp4
9.3 MB
11. Confidence intervals on parameters/6. Unsupervised learning Confidence intervals for variance.mp4
9.0 MB
06. Descriptive statistics/25. Unsupervised learning entropy and number of bins.mp4
8.7 MB
05. Visualizing data/5. Unsupervised learning Boxplots of normal and uniform noise.mp4
8.6 MB
16. Clustering and dimension-reduction/4. Unsupervised learning K-means on a Gauss blur.mp4
8.3 MB
02. Math prerequisites/4. Summation notation.mp4
8.1 MB
02. Math prerequisites/2. Arithmetic and exponents.mp4
7.9 MB
01. Introductions/5. (optional) Entering time-stamped notes in the Udemy video player.mp4
7.4 MB
02. Math prerequisites/5. Absolute value.mp4
7.3 MB
07. Data normalizations and outliers/6. Unsupervised learning Invert the min-max scaling.mp4
7.1 MB
06. Descriptive statistics/20. Violin plots.mp4
6.8 MB
08. Probability theory/6. Unsupervised learning probabilities of odds-space.mp4
6.2 MB
14. Regression/6. Unsupervised learning Compute R2 and F.mp4
5.6 MB
14. Regression/16. Unsupervised learning Overfit data.mp4
5.1 MB
14. Regression/12. Unsupervised learning Polynomial design matrix.mp4
5.0 MB
05. Visualizing data/14. Unsupervised learning log-scaled plots.mp4
3.9 MB
03. IMPORTANT Download course materials/1. Statistics_course-main.zip
2.6 MB
16. Clustering and dimension-reduction/6. Code dbscan.vtt
47.2 kB
06. Descriptive statistics/4. Code data from different distributions.vtt
44.7 kB
12. Correlation/3. Code correlation coefficient.vtt
38.9 kB
06. Descriptive statistics/12. Code Computing dispersion.vtt
37.0 kB
08. Probability theory/15. Code sampling variability.vtt
36.6 kB
10. The t-test family/13. Code permutation testing.vtt
35.8 kB
17. Signal detection theory/6. F-score.vtt
33.9 kB
16. Clustering and dimension-reduction/2. Code k-means clustering.vtt
33.3 kB
07. Data normalizations and outliers/10. Code z-score for outlier removal.vtt
32.5 kB
10. The t-test family/6. Code Two-samples t-test.vtt
31.0 kB
18. A real-world data journey/7. Python Import and clean the marriage data.vtt
30.2 kB
12. Correlation/22. Code Cosine similarity vs. Pearson correlation.vtt
30.2 kB
13. Analysis of Variance (ANOVA)/6. The two-way ANOVA.vtt
30.1 kB
12. Correlation/6. Code correlation matrix.vtt
30.0 kB
14. Regression/1. Introduction to GLM regression.vtt
29.6 kB
10. The t-test family/3. Code One-sample t-test.vtt
29.4 kB
08. Probability theory/18. Code conditional probabilities.vtt
28.4 kB
06. Descriptive statistics/24. Code entropy.vtt
28.3 kB
13. Analysis of Variance (ANOVA)/2. ANOVA intro, part 2.vtt
28.3 kB
12. Correlation/10. Code partial correlation.vtt
28.2 kB
08. Probability theory/12. Creating sample estimate distributions.vtt
27.5 kB
14. Regression/9. Code Multiple regression.vtt
27.2 kB
12. Correlation/1. Motivation and description of correlation.vtt
27.0 kB
08. Probability theory/21. Code Law of Large Numbers in action.vtt
26.6 kB
06. Descriptive statistics/11. Measures of dispersion (variance, standard deviation).vtt
26.4 kB
09. Hypothesis testing/4. P-values definition, tails, and misinterpretations.vtt
26.3 kB
13. Analysis of Variance (ANOVA)/3. Sum of squares.vtt
26.3 kB
13. Analysis of Variance (ANOVA)/1. ANOVA intro, part1.vtt
26.0 kB
10. The t-test family/9. Code Signed-rank test.vtt
25.6 kB
12. Correlation/18. Code Kendall correlation.vtt
25.3 kB
16. Clustering and dimension-reduction/11. Code PCA.vtt
25.1 kB
14. Regression/15. Under- and over-fitting.vtt
24.4 kB
16. Clustering and dimension-reduction/10. Principal components analysis (PCA).vtt
24.4 kB
18. A real-world data journey/3. MATLAB Import and clean the marriage data.vtt
24.3 kB
18. A real-world data journey/3. state-marriage-rates-90-95-99-19.xlsx
24.2 kB
09. Hypothesis testing/1. IVs, DVs, models, and other stats lingo.vtt
24.1 kB
13. Analysis of Variance (ANOVA)/8. Code One-way ANOVA (independent samples).vtt
24.1 kB
14. Regression/13. Logistic regression.vtt
24.1 kB
11. Confidence intervals on parameters/3. Code compute confidence intervals by formula.vtt
23.9 kB
05. Visualizing data/7. Code histograms.vtt
23.7 kB
05. Visualizing data/2. Code bar plots.vtt
23.2 kB
08. Probability theory/23. Code the CLT in action.vtt
23.2 kB
18. A real-world data journey/4. state-divorce-rates-90-95-99-19.xlsx
23.0 kB
06. Descriptive statistics/16. Code QQ plots.vtt
22.8 kB
06. Descriptive statistics/14. Code IQR.vtt
22.0 kB
14. Regression/11. Code polynomial modeling.vtt
21.9 kB
09. Hypothesis testing/2. What is an hypothesis and how do you specify one.vtt
21.6 kB
08. Probability theory/4. Code compute probabilities.vtt
21.4 kB
16. Clustering and dimension-reduction/5. Clustering via dbscan.vtt
21.3 kB
09. Hypothesis testing/7. Type 1 and Type 2 errors.vtt
21.3 kB
07. Data normalizations and outliers/7. What are outliers and why are they dangerous.vtt
21.3 kB
07. Data normalizations and outliers/17. Nonlinear data transformations.vtt
21.0 kB
17. Signal detection theory/3. Code d-prime.vtt
20.9 kB
08. Probability theory/9. Cumulative distribution functions.vtt
20.8 kB
16. Clustering and dimension-reduction/1. K-means clustering.vtt
20.8 kB
04. What are (is) data/3. Types of data categorical, numerical, etc.vtt
20.8 kB
13. Analysis of Variance (ANOVA)/7. One-way ANOVA example.vtt
20.4 kB
11. Confidence intervals on parameters/5. Code bootstrapping confidence intervals.vtt
20.3 kB
13. Analysis of Variance (ANOVA)/11. Code Two-way mixed ANOVA.vtt
20.2 kB
14. Regression/3. Evaluating regression models R2 and F.vtt
20.2 kB
06. Descriptive statistics/9. Code computing central tendency.vtt
19.7 kB
12. Correlation/4. Code Simulate data with specified correlation.vtt
19.7 kB
05. Visualizing data/10. Code pie charts.vtt
19.2 kB
10. The t-test family/1. Purpose and interpretation of the t-test.vtt
19.2 kB
10. The t-test family/5. Two-samples t-test.vtt
19.1 kB
14. Regression/4. Simple regression.vtt
18.9 kB
14. Regression/7. Multiple regression.vtt
18.8 kB
09. Hypothesis testing/9. Multiple comparisons and Bonferroni correction.vtt
18.7 kB
07. Data normalizations and outliers/3. Code z-score.vtt
18.6 kB
13. Analysis of Variance (ANOVA)/5. The omnibus F-test and post-hoc comparisons.vtt
18.5 kB
18. A real-world data journey/8. Python Import the divorce data.vtt
18.4 kB
06. Descriptive statistics/7. Measures of central tendency (mean).vtt
18.3 kB
17. Signal detection theory/2. d-prime.vtt
18.3 kB
08. Probability theory/7. Probability mass vs. density.vtt
18.2 kB
08. Probability theory/17. Conditional probability.vtt
18.2 kB
13. Analysis of Variance (ANOVA)/9. Code One-way repeated-measures ANOVA.vtt
18.1 kB
12. Correlation/2. Covariance and correlation formulas.vtt
18.1 kB
06. Descriptive statistics/19. Code Histogram bins.vtt
18.0 kB
06. Descriptive statistics/8. Measures of central tendency (median, mode).vtt
18.0 kB
16. Clustering and dimension-reduction/13. Independent components analysis (ICA).vtt
17.8 kB
14. Regression/17. Comparing nested models.vtt
17.8 kB
16. Clustering and dimension-reduction/14. Code ICA.vtt
17.7 kB
14. Regression/8. Standardizing regression coefficients.vtt
17.7 kB
08. Probability theory/1. What is probability.vtt
17.5 kB
04. What are (is) data/5. Sample vs. population data.vtt
17.4 kB
09. Hypothesis testing/11. Cross-validation.vtt
17.1 kB
08. Probability theory/8. Code compute probability mass functions.vtt
17.0 kB
10. The t-test family/12. Permutation testing for t-test significance.vtt
16.8 kB
06. Descriptive statistics/3. Data distributions.vtt
16.8 kB
16. Clustering and dimension-reduction/9. Code KNN.vtt
16.7 kB
18. A real-world data journey/9. Python Inferential statistics.vtt
16.7 kB
09. Hypothesis testing/12. Statistical significance vs. classification accuracy.vtt
16.5 kB
13. Analysis of Variance (ANOVA)/10. Two-way ANOVA example.vtt
16.5 kB
15. Statistical power and sample sizes/2. Estimating statistical power and sample size.vtt
16.2 kB
08. Probability theory/22. The Central Limit Theorem.vtt
15.9 kB
05. Visualizing data/6. Histograms.vtt
15.9 kB
07. Data normalizations and outliers/15. Code Data trimming to remove outliers.vtt
15.8 kB
05. Visualizing data/1. Bar plots.vtt
15.6 kB
06. Descriptive statistics/23. Shannon entropy.vtt
15.6 kB
12. Correlation/9. Partial correlation.vtt
15.6 kB
15. Statistical power and sample sizes/1. What is statistical power and why is it important.vtt
15.3 kB
18. A real-world data journey/6. MATLAB Inferential statistics.vtt
15.3 kB
12. Correlation/17. Kendall's correlation for ordinal data.vtt
15.2 kB
08. Probability theory/16. Expected value.vtt
15.0 kB
06. Descriptive statistics/21. Code violin plots.vtt
14.8 kB
09. Hypothesis testing/3. Sample distributions under null and alternative hypotheses.vtt
14.8 kB
08. Probability theory/10. Code cdfs and pdfs.vtt
14.6 kB
08. Probability theory/3. Computing probabilities.vtt
14.5 kB
08. Probability theory/20. The Law of Large Numbers.vtt
14.4 kB
06. Descriptive statistics/18. Histograms part 2 Number of bins.vtt
14.3 kB
07. Data normalizations and outliers/2. Z-score standardization.vtt
14.0 kB
07. Data normalizations and outliers/8. Removing outliers z-score method.vtt
14.0 kB
14. Regression/2. Least-squares solution to the GLM.vtt
13.9 kB
08. Probability theory/2. Probability vs. proportion.vtt
13.7 kB
07. Data normalizations and outliers/12. Multivariate outlier detection.vtt
13.7 kB
14. Regression/14. Code Logistic regression.vtt
13.5 kB
08. Probability theory/14. Sampling variability, noise, and other annoyances.vtt
13.5 kB
09. Hypothesis testing/8. Parametric vs. non-parametric tests.vtt
13.5 kB
12. Correlation/5. Correlation matrix.vtt
13.4 kB
01. Introductions/3. Statistics guessing game!.vtt
13.4 kB
11. Confidence intervals on parameters/4. Confidence intervals via bootstrapping (resampling).vtt
13.2 kB
14. Regression/5. Code simple regression.vtt
13.1 kB
02. Math prerequisites/7. The logistic function.vtt
12.7 kB
07. Data normalizations and outliers/13. Code Euclidean distance for outlier removal.vtt
12.7 kB
11. Confidence intervals on parameters/1. What are confidence intervals and why do we need them.vtt
12.6 kB
14. Regression/10. Polynomial regression models.vtt
12.5 kB
04. What are (is) data/4. Code representing types of data on computers.vtt
12.4 kB
05. Visualizing data/12. Linear vs. logarithmic axis scaling.vtt
12.2 kB
18. A real-world data journey/4. MATLAB Import the divorce data.vtt
12.2 kB
06. Descriptive statistics/17. Statistical moments.vtt
12.2 kB
17. Signal detection theory/4. Response bias.vtt
12.1 kB
05. Visualizing data/4. Code box plots.vtt
12.1 kB
07. Data normalizations and outliers/5. Code min-max scaling.vtt
11.6 kB
10. The t-test family/2. One-sample t-test.vtt
11.4 kB
17. Signal detection theory/8. Code ROC curves.vtt
11.3 kB
02. Math prerequisites/6. Natural exponent and logarithm.vtt
11.2 kB
06. Descriptive statistics/2. Accuracy, precision, resolution.vtt
11.2 kB
17. Signal detection theory/7. Receiver operating characteristics (ROC).vtt
11.1 kB
12. Correlation/14. Code Spearman correlation and Fisher-Z.vtt
11.1 kB
13. Analysis of Variance (ANOVA)/4. The F-test and the ANOVA table.vtt
11.0 kB
05. Visualizing data/13. Code line plots.vtt
10.9 kB
12. Correlation/12. Nonparametric correlation Spearman rank.vtt
10.8 kB
10. The t-test family/8. Wilcoxon signed-rank (nonparametric t-test).vtt
10.5 kB
04. What are (is) data/7. The ethics of making up data.vtt
10.4 kB
06. Descriptive statistics/15. QQ plots.vtt
10.3 kB
12. Correlation/11. The problem with Pearson.vtt
10.3 kB
12. Correlation/13. Fisher-Z transformation for correlations.vtt
10.2 kB
09. Hypothesis testing/10. Statistical vs. theoretical vs. clinical significance.vtt
10.0 kB
08. Probability theory/19. Tree diagrams for conditional probabilities.vtt
9.7 kB
14. Regression/18. What to do about missing data.vtt
9.6 kB
18. A real-world data journey/5. MATLAB More data visualizations.vtt
9.6 kB
11. Confidence intervals on parameters/2. Computing confidence intervals via formula.vtt
9.6 kB
16. Clustering and dimension-reduction/8. K-nearest neighbor classification.vtt
9.2 kB
02. Math prerequisites/8. Rank and tied-rank.vtt
9.1 kB
11. Confidence intervals on parameters/7. Misconceptions about confidence intervals.vtt
9.0 kB
09. Hypothesis testing/5. P-z combinations that you should memorize.vtt
8.7 kB
18. A real-world data journey/10. Take-home messages.vtt
8.7 kB
10. The t-test family/10. Mann-Whitney U test (nonparametric t-test).vtt
8.7 kB
17. Signal detection theory/1. The two perspectives of the world.vtt
8.6 kB
07. Data normalizations and outliers/14. Removing outliers by data trimming.vtt
8.5 kB
05. Visualizing data/11. When to use lines instead of bars.vtt
8.4 kB
04. What are (is) data/2. Where do data come from and what do they mean.vtt
8.4 kB
12. Correlation/21. Cosine similarity.vtt
8.3 kB
05. Visualizing data/9. Pie charts.vtt
8.2 kB
06. Descriptive statistics/6. The beauty and simplicity of Normal.vtt
8.2 kB
01. Introductions/4. Using the Q&A forum.vtt
8.1 kB
02. Math prerequisites/3. Scientific notation.vtt
8.0 kB
04. What are (is) data/6. Samples, case reports, and anecdotes.vtt
8.0 kB
05. Visualizing data/3. Box-and-whisker plots.vtt
7.9 kB
10. The t-test family/14. Unsupervised learning How many permutations.vtt
7.8 kB
10. The t-test family/11. Code Mann-Whitney U test.vtt
7.6 kB
03. IMPORTANT Download course materials/1. Download materials for the entire course!.vtt
7.2 kB
07. Data normalizations and outliers/4. Min-max scaling.vtt
7.2 kB
12. Correlation/20. The subgroups correlation paradox.vtt
7.2 kB
08. Probability theory/5. Probability and odds.vtt
6.9 kB
06. Descriptive statistics/13. Interquartile range (IQR).vtt
6.9 kB
10. The t-test family/7. Unsupervised learning Importance of N for t-test.vtt
6.8 kB
07. Data normalizations and outliers/16. Non-parametric solutions to outliers.vtt
6.6 kB
01. Introductions/1. Important Getting the most out of this course.vtt
6.5 kB
06. Descriptive statistics/1. Descriptive vs. inferential statistics.vtt
6.4 kB
17. Signal detection theory/5. Code Response bias.vtt
6.3 kB
15. Statistical power and sample sizes/3. Compute power and sample size using GPower.vtt
6.2 kB
18. A real-world data journey/2. Introduction.vtt
6.2 kB
07. Data normalizations and outliers/9. The modified z-score method.vtt
6.0 kB
12. Correlation/8. Unsupervised learning correlation to covariance matrix.vtt
6.0 kB
01. Introductions/2. About using MATLAB or Python.vtt
6.0 kB
02. Math prerequisites/4. Summation notation.vtt
6.0 kB
07. Data normalizations and outliers/1. Garbage in, garbage out (GIGO).vtt
5.9 kB
02. Math prerequisites/2. Arithmetic and exponents.vtt
5.7 kB
19. Bonus section/2. Bonus content.html
4.8 kB
06. Descriptive statistics/20. Violin plots.vtt
4.8 kB
16. Clustering and dimension-reduction/7. Unsupervised learning dbscan vs. k-means.vtt
4.5 kB
07. Data normalizations and outliers/18. An outlier lecture on personal accountability.vtt
4.4 kB
06. Descriptive statistics/10. Unsupervised learning central tendencies with outliers.vtt
4.4 kB
02. Math prerequisites/1. Should you memorize statistical formulas.vtt
4.4 kB
02. Math prerequisites/5. Absolute value.vtt
4.3 kB
10. The t-test family/4. Unsupervised learning The role of variance.vtt
4.2 kB
12. Correlation/7. Unsupervised learning average correlation matrices.vtt
4.2 kB
08. Probability theory/13. Monte Carlo sampling.vtt
4.0 kB
07. Data normalizations and outliers/11. Unsupervised learning z vs. modified-z.vtt
4.0 kB
05. Visualizing data/5. Unsupervised learning Boxplots of normal and uniform noise.vtt
3.8 kB
01. Introductions/3. stats_intro_GuessTheTest.zip
3.8 kB
07. Data normalizations and outliers/6. Unsupervised learning Invert the min-max scaling.vtt
3.8 kB
06. Descriptive statistics/22. Unsupervised learning asymmetric violin plots.vtt
3.7 kB
12. Correlation/19. Unsupervised learning Does Kendall vs. Pearson matter.vtt
3.7 kB
12. Correlation/16. Unsupervised learning confidence interval on correlation.vtt
3.5 kB
08. Probability theory/11. Unsupervised learning cdf's for various distributions.vtt
3.5 kB
05. Visualizing data/8. Unsupervised learning Histogram proportion.vtt
3.5 kB
08. Probability theory/6. Unsupervised learning probabilities of odds-space.vtt
3.2 kB
08. Probability theory/24. Unsupervised learning Averaging pairs of numbers.vtt
3.2 kB
01. Introductions/5. (optional) Entering time-stamped notes in the Udemy video player.vtt
3.1 kB
06. Descriptive statistics/5. Unsupervised learning histograms of distributions.vtt
2.9 kB
14. Regression/16. Unsupervised learning Overfit data.vtt
2.8 kB
16. Clustering and dimension-reduction/3. Unsupervised learning K-means and normalization.vtt
2.7 kB
04. What are (is) data/1. Is data singular or plural!!!!.vtt
2.5 kB
05. Visualizing data/14. Unsupervised learning log-scaled plots.vtt
2.5 kB
17. Signal detection theory/9. Unsupervised learning Make this plot look nicer!.vtt
2.5 kB
16. Clustering and dimension-reduction/12. Unsupervised learning K-means on PC data.vtt
2.3 kB
12. Correlation/15. Unsupervised learning Spearman correlation.vtt
2.1 kB
06. Descriptive statistics/25. Unsupervised learning entropy and number of bins.vtt
2.1 kB
11. Confidence intervals on parameters/6. Unsupervised learning Confidence intervals for variance.vtt
2.1 kB
16. Clustering and dimension-reduction/4. Unsupervised learning K-means on a Gauss blur.vtt
2.1 kB
14. Regression/6. Unsupervised learning Compute R2 and F.vtt
1.5 kB
14. Regression/12. Unsupervised learning Polynomial design matrix.vtt
1.2 kB
19. Bonus section/1. About deep learning.html
658 Bytes
18. A real-world data journey/1. Note about the code for this section.html
174 Bytes
03. IMPORTANT Download course materials/1. Link-to-code-on-github.txt
47 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!