搜索
[DesireCourse.Net] Udemy - Machine Learning - A-Z™ Full Course
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - Machine Learning - A-Z™ Full Course
磁力链接/BT种子简介
种子哈希:
691f3f18eb9b5bf9c744bcb953e23a0c797da9f3
文件大小:
6.12G
已经下载:
1054
次
下载速度:
极快
收录时间:
2021-05-28
最近下载:
2025-09-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:691F3F18EB9B5BF9C744BCB953E23A0C797DA9F3
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
暗网Xvideo
TikTok成人版
PornHub
听泉鉴鲍
少女日记
草榴社区
哆哔涩漫
呦乐园
萝莉岛
悠悠禁区
悠悠禁区
拔萝卜
疯马秀
最近搜索
3-way
模特超清
反差口
性感御姐
fitcloudpro
*海角*
模特外围
学校 约
『爱露露』
荣耀准则
【青春美少女】
麻豆大屌
ure-076
#豆豆学妹
双洞炮击
最新传媒
颜值浴室
jux-430
淫乱多人
不可以
大奶大学生
【极品探花】
python
拍拍秀
小小的我+
电影
颜值不错的
に服を着せる
全裸口交
jur-479
文件列表
2. Machine Learning using R/4. Complete Machine Learning Course.mp4
944.4 MB
2. Machine Learning using R/8. Random Forest Tutorial.mp4
540.0 MB
2. Machine Learning using R/10. Sentiment Analysis in R.mp4
422.8 MB
2. Machine Learning using R/5. Machine Learning Algorithms.mp4
393.4 MB
3. Machine Learning using Python/2. Logistic Regression in Python.mp4
382.6 MB
3. Machine Learning using Python/9. Reinforcement Learning.mp4
345.4 MB
3. Machine Learning using Python/3. Decision Tree Algorithm.mp4
331.5 MB
2. Machine Learning using R/3. Machine Learning with R Machine.mp4
315.6 MB
2. Machine Learning using R/11. Data Mining using R.mp4
313.8 MB
3. Machine Learning using Python/6. Time Series Analysis.mp4
283.2 MB
2. Machine Learning using R/9. Support Vector.mp4
231.4 MB
3. Machine Learning using Python/11. Probabilistic Graphical Models.mp4
212.5 MB
3. Machine Learning using Python/4. K Means Clustering Algorithm K Means Example in Python.mp4
211.7 MB
3. Machine Learning using Python/12. Machine Learning Projects.mp4
208.7 MB
3. Machine Learning using Python/5. Naive Bayes Classifier in Python.mp4
208.0 MB
2. Machine Learning using R/6. Linear Regression Algorithm.mp4
196.0 MB
2. Machine Learning using R/7. Linear Regression vs Logistic Regression.mp4
159.8 MB
3. Machine Learning using Python/10. Q Learning Explained Reinforcement Learning.mp4
149.5 MB
2. Machine Learning using R/13. Boosting Machine Learning.mp4
146.7 MB
2. Machine Learning using R/2. Data Science vs Machine Learning.mp4
132.9 MB
2. Machine Learning using R/12. Apriori Algorithm Explained Association Rule Mining Finding Frequent Itemset.mp4
107.2 MB
2. Machine Learning using R/1. Machine Learning Basics.mp4
96.6 MB
3. Machine Learning using Python/1. R vs Python.mp4
65.1 MB
3. Machine Learning using Python/8. A Quick Guide To Sentiment Analysis.mp4
58.7 MB
4. Projects in ML/3.1 (Adaptive Computation and Machine Learning) Ethem Alpaydin - Introduction to Machine Learning -The MIT Press (2004).pdf.pdf
37.9 MB
3. Machine Learning using Python/7. Twitter Sentiment Analysis.mp4
30.4 MB
2. Machine Learning using R/13.1 (The Morgan Kaufmann series in machine learning).pdf.pdf
10.9 MB
1. Introduction/1. Introduction.mp4
8.9 MB
4. Projects in ML/1.1 Adaptive Computation and Machine Learning.pdf.pdf
6.9 MB
3. Machine Learning using Python/12.1 Olivier Bousquet, Ulrike von Luxburg, Gunnar Rätsch.pdf.pdf
5.3 MB
4. Projects in ML/2.1 (Information science and statistics) Christopher M. Bishop - Pattern Recognition and Machine Learning-Springer (2006).pdf.pdf
4.7 MB
4. Projects in ML/2.1 Information science and statistics.pdf.pdf
4.7 MB
2. Machine Learning using R/4. Complete Machine Learning Course.vtt
153.2 kB
3. Machine Learning using Python/2. Logistic Regression in Python.vtt
74.8 kB
3. Machine Learning using Python/9. Reinforcement Learning.vtt
70.0 kB
3. Machine Learning using Python/3. Decision Tree Algorithm.vtt
65.8 kB
2. Machine Learning using R/10. Sentiment Analysis in R.vtt
62.3 kB
2. Machine Learning using R/5. Machine Learning Algorithms.vtt
60.5 kB
3. Machine Learning using Python/6. Time Series Analysis.vtt
58.1 kB
2. Machine Learning using R/3. Machine Learning with R Machine.vtt
53.2 kB
2. Machine Learning using R/11. Data Mining using R.vtt
46.1 kB
4. Projects in ML/9. Speech Recognition.html
44.2 kB
2. Machine Learning using R/9. Support Vector.vtt
41.4 kB
3. Machine Learning using Python/11. Probabilistic Graphical Models.vtt
40.6 kB
2. Machine Learning using R/6. Linear Regression Algorithm.vtt
38.8 kB
3. Machine Learning using Python/12. Machine Learning Projects.vtt
38.2 kB
3. Machine Learning using Python/5. Naive Bayes Classifier in Python.vtt
37.6 kB
3. Machine Learning using Python/10. Q Learning Explained Reinforcement Learning.vtt
35.6 kB
4. Projects in ML/8. Predict the Weather.html
34.6 kB
2. Machine Learning using R/7. Linear Regression vs Logistic Regression.vtt
28.8 kB
2. Machine Learning using R/13. Boosting Machine Learning.vtt
27.8 kB
2. Machine Learning using R/2. Data Science vs Machine Learning.vtt
22.6 kB
2. Machine Learning using R/12. Apriori Algorithm Explained Association Rule Mining Finding Frequent Itemset.vtt
21.5 kB
2. Machine Learning using R/1. Machine Learning Basics.vtt
19.0 kB
4. Projects in ML/4. Forecasting Website Traffic Using Facebook’s Prophet Library.html
14.8 kB
4. Projects in ML/6. Digit Recognition.html
14.1 kB
4. Projects in ML/3. BluEX.html
13.9 kB
4. Projects in ML/7. Predicting Google’s Stock Price.html
10.8 kB
3. Machine Learning using Python/8. A Quick Guide To Sentiment Analysis.vtt
10.5 kB
4. Projects in ML/12. Projects For Practise.html
9.8 kB
4. Projects in ML/11. Top Projects for Bieng Expert.html
9.2 kB
4. Projects in ML/5. Face Recognition with Python.html
9.1 kB
3. Machine Learning using Python/1. R vs Python.vtt
9.0 kB
4. Projects in ML/2. Lithion power.html
7.6 kB
4. Projects in ML/1. First project Motion Studio.html
7.3 kB
4. Projects in ML/10. More ideas For projects.html
7.2 kB
3. Machine Learning using Python/7. Twitter Sentiment Analysis.vtt
5.2 kB
1. Introduction/2. 1.html
3.7 kB
1. Introduction/1. Introduction.vtt
723 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!