搜索
Machine Learning & Deep Learning in Python & R
磁力链接/BT种子名称
Machine Learning & Deep Learning in Python & R
磁力链接/BT种子简介
种子哈希:
697a91b51596cf982e42a422885e106c36158877
文件大小:
13.15G
已经下载:
801
次
下载速度:
极快
收录时间:
2024-01-30
最近下载:
2024-11-13
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:697A91B51596CF982E42A422885E106C36158877
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
sika
2023新作
edge of tomorrow hindi
aws udemy
snis-472
inazuma eleven kira
年度精选黑客破解
空姐李明珠
the.day.of.the.jackal.s01e06.720p.10bit.webrip.2ch
生活不易
kin8tengoku+
twitter 寻欢
葵司
season review
子瑜姐姐
1234vv.com
ibw-482z
健身
m全開でイキまくるムチムチボディの若妻
dasha
446
435mfcs-026
尿眼
漂亮伪
退役
我的倾城未婚妻
kuch
四+级
王小小
fc2ppv-1851398
文件列表
27 ANN in R/008 Saving - Restoring Models and Using Callbacks.mp4
226.5 MB
37 Time Series - Preprocessing in Python/003 Time Series - Visualization in Python.mp4
173.2 MB
18 Ensemble technique 3 - Boosting/007 XGBoosting in R.mp4
169.1 MB
26 ANN in Python/009 Building Neural Network for Regression Problem.mp4
163.5 MB
26 ANN in Python/011 Saving - Restoring Models and Using Callbacks.mp4
158.9 MB
23 Creating Support Vector Machine Model in R/004 Classification SVM model using Linear Kernel.mp4
145.9 MB
27 ANN in R/006 Building Regression Model with Functional API.mp4
137.5 MB
27 ANN in R/003 Building,Compiling and Training.mp4
137.1 MB
34 Transfer Learning _ Basics/006 Project - Transfer Learning - VGG16.mp4
135.4 MB
07 Linear Regression/020 Ridge regression and Lasso in Python.mp4
135.1 MB
25 Neural Networks - Stacking cells to create network/003 Back Propagation.mp4
128.1 MB
38 Time Series - Important Concepts/005 Differencing in Python.mp4
118.5 MB
37 Time Series - Preprocessing in Python/005 Time Series - Feature Engineering in Python.mp4
118.2 MB
27 ANN in R/002 Data Normalization and Test-Train Split.mp4
117.2 MB
05 Introduction to Machine Learning/001 Introduction to Machine Learning.mp4
114.5 MB
37 Time Series - Preprocessing in Python/001 Data Loading in Python.mp4
114.1 MB
23 Creating Support Vector Machine Model in R/008 SVM based Regression Model in R.mp4
111.3 MB
07 Linear Regression/021 Ridge regression and Lasso in R.mp4
108.5 MB
14 Simple Decision Trees/013 Building a Regression Tree in R.mp4
108.3 MB
35 Transfer Learning in R/001 Project - Transfer Learning - VGG16 (Implementation).mp4
106.5 MB
37 Time Series - Preprocessing in Python/007 Time Series - Upsampling and Downsampling in Python.mp4
105.6 MB
06 Data Preprocessing/016 Bi-variate analysis and Variable transformation.mp4
105.3 MB
27 ANN in R/004 Evaluating and Predicting.mp4
104.1 MB
06 Data Preprocessing/008 EDD in R.mp4
101.7 MB
03 Setting up R Studio and R crash course/007 Creating Barplots in R.mp4
101.4 MB
07 Linear Regression/003 Assessing accuracy of predicted coefficients.mp4
96.6 MB
26 ANN in Python/010 Using Functional API for complex architectures.mp4
96.6 MB
18 Ensemble technique 3 - Boosting/005 AdaBoosting in R.mp4
93.0 MB
32 Project _ Creating CNN model from scratch/001 Project in R - Data Preprocessing.mp4
92.0 MB
24 Introduction - Deep Learning/004 Python - Creating Perceptron model.mp4
90.8 MB
15 Simple Classification Tree/005 Building a classification Tree in R.mp4
89.2 MB
27 ANN in R/005 ANN with NeuralNets Package.mp4
88.5 MB
23 Creating Support Vector Machine Model in R/006 Polynomial Kernel with Hyperparameter Tuning.mp4
87.2 MB
06 Data Preprocessing/025 Correlation Matrix in R.mp4
87.2 MB
03 Setting up R Studio and R crash course/003 Packages in R.mp4
87.0 MB
15 Simple Classification Tree/004 Classification tree in Python _ Training.mp4
86.7 MB
14 Simple Decision Trees/018 Pruning a Tree in R.mp4
86.1 MB
26 ANN in Python/007 Compiling and Training the Neural Network model.mp4
85.6 MB
17 Ensemble technique 2 - Random Forests/003 Using Grid Search in Python.mp4
84.6 MB
27 ANN in R/007 Complex Architectures using Functional API.mp4
83.4 MB
26 ANN in Python/006 Building the Neural Network using Keras.mp4
83.0 MB
07 Linear Regression/017 Subset selection techniques.mp4
82.9 MB
08 Classification Models_ Data Preparation/001 The Data and the Data Dictionary.mp4
82.8 MB
08 Classification Models_ Data Preparation/004 EDD in Python.mp4
81.4 MB
16 Ensemble technique 1 - Bagging/002 Ensemble technique 1 - Bagging in Python.mp4
81.1 MB
07 Linear Regression/015 Test-Train Split in R.mp4
79.3 MB
12 K-Nearest Neighbors classifier/004 K-Nearest Neighbors classifier.mp4
79.1 MB
18 Ensemble technique 3 - Boosting/006 Ensemble technique 3c - XGBoost in Python.mp4
78.6 MB
40 Time Series - ARIMA model/003 ARIMA model in Python.mp4
78.0 MB
11 Linear Discriminant Analysis (LDA)/003 Linear Discriminant Analysis in R.mp4
78.0 MB
12 K-Nearest Neighbors classifier/003 Test-Train Split in R.mp4
77.8 MB
14 Simple Decision Trees/017 Pruning a tree in Python.mp4
77.1 MB
31 Project _ Creating CNN model from scratch in Python/003 Project - Data Preprocessing in Python.mp4
75.3 MB
30 Creating CNN model in R/003 Creating Model Architecture.mp4
75.1 MB
06 Data Preprocessing/023 Correlation Analysis.mp4
75.1 MB
06 Data Preprocessing/010 Outlier Treatment in Python.mp4
73.7 MB
26 ANN in Python/008 Evaluating performance and Predicting using Keras.mp4
73.3 MB
07 Linear Regression/010 Multiple Linear Regression in Python.mp4
73.1 MB
06 Data Preprocessing/003 The Dataset and the Data Dictionary.mp4
72.6 MB
18 Ensemble technique 3 - Boosting/003 Gradient Boosting in R.mp4
72.4 MB
30 Creating CNN model in R/005 Model Performance.mp4
71.4 MB
28 CNN - Basics/005 Channels.mp4
71.1 MB
22 Creating Support Vector Machine Model in Python/007 SVM based Regression Model in Python.mp4
70.9 MB
30 Creating CNN model in R/002 Data Preprocessing.mp4
70.3 MB
08 Classification Models_ Data Preparation/005 EDD in R.mp4
69.7 MB
41 Time Series - SARIMA model/002 SARIMA model in Python.mp4
69.4 MB
31 Project _ Creating CNN model from scratch in Python/004 Project - Training CNN model in Python.mp4
69.2 MB
04 Basics of Statistics/003 Describing data Graphically.mp4
68.6 MB
02 Setting up Python and Jupyter Notebook/003 Opening Jupyter Notebook.mp4
68.4 MB
12 K-Nearest Neighbors classifier/007 K-Nearest Neighbors in R.mp4
68.0 MB
02 Setting up Python and Jupyter Notebook/006 Strings in Python_ Python Basics.mp4
67.6 MB
22 Creating Support Vector Machine Model in Python/011 SVM Based classification model.mp4
67.2 MB
35 Transfer Learning in R/002 Project - Transfer Learning - VGG16 (Performance).mp4
67.2 MB
37 Time Series - Preprocessing in Python/002 Time Series - Visualization Basics.mp4
66.8 MB
07 Linear Regression/018 Subset selection in R.mp4
66.6 MB
07 Linear Regression/005 Simple Linear Regression in Python.mp4
66.5 MB
36 Time Series Analysis and Forecasting/005 Time Series - Basic Notations.mp4
65.5 MB
07 Linear Regression/011 Multiple Linear Regression in R.mp4
65.4 MB
25 Neural Networks - Stacking cells to create network/004 Some Important Concepts.mp4
65.2 MB
06 Data Preprocessing/007 EDD in Python.mp4
64.8 MB
26 ANN in Python/012 Hyperparameter Tuning.mp4
63.6 MB
23 Creating Support Vector Machine Model in R/005 Hyperparameter Tuning for Linear Kernel.mp4
63.4 MB
25 Neural Networks - Stacking cells to create network/002 Gradient Descent.mp4
63.3 MB
02 Setting up Python and Jupyter Notebook/007 Lists, Tuples and Directories_ Python Basics.mp4
63.2 MB
03 Setting up R Studio and R crash course/006 Inputting data part 3_ Importing from CSV or Text files.mp4
63.0 MB
38 Time Series - Important Concepts/003 Decomposing Time Series in Python.mp4
62.7 MB
37 Time Series - Preprocessing in Python/004 Time Series - Feature Engineering Basics.mp4
62.4 MB
16 Ensemble technique 1 - Bagging/003 Bagging in R.mp4
61.8 MB
29 Creating CNN model in Python/004 Comparison - Pooling vs Without Pooling in Python.mp4
60.8 MB
22 Creating Support Vector Machine Model in Python/012 Hyper Parameter Tuning.mp4
60.5 MB
39 Time Series - Implementation in Python/001 Test Train Split in Python.mp4
60.2 MB
23 Creating Support Vector Machine Model in R/007 Radial Kernel with Hyperparameter Tuning.mp4
59.4 MB
39 Time Series - Implementation in Python/007 Moving Average model in Python.mp4
59.4 MB
32 Project _ Creating CNN model from scratch/005 Project in R - Data Augmentation.mp4
59.1 MB
26 ANN in Python/003 Dataset for classification.mp4
58.9 MB
20 Support Vector Classifier/001 Support Vector classifiers.mp4
58.9 MB
07 Linear Regression/008 The F - statistic.mp4
58.7 MB
10 Logistic Regression/012 Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
58.4 MB
06 Data Preprocessing/018 Variable transformation in R.mp4
58.1 MB
06 Data Preprocessing/024 Correlation Analysis in Python.mp4
58.0 MB
29 Creating CNN model in Python/003 CNN model in Python - Training and results.mp4
57.8 MB
23 Creating Support Vector Machine Model in R/001 Importing Data into R.mp4
56.3 MB
39 Time Series - Implementation in Python/004 Auto Regression Model creation in Python.mp4
56.1 MB
33 Project _ Data Augmentation for avoiding overfitting/002 Project - Data Augmentation Training and Results.mp4
55.6 MB
28 CNN - Basics/004 Filters and Feature maps.mp4
55.3 MB
10 Logistic Regression/009 Creating Confusion Matrix in Python.mp4
53.7 MB
28 CNN - Basics/001 CNN Introduction.mp4
53.6 MB
23 Creating Support Vector Machine Model in R/002 Test-Train Split.mp4
52.9 MB
39 Time Series - Implementation in Python/005 Auto Regression with Walk Forward validation in Python.mp4
52.0 MB
31 Project _ Creating CNN model from scratch in Python/001 Project - Introduction.mp4
51.8 MB
10 Logistic Regression/002 Training a Simple Logistic Model in Python.mp4
50.2 MB
08 Classification Models_ Data Preparation/006 Outlier treatment in Python.mp4
49.6 MB
02 Setting up Python and Jupyter Notebook/009 Working with Pandas Library of Python.mp4
49.2 MB
28 CNN - Basics/006 PoolingLayer.mp4
49.1 MB
17 Ensemble technique 2 - Random Forests/002 Ensemble technique 2 - Random Forests in Python.mp4
49.0 MB
32 Project _ Creating CNN model from scratch/002 CNN Project in R - Structure and Compile.mp4
48.3 MB
15 Simple Classification Tree/003 Classification tree in Python _ Preprocessing.mp4
47.6 MB
22 Creating Support Vector Machine Model in Python/009 Classification model - Preprocessing.mp4
47.6 MB
25 Neural Networks - Stacking cells to create network/005 Hyperparameter.mp4
47.6 MB
07 Linear Regression/014 Test train split in Python.mp4
47.1 MB
24 Introduction - Deep Learning/002 Perceptron.mp4
46.9 MB
30 Creating CNN model in R/006 Comparison - Pooling vs Without Pooling in R.mp4
46.8 MB
08 Classification Models_ Data Preparation/013 Dummy variable creation in R.mp4
46.5 MB
26 ANN in Python/004 Normalization and Test-Train split.mp4
46.3 MB
06 Data Preprocessing/017 Variable transformation and deletion in Python.mp4
46.3 MB
06 Data Preprocessing/022 Dummy variable creation in R.mp4
46.1 MB
14 Simple Decision Trees/011 Splitting Data into Test and Train Set in R.mp4
46.1 MB
02 Setting up Python and Jupyter Notebook/008 Working with Numpy Library of Python.mp4
46.0 MB
14 Simple Decision Trees/002 Understanding a Regression Tree.mp4
45.8 MB
14 Simple Decision Trees/006 Importing the Data set into R.mp4
45.8 MB
07 Linear Regression/004 Assessing Model Accuracy_ RSE and R squared.mp4
45.7 MB
07 Linear Regression/002 Basic Equations and Ordinary Least Squares (OLS) method.mp4
45.5 MB
39 Time Series - Implementation in Python/002 Naive (Persistence) model in Python.mp4
45.5 MB
29 Creating CNN model in Python/002 CNN model in Python - structure and Compile.mp4
45.3 MB
14 Simple Decision Trees/001 Basics of Decision Trees.mp4
44.7 MB
12 K-Nearest Neighbors classifier/006 K-Nearest Neighbors in Python_ Part 2.mp4
44.4 MB
03 Setting up R Studio and R crash course/008 Creating Histograms in R.mp4
44.1 MB
07 Linear Regression/012 Test-train split.mp4
43.9 MB
13 Comparing results from 3 models/001 Understanding the results of classification models.mp4
43.7 MB
33 Project _ Data Augmentation for avoiding overfitting/001 Project - Data Augmentation Preprocessing.mp4
43.4 MB
40 Time Series - ARIMA model/001 ACF and PACF.mp4
43.2 MB
11 Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis.mp4
42.9 MB
02 Setting up Python and Jupyter Notebook/004 Introduction to Jupyter.mp4
42.9 MB
07 Linear Regression/006 Simple Linear Regression in R.mp4
42.8 MB
03 Setting up R Studio and R crash course/004 Inputting data part 1_ Inbuilt datasets of R.mp4
42.7 MB
29 Creating CNN model in Python/001 CNN model in Python - Preprocessing.mp4
42.6 MB
25 Neural Networks - Stacking cells to create network/001 Basic Terminologies.mp4
42.4 MB
02 Setting up Python and Jupyter Notebook/010 Working with Seaborn Library of Python.mp4
42.3 MB
21 Support Vector Machines/001 Kernel Based Support Vector Machines.mp4
42.1 MB
18 Ensemble technique 3 - Boosting/002 Ensemble technique 3a - Boosting in Python.mp4
41.8 MB
05 Introduction to Machine Learning/002 Building a Machine Learning Model.mp4
41.4 MB
12 K-Nearest Neighbors classifier/001 Test-Train Split.mp4
41.2 MB
41 Time Series - SARIMA model/001 SARIMA model.mp4
40.9 MB
03 Setting up R Studio and R crash course/002 Basics of R and R studio.mp4
40.7 MB
37 Time Series - Preprocessing in Python/009 Moving Average.mp4
40.6 MB
04 Basics of Statistics/004 Measures of Centers.mp4
40.4 MB
22 Creating Support Vector Machine Model in Python/006 Standardizing the data.mp4
40.3 MB
08 Classification Models_ Data Preparation/011 Variable transformation in R.mp4
39.9 MB
14 Simple Decision Trees/004 The Data set for this part.mp4
39.1 MB
12 K-Nearest Neighbors classifier/005 K-Nearest Neighbors in Python_ Part 1.mp4
39.0 MB
22 Creating Support Vector Machine Model in Python/014 Radial Kernel with Hyperparameter Tuning.mp4
39.0 MB
22 Creating Support Vector Machine Model in Python/002 The Data set for the Regression problem.mp4
39.0 MB
06 Data Preprocessing/020 Dummy variable creation_ Handling qualitative data.mp4
38.6 MB
03 Setting up R Studio and R crash course/001 Installing R and R studio.mp4
37.4 MB
10 Logistic Regression/010 Evaluating performance of model.mp4
36.9 MB
24 Introduction - Deep Learning/003 Activation Functions.mp4
36.3 MB
36 Time Series Analysis and Forecasting/004 Forecasting model creation - Steps 1 (Goal).mp4
36.2 MB
07 Linear Regression/007 Multiple Linear Regression.mp4
36.0 MB
07 Linear Regression/019 Shrinkage methods_ Ridge and Lasso.mp4
35.0 MB
12 K-Nearest Neighbors classifier/002 Test-Train Split in Python.mp4
34.7 MB
10 Logistic Regression/001 Logistic Regression.mp4
34.5 MB
38 Time Series - Important Concepts/004 Differencing.mp4
33.9 MB
30 Creating CNN model in R/004 Compiling and training.mp4
33.8 MB
40 Time Series - ARIMA model/004 ARIMA model with Walk Forward Validation in Python.mp4
33.7 MB
28 CNN - Basics/003 Padding.mp4
33.2 MB
06 Data Preprocessing/011 Outlier Treatment in R.mp4
32.2 MB
17 Ensemble technique 2 - Random Forests/004 Random Forest in R.mp4
32.2 MB
18 Ensemble technique 3 - Boosting/001 Boosting.mp4
32.1 MB
18 Ensemble technique 3 - Boosting/004 Ensemble technique 3b - AdaBoost in Python.mp4
32.0 MB
34 Transfer Learning _ Basics/005 Transfer Learning.mp4
31.4 MB
19 Maximum Margin Classifier/002 The Concept of a Hyperplane.mp4
30.8 MB
01 Introduction/001 Introduction.mp4
30.8 MB
08 Classification Models_ Data Preparation/010 Variable transformation and Deletion in Python.mp4
30.7 MB
24 Introduction - Deep Learning/001 Introduction to Neural Networks and Course flow.mp4
30.5 MB
15 Simple Classification Tree/001 Classification tree.mp4
29.6 MB
16 Ensemble technique 1 - Bagging/001 Ensemble technique 1 - Bagging.mp4
29.5 MB
06 Data Preprocessing/004 Importing Data in Python.mp4
29.2 MB
10 Logistic Regression/004 Result of Simple Logistic Regression.mp4
28.2 MB
06 Data Preprocessing/021 Dummy variable creation in Python.mp4
27.8 MB
08 Classification Models_ Data Preparation/012 Dummy variable creation in Python.mp4
27.6 MB
10 Logistic Regression/006 Training multiple predictor Logistic model in Python.mp4
27.5 MB
06 Data Preprocessing/014 Missing Value imputation in R.mp4
27.3 MB
36 Time Series Analysis and Forecasting/002 Time Series Forecasting - Use cases.mp4
27.2 MB
14 Simple Decision Trees/005 Importing the Data set into Python.mp4
27.1 MB
22 Creating Support Vector Machine Model in Python/003 Importing data for regression model.mp4
27.1 MB
10 Logistic Regression/003 Training a Simple Logistic model in R.mp4
26.8 MB
03 Setting up R Studio and R crash course/005 Inputting data part 2_ Manual data entry.mp4
26.8 MB
08 Classification Models_ Data Preparation/007 Outlier Treatment in R.mp4
26.6 MB
07 Linear Regression/013 Bias Variance trade-off.mp4
26.3 MB
06 Data Preprocessing/012 Missing Value Imputation.mp4
26.2 MB
14 Simple Decision Trees/008 Dummy Variable creation in Python.mp4
26.2 MB
14 Simple Decision Trees/010 Test-Train split in Python.mp4
26.1 MB
22 Creating Support Vector Machine Model in Python/005 Test-Train Split.mp4
26.1 MB
32 Project _ Creating CNN model from scratch/003 Project in R - Training.mp4
25.8 MB
06 Data Preprocessing/009 Outlier Treatment.mp4
25.7 MB
06 Data Preprocessing/006 Univariate analysis and EDD.mp4
25.4 MB
39 Time Series - Implementation in Python/006 Moving Average model -Basics.mp4
25.3 MB
32 Project _ Creating CNN model from scratch/006 Project in R - Validation Performance.mp4
24.8 MB
06 Data Preprocessing/013 Missing Value Imputation in Python.mp4
24.6 MB
32 Project _ Creating CNN model from scratch/004 Project in R - Model Performance.mp4
24.3 MB
22 Creating Support Vector Machine Model in Python/013 Polynomial Kernel with Hyperparameter Tuning.mp4
24.0 MB
04 Basics of Statistics/005 Measures of Dispersion.mp4
24.0 MB
27 ANN in R/001 Installing Keras and Tensorflow.mp4
23.9 MB
08 Classification Models_ Data Preparation/008 Missing Value Imputation in Python.mp4
23.7 MB
07 Linear Regression/009 Interpreting results of Categorical variables.mp4
23.6 MB
19 Maximum Margin Classifier/003 Maximum Margin Classifier.mp4
23.6 MB
06 Data Preprocessing/001 Gathering Business Knowledge.mp4
23.4 MB
13 Comparing results from 3 models/002 Summary of the three models.mp4
23.3 MB
08 Classification Models_ Data Preparation/002 Data Import in Python.mp4
23.1 MB
04 Basics of Statistics/001 Types of Data.mp4
22.8 MB
14 Simple Decision Trees/015 Plotting decision tree in Python.mp4
22.5 MB
34 Transfer Learning _ Basics/004 GoogLeNet.mp4
22.4 MB
40 Time Series - ARIMA model/002 ARIMA model - Basics.mp4
22.4 MB
38 Time Series - Important Concepts/002 Random Walk.mp4
22.2 MB
10 Logistic Regression/008 Confusion Matrix.mp4
22.1 MB
31 Project _ Creating CNN model from scratch in Python/005 Project in Python - model results.mp4
22.0 MB
34 Transfer Learning _ Basics/001 ILSVRC.mp4
21.9 MB
02 Setting up Python and Jupyter Notebook/002 This is a milestone!.mp4
21.7 MB
06 Data Preprocessing/002 Data Exploration.mp4
21.5 MB
09 The Three classification models/001 Three Classifiers and the problem statement.mp4
21.3 MB
06 Data Preprocessing/019 Non-usable variables.mp4
21.2 MB
26 ANN in Python/002 Installing Tensorflow and Keras.mp4
21.0 MB
08 Classification Models_ Data Preparation/009 Missing Value imputation in R.mp4
20.0 MB
15 Simple Classification Tree/002 The Data set for Classification problem.mp4
19.5 MB
22 Creating Support Vector Machine Model in Python/008 The Data set for the Classification problem.mp4
19.4 MB
14 Simple Decision Trees/016 Pruning a tree.mp4
19.4 MB
17 Ensemble technique 2 - Random Forests/001 Ensemble technique 2 - Random Forests.mp4
19.1 MB
14 Simple Decision Trees/007 Missing value treatment in Python.mp4
18.8 MB
14 Simple Decision Trees/012 Creating Decision tree in Python.mp4
18.7 MB
06 Data Preprocessing/015 Seasonality in Data.mp4
17.8 MB
37 Time Series - Preprocessing in Python/006 Time Series - Upsampling and Downsampling.mp4
17.8 MB
09 The Three classification models/002 Why can't we use Linear Regression_.mp4
17.8 MB
39 Time Series - Implementation in Python/003 Auto Regression Model - Basics.mp4
17.7 MB
28 CNN - Basics/002 Stride.mp4
17.4 MB
07 Linear Regression/016 Regression models other than OLS.mp4
17.3 MB
14 Simple Decision Trees/014 Evaluating model performance in Python.mp4
17.2 MB
02 Setting up Python and Jupyter Notebook/001 Installing Python and Anaconda.mp4
17.1 MB
10 Logistic Regression/007 Training multiple predictor Logistic model in R.mp4
16.5 MB
22 Creating Support Vector Machine Model in Python/004 X-y Split.mp4
15.9 MB
14 Simple Decision Trees/009 Dependent- Independent Data split in Python.mp4
15.9 MB
26 ANN in Python/001 Keras and Tensorflow.mp4
15.6 MB
37 Time Series - Preprocessing in Python/008 Time Series - Power Transformation.mp4
15.6 MB
07 Linear Regression/022 Heteroscedasticity.mp4
15.2 MB
14 Simple Decision Trees/003 The stopping criteria for controlling tree growth.mp4
14.6 MB
08 Classification Models_ Data Preparation/003 Importing the dataset into R.mp4
14.1 MB
06 Data Preprocessing/005 Importing the dataset into R.mp4
13.7 MB
02 Setting up Python and Jupyter Notebook/005 Arithmetic operators in Python_ Python Basics.mp4
13.4 MB
36 Time Series Analysis and Forecasting/001 Introduction.mp4
12.9 MB
42 Bonus Section/001 The final milestone!.mp4
12.4 MB
11 Linear Discriminant Analysis (LDA)/002 LDA in Python.mp4
12.0 MB
38 Time Series - Important Concepts/001 White Noise.mp4
11.9 MB
04 Basics of Statistics/002 Types of Statistics.mp4
11.5 MB
26 ANN in Python/005 Different ways to create ANN using Keras.mp4
11.3 MB
20 Support Vector Classifier/002 Limitations of Support Vector Classifiers.mp4
11.3 MB
19 Maximum Margin Classifier/004 Limitations of Maximum Margin Classifier.mp4
11.1 MB
34 Transfer Learning _ Basics/003 VGG16NET.mp4
10.9 MB
36 Time Series Analysis and Forecasting/003 Forecasting model creation - Steps.mp4
10.6 MB
22 Creating Support Vector Machine Model in Python/010 Classification model - Standardizing the data.mp4
10.2 MB
07 Linear Regression/001 The Problem Statement.mp4
9.8 MB
10 Logistic Regression/011 Evaluating model performance in Python.mp4
9.4 MB
19 Maximum Margin Classifier/001 Content flow.mp4
9.1 MB
10 Logistic Regression/005 Logistic with multiple predictors.mp4
8.9 MB
37 Time Series - Preprocessing in Python/010 Exponential Smoothing.mp4
8.8 MB
30 Creating CNN model in R/001 CNN on MNIST Fashion Dataset - Model Architecture.mp4
7.7 MB
34 Transfer Learning _ Basics/002 LeNET.mp4
7.3 MB
15 Simple Classification Tree/006 Advantages and Disadvantages of Decision Trees.mp4
7.2 MB
41 Time Series - SARIMA model/003 Stationary time Series.mp4
5.9 MB
22 Creating Support Vector Machine Model in Python/001 Regression and Classification Models.mp4
4.2 MB
42 Bonus Section/002 Congratulations & About your certificate.html
2.6 kB
23 Creating Support Vector Machine Model in R/003 More about test-train split.html
1.5 kB
01 Introduction/002 Course Resources.html
1.3 kB
31 Project _ Creating CNN model from scratch in Python/002 Data for the project.html
1.1 kB
Downloaded from 1337x.txt
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>