搜索
[DesireCourse.Net] Udemy - Complete Data Science Training with Python for Data Analysis
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - Complete Data Science Training with Python for Data Analysis
磁力链接/BT种子简介
种子哈希:
6ba6895d7d716420f653594b54e1e102e8ca79ac
文件大小:
2.25G
已经下载:
2397
次
下载速度:
极快
收录时间:
2021-03-07
最近下载:
2025-02-26
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:6BA6895D7D716420F653594B54E1E102E8CA79AC
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
流出厕
白咲碧
juq-479
slow horses s02 2160p
推特s级身材美艳翘臀女神【小可爱】不雅
emily addison
痴母
lavender
bow
建文
夏次健
约炮对白
男人头
丰满大屁股
拉粪
戦乙女
2764073
chloe 网红
妈妈和儿子真实
tek-099
今日养生探花
the r
约操细腰美臀新婚小娇娘
狂野印度
有型
雷电将军铃木美咲
跟拍cd
炮击插逼
【轮流】
2024年
文件列表
1. Introduction to the Data Science in Python Bootcamp/3.1 scriptsLecture.zip.zip
323.0 MB
1. Introduction to the Data Science in Python Bootcamp/2. Introduction to the Course Instructor.m4v
58.3 MB
6. Introduction to Data Visualizations/6. Barplot.mp4
56.4 MB
4. Introduction to Pandas/6. Read in HTML Data.mp4
53.8 MB
13. Miscellaneous Lectures Information/5. Data Imputation.m4v
47.0 MB
1. Introduction to the Data Science in Python Bootcamp/6. Introduction to the Python Data Science Environment.mp4
42.3 MB
6. Introduction to Data Visualizations/8. Line Chart.mp4
38.9 MB
3. Introduction to Numpy/3. Numpy Operations.mp4
38.5 MB
8. Statistical Inference Relationship Between Variables/9. Conditions of Linear Regression-Check in Python.mp4
35.0 MB
7. Statistical Data Analysis-Basic/5. Grouping Summarizing Data by Categories.mp4
34.7 MB
8. Statistical Inference Relationship Between Variables/7. Linear Regression-Implementation in Python.mp4
31.6 MB
6. Introduction to Data Visualizations/5. Scatter Plot-Visualize the Relationship Between 2 Continuous Variables.mp4
31.3 MB
6. Introduction to Data Visualizations/3. Histograms-Visualize the Distribution of Continuous Numerical Variables.mp4
30.8 MB
10. Unsupervised Learning in Python/8. Hierarchical Clustering-practical.mp4
30.8 MB
5. Data Pre-ProcessingWrangling/12. Merging and Joining Data Frames.mp4
30.2 MB
8. Statistical Inference Relationship Between Variables/12. Logistic Regression.mp4
30.2 MB
11. Supervised Learning/5. RF-Classification.mp4
29.9 MB
11. Supervised Learning/2. Data Preparation for Supervised Learning.mp4
29.7 MB
8. Statistical Inference Relationship Between Variables/3. Test the Difference Between More Than Two Groups.mp4
29.7 MB
13. Miscellaneous Lectures Information/4. Naive Bayes Classification.m4v
29.5 MB
5. Data Pre-ProcessingWrangling/5. Subset and Index Data.mp4
29.4 MB
5. Data Pre-ProcessingWrangling/6. Basic Data Grouping Based on Qualitative Attributes.mp4
27.9 MB
7. Statistical Data Analysis-Basic/1. What is Statistical Data Analysis.mp4
26.5 MB
4. Introduction to Pandas/1. Data Structures in Python.mp4
26.3 MB
1. Introduction to the Data Science in Python Bootcamp/4. Introduction to the Python Data Science Tool.mp4
26.2 MB
11. Supervised Learning/1. What is This Section About.mp4
26.1 MB
8. Statistical Inference Relationship Between Variables/6. Linear Regression-Theory.mp4
26.1 MB
5. Data Pre-ProcessingWrangling/10. Rank and Sort Data.mp4
25.5 MB
5. Data Pre-ProcessingWrangling/8. Reshaping.mp4
25.4 MB
5. Data Pre-ProcessingWrangling/9. Pivoting.mp4
25.2 MB
11. Supervised Learning/3. Pointers on Evaluating the Accuracy of Classification and Regression Modelling.mp4
25.2 MB
5. Data Pre-ProcessingWrangling/11. Concatenate.mp4
24.9 MB
11. Supervised Learning/6. RF-Regression.mp4
24.8 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/1. Theory Behind ANN and DNN.mp4
23.7 MB
3. Introduction to Numpy/2. Create Numpy Arrays.mp4
21.9 MB
7. Statistical Data Analysis-Basic/2. Some Pointers on Collecting Data for Statistical Studies.mp4
21.9 MB
8. Statistical Inference Relationship Between Variables/5. Correlation Analysis.mp4
21.7 MB
6. Introduction to Data Visualizations/1. What is Data Visualization.mp4
21.7 MB
11. Supervised Learning/4. Using Logistic Regression as a Classification Model.mp4
21.6 MB
10. Unsupervised Learning in Python/3. KMeans-implementation on the iris data.mp4
20.5 MB
5. Data Pre-ProcessingWrangling/2. Removing NAsNo Values From Our Data.mp4
20.2 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/6. MLP with PCA on a Large Dataset.mp4
20.2 MB
10. Unsupervised Learning in Python/6. How Do We Select the Number of Clusters.mp4
20.0 MB
4. Introduction to Pandas/5. Reading in JSON Data.mp4
19.6 MB
11. Supervised Learning/10. knn-Classification.mp4
19.1 MB
8. Statistical Inference Relationship Between Variables/2. Test the Difference Between Two Groups.mp4
18.6 MB
1. Introduction to the Data Science in Python Bootcamp/1. What is Data Science.mp4
18.2 MB
7. Statistical Data Analysis-Basic/4. Explore the Quantitative Data Descriptive Statistics.mp4
18.2 MB
6. Introduction to Data Visualizations/2. Some Theoretical Principles Behind Data Visualization.mp4
17.4 MB
7. Statistical Data Analysis-Basic/9. Check for Normal Distribution.mp4
17.3 MB
3. Introduction to Numpy/4. Matrix Arithmetic and Linear Systems.mp4
16.6 MB
9. Machine Learning for Data Science/2. What is Machine Learning (ML) About Some Theoretical Pointers.mp4
16.5 MB
5. Data Pre-ProcessingWrangling/4. Drop ColumnRow.mp4
16.5 MB
4. Introduction to Pandas/3. Read in CSV Data Using Pandas.mp4
16.1 MB
11. Supervised Learning/12. Gradient Boosting-classification.mp4
15.8 MB
3. Introduction to Numpy/9. Numpy for Statistical Operation.mp4
15.7 MB
5. Data Pre-ProcessingWrangling/3. Basic Data Handling Starting with Conditional Data Selection.mp4
15.6 MB
3. Introduction to Numpy/6. Numpy for Basic Matrix Arithmetic.mp4
14.6 MB
7. Statistical Data Analysis-Basic/11. Confidence Interval-Theory.mp4
14.4 MB
9. Machine Learning for Data Science/1. How is Machine Learning Different from Statistical Data Analysis.mp4
14.4 MB
7. Statistical Data Analysis-Basic/12. Confidence Interval-Calculation.mp4
14.3 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/4. Multi-label classification with MLP.mp4
14.1 MB
6. Introduction to Data Visualizations/4. Boxplots-Visualize the Distribution of Continuous Numerical Variables.mp4
14.1 MB
8. Statistical Inference Relationship Between Variables/1. What is Hypothesis Testing.mp4
14.1 MB
6. Introduction to Data Visualizations/7. Pie Chart.mp4
13.4 MB
13. Miscellaneous Lectures Information/3. Read Data from a Database.mp4
12.9 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/8. Start with H20.mp4
12.7 MB
10. Unsupervised Learning in Python/5. KMeans Clustering with Real Data.mp4
12.7 MB
1. Introduction to the Data Science in Python Bootcamp/7. Some Miscellaneous IPython Usage Facts.mp4
12.6 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/11. H2O Deep Learning For Predictions.mp4
12.6 MB
8. Statistical Inference Relationship Between Variables/11. GLM Generalized Linear Model.mp4
12.4 MB
3. Introduction to Numpy/5. Numpy for Basic Vector Arithmetric.mp4
12.3 MB
7. Statistical Data Analysis-Basic/7. Common Terms Relating to Descriptive Statistics.mp4
12.2 MB
7. Statistical Data Analysis-Basic/6. Visualize Descriptive Statistics-Boxplots.mp4
12.1 MB
3. Introduction to Numpy/8. Solve Equations with Numpy.mp4
12.0 MB
4. Introduction to Pandas/4. Read in Excel Data Using Pandas.mp4
11.9 MB
11. Supervised Learning/13. Gradient Boosting-regression.mp4
11.4 MB
5. Data Pre-ProcessingWrangling/7. Crosstabulation.mp4
11.4 MB
10. Unsupervised Learning in Python/7. Hierarchical Clustering-theory.mp4
10.7 MB
1. Introduction to the Data Science in Python Bootcamp/5. For Mac Users.mp4
10.7 MB
11. Supervised Learning/9. Support Vector Regression.mp4
10.7 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/2. Perceptrons for Binary Classification.mp4
10.5 MB
7. Statistical Data Analysis-Basic/10. Standard Normal Distribution and Z-scores.mp4
10.3 MB
7. Statistical Data Analysis-Basic/8. Data Distribution- Normal Distribution.mp4
10.1 MB
10. Unsupervised Learning in Python/4. Quantifying KMeans Clustering Performance.mp4
10.0 MB
11. Supervised Learning/14. Voting Classifier.mp4
10.0 MB
8. Statistical Inference Relationship Between Variables/4. Explore the Relationship Between Two Quantitative Variables.mp4
9.9 MB
2. Introduction to Python Pre-Requisites for Data Science/2. Different Types of Data Used in Statistical ML Analysis.mp4
9.8 MB
8. Statistical Inference Relationship Between Variables/10. Polynomial Regression.mp4
9.7 MB
10. Unsupervised Learning in Python/10. Principal Component Analysis (PCA)-Practical Implementation.mp4
9.5 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/5. Regression with MLP.mp4
9.5 MB
3. Introduction to Numpy/7. Broadcasting with Numpy.mp4
9.4 MB
3. Introduction to Numpy/1. Numpy Introduction.mp4
9.1 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/3. Getting Started with ANN-binary classification.mp4
8.9 MB
11. Supervised Learning/11. knn-Regression.mp4
8.8 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/9. Default H2O Deep Learning Algorithm.mp4
8.6 MB
5. Data Pre-ProcessingWrangling/1. Rationale behind this section.mp4
8.5 MB
2. Introduction to Python Pre-Requisites for Data Science/4. Python Data Science Packages To Be Used.mp4
8.3 MB
2. Introduction to Python Pre-Requisites for Data Science/3. Different Types of Data Used Programatically.mp4
8.1 MB
1. Introduction to the Data Science in Python Bootcamp/8. Online iPython Interpreter.mp4
8.1 MB
11. Supervised Learning/7. SVM- Linear Classification.mp4
7.7 MB
11. Supervised Learning/15. Conclusions to Section 11.mp4
7.6 MB
13. Miscellaneous Lectures Information/2. Read in Data from Online CSV.mp4
7.0 MB
1. Introduction to the Data Science in Python Bootcamp/9. Conclusion to Section 1.mp4
6.8 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/10. Specify the Activation Function.mp4
6.5 MB
10. Unsupervised Learning in Python/1. Unsupervised Classification- Some Basic Ideas.mp4
6.5 MB
3. Introduction to Numpy/10. Conclusion to Section 3.mp4
6.5 MB
10. Unsupervised Learning in Python/9. Principal Component Analysis (PCA)-Theory.mp4
6.2 MB
6. Introduction to Data Visualizations/9. Conclusions to Section 6.mp4
6.1 MB
10. Unsupervised Learning in Python/11. Conclusions to Section 10.mp4
5.8 MB
4. Introduction to Pandas/7. Conclusion to Section 4.mp4
5.7 MB
5. Data Pre-ProcessingWrangling/13. Conclusion to Section 5.mp4
5.7 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/12. Conclusions to Section 12.mp4
5.4 MB
10. Unsupervised Learning in Python/2. KMeans-theory.mp4
5.4 MB
11. Supervised Learning/8. SVM- Non Linear Classification.mp4
5.4 MB
8. Statistical Inference Relationship Between Variables/13. Conclusions to Section 8.mp4
5.2 MB
2. Introduction to Python Pre-Requisites for Data Science/5. Conclusions to Section 2.mp4
5.1 MB
7. Statistical Data Analysis-Basic/13. Conclusions to Section 7.mp4
4.0 MB
8. Statistical Inference Relationship Between Variables/8. Conditions of Linear Regression.mp4
3.1 MB
6. Introduction to Data Visualizations/6. Barplot.vtt
22.9 kB
1. Introduction to the Data Science in Python Bootcamp/6. Introduction to the Python Data Science Environment.vtt
17.6 kB
3. Introduction to Numpy/3. Numpy Operations.vtt
15.3 kB
1. Introduction to the Data Science in Python Bootcamp/2. Introduction to the Course Instructor.vtt
13.8 kB
8. Statistical Inference Relationship Between Variables/9. Conditions of Linear Regression-Check in Python.vtt
12.9 kB
11. Supervised Learning/5. RF-Classification.vtt
12.5 kB
6. Introduction to Data Visualizations/5. Scatter Plot-Visualize the Relationship Between 2 Continuous Variables.vtt
12.5 kB
6. Introduction to Data Visualizations/8. Line Chart.vtt
12.3 kB
6. Introduction to Data Visualizations/3. Histograms-Visualize the Distribution of Continuous Numerical Variables.vtt
12.2 kB
8. Statistical Inference Relationship Between Variables/7. Linear Regression-Implementation in Python.vtt
11.8 kB
11. Supervised Learning/1. What is This Section About.vtt
11.8 kB
4. Introduction to Pandas/6. Read in HTML Data.vtt
11.4 kB
8. Statistical Inference Relationship Between Variables/12. Logistic Regression.vtt
11.4 kB
8. Statistical Inference Relationship Between Variables/3. Test the Difference Between More Than Two Groups.vtt
11.2 kB
5. Data Pre-ProcessingWrangling/12. Merging and Joining Data Frames.vtt
10.9 kB
11. Supervised Learning/3. Pointers on Evaluating the Accuracy of Classification and Regression Modelling.vtt
10.7 kB
7. Statistical Data Analysis-Basic/5. Grouping Summarizing Data by Categories.vtt
10.5 kB
1. Introduction to the Data Science in Python Bootcamp/4. Introduction to the Python Data Science Tool.vtt
10.4 kB
11. Supervised Learning/2. Data Preparation for Supervised Learning.vtt
10.3 kB
4. Introduction to Pandas/1. Data Structures in Python.vtt
10.3 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/1. Theory Behind ANN and DNN.vtt
10.1 kB
8. Statistical Inference Relationship Between Variables/6. Linear Regression-Theory.vtt
10.1 kB
6. Introduction to Data Visualizations/1. What is Data Visualization.vtt
10.0 kB
11. Supervised Learning/6. RF-Regression.vtt
10.0 kB
5. Data Pre-ProcessingWrangling/8. Reshaping.vtt
9.8 kB
7. Statistical Data Analysis-Basic/1. What is Statistical Data Analysis.vtt
9.8 kB
10. Unsupervised Learning in Python/8. Hierarchical Clustering-practical.vtt
9.8 kB
7. Statistical Data Analysis-Basic/2. Some Pointers on Collecting Data for Statistical Studies.vtt
9.3 kB
13. Miscellaneous Lectures Information/5. Data Imputation.vtt
9.2 kB
11. Supervised Learning/4. Using Logistic Regression as a Classification Model.vtt
8.9 kB
8. Statistical Inference Relationship Between Variables/5. Correlation Analysis.vtt
8.8 kB
5. Data Pre-ProcessingWrangling/9. Pivoting.vtt
8.6 kB
5. Data Pre-ProcessingWrangling/6. Basic Data Grouping Based on Qualitative Attributes.vtt
8.5 kB
11. Supervised Learning/10. knn-Classification.vtt
8.2 kB
5. Data Pre-ProcessingWrangling/11. Concatenate.vtt
8.2 kB
13. Miscellaneous Lectures Information/3. Read Data from a Database.vtt
8.0 kB
5. Data Pre-ProcessingWrangling/5. Subset and Index Data.vtt
8.0 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/6. MLP with PCA on a Large Dataset.vtt
7.8 kB
7. Statistical Data Analysis-Basic/4. Explore the Quantitative Data Descriptive Statistics.vtt
7.8 kB
10. Unsupervised Learning in Python/3. KMeans-implementation on the iris data.vtt
7.8 kB
8. Statistical Inference Relationship Between Variables/2. Test the Difference Between Two Groups.vtt
7.5 kB
5. Data Pre-ProcessingWrangling/10. Rank and Sort Data.vtt
7.5 kB
6. Introduction to Data Visualizations/2. Some Theoretical Principles Behind Data Visualization.vtt
7.3 kB
13. Miscellaneous Lectures Information/4. Naive Bayes Classification.vtt
7.0 kB
3. Introduction to Numpy/9. Numpy for Statistical Operation.vtt
6.9 kB
9. Machine Learning for Data Science/2. What is Machine Learning (ML) About Some Theoretical Pointers.vtt
6.7 kB
3. Introduction to Numpy/4. Matrix Arithmetic and Linear Systems.vtt
6.6 kB
5. Data Pre-ProcessingWrangling/2. Removing NAsNo Values From Our Data.vtt
6.5 kB
9. Machine Learning for Data Science/1. How is Machine Learning Different from Statistical Data Analysis.vtt
6.3 kB
11. Supervised Learning/12. Gradient Boosting-classification.vtt
6.2 kB
3. Introduction to Numpy/2. Create Numpy Arrays.vtt
6.1 kB
7. Statistical Data Analysis-Basic/11. Confidence Interval-Theory.vtt
6.0 kB
8. Statistical Inference Relationship Between Variables/1. What is Hypothesis Testing.vtt
6.0 kB
4. Introduction to Pandas/3. Read in CSV Data Using Pandas.vtt
5.9 kB
7. Statistical Data Analysis-Basic/12. Confidence Interval-Calculation.vtt
5.9 kB
7. Statistical Data Analysis-Basic/9. Check for Normal Distribution.vtt
5.8 kB
6. Introduction to Data Visualizations/7. Pie Chart.vtt
5.7 kB
7. Statistical Data Analysis-Basic/7. Common Terms Relating to Descriptive Statistics.vtt
5.7 kB
6. Introduction to Data Visualizations/4. Boxplots-Visualize the Distribution of Continuous Numerical Variables.vtt
5.6 kB
7. Statistical Data Analysis-Basic/6. Visualize Descriptive Statistics-Boxplots.vtt
5.4 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/11. H2O Deep Learning For Predictions.vtt
5.3 kB
8. Statistical Inference Relationship Between Variables/11. GLM Generalized Linear Model.vtt
5.3 kB
3. Introduction to Numpy/6. Numpy for Basic Matrix Arithmetic.vtt
5.3 kB
10. Unsupervised Learning in Python/7. Hierarchical Clustering-theory.vtt
5.1 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/4. Multi-label classification with MLP.vtt
4.9 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/2. Perceptrons for Binary Classification.vtt
4.8 kB
5. Data Pre-ProcessingWrangling/1. Rationale behind this section.vtt
4.7 kB
1. Introduction to the Data Science in Python Bootcamp/7. Some Miscellaneous IPython Usage Facts.vtt
4.7 kB
10. Unsupervised Learning in Python/5. KMeans Clustering with Real Data.vtt
4.6 kB
8. Statistical Inference Relationship Between Variables/4. Explore the Relationship Between Two Quantitative Variables.vtt
4.5 kB
10. Unsupervised Learning in Python/4. Quantifying KMeans Clustering Performance.vtt
4.5 kB
5. Data Pre-ProcessingWrangling/4. Drop ColumnRow.vtt
4.5 kB
11. Supervised Learning/9. Support Vector Regression.vtt
4.4 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/8. Start with H20.vtt
4.4 kB
10. Unsupervised Learning in Python/6. How Do We Select the Number of Clusters.vtt
4.3 kB
7. Statistical Data Analysis-Basic/10. Standard Normal Distribution and Z-scores.vtt
4.3 kB
3. Introduction to Numpy/8. Solve Equations with Numpy.vtt
4.3 kB
10. Unsupervised Learning in Python/10. Principal Component Analysis (PCA)-Practical Implementation.vtt
4.2 kB
5. Data Pre-ProcessingWrangling/3. Basic Data Handling Starting with Conditional Data Selection.vtt
4.2 kB
1. Introduction to the Data Science in Python Bootcamp/1. What is Data Science.vtt
4.1 kB
11. Supervised Learning/11. knn-Regression.vtt
4.0 kB
7. Statistical Data Analysis-Basic/8. Data Distribution- Normal Distribution.vtt
4.0 kB
1. Introduction to the Data Science in Python Bootcamp/5. For Mac Users.vtt
4.0 kB
13. Miscellaneous Lectures Information/2. Read in Data from Online CSV.vtt
4.0 kB
5. Data Pre-ProcessingWrangling/7. Crosstabulation.vtt
3.9 kB
3. Introduction to Numpy/1. Numpy Introduction.vtt
3.9 kB
2. Introduction to Python Pre-Requisites for Data Science/4. Python Data Science Packages To Be Used.vtt
3.9 kB
3. Introduction to Numpy/5. Numpy for Basic Vector Arithmetric.vtt
3.9 kB
3. Introduction to Numpy/7. Broadcasting with Numpy.vtt
3.9 kB
4. Introduction to Pandas/4. Read in Excel Data Using Pandas.vtt
3.9 kB
11. Supervised Learning/14. Voting Classifier.vtt
3.9 kB
8. Statistical Inference Relationship Between Variables/10. Polynomial Regression.vtt
3.8 kB
11. Supervised Learning/13. Gradient Boosting-regression.vtt
3.8 kB
2. Introduction to Python Pre-Requisites for Data Science/2. Different Types of Data Used in Statistical ML Analysis.vtt
3.7 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/5. Regression with MLP.vtt
3.6 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/3. Getting Started with ANN-binary classification.vtt
3.6 kB
1. Introduction to the Data Science in Python Bootcamp/8. Online iPython Interpreter.vtt
3.5 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/9. Default H2O Deep Learning Algorithm.vtt
3.4 kB
11. Supervised Learning/7. SVM- Linear Classification.vtt
3.3 kB
4. Introduction to Pandas/5. Reading in JSON Data.vtt
3.1 kB
1. Introduction to the Data Science in Python Bootcamp/9. Conclusion to Section 1.vtt
3.1 kB
2. Introduction to Python Pre-Requisites for Data Science/3. Different Types of Data Used Programatically.vtt
3.1 kB
10. Unsupervised Learning in Python/9. Principal Component Analysis (PCA)-Theory.vtt
3.0 kB
11. Supervised Learning/15. Conclusions to Section 11.vtt
3.0 kB
3. Introduction to Numpy/10. Conclusion to Section 3.vtt
2.6 kB
10. Unsupervised Learning in Python/2. KMeans-theory.vtt
2.6 kB
10. Unsupervised Learning in Python/11. Conclusions to Section 10.vtt
2.5 kB
2. Introduction to Python Pre-Requisites for Data Science/5. Conclusions to Section 2.vtt
2.5 kB
11. Supervised Learning/8. SVM- Non Linear Classification.vtt
2.4 kB
4. Introduction to Pandas/7. Conclusion to Section 4.vtt
2.3 kB
6. Introduction to Data Visualizations/9. Conclusions to Section 6.vtt
2.3 kB
5. Data Pre-ProcessingWrangling/13. Conclusion to Section 5.vtt
2.3 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/10. Specify the Activation Function.vtt
2.2 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/12. Conclusions to Section 12.vtt
2.2 kB
8. Statistical Inference Relationship Between Variables/13. Conclusions to Section 8.vtt
2.1 kB
8. Statistical Inference Relationship Between Variables/8. Conditions of Linear Regression.vtt
1.9 kB
10. Unsupervised Learning in Python/1. Unsupervised Classification- Some Basic Ideas.vtt
1.9 kB
7. Statistical Data Analysis-Basic/13. Conclusions to Section 7.vtt
1.6 kB
7. Statistical Data Analysis-Basic/3. Some Pointers on Exploring Quantitative Data.html
517 Bytes
2. Introduction to Python Pre-Requisites for Data Science/1. Rationale Behind This Section.html
429 Bytes
4. Introduction to Pandas/2. Read in Data.html
246 Bytes
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/7. Start With Deep Neural Network (DNN).html
229 Bytes
11. Supervised Learning/16. Section 11 Quiz.html
163 Bytes
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/13. Section 12 Quiz.html
163 Bytes
3. Introduction to Numpy/11. Section 3 Quiz.html
163 Bytes
8. Statistical Inference Relationship Between Variables/14. Section 8 Quiz.html
163 Bytes
13. Miscellaneous Lectures Information/1. Data For This Section.html
137 Bytes
1. Introduction to the Data Science in Python Bootcamp/3. Data For the Course.html
98 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>