搜索
[FreeCourseSite.com] Udemy - Complete 2022 Data Science & Machine Learning Bootcamp
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Complete 2022 Data Science & Machine Learning Bootcamp
磁力链接/BT种子简介
种子哈希:
6c07de4db88f94a690998017789362b5165a8802
文件大小:
12.53G
已经下载:
1915
次
下载速度:
极快
收录时间:
2024-04-09
最近下载:
2025-01-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:6C07DE4DB88F94A690998017789362B5165A8802
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
购物商场网约韵味风骚美人妻给买件衣服换上后直接到卫生间里搞一炮无套内射
eden arya
字幕组++合集
小宝寻花 娃娃脸女神
高评分书
大张伟
神仙来了也要射
早乙女有須
candydoll合集
悠悠 留学生
秀人 模特
himi tsu
2020+10+19
[无碼]
妈妈丝
纽瓦克众圣
南方巨鹿
女猫+美丽的复仇者
百合屁股
수상한 그녀
2 torrent
一白一黑
bedtime stories
黑丝美腿姐姐
麻豆传媒蜜桃影像
偷拍+模特
appudo ippudo eppudo hindi
vol+84
salvage hunters s12
the god of cookery 1996
文件列表
04 - Introduction to Optimisation and the Gradient Descent Algorithm/007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4
240.6 MB
12 - Serving a Tensorflow Model through a Website/014 Calculating the Centre of Mass and Shifting the Image.mp4
220.7 MB
05 - Predict House Prices with Multivariable Linear Regression/031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4
210.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/012 Model Evaluation and the Confusion Matrix.mp4
202.6 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/009 Understanding the Learning Rate.mp4
199.4 MB
03 - Python Programming for Data Science and Machine Learning/008 [Python] - Module Imports.mp4
195.9 MB
12 - Serving a Tensorflow Model through a Website/007 Loading a Tensorflow.js Model and Starting your own Server.mp4
183.9 MB
05 - Predict House Prices with Multivariable Linear Regression/014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4
183.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/010 Use the Model to Make Predictions.mp4
182.3 MB
11 - Use Tensorflow to Classify Handwritten Digits/012 Different Model Architectures Experimenting with Dropout.mp4
182.3 MB
12 - Serving a Tensorflow Model through a Website/009 Styling an HTML Canvas.mp4
181.1 MB
12 - Serving a Tensorflow Model through a Website/010 Drawing on an HTML Canvas.mp4
167.0 MB
12 - Serving a Tensorflow Model through a Website/016 Adding the Game Logic.mp4
165.9 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4
159.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/010 How to Create 3-Dimensional Charts.mp4
159.4 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/006 Visualising the Decision Boundary.mp4
156.7 MB
12 - Serving a Tensorflow Model through a Website/013 Resizing and Adding Padding to Images.mp4
155.0 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/011 A Naive Bayes Implementation using SciKit Learn.mp4
152.8 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4
152.3 MB
03 - Python Programming for Data Science and Machine Learning/013 How to Make Sense of Python Documentation for Data Visualisation.mp4
144.8 MB
12 - Serving a Tensorflow Model through a Website/006 HTML and CSS Styling.mp4
143.4 MB
03 - Python Programming for Data Science and Machine Learning/014 Working with Python Objects to Analyse Data.mp4
142.0 MB
12 - Serving a Tensorflow Model through a Website/012 Introduction to OpenCV.mp4
139.7 MB
05 - Predict House Prices with Multivariable Linear Regression/027 Making Predictions (Part 1) MSE & R-Squared.mp4
132.7 MB
03 - Python Programming for Data Science and Machine Learning/012 [Python] - Objects - Understanding Attributes and Methods.mp4
131.4 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/002 Layers, Feature Generation and Learning.mp4
130.4 MB
05 - Predict House Prices with Multivariable Linear Regression/023 Model Simplification & Baysian Information Criterion.mp4
125.5 MB
11 - Use Tensorflow to Classify Handwritten Digits/006 Creating Tensors and Setting up the Neural Network Architecture.mp4
116.0 MB
05 - Predict House Prices with Multivariable Linear Regression/011 Visualising Correlations with a Heatmap.mp4
113.7 MB
05 - Predict House Prices with Multivariable Linear Regression/004 Clean and Explore the Data (Part 2) Find Missing Values.mp4
112.7 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/013 [Python] - Loops and Performance Considerations.mp4
111.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/028 Styling the Word Cloud with a Mask.mp4
111.1 MB
05 - Predict House Prices with Multivariable Linear Regression/022 Understanding VIF & Testing for Multicollinearity.mp4
110.5 MB
02 - Predict Movie Box Office Revenue with Linear Regression/003 Explore & Visualise the Data with Python.mp4
110.2 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/002 Create a Full Matrix.mp4
109.9 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/011 [Python] - Generator Functions & the yield Keyword.mp4
109.3 MB
05 - Predict House Prices with Multivariable Linear Regression/007 Working with Index Data, Pandas Series, and Dummy Variables.mp4
108.8 MB
12 - Serving a Tensorflow Model through a Website/002 Saving Tensorflow Models.mp4
108.7 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/006 Making Predictions using InceptionResNet.mp4
108.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/011 Understanding Partial Derivatives and How to use SymPy.mp4
107.7 MB
05 - Predict House Prices with Multivariable Linear Regression/029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4
107.6 MB
03 - Python Programming for Data Science and Machine Learning/007 [Python & Pandas] - Dataframes and Series.mp4
106.3 MB
03 - Python Programming for Data Science and Machine Learning/010 [Python] - Functions - Part 2 Arguments & Parameters.mp4
104.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/030 Styling Word Clouds with Custom Fonts.mp4
104.3 MB
05 - Predict House Prices with Multivariable Linear Regression/026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4
104.0 MB
11 - Use Tensorflow to Classify Handwritten Digits/009 Tensorboard Summaries and the Filewriter.mp4
103.5 MB
12 - Serving a Tensorflow Model through a Website/015 Making a Prediction from a Digit drawn on the HTML Canvas.mp4
103.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4
101.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/002 Gathering Email Data and Working with Archives & Text Editors.mp4
100.7 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/014 Reshaping and Slicing N-Dimensional Arrays.mp4
99.7 MB
12 - Serving a Tensorflow Model through a Website/004 Converting a Model to Tensorflow.js.mp4
98.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/006 [Python] - Loops and the Gradient Descent Algorithm.mp4
97.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/019 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4
97.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/035 Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4
96.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4
94.7 MB
05 - Predict House Prices with Multivariable Linear Regression/030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4
94.5 MB
11 - Use Tensorflow to Classify Handwritten Digits/010 Understanding the Tensorflow Graph Nodes and Edges.mp4
93.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/006 Joint & Conditional Probability.mp4
92.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/009 Reading Files (Part 2) Stream Objects and Email Structure.mp4
92.0 MB
11 - Use Tensorflow to Classify Handwritten Digits/013 Prediction and Model Evaluation.mp4
91.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/021 Removing HTML tags with BeautifulSoup.mp4
90.8 MB
12 - Serving a Tensorflow Model through a Website/003 Loading a SavedModel.mp4
89.2 MB
05 - Predict House Prices with Multivariable Linear Regression/012 Techniques to Style Scatter Plots.mp4
87.9 MB
05 - Predict House Prices with Multivariable Linear Regression/010 Calculating Correlations and the Problem posed by Multicollinearity.mp4
86.5 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/007 Coding Challenge Solution Using other Keras Models.mp4
86.0 MB
05 - Predict House Prices with Multivariable Linear Regression/025 Residual Analysis (Part 1) Predicted vs Actual Values.mp4
85.4 MB
05 - Predict House Prices with Multivariable Linear Regression/020 Improving the Model by Transforming the Data.mp4
85.4 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/004 Exploring the CIFAR Data.mp4
85.1 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/003 Costs and Disadvantages of Neural Networks.mp4
80.3 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4
80.3 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4
79.7 MB
02 - Predict Movie Box Office Revenue with Linear Regression/005 Analyse and Evaluate the Results.mp4
79.1 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/038 Checkpoint Understanding the Data.mp4
78.2 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/021 Running Gradient Descent with a MSE Cost Function.mp4
77.9 MB
11 - Use Tensorflow to Classify Handwritten Digits/008 TensorFlow Sessions and Batching Data.mp4
77.2 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/031 Create the Vocabulary for the Spam Classifier.mp4
73.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/016 Data Visualisation (Part 1) Pie Charts.mp4
73.5 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/004 Preprocessing Image Data and How RGB Works.mp4
72.6 MB
12 - Serving a Tensorflow Model through a Website/005 Introducing the Website Project and Tooling.mp4
72.1 MB
03 - Python Programming for Data Science and Machine Learning/015 [Python] - Tips, Code Style and Naming Conventions.mp4
70.4 MB
11 - Use Tensorflow to Classify Handwritten Digits/011 Name Scoping and Image Visualisation in Tensorboard.mp4
70.1 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/012 Implementing Batch Gradient Descent with SymPy.mp4
68.7 MB
05 - Predict House Prices with Multivariable Linear Regression/028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4
66.8 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/003 Count the Tokens to Train the Naive Bayes Model.mp4
66.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/005 Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4
64.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4
64.3 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/005 Understanding the Power Rule & Creating Charts with Subplots.mp4
62.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/034 Sparse Matrix (Part 1) Split the Training and Testing Data.mp4
60.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/017 Transposing and Reshaping Arrays.mp4
60.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/025 [Python] - Logical Operators to Create Subsets and Indices.mp4
60.2 MB
05 - Predict House Prices with Multivariable Linear Regression/003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4
59.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/024 Advanced Subsetting on DataFrames the apply() Function.mp4
57.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/018 Implementing a MSE Cost Function.mp4
57.2 MB
03 - Python Programming for Data Science and Machine Learning/011 [Python] - Functions - Part 3 Results & Return Values.mp4
56.8 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/001 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4
56.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/007 Bayes Theorem.mp4
53.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/026 Word Clouds & How to install Additional Python Packages.mp4
52.5 MB
11 - Use Tensorflow to Classify Handwritten Digits/007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4
52.0 MB
11 - Use Tensorflow to Classify Handwritten Digits/004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4
51.7 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/005 Importing Keras Models and the Tensorflow Graph.mp4
51.6 MB
05 - Predict House Prices with Multivariable Linear Regression/021 How to Interpret Coefficients using p-Values and Statistical Significance.mp4
51.4 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/019 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4
51.3 MB
05 - Predict House Prices with Multivariable Linear Regression/002 Gathering the Boston House Price Data.mp4
49.9 MB
03 - Python Programming for Data Science and Machine Learning/005 [Python] - Variables and Types.mp4
49.9 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/002 Joint Conditional Probability (Part 1) Dot Product.mp4
49.3 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/004 LaTeX Markdown and Generating Data with Numpy.mp4
49.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/029 Solving the Hamlet Challenge.mp4
49.1 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/020 Word Stemming & Removing Punctuation.mp4
48.9 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/014 Cleaning Data (Part 2) Working with a DataFrame Index.mp4
48.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/003 Joint Conditional Probablity (Part 2) Priors.mp4
48.0 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/007 Interacting with the Operating System and the Python Try-Catch Block.mp4
48.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/027 Creating your First Word Cloud.mp4
47.8 MB
05 - Predict House Prices with Multivariable Linear Regression/016 How to Shuffle and Split Training & Testing Data.mp4
47.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/015 Saving a JSON File with Pandas.mp4
45.5 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/016 Introduction to the Mean Squared Error (MSE).mp4
45.3 MB
05 - Predict House Prices with Multivariable Linear Regression/005 Visualising Data (Part 1) Historams, Distributions & Outliers.mp4
44.7 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/007 False Positive vs False Negatives.mp4
43.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/033 Coding Challenge Find the Longest Email.mp4
43.1 MB
05 - Predict House Prices with Multivariable Linear Regression/008 Understanding Descriptive Statistics the Mean vs the Median.mp4
43.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/017 Data Visualisation (Part 2) Donut Charts.mp4
42.9 MB
02 - Predict Movie Box Office Revenue with Linear Regression/002 Gather & Clean the Data.mp4
42.8 MB
01 - Introduction to the Course/001 What is Machine Learning.mp4
42.3 MB
05 - Predict House Prices with Multivariable Linear Regression/017 Running a Multivariable Regression.mp4
42.2 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/011 Model Evaluation and the Confusion Matrix.mp4
42.0 MB
01 - Introduction to the Course/002 What is Data Science.mp4
41.8 MB
11 - Use Tensorflow to Classify Handwritten Digits/002 Getting the Data and Loading it into Numpy Arrays.mp4
41.6 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/008 Reading Files (Part 1) Absolute Paths and Relative Paths.mp4
41.5 MB
03 - Python Programming for Data Science and Machine Learning/002 Mac Users - Install Anaconda.mp4
41.0 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/003 Introduction to Cost Functions.mp4
40.9 MB
11 - Use Tensorflow to Classify Handwritten Digits/005 What is a Tensor.mp4
39.7 MB
05 - Predict House Prices with Multivariable Linear Regression/006 Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4
39.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/018 Introduction to Natural Language Processing (NLP).mp4
39.3 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/012 Create a Pandas DataFrame of Email Bodies.mp4
39.2 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/004 Making Predictions Comparing Joint Probabilities.mp4
38.9 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/022 Visualising the Optimisation on a 3D Surface.mp4
37.3 MB
12 - Serving a Tensorflow Model through a Website/001 What you'll make.mp4
37.2 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/005 Calculate the Token Probabilities and Save the Trained Model.mp4
37.0 MB
03 - Python Programming for Data Science and Machine Learning/006 [Python] - Lists and Arrays.mp4
36.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/009 The Precision Metric.mp4
36.1 MB
12 - Serving a Tensorflow Model through a Website/017 Publish and Share your Website!.mp4
34.9 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/001 The Human Brain and the Inspiration for Artificial Neural Networks.mp4
34.3 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/015 Concatenating Numpy Arrays.mp4
34.1 MB
03 - Python Programming for Data Science and Machine Learning/001 Windows Users - Install Anaconda.mp4
33.7 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/002 Installing Tensorflow and Keras for Jupyter.mp4
33.5 MB
05 - Predict House Prices with Multivariable Linear Regression/015 Understanding Multivariable Regression.mp4
33.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/001 How to Translate a Business Problem into a Machine Learning Problem.mp4
32.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/010 Extracting the Text in the Email Body.mp4
32.0 MB
05 - Predict House Prices with Multivariable Linear Regression/001 Defining the Problem.mp4
31.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4
30.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/005 The Accuracy Metric.mp4
30.1 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/006 Coding Challenge Prepare the Test Data.mp4
30.0 MB
05 - Predict House Prices with Multivariable Linear Regression/024 How to Analyse and Plot Regression Residuals.mp4
29.4 MB
03 - Python Programming for Data Science and Machine Learning/009 [Python] - Functions - Part 1 Defining and Calling Functions.mp4
28.7 MB
02 - Predict Movie Box Office Revenue with Linear Regression/001 Introduction to Linear Regression & Specifying the Problem.mp4
27.8 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/022 Creating a Function for Text Processing.mp4
27.6 MB
12 - Serving a Tensorflow Model through a Website/011 Data Pre-Processing for Tensorflow.js.mp4
26.8 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/004 Sum the Tokens across the Spam and Ham Subsets.mp4
25.6 MB
12 - Serving a Tensorflow Model through a Website/008 Adding a Favicon.mp4
25.5 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/18190700-SpamData.zip
23.9 MB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/18190704-SpamData.zip
23.4 MB
05 - Predict House Prices with Multivariable Linear Regression/018 How to Calculate the Model Fit with R-Squared.mp4
22.5 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/18190724-SpamData.zip
22.3 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/003 Gathering the CIFAR 10 Dataset.mp4
21.6 MB
11 - Use Tensorflow to Classify Handwritten Digits/003 Data Exploration and Understanding the Structure of the Input Data.mp4
21.6 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/001 Set up the Testing Notebook.mp4
20.9 MB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/001 Solving a Business Problem with Image Classification.mp4
20.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/003 How to Add the Lesson Resources to the Project.mp4
19.9 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/037 Coding Challenge Solution Preparing the Test Data.mp4
19.8 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/008 The Recall Metric.mp4
19.3 MB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/010 The F-score or F1 Metric.mp4
17.3 MB
03 - Python Programming for Data Science and Machine Learning/003 Does LSD Make You Better at Maths.mp4
16.4 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/032 Coding Challenge Check for Membership in a Collection.mp4
15.6 MB
11 - Use Tensorflow to Classify Handwritten Digits/18194656-MNIST.zip
15.5 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/001 What's Coming Up.mp4
13.5 MB
05 - Predict House Prices with Multivariable Linear Regression/009 Introduction to Correlation Understanding Strength & Direction.mp4
13.5 MB
02 - Predict Movie Box Office Revenue with Linear Regression/004 The Intuition behind the Linear Regression Model.mp4
13.5 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/002 How a Machine Learns.mp4
11.0 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/005 Basic Probability.mp4
9.9 MB
05 - Predict House Prices with Multivariable Linear Regression/019 Introduction to Model Evaluation.mp4
7.7 MB
11 - Use Tensorflow to Classify Handwritten Digits/001 What's coming up.mp4
5.5 MB
12 - Serving a Tensorflow Model through a Website/21028926-math-garden-stub-complete.zip
4.3 MB
12 - Serving a Tensorflow Model through a Website/21028932-math-garden-stub-12.12-checkpoint.zip
4.3 MB
05 - Predict House Prices with Multivariable Linear Regression/18179918-04-Multivariable-Regression.ipynb.zip
3.7 MB
12 - Serving a Tensorflow Model through a Website/21028876-MNIST-Model-Load-Files.zip
3.0 MB
03 - Python Programming for Data Science and Machine Learning/18204473-12-Rules-to-Learn-to-Code.pdf
2.4 MB
12 - Serving a Tensorflow Model through a Website/21028894-TFJS.zip
1.6 MB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/18179908-03-Gradient-Descent.ipynb.zip
1.2 MB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/18179924-06-Bayes-Classifier-Pre-Processing.ipynb.zip
1.0 MB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/18180490-09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip
585.6 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/18188466-TF-Keras-Classification-Images.zip
513.1 kB
02 - Predict Movie Box Office Revenue with Linear Regression/9246634-cost-revenue-dirty.csv
383.7 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/18180294-07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip
248.9 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/18187728-10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip
123.0 kB
01 - Introduction to the Course/18162714-ML-Data-Science-Syllabus.pdf
106.5 kB
02 - Predict Movie Box Office Revenue with Linear Regression/9249290-cost-revenue-clean.csv
93.0 kB
02 - Predict Movie Box Office Revenue with Linear Regression/18175146-01-Linear-Regression-complete.ipynb.zip
77.1 kB
12 - Serving a Tensorflow Model through a Website/21028914-math-garden-stub.zip
45.1 kB
02 - Predict Movie Box Office Revenue with Linear Regression/18175084-01-Linear-Regression-checkpoint.ipynb.zip
38.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/006 [Python] - Loops and the Gradient Descent Algorithm_en.vtt
38.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1)_en.vtt
38.1 kB
03 - Python Programming for Data Science and Machine Learning/18179882-02-Python-Intro.ipynb.zip
37.3 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/012 Model Evaluation and the Confusion Matrix_en.vtt
36.3 kB
12 - Serving a Tensorflow Model through a Website/009 Styling an HTML Canvas_en.vtt
36.2 kB
12 - Serving a Tensorflow Model through a Website/012 Introduction to OpenCV_en.vtt
35.3 kB
12 - Serving a Tensorflow Model through a Website/006 HTML and CSS Styling_en.vtt
34.7 kB
12 - Serving a Tensorflow Model through a Website/007 Loading a Tensorflow.js Model and Starting your own Server_en.vtt
34.5 kB
12 - Serving a Tensorflow Model through a Website/016 Adding the Game Logic_en.vtt
34.4 kB
12 - Serving a Tensorflow Model through a Website/010 Drawing on an HTML Canvas_en.vtt
34.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/009 Understanding the Learning Rate_en.vtt
33.3 kB
12 - Serving a Tensorflow Model through a Website/014 Calculating the Centre of Mass and Shifting the Image_en.vtt
32.9 kB
03 - Python Programming for Data Science and Machine Learning/008 [Python] - Module Imports_en.vtt
32.2 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/006 Visualising the Decision Boundary_en.vtt
31.0 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/010 Use the Model to Make Predictions_en.vtt
30.9 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/011 A Naive Bayes Implementation using SciKit Learn_en.vtt
30.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2)_en.vtt
29.7 kB
11 - Use Tensorflow to Classify Handwritten Digits/012 Different Model Architectures Experimenting with Dropout_en.vtt
27.7 kB
02 - Predict Movie Box Office Revenue with Linear Regression/003 Explore & Visualise the Data with Python_en.vtt
27.6 kB
11 - Use Tensorflow to Classify Handwritten Digits/006 Creating Tensors and Setting up the Neural Network Architecture_en.vtt
26.8 kB
03 - Python Programming for Data Science and Machine Learning/012 [Python] - Objects - Understanding Attributes and Methods_en.vtt
26.5 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques_en.vtt
25.7 kB
05 - Predict House Prices with Multivariable Linear Regression/014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques_en.vtt
25.6 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/002 Layers, Feature Generation and Learning_en.vtt
25.2 kB
05 - Predict House Prices with Multivariable Linear Regression/031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module_en.vtt
25.1 kB
03 - Python Programming for Data Science and Machine Learning/007 [Python & Pandas] - Dataframes and Series_en.vtt
25.0 kB
12 - Serving a Tensorflow Model through a Website/013 Resizing and Adding Padding to Images_en.vtt
24.8 kB
11 - Use Tensorflow to Classify Handwritten Digits/011 Name Scoping and Image Visualisation in Tensorboard_en.vtt
24.4 kB
03 - Python Programming for Data Science and Machine Learning/014 Working with Python Objects to Analyse Data_en.vtt
24.1 kB
12 - Serving a Tensorflow Model through a Website/003 Loading a SavedModel_en.vtt
23.7 kB
03 - Python Programming for Data Science and Machine Learning/013 How to Make Sense of Python Documentation for Data Visualisation_en.vtt
23.6 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/010 How to Create 3-Dimensional Charts_en.vtt
23.1 kB
05 - Predict House Prices with Multivariable Linear Regression/022 Understanding VIF & Testing for Multicollinearity_en.vtt
22.8 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/007 Interacting with the Operating System and the Python Try-Catch Block_en.vtt
22.0 kB
11 - Use Tensorflow to Classify Handwritten Digits/009 Tensorboard Summaries and the Filewriter_en.vtt
21.8 kB
05 - Predict House Prices with Multivariable Linear Regression/011 Visualising Correlations with a Heatmap_en.vtt
21.7 kB
05 - Predict House Prices with Multivariable Linear Regression/027 Making Predictions (Part 1) MSE & R-Squared_en.vtt
21.0 kB
05 - Predict House Prices with Multivariable Linear Regression/023 Model Simplification & Baysian Information Criterion_en.vtt
20.7 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/014 Reshaping and Slicing N-Dimensional Arrays_en.vtt
20.4 kB
05 - Predict House Prices with Multivariable Linear Regression/026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals_en.vtt
20.2 kB
02 - Predict Movie Box Office Revenue with Linear Regression/005 Analyse and Evaluate the Results_en.vtt
20.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/011 [Python] - Generator Functions & the yield Keyword_en.vtt
19.9 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/035 Sparse Matrix (Part 2) Data Munging with Nested Loops_en.vtt
19.9 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/021 Running Gradient Descent with a MSE Cost Function_en.vtt
19.7 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/002 Create a Full Matrix_en.vtt
19.6 kB
12 - Serving a Tensorflow Model through a Website/002 Saving Tensorflow Models_en.vtt
19.5 kB
12 - Serving a Tensorflow Model through a Website/004 Converting a Model to Tensorflow.js_en.vtt
19.2 kB
05 - Predict House Prices with Multivariable Linear Regression/020 Improving the Model by Transforming the Data_en.vtt
19.2 kB
11 - Use Tensorflow to Classify Handwritten Digits/010 Understanding the Tensorflow Graph Nodes and Edges_en.vtt
19.0 kB
05 - Predict House Prices with Multivariable Linear Regression/030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2)_en.vtt
18.9 kB
11 - Use Tensorflow to Classify Handwritten Digits/008 TensorFlow Sessions and Batching Data_en.vtt
18.7 kB
03 - Python Programming for Data Science and Machine Learning/010 [Python] - Functions - Part 2 Arguments & Parameters_en.vtt
18.6 kB
05 - Predict House Prices with Multivariable Linear Regression/012 Techniques to Style Scatter Plots_en.vtt
18.5 kB
05 - Predict House Prices with Multivariable Linear Regression/007 Working with Index Data, Pandas Series, and Dummy Variables_en.vtt
18.4 kB
05 - Predict House Prices with Multivariable Linear Regression/029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays_en.vtt
18.3 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/005 Pre-processing Scaling Inputs and Creating a Validation Dataset_en.vtt
18.2 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/011 Understanding Partial Derivatives and How to use SymPy_en.vtt
18.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/006 Joint & Conditional Probability_en.vtt
17.7 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/006 Making Predictions using InceptionResNet_en.vtt
17.5 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/003 Costs and Disadvantages of Neural Networks_en.vtt
17.4 kB
11 - Use Tensorflow to Classify Handwritten Digits/013 Prediction and Model Evaluation_en.vtt
17.2 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function_en.vtt
17.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/019 Tokenizing, Removing Stop Words and the Python Set Data Structure_en.vtt
17.0 kB
05 - Predict House Prices with Multivariable Linear Regression/004 Clean and Explore the Data (Part 2) Find Missing Values_en.vtt
16.7 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/003 Count the Tokens to Train the Naive Bayes Model_en.vtt
16.6 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/004 Exploring the CIFAR Data_en.vtt
16.5 kB
05 - Predict House Prices with Multivariable Linear Regression/025 Residual Analysis (Part 1) Predicted vs Actual Values_en.vtt
16.1 kB
12 - Serving a Tensorflow Model through a Website/005 Introducing the Website Project and Tooling_en.vtt
16.1 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/013 [Python] - Loops and Performance Considerations_en.vtt
16.1 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/005 Understanding the Power Rule & Creating Charts with Subplots_en.vtt
16.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries_en.vtt
15.9 kB
05 - Predict House Prices with Multivariable Linear Regression/010 Calculating Correlations and the Problem posed by Multicollinearity_en.vtt
15.9 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/031 Create the Vocabulary for the Spam Classifier_en.vtt
15.8 kB
12 - Serving a Tensorflow Model through a Website/015 Making a Prediction from a Digit drawn on the HTML Canvas_en.vtt
15.7 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2)_en.vtt
15.3 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/004 LaTeX Markdown and Generating Data with Numpy_en.vtt
15.2 kB
03 - Python Programming for Data Science and Machine Learning/015 [Python] - Tips, Code Style and Naming Conventions_en.vtt
15.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/028 Styling the Word Cloud with a Mask_en.vtt
14.8 kB
03 - Python Programming for Data Science and Machine Learning/005 [Python] - Variables and Types_en.vtt
14.8 kB
03 - Python Programming for Data Science and Machine Learning/011 [Python] - Functions - Part 3 Results & Return Values_en.vtt
14.8 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/004 Preprocessing Image Data and How RGB Works_en.vtt
14.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/016 Data Visualisation (Part 1) Pie Charts_en.vtt
14.4 kB
05 - Predict House Prices with Multivariable Linear Regression/003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset_en.vtt
14.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/025 [Python] - Logical Operators to Create Subsets and Indices_en.vtt
13.7 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/18180296-08-Naive-Bayes-with-scikit-learn.ipynb.zip
13.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/007 Bayes Theorem_en.vtt
13.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/034 Sparse Matrix (Part 1) Split the Training and Testing Data_en.vtt
13.5 kB
05 - Predict House Prices with Multivariable Linear Regression/028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals_en.vtt
13.2 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/030 Styling Word Clouds with Custom Fonts_en.vtt
13.2 kB
05 - Predict House Prices with Multivariable Linear Regression/024 How to Analyse and Plot Regression Residuals_en.vtt
13.2 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems_en.vtt
13.1 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/009 Reading Files (Part 2) Stream Objects and Email Structure_en.vtt
13.1 kB
11 - Use Tensorflow to Classify Handwritten Digits/007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics_en.vtt
13.0 kB
05 - Predict House Prices with Multivariable Linear Regression/005 Visualising Data (Part 1) Historams, Distributions & Outliers_en.vtt
12.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/002 Gathering Email Data and Working with Archives & Text Editors_en.vtt
12.6 kB
02 - Predict Movie Box Office Revenue with Linear Regression/002 Gather & Clean the Data_en.vtt
12.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/019 Understanding Nested Loops and Plotting the MSE Function (Part 1)_en.vtt
12.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/027 Creating your First Word Cloud_en.vtt
12.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/038 Checkpoint Understanding the Data_en.vtt
12.2 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/007 Coding Challenge Solution Using other Keras Models_en.vtt
12.1 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/024 Advanced Subsetting on DataFrames the apply() Function_en.vtt
12.1 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/018 Implementing a MSE Cost Function_en.vtt
12.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/017 Transposing and Reshaping Arrays_en.vtt
12.0 kB
11 - Use Tensorflow to Classify Handwritten Digits/004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset_en.vtt
11.8 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/007 False Positive vs False Negatives_en.vtt
11.7 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/012 Implementing Batch Gradient Descent with SymPy_en.vtt
11.5 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/002 Joint Conditional Probability (Part 1) Dot Product_en.vtt
11.3 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/016 Introduction to the Mean Squared Error (MSE)_en.vtt
11.3 kB
12 - Serving a Tensorflow Model through a Website/011 Data Pre-Processing for Tensorflow.js_en.vtt
11.0 kB
05 - Predict House Prices with Multivariable Linear Regression/008 Understanding Descriptive Statistics the Mean vs the Median_en.vtt
10.9 kB
03 - Python Programming for Data Science and Machine Learning/006 [Python] - Lists and Arrays_en.vtt
10.8 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/026 Word Clouds & How to install Additional Python Packages_en.vtt
10.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files_en.vtt
10.7 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/005 Importing Keras Models and the Tensorflow Graph_en.vtt
10.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/008 Reading Files (Part 1) Absolute Paths and Relative Paths_en.vtt
10.5 kB
05 - Predict House Prices with Multivariable Linear Regression/016 How to Shuffle and Split Training & Testing Data_en.vtt
10.2 kB
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/001 The Human Brain and the Inspiration for Artificial Neural Networks_en.vtt
10.2 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/001 Setting up the Notebook and Understanding Delimiters in a Dataset_en.vtt
10.0 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/021 Removing HTML tags with BeautifulSoup_en.vtt
10.0 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/011 Model Evaluation and the Confusion Matrix_en.vtt
9.8 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/003 Joint Conditional Probablity (Part 2) Priors_en.vtt
9.8 kB
05 - Predict House Prices with Multivariable Linear Regression/021 How to Interpret Coefficients using p-Values and Statistical Significance_en.vtt
9.7 kB
02 - Predict Movie Box Office Revenue with Linear Regression/004 The Intuition behind the Linear Regression Model_en.vtt
9.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/020 Word Stemming & Removing Punctuation_en.vtt
9.6 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/022 Visualising the Optimisation on a 3D Surface_en.vtt
9.6 kB
03 - Python Programming for Data Science and Machine Learning/009 [Python] - Functions - Part 1 Defining and Calling Functions_en.vtt
9.4 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/004 Making Predictions Comparing Joint Probabilities_en.vtt
9.0 kB
12 - Serving a Tensorflow Model through a Website/001 What you'll make_en.vtt
8.9 kB
05 - Predict House Prices with Multivariable Linear Regression/017 Running a Multivariable Regression_en.vtt
8.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/001 How to Translate a Business Problem into a Machine Learning Problem_en.vtt
8.7 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/009 The Precision Metric_en.vtt
8.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/017 Data Visualisation (Part 2) Donut Charts_en.vtt
8.5 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/005 Calculate the Token Probabilities and Save the Trained Model_en.vtt
8.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/003 Introduction to Cost Functions_en.vtt
8.4 kB
12 - Serving a Tensorflow Model through a Website/017 Publish and Share your Website!_en.vtt
8.4 kB
11 - Use Tensorflow to Classify Handwritten Digits/002 Getting the Data and Loading it into Numpy Arrays_en.vtt
8.4 kB
11 - Use Tensorflow to Classify Handwritten Digits/005 What is a Tensor_en.vtt
8.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/014 Cleaning Data (Part 2) Working with a DataFrame Index_en.vtt
8.1 kB
05 - Predict House Prices with Multivariable Linear Regression/006 Visualising Data (Part 2) Seaborn and Probability Density Functions_en.vtt
8.0 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/015 Concatenating Numpy Arrays_en.vtt
8.0 kB
03 - Python Programming for Data Science and Machine Learning/001 Windows Users - Install Anaconda_en.vtt
7.9 kB
02 - Predict Movie Box Office Revenue with Linear Regression/001 Introduction to Linear Regression & Specifying the Problem_en.vtt
7.8 kB
05 - Predict House Prices with Multivariable Linear Regression/002 Gathering the Boston House Price Data_en.vtt
7.7 kB
05 - Predict House Prices with Multivariable Linear Regression/009 Introduction to Correlation Understanding Strength & Direction_en.vtt
7.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/018 Introduction to Natural Language Processing (NLP)_en.vtt
7.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/022 Creating a Function for Text Processing_en.vtt
7.4 kB
03 - Python Programming for Data Science and Machine Learning/002 Mac Users - Install Anaconda_en.vtt
7.2 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/004 Sum the Tokens across the Spam and Ham Subsets_en.vtt
7.1 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/005 The Accuracy Metric_en.vtt
6.8 kB
11 - Use Tensorflow to Classify Handwritten Digits/18187740-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
6.8 kB
05 - Predict House Prices with Multivariable Linear Regression/015 Understanding Multivariable Regression_en.vtt
6.7 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/033 Coding Challenge Find the Longest Email_en.vtt
6.7 kB
12 - Serving a Tensorflow Model through a Website/008 Adding a Favicon_en.vtt
6.7 kB
03 - Python Programming for Data Science and Machine Learning/003 Does LSD Make You Better at Maths_en.vtt
6.6 kB
12 - Serving a Tensorflow Model through a Website/21028850-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
6.5 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/002 How a Machine Learns_en.vtt
6.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/012 Create a Pandas DataFrame of Email Bodies_en.vtt
6.4 kB
12 - Serving a Tensorflow Model through a Website/21028968-12-TF-SavedModel-Export-Completed.ipynb.zip
6.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/015 Saving a JSON File with Pandas_en.vtt
6.2 kB
01 - Introduction to the Course/001 What is Machine Learning_en.vtt
6.2 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/002 Installing Tensorflow and Keras for Jupyter_en.vtt
6.0 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/18180042-07-Bayes-Classifier-Training.ipynb.zip
6.0 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/008 The Recall Metric_en.vtt
5.9 kB
11 - Use Tensorflow to Classify Handwritten Digits/003 Data Exploration and Understanding the Structure of the Input Data_en.vtt
5.9 kB
05 - Predict House Prices with Multivariable Linear Regression/001 Defining the Problem_en.vtt
5.7 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/003 Gathering the CIFAR 10 Dataset_en.vtt
5.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier_en.vtt
5.5 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/032 Coding Challenge Check for Membership in a Collection_en.vtt
5.4 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/029 Solving the Hamlet Challenge_en.vtt
5.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/010 Extracting the Text in the Email Body_en.vtt
5.3 kB
01 - Introduction to the Course/002 What is Data Science_en.vtt
5.2 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/005 Basic Probability_en.vtt
4.7 kB
12 - Serving a Tensorflow Model through a Website/21028978-x-test0-ylabel7.txt
4.7 kB
12 - Serving a Tensorflow Model through a Website/21028982-x-test1-ylabel2.txt
4.7 kB
12 - Serving a Tensorflow Model through a Website/21028988-x-test2-ylabel1.txt
4.7 kB
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/006 Coding Challenge Prepare the Test Data_en.vtt
4.7 kB
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/001 Solving a Business Problem with Image Classification_en.vtt
4.6 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/010 The F-score or F1 Metric_en.vtt
4.6 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/003 How to Add the Lesson Resources to the Project_en.vtt
4.3 kB
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/037 Coding Challenge Solution Preparing the Test Data_en.vtt
4.0 kB
13 - Next Steps/001 Where next.html
4.0 kB
05 - Predict House Prices with Multivariable Linear Regression/018 How to Calculate the Model Fit with R-Squared_en.vtt
3.9 kB
04 - Introduction to Optimisation and the Gradient Descent Algorithm/001 What's Coming Up_en.vtt
3.4 kB
08 - Test and Evaluate a Naive Bayes Classifier Part 3/001 Set up the Testing Notebook_en.vtt
3.4 kB
05 - Predict House Prices with Multivariable Linear Regression/019 Introduction to Model Evaluation_en.vtt
3.4 kB
05 - Predict House Prices with Multivariable Linear Regression/18905386-boston-valuation.py
3.1 kB
05 - Predict House Prices with Multivariable Linear Regression/18179928-04-Valuation-Tool.ipynb.zip
3.0 kB
11 - Use Tensorflow to Classify Handwritten Digits/001 What's coming up_en.vtt
2.4 kB
01 - Introduction to the Course/004 Top Tips for Succeeding on this Course.html
2.1 kB
03 - Python Programming for Data Science and Machine Learning/004 Download the 12 Rules to Learn to Code.html
1.1 kB
01 - Introduction to the Course/005 Course Resources List.html
1.1 kB
13 - Next Steps/003 Stay in Touch!.html
1.1 kB
01 - Introduction to the Course/003 Download the Syllabus.html
994 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/007 Join the Student Community.html
715 Bytes
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/008 Any Feedback on this Section.html
527 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/009 Any Feedback on this Section.html
526 Bytes
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/014 Any Feedback on this Section.html
521 Bytes
04 - Introduction to Optimisation and the Gradient Descent Algorithm/024 Any Feedback on this Section.html
520 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/040 Any Feedback on this Section.html
519 Bytes
03 - Python Programming for Data Science and Machine Learning/017 Any Feedback on this Section.html
513 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/008 Any Feedback on this Section.html
512 Bytes
05 - Predict House Prices with Multivariable Linear Regression/033 Any Feedback on this Section.html
512 Bytes
08 - Test and Evaluate a Naive Bayes Classifier Part 3/013 Any Feedback on this Section.html
509 Bytes
12 - Serving a Tensorflow Model through a Website/018 Any Feedback on this Section.html
500 Bytes
11 - Use Tensorflow to Classify Handwritten Digits/015 Any Feedback on this Section.html
499 Bytes
05 - Predict House Prices with Multivariable Linear Regression/013 A Note for the Next Lesson.html
476 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/023 A Note for the Next Lesson.html
476 Bytes
13 - Next Steps/002 What Modules Do You Want to See.html
431 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/008 Download the Complete Notebook Here.html
264 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/006 Download the Complete Notebook Here.html
242 Bytes
03 - Python Programming for Data Science and Machine Learning/016 Download the Complete Notebook Here.html
242 Bytes
04 - Introduction to Optimisation and the Gradient Descent Algorithm/023 Download the Complete Notebook Here.html
242 Bytes
05 - Predict House Prices with Multivariable Linear Regression/032 Download the Complete Notebook Here.html
242 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/039 Download the Complete Notebook Here.html
242 Bytes
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/007 Download the Complete Notebook Here.html
242 Bytes
08 - Test and Evaluate a Naive Bayes Classifier Part 3/012 Download the Complete Notebook Here.html
242 Bytes
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/013 Download the Complete Notebook Here.html
242 Bytes
11 - Use Tensorflow to Classify Handwritten Digits/014 Download the Complete Notebook Here.html
242 Bytes
02 - Predict Movie Box Office Revenue with Linear Regression/external-assets-links.txt
212 Bytes
03 - Python Programming for Data Science and Machine Learning/18877814-lsd-math-score-data.csv
155 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/0. Websites you may like/[CourseClub.Me].url
122 Bytes
01 - Introduction to the Course/external-assets-links.txt
120 Bytes
03 - Python Programming for Data Science and Machine Learning/external-assets-links.txt
83 Bytes
04 - Introduction to Optimisation and the Gradient Descent Algorithm/external-assets-links.txt
83 Bytes
05 - Predict House Prices with Multivariable Linear Regression/external-assets-links.txt
83 Bytes
06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/external-assets-links.txt
83 Bytes
07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/external-assets-links.txt
83 Bytes
08 - Test and Evaluate a Naive Bayes Classifier Part 3/external-assets-links.txt
83 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/external-assets-links.txt
83 Bytes
10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/external-assets-links.txt
83 Bytes
11 - Use Tensorflow to Classify Handwritten Digits/external-assets-links.txt
83 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
09 - Introduction to Neural Networks and How to Use Pre-Trained Models/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>