搜索
[FreeTutorials.Eu] [UDEMY] Feature Selection for Machine Learning - [FTU]
磁力链接/BT种子名称
[FreeTutorials.Eu] [UDEMY] Feature Selection for Machine Learning - [FTU]
磁力链接/BT种子简介
种子哈希:
722b3338485097ff62f7925c2f6484415b2837c9
文件大小:
397.11M
已经下载:
1185
次
下载速度:
极快
收录时间:
2018-11-26
最近下载:
2024-12-10
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:722B3338485097FF62F7925C2F6484415B2837C9
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
妇女杀手
filmora
hongkong
suzizusi
耻辱诊察室
写真莉莉
良家直播
删人
rsa-013
都市伝説
咸
srr-018
光溪
grobschnitt
东南亚
underages
npjs-036
黑暗侵袭projekt
一条肌肉狗 bbw
miab-364
猫战
isabella nice orgasm control
hogtied
ballistics calculator
吸奶器+电极棒弄出水
自摸秀
孟子义
搭讪咖啡
kaththi 2014
anata
文件列表
01 Introduction/001 Introduction-en.srt
5.6 kB
01 Introduction/001 Introduction.mp4
4.8 MB
01 Introduction/002 Course Curriculum Overview-en.srt
5.0 kB
01 Introduction/002 Course Curriculum Overview.mp4
4.3 MB
01 Introduction/003 Course requirements-en.srt
4.5 kB
01 Introduction/003 Course requirements.mp4
6.7 MB
01 Introduction/004 Additional Requirements Nice to have.html
1.5 kB
01 Introduction/005 How to approach this course.html
2.4 kB
01 Introduction/006 Guide to setting up your computer.html
4.2 kB
01 Introduction/007 Installing XGBoost in windows.html
3.0 kB
01 Introduction/008 Feature-selection-presentations.zip
6.3 MB
01 Introduction/008 Presentations covered in this course.html
994 Bytes
01 Introduction/009 Feature-selection-notebooks.zip
937.1 kB
01 Introduction/009 Jupyter notebooks covered in this course.html
994 Bytes
01 Introduction/010 FAQ Data Science and Python programming.html
1.9 kB
02 Feature Selection/011 What is feature selection-en.srt
7.6 kB
02 Feature Selection/011 What is feature selection.mp4
8.2 MB
02 Feature Selection/012 Feature selection methods Overview-en.srt
7.5 kB
02 Feature Selection/012 Feature selection methods Overview.mp4
16.3 MB
02 Feature Selection/013 Filter Methods-en.srt
4.0 kB
02 Feature Selection/013 Filter Methods.mp4
5.1 MB
02 Feature Selection/014 Wrapper methods-en.srt
6.5 kB
02 Feature Selection/014 Wrapper methods.mp4
7.7 MB
02 Feature Selection/015 Embedded Methods-en.srt
5.1 kB
02 Feature Selection/015 Embedded Methods.mp4
10.0 MB
03 Filter Methods Basics/016 Constant quasi constant and duplicated features Intro-en.srt
5.1 kB
03 Filter Methods Basics/016 Constant quasi constant and duplicated features Intro.mp4
9.3 MB
03 Filter Methods Basics/017 Constant features-en.srt
13.1 kB
03 Filter Methods Basics/017 Constant features.mp4
15.2 MB
03 Filter Methods Basics/018 Quasi-constant features-en.srt
12.8 kB
03 Filter Methods Basics/018 Quasi-constant features.mp4
16.1 MB
03 Filter Methods Basics/019 Duplicated features-en.srt
8.8 kB
03 Filter Methods Basics/019 Duplicated features.mp4
21.7 MB
03 Filter Methods Basics/020 Basic methods review.html
4.7 kB
04 Filter methods Correlation/021 Correlation Intro-en.srt
6.8 kB
04 Filter methods Correlation/021 Correlation Intro.mp4
14.6 MB
04 Filter methods Correlation/022 Correlation-en.srt
19.1 kB
04 Filter methods Correlation/022 Correlation.mp4
25.6 MB
04 Filter methods Correlation/023 Basic methods plus Correlation pipeline.html
11.4 kB
05 Filter methods Statistical measures/024 Statistical methods Intro-en.srt
15.8 kB
05 Filter methods Statistical measures/024 Statistical methods Intro.mp4
17.4 MB
05 Filter methods Statistical measures/025 Mutual information-en.srt
10.2 kB
05 Filter methods Statistical measures/025 Mutual information.mp4
14.7 MB
05 Filter methods Statistical measures/026 Chi-square for categorical variables Fisher score-en.srt
5.7 kB
05 Filter methods Statistical measures/026 Chi-square for categorical variables Fisher score.mp4
7.6 MB
05 Filter methods Statistical measures/027 Univariate approaches-en.srt
12.5 kB
05 Filter methods Statistical measures/027 Univariate approaches.mp4
17.2 MB
05 Filter methods Statistical measures/028 Univariate ROC-AUC-en.srt
9.0 kB
05 Filter methods Statistical measures/028 Univariate ROC-AUC.mp4
11.4 MB
05 Filter methods Statistical measures/029 Basic methods Correlation univariate ROC-AUC pipeline.html
14.4 kB
05 Filter methods Statistical measures/030 BONUS select features by mean encoding KDD 2009.html
19.7 kB
06 Wrapper methods/031 Wrapper methods Intro-en.srt
8.6 kB
06 Wrapper methods/031 Wrapper methods Intro.mp4
16.3 MB
06 Wrapper methods/032 Step forward feature selection-en.srt
14.8 kB
06 Wrapper methods/032 Step forward feature selection.mp4
31.0 MB
06 Wrapper methods/033 Step backward feature selection-en.srt
14.8 kB
06 Wrapper methods/033 Step backward feature selection.mp4
33.6 MB
06 Wrapper methods/034 Exhaustive search-en.srt
10.5 kB
06 Wrapper methods/034 Exhaustive search.mp4
19.6 MB
07 Embedded methods Lasso regularisation/035 Least-angle-and-1-penalized-regression-A-review-.txt
68 Bytes
07 Embedded methods Lasso regularisation/035 Machine-Learning-Explained-Regularization.txt
71 Bytes
07 Embedded methods Lasso regularisation/035 Regularisation Intro-en.srt
6.9 kB
07 Embedded methods Lasso regularisation/035 Regularisation Intro.mp4
8.3 MB
07 Embedded methods Lasso regularisation/036 Lasso-en.srt
10.6 kB
07 Embedded methods Lasso regularisation/036 Lasso.mp4
14.6 MB
07 Embedded methods Lasso regularisation/037 Basic filter methods LASSO pipeline.html
16.5 kB
08 Embedded methods Linear models/038 Regression Coefficients Intro-en.srt
5.3 kB
08 Embedded methods Linear models/038 Regression Coefficients Intro.mp4
5.7 MB
08 Embedded methods Linear models/039 Selection by Logistic Regression Coefficients-en.srt
9.8 kB
08 Embedded methods Linear models/039 Selection by Logistic Regression Coefficients.mp4
21.1 MB
08 Embedded methods Linear models/040 Coefficients change with penalty-en.srt
6.9 kB
08 Embedded methods Linear models/040 Coefficients change with penalty.mp4
8.9 MB
08 Embedded methods Linear models/041 Selection by Linear Regression Coefficients-en.srt
4.0 kB
08 Embedded methods Linear models/041 Selection by Linear Regression Coefficients.mp4
5.3 MB
08 Embedded methods Linear models/042 Feature selection with linear models review.html
15.9 kB
09 Embedded methods Trees/043 Selecting Features by Tree importance Intro-en.srt
8.4 kB
09 Embedded methods Trees/043 Selecting Features by Tree importance Intro.mp4
9.7 MB
09 Embedded methods Trees/044 Select by model importance random forests embedded.html
15.5 kB
09 Embedded methods Trees/045 Select by model importance random forests recursively.html
11.4 kB
09 Embedded methods Trees/046 Select by model importance gradient boosted machines.html
9.9 kB
09 Embedded methods Trees/047 Feature selection with decision trees review.html
16.1 kB
10 Reading Resources/048 Additional reading resources.html
2.6 kB
11 Hybrid feature selection methods/049 BONUS Shuffling features.html
20.5 kB
11 Hybrid feature selection methods/050 BONUS Hybrid method Recursive feature elimination.html
50.0 kB
11 Hybrid feature selection methods/051 BONUS Hybrid method Recursive feature addition.html
52.3 kB
12 Final section Next steps/052 Bonus Lecture Discounts on my other courses.html
1.4 kB
Discuss.FreeTutorials.Us.html
169.7 kB
FreeCoursesOnline.Me.html
110.9 kB
FreeTutorials.Eu.html
104.7 kB
Presented By SaM.txt
33 Bytes
[TGx]Downloaded from torrentgalaxy.org.txt
524 Bytes
Torrent Downloaded From GloDls.to.txt
84 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>