MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[GigaCourse.Com] Udemy - Machine Learning A-Z™ AI, Python & R + ChatGPT Bonus [2023]

磁力链接/BT种子名称

[GigaCourse.Com] Udemy - Machine Learning A-Z™ AI, Python & R + ChatGPT Bonus [2023]

磁力链接/BT种子简介

种子哈希:7319748660d34dacaa0dbbdef0d0e63962864fda
文件大小: 10.49G
已经下载:4425次
下载速度:极快
收录时间:2023-12-18
最近下载:2026-01-10

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:7319748660D34DACAA0DBBDEF0D0E63962864FDA
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 小蓝俱乐部 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 母狗园 51动漫 91短视频 抖音Max 海王TV TikTok成人版 PornHub 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 搜同 91暗网

最近搜索

striptease 乱伦 女友 面对破坏家庭幸福的冷艳毒辣性感熟女继母和混血毒舌jk继姐 公司楼下的停车场最适合车震办公室高冷女神,平时一脸生人勿进的样子,操起b来比谁都骚 岬ななみ 极品伪娘 稀有 ambassador auditorium 夫人 彩美旬果流出 myfans 冲田杏梨调教 红玫瑰 乖乖mm x.com 高中生 大乱交 海角社区破处 iene-551 sm iesp-546 1v4 rick+steves fc2ppv-4406510 ++exchange lena+anderson tokyo 小雄同学2 affection

文件列表

  • 41 - Kernel PCA/002 Kernel PCA in R.mp4 239.9 MB
  • 37 - Convolutional Neural Networks/001 dataset.zip 232.0 MB
  • 29 - Apriori/008 Apriori in R - Step 3.mp4 169.5 MB
  • 20 - Naive Bayes/001 Bayes Theorem.mp4 152.7 MB
  • 36 - Artificial Neural Networks/015 ANN in R - Step 1.mp4 139.2 MB
  • 29 - Apriori/005 Apriori in Python - Step 4.mp4 122.4 MB
  • 36 - Artificial Neural Networks/017 ANN in R - Step 3.mp4 121.3 MB
  • 43 - Model Selection/002 Grid Search in Python.mp4 120.0 MB
  • 37 - Convolutional Neural Networks/015 CNN in Python - FINAL DEMO!.mp4 117.5 MB
  • 35 - -------------------- Part 8 Deep Learning --------------------/002 What is Deep Learning.mp4 107.9 MB
  • 39 - Principal Component Analysis (PCA)/004 PCA in R - Step 1.mp4 105.5 MB
  • 37 - Convolutional Neural Networks/011 CNN in Python - Step 2.mp4 104.9 MB
  • 32 - Upper Confidence Bound (UCB)/012 Upper Confidence Bound in R - Step 3.mp4 103.8 MB
  • 29 - Apriori/007 Apriori in R - Step 2.mp4 101.3 MB
  • 32 - Upper Confidence Bound (UCB)/001 The Multi-Armed Bandit Problem.mp4 101.1 MB
  • 40 - Linear Discriminant Analysis (LDA)/003 LDA in R.mp4 98.2 MB
  • 37 - Convolutional Neural Networks/005 Step 2 - Pooling.mp4 91.7 MB
  • 39 - Principal Component Analysis (PCA)/002 PCA in Python - Step 1.mp4 90.2 MB
  • 37 - Convolutional Neural Networks/014 CNN in Python - Step 5.mp4 89.0 MB
  • 36 - Artificial Neural Networks/011 ANN in Python - Step 2.mp4 88.6 MB
  • 44 - XGBoost/001 XGBoost in Python.mp4 88.3 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/004 Classical vs Deep Learning Models.mp4 88.0 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/010 Natural Language Processing in Python - Step 5.mp4 86.5 MB
  • 29 - Apriori/003 Apriori in Python - Step 2.mp4 86.2 MB
  • 32 - Upper Confidence Bound (UCB)/002 Upper Confidence Bound (UCB) Intuition.mp4 83.1 MB
  • 32 - Upper Confidence Bound (UCB)/011 Upper Confidence Bound in R - Step 2.mp4 79.9 MB
  • 40 - Linear Discriminant Analysis (LDA)/002 LDA in Python.mp4 79.1 MB
  • 36 - Artificial Neural Networks/014 ANN in Python - Step 5.mp4 78.9 MB
  • 29 - Apriori/006 Apriori in R - Step 1.mp4 77.5 MB
  • 37 - Convolutional Neural Networks/002 What are convolutional neural networks.mp4 74.5 MB
  • 44 - XGBoost/003 XGBoost in R.mp4 72.7 MB
  • 36 - Artificial Neural Networks/004 How do Neural Networks work.mp4 70.5 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/024 Natural Language Processing in R - Step 10.mp4 69.7 MB
  • 37 - Convolutional Neural Networks/003 Step 1 - Convolution Operation.mp4 68.8 MB
  • 39 - Principal Component Analysis (PCA)/006 PCA in R - Step 3.mp4 68.5 MB
  • 30 - Eclat/003 Eclat in R.mp4 68.5 MB
  • 07 - Multiple Linear Regression/023 Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 67.7 MB
  • 10 - Decision Tree Regression/008 Decision Tree Regression in R - Step 2.mp4 67.5 MB
  • 37 - Convolutional Neural Networks/012 CNN in Python - Step 3.mp4 67.4 MB
  • 04 - Data Preprocessing in R/005 Encoding Categorical Data.mp4 67.0 MB
  • 43 - Model Selection/001 k-Fold Cross Validation in Python.mp4 65.1 MB
  • 33 - Thompson Sampling/008 Thompson Sampling in R - Step 1.mp4 62.2 MB
  • 37 - Convolutional Neural Networks/007 Step 4 - Full Connection.mp4 61.4 MB
  • 29 - Apriori/002 Apriori in Python - Step 1.mp4 61.2 MB
  • 21 - Decision Tree Classification/004 Decision Tree Classification in R - Step 1.mp4 60.6 MB
  • 20 - Naive Bayes/002 Naive Bayes Intuition.mp4 60.2 MB
  • 41 - Kernel PCA/001 Kernel PCA in Python.mp4 59.7 MB
  • 30 - Eclat/002 Eclat in Python.mp4 58.9 MB
  • 29 - Apriori/001 Apriori Intuition.mp4 58.9 MB
  • 19 - Kernel SVM/008 Kernel SVM in R - Step 1.mp4 58.0 MB
  • 36 - Artificial Neural Networks/018 ANN in R - Step 4 (Last step).mp4 57.2 MB
  • 43 - Model Selection/003 k-Fold Cross Validation in R.mp4 55.9 MB
  • 14 - Regression Model Selection in R/002 Interpreting Linear Regression Coefficients.mp4 55.2 MB
  • 20 - Naive Bayes/005 Naive Bayes in Python - Step 1.mp4 55.1 MB
  • 18 - Support Vector Machine (SVM)/005 SVM in R - Step 1.mp4 54.4 MB
  • 18 - Support Vector Machine (SVM)/002 SVM in Python - Step 1.mp4 54.0 MB
  • 36 - Artificial Neural Networks/010 ANN in Python - Step 1.mp4 53.3 MB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/002 Machine Learning Demo - Get Excited!.mp4 53.2 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/014 Natural Language Processing in R - Step 1.mp4 53.0 MB
  • 43 - Model Selection/004 Grid Search in R.mp4 52.5 MB
  • 33 - Thompson Sampling/001 Thompson Sampling Intuition.mp4 51.1 MB
  • 39 - Principal Component Analysis (PCA)/005 PCA in R - Step 2.mp4 48.8 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/011 Natural Language Processing in Python - Step 6.mp4 47.3 MB
  • 32 - Upper Confidence Bound (UCB)/003 Upper Confidence Bound in Python - Step 1.mp4 46.8 MB
  • 36 - Artificial Neural Networks/002 The Neuron.mp4 46.2 MB
  • 22 - Random Forest Classification/006 Random Forest Classification in R - Step 3.mp4 46.1 MB
  • 36 - Artificial Neural Networks/009 Business Problem Description.mp4 45.8 MB
  • 36 - Artificial Neural Networks/005 How do Neural Networks learn.mp4 45.4 MB
  • 21 - Decision Tree Classification/005 Decision Tree Classification in R - Step 2.mp4 44.9 MB
  • 18 - Support Vector Machine (SVM)/006 SVM in R - Step 2.mp4 44.7 MB
  • 37 - Convolutional Neural Networks/009 Softmax & Cross-Entropy.mp4 44.2 MB
  • 20 - Naive Bayes/006 Naive Bayes in Python - Step 2.mp4 44.1 MB
  • 32 - Upper Confidence Bound (UCB)/006 Upper Confidence Bound in Python - Step 4.mp4 43.7 MB
  • 22 - Random Forest Classification/001 Random Forest Classification Intuition.mp4 43.6 MB
  • 17 - K-Nearest Neighbors (K-NN)/005 K-NN in R - Step 1.mp4 42.5 MB
  • 33 - Thompson Sampling/005 Thompson Sampling in Python - Step 3.mp4 42.2 MB
  • 29 - Apriori/004 Apriori in Python - Step 3.mp4 41.4 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/023 Natural Language Processing in R - Step 9.mp4 41.2 MB
  • 22 - Random Forest Classification/005 Random Forest Classification in R - Step 2.mp4 40.9 MB
  • 07 - Multiple Linear Regression/014 Multiple Linear Regression in Python - Step 4a.mp4 40.9 MB
  • 36 - Artificial Neural Networks/012 ANN in Python - Step 3.mp4 40.4 MB
  • 07 - Multiple Linear Regression/011 Multiple Linear Regression in Python - Step 2b.mp4 39.9 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/005 Bag-Of-Words Model.mp4 39.8 MB
  • 21 - Decision Tree Classification/002 Decision Tree Classification in Python - Step 1.mp4 39.7 MB
  • 18 - Support Vector Machine (SVM)/003 SVM in Python - Step 2.mp4 39.5 MB
  • 19 - Kernel SVM/010 Kernel SVM in R - Step 3.mp4 39.2 MB
  • 16 - Logistic Regression/026 Logistic Regression in R - Step 5c.mp4 39.2 MB
  • 19 - Kernel SVM/006 Kernel SVM in Python - Step 1.mp4 38.7 MB
  • 09 - Support Vector Regression (SVR)/001 SVR Intuition (Updated!).mp4 38.6 MB
  • 04 - Data Preprocessing in R/009 Feature Scaling - Step 2.mp4 38.1 MB
  • 27 - Hierarchical Clustering/001 Hierarchical Clustering Intuition.mp4 38.0 MB
  • 17 - K-Nearest Neighbors (K-NN)/007 K-NN in R - Step 3.mp4 37.5 MB
  • 11 - Random Forest Regression/001 Random Forest Regression Intuition.mp4 37.5 MB
  • 26 - K-Means Clustering/014 K-Means Clustering in Python - Step 5b.mp4 37.4 MB
  • 19 - Kernel SVM/007 Kernel SVM in Python - Step 2.mp4 37.2 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/009 Natural Language Processing in Python - Step 4.mp4 37.0 MB
  • 03 - Data Preprocessing in Python/002 Getting Started - Step 2.mp4 36.8 MB
  • 17 - K-Nearest Neighbors (K-NN)/002 K-NN in Python - Step 1.mp4 36.7 MB
  • 22 - Random Forest Classification/002 Random Forest Classification in Python - Step 1.mp4 36.6 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/007 Natural Language Processing in Python - Step 2.mp4 36.5 MB
  • 17 - K-Nearest Neighbors (K-NN)/004 K-NN in Python - Step 3.mp4 36.0 MB
  • 33 - Thompson Sampling/004 Thompson Sampling in Python - Step 2.mp4 35.9 MB
  • 32 - Upper Confidence Bound (UCB)/010 Upper Confidence Bound in R - Step 1.mp4 35.6 MB
  • 21 - Decision Tree Classification/003 Decision Tree Classification in Python - Step 2.mp4 35.3 MB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/005 Installing R and R Studio (Mac, Linux & Windows).mp4 35.2 MB
  • 17 - K-Nearest Neighbors (K-NN)/003 K-NN in Python - Step 2.mp4 35.2 MB
  • 19 - Kernel SVM/003 The Kernel Trick.mp4 35.2 MB
  • 07 - Multiple Linear Regression/007 Multiple Linear Regression Intuition - Step 5.mp4 35.0 MB
  • 23 - Classification Model Selection in Python/004 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 2.mp4 34.6 MB
  • 22 - Random Forest Classification/003 Random Forest Classification in Python - Step 2.mp4 34.4 MB
  • 16 - Logistic Regression/007 Logistic Regression in Python - Step 2b.mp4 34.4 MB
  • 16 - Logistic Regression/022 Logistic Regression in R - Step 4.mp4 34.2 MB
  • 07 - Multiple Linear Regression/024 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 34.0 MB
  • 46 - Annex Logistic Regression (Long Explanation)/001 Logistic Regression Intuition.mp4 34.0 MB
  • 36 - Artificial Neural Networks/013 ANN in Python - Step 4.mp4 33.4 MB
  • 19 - Kernel SVM/002 Mapping to a higher dimension.mp4 33.4 MB
  • 37 - Convolutional Neural Networks/010 CNN in Python - Step 1.mp4 33.4 MB
  • 27 - Hierarchical Clustering/012 Hierarchical Clustering in R - Step 3.mp4 32.9 MB
  • 03 - Data Preprocessing in Python/009 Taking care of Missing Data - Step 2.mp4 30.9 MB
  • 11 - Random Forest Regression/003 Random Forest Regression in Python - Step 2.mp4 30.6 MB
  • 16 - Logistic Regression/006 Logistic Regression in Python - Step 2a.mp4 30.5 MB
  • 06 - Simple Linear Regression/014 Simple Linear Regression in R - Step 4a.mp4 30.4 MB
  • 13 - Regression Model Selection in Python/007 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 2.mp4 30.2 MB
  • 23 - Classification Model Selection in Python/002 Confusion Matrix & Accuracy Ratios.mp4 30.1 MB
  • 16 - Logistic Regression/024 Logistic Regression in R - Step 5a.mp4 30.0 MB
  • 07 - Multiple Linear Regression/010 Multiple Linear Regression in Python - Step 2a.mp4 29.9 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/008 Natural Language Processing in Python - Step 3.mp4 29.6 MB
  • 14 - Regression Model Selection in R/001 Evaluating Regression Models Performance - Homework's Final Part.mp4 29.1 MB
  • 26 - K-Means Clustering/017 K-Means Clustering in R - Step 2.mp4 29.0 MB
  • 19 - Kernel SVM/005 Non-Linear Kernel SVR (Advanced).mp4 28.8 MB
  • 20 - Naive Bayes/010 Naive Bayes in R - Step 3.mp4 28.5 MB
  • 16 - Logistic Regression/021 Logistic Regression in R - Step 3.mp4 28.3 MB
  • 09 - Support Vector Regression (SVR)/008 SVR in Python - Step 3.mp4 28.2 MB
  • 36 - Artificial Neural Networks/007 Stochastic Gradient Descent.mp4 28.1 MB
  • 07 - Multiple Linear Regression/020 Multiple Linear Regression in R - Step 2a.mp4 28.0 MB
  • 26 - K-Means Clustering/015 K-Means Clustering in Python - Step 5c.mp4 28.0 MB
  • 27 - Hierarchical Clustering/007 Hierarchical Clustering in Python - Step 2c.mp4 27.8 MB
  • 36 - Artificial Neural Networks/006 Gradient Descent.mp4 26.9 MB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/004 How to use the ML A-Z folder & Google Colab.mp4 26.9 MB
  • 16 - Logistic Regression/028 R Classification Template.mp4 26.7 MB
  • 27 - Hierarchical Clustering/003 Hierarchical Clustering Using Dendrograms.mp4 26.4 MB
  • 36 - Artificial Neural Networks/016 ANN in R - Step 2.mp4 26.2 MB
  • 13 - Regression Model Selection in Python/005 Preparation of the Regression Code Templates - Step 4.mp4 26.1 MB
  • 16 - Logistic Regression/002 Logistic Regression Intuition.mp4 26.0 MB
  • 09 - Support Vector Regression (SVR)/011 SVR in Python - Step 5b.mp4 25.9 MB
  • 16 - Logistic Regression/025 Logistic Regression in R - Step 5b.mp4 25.9 MB
  • 07 - Multiple Linear Regression/003 Assumptions of Linear Regression.mp4 25.8 MB
  • 30 - Eclat/001 Eclat Intuition.mp4 25.4 MB
  • 22 - Random Forest Classification/004 Random Forest Classification in R - Step 1.mp4 25.2 MB
  • 16 - Logistic Regression/016 Logistic Regression in Python - Step 7b.mp4 25.2 MB
  • 08 - Polynomial Regression/013 Polynomial Regression in R - Step 2b.mp4 25.0 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/016 Natural Language Processing in R - Step 2.mp4 24.9 MB
  • 10 - Decision Tree Regression/001 Decision Tree Regression Intuition.mp4 24.4 MB
  • 07 - Multiple Linear Regression/006 Understanding the P-Value.mp4 24.3 MB
  • 04 - Data Preprocessing in R/008 Feature Scaling - Step 1.mp4 23.9 MB
  • 13 - Regression Model Selection in Python/006 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 1.mp4 23.9 MB
  • 20 - Naive Bayes/009 Naive Bayes in R - Step 2.mp4 23.8 MB
  • 37 - Convolutional Neural Networks/013 CNN in Python - Step 4.mp4 23.8 MB
  • 04 - Data Preprocessing in R/010 Data Preprocessing Template.mp4 23.7 MB
  • 27 - Hierarchical Clustering/006 Hierarchical Clustering in Python - Step 2b.mp4 23.4 MB
  • 13 - Regression Model Selection in Python/003 Preparation of the Regression Code Templates - Step 2.mp4 23.0 MB
  • 21 - Decision Tree Classification/006 Decision Tree Classification in R - Step 3.mp4 22.8 MB
  • 23 - Classification Model Selection in Python/005 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 3.mp4 22.7 MB
  • 11 - Random Forest Regression/005 Random Forest Regression in R - Step 2.mp4 22.7 MB
  • 04 - Data Preprocessing in R/004 Taking care of Missing Data.mp4 22.5 MB
  • 23 - Classification Model Selection in Python/003 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 1.mp4 22.1 MB
  • 06 - Simple Linear Regression/007 Simple Linear Regression in Python - Step 3.mp4 22.0 MB
  • 39 - Principal Component Analysis (PCA)/001 Principal Component Analysis (PCA) Intuition.mp4 22.0 MB
  • 39 - Principal Component Analysis (PCA)/003 PCA in Python - Step 2.mp4 21.8 MB
  • 08 - Polynomial Regression/014 Polynomial Regression in R - Step 3a.mp4 21.7 MB
  • 33 - Thompson Sampling/006 Thompson Sampling in Python - Step 4.mp4 21.7 MB
  • 06 - Simple Linear Regression/015 Simple Linear Regression in R - Step 4b.mp4 21.7 MB
  • 37 - Convolutional Neural Networks/004 Step 1(b) - ReLU Layer.mp4 21.6 MB
  • 08 - Polynomial Regression/019 R Regression Template - Step 1.mp4 21.6 MB
  • 16 - Logistic Regression/015 Logistic Regression in Python - Step 7a.mp4 21.5 MB
  • 32 - Upper Confidence Bound (UCB)/009 Upper Confidence Bound in Python - Step 7.mp4 21.5 MB
  • 27 - Hierarchical Clustering/004 Hierarchical Clustering in Python - Step 1.mp4 21.4 MB
  • 16 - Logistic Regression/008 Logistic Regression in Python - Step 3a.mp4 21.4 MB
  • 16 - Logistic Regression/017 Logistic Regression in Python - Step 7c.mp4 21.1 MB
  • 18 - Support Vector Machine (SVM)/001 SVM Intuition.mp4 21.1 MB
  • 11 - Random Forest Regression/004 Random Forest Regression in R - Step 1.mp4 21.1 MB
  • 09 - Support Vector Regression (SVR)/002 Heads-up on non-linear SVR.mp4 20.7 MB
  • 08 - Polynomial Regression/003 Polynomial Regression in Python - Step 1b.mp4 20.7 MB
  • 08 - Polynomial Regression/006 Polynomial Regression in Python - Step 3a.mp4 20.7 MB
  • 03 - Data Preprocessing in Python/011 Encoding Categorical Data - Step 2.mp4 20.7 MB
  • 24 - Evaluating Classification Models Performance/001 False Positives & False Negatives.mp4 20.6 MB
  • 04 - Data Preprocessing in R/007 Splitting the dataset into the Training set and Test set - Step 2.mp4 20.6 MB
  • 08 - Polynomial Regression/015 Polynomial Regression in R - Step 3b.mp4 20.5 MB
  • 27 - Hierarchical Clustering/013 Hierarchical Clustering in R - Step 4.mp4 20.3 MB
  • 06 - Simple Linear Regression/009 Simple Linear Regression in Python - Step 4b.mp4 20.3 MB
  • 16 - Logistic Regression/019 Logistic Regression in R - Step 1.mp4 20.2 MB
  • 06 - Simple Linear Regression/012 Simple Linear Regression in R - Step 2.mp4 20.0 MB
  • 32 - Upper Confidence Bound (UCB)/005 Upper Confidence Bound in Python - Step 3.mp4 20.0 MB
  • 32 - Upper Confidence Bound (UCB)/008 Upper Confidence Bound in Python - Step 6.mp4 20.0 MB
  • 07 - Multiple Linear Regression/004 Multiple Linear Regression Intuition - Step 3.mp4 19.9 MB
  • 24 - Evaluating Classification Models Performance/003 CAP Curve.mp4 19.9 MB
  • 07 - Multiple Linear Regression/008 Multiple Linear Regression in Python - Step 1a.mp4 19.8 MB
  • 19 - Kernel SVM/009 Kernel SVM in R - Step 2.mp4 19.7 MB
  • 26 - K-Means Clustering/004 K-Means++.mp4 19.6 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/017 Natural Language Processing in R - Step 3.mp4 19.5 MB
  • 08 - Polynomial Regression/007 Polynomial Regression in Python - Step 3b.mp4 19.2 MB
  • 20 - Naive Bayes/008 Naive Bayes in R - Step 1.mp4 19.2 MB
  • 16 - Logistic Regression/012 Logistic Regression in Python - Step 5.mp4 19.1 MB
  • 08 - Polynomial Regression/005 Polynomial Regression in Python - Step 2b.mp4 18.8 MB
  • 16 - Logistic Regression/010 Logistic Regression in Python - Step 4a.mp4 18.7 MB
  • 17 - K-Nearest Neighbors (K-NN)/006 K-NN in R - Step 2.mp4 18.7 MB
  • 21 - Decision Tree Classification/001 Decision Tree Classification Intuition.mp4 18.6 MB
  • 07 - Multiple Linear Regression/021 Multiple Linear Regression in R - Step 2b.mp4 18.6 MB
  • 06 - Simple Linear Regression/008 Simple Linear Regression in Python - Step 4a.mp4 18.5 MB
  • 11 - Random Forest Regression/002 Random Forest Regression in Python - Step 1.mp4 18.3 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/020 Natural Language Processing in R - Step 6.mp4 18.2 MB
  • 36 - Artificial Neural Networks/003 The Activation Function.mp4 18.1 MB
  • 33 - Thompson Sampling/002 Algorithm Comparison UCB vs Thompson Sampling.mp4 18.1 MB
  • 09 - Support Vector Regression (SVR)/012 SVR in R - Step 1.mp4 18.1 MB
  • 09 - Support Vector Regression (SVR)/005 SVR in Python - Step 2a.mp4 18.0 MB
  • 27 - Hierarchical Clustering/008 Hierarchical Clustering in Python - Step 3a.mp4 17.9 MB
  • 03 - Data Preprocessing in Python/019 Feature Scaling - Step 4.mp4 17.7 MB
  • 08 - Polynomial Regression/010 Polynomial Regression in R - Step 1a.mp4 17.7 MB
  • 32 - Upper Confidence Bound (UCB)/007 Upper Confidence Bound in Python - Step 5.mp4 17.6 MB
  • 11 - Random Forest Regression/006 Random Forest Regression in R - Step 3.mp4 17.5 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/022 Natural Language Processing in R - Step 8.mp4 17.5 MB
  • 10 - Decision Tree Regression/007 Decision Tree Regression in R - Step 1.mp4 17.5 MB
  • 04 - Data Preprocessing in R/006 Splitting the dataset into the Training set and Test set - Step 1.mp4 17.4 MB
  • 12 - Evaluating Regression Models Performance/001 R-Squared Intuition.mp4 17.3 MB
  • 08 - Polynomial Regression/004 Polynomial Regression in Python - Step 2a.mp4 17.3 MB
  • 07 - Multiple Linear Regression/005 Multiple Linear Regression Intuition - Step 4.mp4 17.3 MB
  • 26 - K-Means Clustering/012 K-Means Clustering in Python - Step 4.mp4 17.3 MB
  • 27 - Hierarchical Clustering/002 Hierarchical Clustering How Dendrograms Work.mp4 17.2 MB
  • 08 - Polynomial Regression/016 Polynomial Regression in R - Step 3c.mp4 17.0 MB
  • 20 - Naive Bayes/004 Naive Bayes Intuition (Extras).mp4 16.9 MB
  • 03 - Data Preprocessing in Python/008 Taking care of Missing Data - Step 1.mp4 16.9 MB
  • 26 - K-Means Clustering/006 K-Means Clustering in Python - Step 1b.mp4 16.4 MB
  • 26 - K-Means Clustering/001 What is Clustering (Supervised vs Unsupervised Learning).mp4 16.2 MB
  • 27 - Hierarchical Clustering/009 Hierarchical Clustering in Python - Step 3b.mp4 15.9 MB
  • 26 - K-Means Clustering/016 K-Means Clustering in R - Step 1.mp4 15.9 MB
  • 26 - K-Means Clustering/013 K-Means Clustering in Python - Step 5a.mp4 15.8 MB
  • 40 - Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis (LDA) Intuition.mp4 15.8 MB
  • 08 - Polynomial Regression/017 Polynomial Regression in R - Step 4a.mp4 15.7 MB
  • 09 - Support Vector Regression (SVR)/006 SVR in Python - Step 2b.mp4 15.7 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/006 Natural Language Processing in Python - Step 1.mp4 15.6 MB
  • 07 - Multiple Linear Regression/012 Multiple Linear Regression in Python - Step 3a.mp4 15.5 MB
  • 07 - Multiple Linear Regression/019 Multiple Linear Regression in R - Step 1b.mp4 15.4 MB
  • 07 - Multiple Linear Regression/013 Multiple Linear Regression in Python - Step 3b.mp4 15.4 MB
  • 06 - Simple Linear Regression/013 Simple Linear Regression in R - Step 3.mp4 15.3 MB
  • 06 - Simple Linear Regression/004 Simple Linear Regression in Python - Step 1b.mp4 15.2 MB
  • 08 - Polynomial Regression/012 Polynomial Regression in R - Step 2a.mp4 15.2 MB
  • 24 - Evaluating Classification Models Performance/004 CAP Curve Analysis.mp4 15.1 MB
  • 07 - Multiple Linear Regression/022 Multiple Linear Regression in R - Step 3.mp4 15.0 MB
  • 08 - Polynomial Regression/018 Polynomial Regression in R - Step 4b.mp4 14.9 MB
  • 07 - Multiple Linear Regression/015 Multiple Linear Regression in Python - Step 4b.mp4 14.9 MB
  • 03 - Data Preprocessing in Python/012 Encoding Categorical Data - Step 3.mp4 14.8 MB
  • 07 - Multiple Linear Regression/001 Dataset + Business Problem Description.mp4 14.8 MB
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/004 Feature Scaling.mp4 14.7 MB
  • 36 - Artificial Neural Networks/008 Backpropagation.mp4 14.7 MB
  • 03 - Data Preprocessing in Python/006 Importing the Dataset - Step 3.mp4 14.6 MB
  • 27 - Hierarchical Clustering/014 Hierarchical Clustering in R - Step 5.mp4 14.5 MB
  • 16 - Logistic Regression/013 Logistic Regression in Python - Step 6a.mp4 14.4 MB
  • 13 - Regression Model Selection in Python/004 Preparation of the Regression Code Templates - Step 3.mp4 14.4 MB
  • 08 - Polynomial Regression/011 Polynomial Regression in R - Step 1b.mp4 14.4 MB
  • 03 - Data Preprocessing in Python/014 Splitting the dataset into the Training set and Test set - Step 2.mp4 14.3 MB
  • 08 - Polynomial Regression/020 R Regression Template - Step 2.mp4 14.2 MB
  • 26 - K-Means Clustering/007 K-Means Clustering in Python - Step 2a.mp4 14.2 MB
  • 09 - Support Vector Regression (SVR)/013 SVR in R - Step 2.mp4 14.1 MB
  • 03 - Data Preprocessing in Python/010 Encoding Categorical Data - Step 1.mp4 14.1 MB
  • 26 - K-Means Clustering/010 K-Means Clustering in Python - Step 3b.mp4 13.9 MB
  • 26 - K-Means Clustering/009 K-Means Clustering in Python - Step 3a.mp4 13.8 MB
  • 03 - Data Preprocessing in Python/016 Feature Scaling - Step 1.mp4 13.7 MB
  • 27 - Hierarchical Clustering/011 Hierarchical Clustering in R - Step 2.mp4 13.6 MB
  • 33 - Thompson Sampling/003 Thompson Sampling in Python - Step 1.mp4 13.6 MB
  • 16 - Logistic Regression/020 Logistic Regression in R - Step 2.mp4 13.5 MB
  • 26 - K-Means Clustering/008 K-Means Clustering in Python - Step 2b.mp4 13.4 MB
  • 06 - Simple Linear Regression/002 Ordinary Least Squares.mp4 13.3 MB
  • 03 - Data Preprocessing in Python/004 Importing the Dataset - Step 1.mp4 13.2 MB
  • 07 - Multiple Linear Regression/009 Multiple Linear Regression in Python - Step 1b.mp4 12.9 MB
  • 10 - Decision Tree Regression/004 Decision Tree Regression in Python - Step 2.mp4 12.7 MB
  • 16 - Logistic Regression/014 Logistic Regression in Python - Step 6b.mp4 12.7 MB
  • 09 - Support Vector Regression (SVR)/003 SVR in Python - Step 1a.mp4 12.6 MB
  • 16 - Logistic Regression/004 Logistic Regression in Python - Step 1a.mp4 12.5 MB
  • 20 - Naive Bayes/003 Naive Bayes Intuition (Challenge Reveal).mp4 12.4 MB
  • 18 - Support Vector Machine (SVM)/004 SVM in Python - Step 3.mp4 12.3 MB
  • 03 - Data Preprocessing in Python/017 Feature Scaling - Step 2.mp4 12.3 MB
  • 10 - Decision Tree Regression/010 Decision Tree Regression in R - Step 4.mp4 12.2 MB
  • 10 - Decision Tree Regression/006 Decision Tree Regression in Python - Step 4.mp4 12.2 MB
  • 03 - Data Preprocessing in Python/015 Splitting the dataset into the Training set and Test set - Step 3.mp4 12.2 MB
  • 12 - Evaluating Regression Models Performance/002 Adjusted R-Squared Intuition.mp4 12.1 MB
  • 09 - Support Vector Regression (SVR)/010 SVR in Python - Step 5a.mp4 12.0 MB
  • 06 - Simple Linear Regression/011 Simple Linear Regression in R - Step 1.mp4 11.9 MB
  • 03 - Data Preprocessing in Python/018 Feature Scaling - Step 3.mp4 11.8 MB
  • 08 - Polynomial Regression/008 Polynomial Regression in Python - Step 4a.mp4 11.7 MB
  • 10 - Decision Tree Regression/003 Decision Tree Regression in Python - Step 1b.mp4 11.6 MB
  • 27 - Hierarchical Clustering/005 Hierarchical Clustering in Python - Step 2a.mp4 11.4 MB
  • 09 - Support Vector Regression (SVR)/009 SVR in Python - Step 4.mp4 11.4 MB
  • 06 - Simple Linear Regression/006 Simple Linear Regression in Python - Step 2b.mp4 11.4 MB
  • 37 - Convolutional Neural Networks/008 Summary.mp4 11.3 MB
  • 03 - Data Preprocessing in Python/001 Getting Started - Step 1.mp4 11.3 MB
  • 26 - K-Means Clustering/005 K-Means Clustering in Python - Step 1a.mp4 11.1 MB
  • 07 - Multiple Linear Regression/018 Multiple Linear Regression in R - Step 1a.mp4 11.1 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/021 Natural Language Processing in R - Step 7.mp4 11.1 MB
  • 19 - Kernel SVM/004 Types of Kernel Functions.mp4 11.0 MB
  • 17 - K-Nearest Neighbors (K-NN)/001 K-Nearest Neighbor Intuition.mp4 11.0 MB
  • 13 - Regression Model Selection in Python/002 Preparation of the Regression Code Templates - Step 1.mp4 10.9 MB
  • 03 - Data Preprocessing in Python/013 Splitting the dataset into the Training set and Test set - Step 1.mp4 10.8 MB
  • 10 - Decision Tree Regression/009 Decision Tree Regression in R - Step 3.mp4 10.8 MB
  • 03 - Data Preprocessing in Python/005 Importing the Dataset - Step 2.mp4 10.3 MB
  • 33 - Thompson Sampling/009 Thompson Sampling in R - Step 2.mp4 10.2 MB
  • 26 - K-Means Clustering/011 K-Means Clustering in Python - Step 3c.mp4 10.0 MB
  • 09 - Support Vector Regression (SVR)/004 SVR in Python - Step 1b.mp4 10.0 MB
  • 10 - Decision Tree Regression/002 Decision Tree Regression in Python - Step 1a.mp4 9.8 MB
  • 16 - Logistic Regression/005 Logistic Regression in Python - Step 1b.mp4 9.7 MB
  • 08 - Polynomial Regression/009 Polynomial Regression in Python - Step 4b.mp4 9.5 MB
  • 32 - Upper Confidence Bound (UCB)/004 Upper Confidence Bound in Python - Step 2.mp4 9.4 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/018 Natural Language Processing in R - Step 4.mp4 9.2 MB
  • 06 - Simple Linear Regression/003 Simple Linear Regression in Python - Step 1a.mp4 9.1 MB
  • 08 - Polynomial Regression/001 Polynomial Regression Intuition.mp4 9.0 MB
  • 09 - Support Vector Regression (SVR)/007 SVR in Python - Step 2c.mp4 9.0 MB
  • 32 - Upper Confidence Bound (UCB)/013 Upper Confidence Bound in R - Step 4.mp4 8.9 MB
  • 06 - Simple Linear Regression/005 Simple Linear Regression in Python - Step 2a.mp4 8.9 MB
  • 07 - Multiple Linear Regression/002 Multiple Linear Regression Intuition.mp4 8.8 MB
  • 10 - Decision Tree Regression/005 Decision Tree Regression in Python - Step 3.mp4 8.8 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/003 Types of Natural Language Processing.mp4 8.5 MB
  • 23 - Classification Model Selection in Python/006 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 4.mp4 8.5 MB
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/002 The Machine Learning process.mp4 8.4 MB
  • 16 - Logistic Regression/009 Logistic Regression in Python - Step 3b.mp4 8.1 MB
  • 27 - Hierarchical Clustering/010 Hierarchical Clustering in R - Step 1.mp4 8.1 MB
  • 26 - K-Means Clustering/003 The Elbow Method.mp4 7.9 MB
  • 08 - Polynomial Regression/002 Polynomial Regression in Python - Step 1a.mp4 7.8 MB
  • 03 - Data Preprocessing in Python/003 Importing the Libraries.mp4 7.8 MB
  • 16 - Logistic Regression/003 Maximum Likelihood.mp4 7.5 MB
  • 04 - Data Preprocessing in R/003 Importing the Dataset.mp4 7.2 MB
  • 19 - Kernel SVM/001 Kernel SVM Intuition.mp4 7.2 MB
  • 20 - Naive Bayes/007 Naive Bayes in Python - Step 3.mp4 7.0 MB
  • 04 - Data Preprocessing in R/002 Dataset Description.mp4 6.7 MB
  • 37 - Convolutional Neural Networks/001 Plan of attack.mp4 6.5 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/019 Natural Language Processing in R - Step 5.mp4 6.5 MB
  • 16 - Logistic Regression/001 What is Classification.mp4 5.9 MB
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/003 Splitting the data into a Training and Test set.mp4 5.6 MB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/002 NLP Intuition.mp4 5.4 MB
  • 06 - Simple Linear Regression/001 Simple Linear Regression Intuition.mp4 5.2 MB
  • 36 - Artificial Neural Networks/001 Plan of attack.mp4 5.0 MB
  • 16 - Logistic Regression/011 Logistic Regression in Python - Step 4b.mp4 4.7 MB
  • 24 - Evaluating Classification Models Performance/002 Accuracy Paradox.mp4 4.4 MB
  • 26 - K-Means Clustering/002 K-Means Clustering Intuition.mp4 4.3 MB
  • 04 - Data Preprocessing in R/001 Getting Started.mp4 4.3 MB
  • 37 - Convolutional Neural Networks/006 Step 3 - Flattening.mp4 3.3 MB
  • 13 - Regression Model Selection in Python/008 Regression-Bonus.zip 373.2 kB
  • 14 - Regression Model Selection in R/003 Regression-Bonus.zip 373.2 kB
  • 13 - Regression Model Selection in Python/001 Machine-Learning-A-Z-Model-Selection.zip 165.8 kB
  • 23 - Classification Model Selection in Python/001 Machine-Learning-A-Z-Model-Selection.zip 163.8 kB
  • 30 - Eclat/003 Eclat.zip 49.7 kB
  • 37 - Convolutional Neural Networks/015 CNN in Python - FINAL DEMO!_en.srt 39.5 kB
  • 43 - Model Selection/002 Grid Search in Python_en.srt 39.4 kB
  • 41 - Kernel PCA/002 Kernel PCA in R_en.srt 38.2 kB
  • 37 - Convolutional Neural Networks/009 Softmax & Cross-Entropy_en.srt 38.0 kB
  • 29 - Apriori/005 Apriori in Python - Step 4_en.srt 36.6 kB
  • 40 - Linear Discriminant Analysis (LDA)/003 LDA in R_en.srt 36.4 kB
  • 37 - Convolutional Neural Networks/007 Step 4 - Full Connection_en.srt 36.3 kB
  • 43 - Model Selection/003 k-Fold Cross Validation in R_en.srt 36.2 kB
  • 33 - Thompson Sampling/001 Thompson Sampling Intuition_en.srt 35.8 kB
  • 33 - Thompson Sampling/008 Thompson Sampling in R - Step 1_en.srt 35.3 kB
  • 36 - Artificial Neural Networks/011 ANN in Python - Step 2_en.srt 35.0 kB
  • 37 - Convolutional Neural Networks/011 CNN in Python - Step 2_en.srt 34.4 kB
  • 20 - Naive Bayes/001 Bayes Theorem_en.srt 33.9 kB
  • 43 - Model Selection/001 k-Fold Cross Validation in Python_en.srt 33.4 kB
  • 36 - Artificial Neural Networks/015 ANN in R - Step 1_en.srt 33.3 kB
  • 37 - Convolutional Neural Networks/012 CNN in Python - Step 3_en.srt 32.9 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/024 Natural Language Processing in R - Step 10_en.srt 32.5 kB
  • 29 - Apriori/001 Apriori Intuition_en.srt 32.5 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/010 Natural Language Processing in Python - Step 5_en.srt 32.4 kB
  • 46 - Annex Logistic Regression (Long Explanation)/001 Logistic Regression Intuition_en.srt 32.2 kB
  • 36 - Artificial Neural Networks/002 The Neuron_en.srt 31.9 kB
  • 29 - Apriori/003 Apriori in Python - Step 2_en.srt 31.9 kB
  • 44 - XGBoost/003 XGBoost in R_en.srt 31.8 kB
  • 32 - Upper Confidence Bound (UCB)/012 Upper Confidence Bound in R - Step 3_en.srt 31.4 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/005 Bag-Of-Words Model_en.srt 31.0 kB
  • 36 - Artificial Neural Networks/014 ANN in Python - Step 5_en.srt 30.9 kB
  • 39 - Principal Component Analysis (PCA)/002 PCA in Python - Step 1_en.srt 30.8 kB
  • 32 - Upper Confidence Bound (UCB)/006 Upper Confidence Bound in Python - Step 4_en.srt 30.7 kB
  • 29 - Apriori/008 Apriori in R - Step 3_en.srt 30.7 kB
  • 29 - Apriori/006 Apriori in R - Step 1_en.srt 30.6 kB
  • 37 - Convolutional Neural Networks/003 Step 1 - Convolution Operation_en.srt 30.1 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/014 Natural Language Processing in R - Step 1_en.srt 30.1 kB
  • 24 - Evaluating Classification Models Performance/005 Classification-Pros-Cons.pdf 30.0 kB
  • 37 - Convolutional Neural Networks/002 What are convolutional neural networks_en.srt 29.4 kB
  • 37 - Convolutional Neural Networks/005 Step 2 - Pooling_en.srt 28.6 kB
  • 32 - Upper Confidence Bound (UCB)/001 The Multi-Armed Bandit Problem_en.srt 27.8 kB
  • 32 - Upper Confidence Bound (UCB)/011 Upper Confidence Bound in R - Step 2_en.srt 27.7 kB
  • 32 - Upper Confidence Bound (UCB)/002 Upper Confidence Bound (UCB) Intuition_en.srt 27.5 kB
  • 36 - Artificial Neural Networks/012 ANN in Python - Step 3_en.srt 27.5 kB
  • 37 - Convolutional Neural Networks/014 CNN in Python - Step 5_en.srt 27.2 kB
  • 07 - Multiple Linear Regression/023 Multiple Linear Regression in R - Backward Elimination - HOMEWORK !_en.srt 27.1 kB
  • 40 - Linear Discriminant Analysis (LDA)/002 LDA in Python_en.srt 27.0 kB
  • 32 - Upper Confidence Bound (UCB)/010 Upper Confidence Bound in R - Step 1_en.srt 26.7 kB
  • 43 - Model Selection/004 Grid Search in R_en.srt 26.6 kB
  • 27 - Hierarchical Clustering/015 Clustering-Pros-Cons.pdf 26.4 kB
  • 32 - Upper Confidence Bound (UCB)/003 Upper Confidence Bound in Python - Step 1_en.srt 26.2 kB
  • 44 - XGBoost/001 XGBoost in Python_en.srt 26.0 kB
  • 36 - Artificial Neural Networks/018 ANN in R - Step 4 (Last step)_en.srt 25.6 kB
  • 36 - Artificial Neural Networks/004 How do Neural Networks work_en.srt 25.2 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/008 Natural Language Processing in Python - Step 3_en.srt 25.0 kB
  • 33 - Thompson Sampling/005 Thompson Sampling in Python - Step 3_en.srt 25.0 kB
  • 39 - Principal Component Analysis (PCA)/006 PCA in R - Step 3_en.srt 24.9 kB
  • 35 - -------------------- Part 8 Deep Learning --------------------/002 What is Deep Learning_en.srt 24.9 kB
  • 36 - Artificial Neural Networks/005 How do Neural Networks learn_en.srt 24.7 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/023 Natural Language Processing in R - Step 9_en.srt 24.7 kB
  • 39 - Principal Component Analysis (PCA)/004 PCA in R - Step 1_en.srt 24.5 kB
  • 29 - Apriori/004 Apriori in Python - Step 3_en.srt 23.9 kB
  • 36 - Artificial Neural Networks/017 ANN in R - Step 3_en.srt 23.7 kB
  • 07 - Multiple Linear Regression/007 Multiple Linear Regression Intuition - Step 5_en.srt 23.2 kB
  • 30 - Eclat/002 Eclat in Python_en.srt 23.1 kB
  • 20 - Naive Bayes/002 Naive Bayes Intuition_en.srt 23.0 kB
  • 33 - Thompson Sampling/004 Thompson Sampling in Python - Step 2_en.srt 22.9 kB
  • 36 - Artificial Neural Networks/013 ANN in Python - Step 4_en.srt 22.7 kB
  • 29 - Apriori/007 Apriori in R - Step 2_en.srt 22.7 kB
  • 07 - Multiple Linear Regression/006 Understanding the P-Value_en.srt 22.5 kB
  • 37 - Convolutional Neural Networks/010 CNN in Python - Step 1_en.srt 21.5 kB
  • 39 - Principal Component Analysis (PCA)/005 PCA in R - Step 2_en.srt 21.5 kB
  • 19 - Kernel SVM/005 Non-Linear Kernel SVR (Advanced)_en.srt 21.0 kB
  • 19 - Kernel SVM/003 The Kernel Trick_en.srt 20.8 kB
  • 36 - Artificial Neural Networks/010 ANN in Python - Step 1_en.srt 20.4 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/009 Natural Language Processing in Python - Step 4_en.srt 20.1 kB
  • 41 - Kernel PCA/001 Kernel PCA in Python_en.srt 19.9 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/004 Classical vs Deep Learning Models_en.srt 19.9 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/011 Natural Language Processing in Python - Step 6_en.srt 19.2 kB
  • 29 - Apriori/002 Apriori in Python - Step 1_en.srt 17.8 kB
  • 36 - Artificial Neural Networks/006 Gradient Descent_en.srt 17.8 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/016 Natural Language Processing in R - Step 2_en.srt 17.8 kB
  • 27 - Hierarchical Clustering/003 Hierarchical Clustering Using Dendrograms_en.srt 17.4 kB
  • 10 - Decision Tree Regression/001 Decision Tree Regression Intuition_en.srt 16.8 kB
  • 24 - Evaluating Classification Models Performance/003 CAP Curve_en.srt 16.0 kB
  • 36 - Artificial Neural Networks/003 The Activation Function_en.srt 15.9 kB
  • 20 - Naive Bayes/004 Naive Bayes Intuition (Extras)_en.srt 15.7 kB
  • 30 - Eclat/003 Eclat in R_en.srt 15.6 kB
  • 18 - Support Vector Machine (SVM)/001 SVM Intuition_en.srt 15.5 kB
  • 36 - Artificial Neural Networks/007 Stochastic Gradient Descent_en.srt 15.4 kB
  • 09 - Support Vector Regression (SVR)/001 SVR Intuition (Updated!)_en.srt 15.1 kB
  • 19 - Kernel SVM/002 Mapping to a higher dimension_en.srt 14.9 kB
  • 32 - Upper Confidence Bound (UCB)/009 Upper Confidence Bound in Python - Step 7_en.srt 14.8 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/006 Natural Language Processing in Python - Step 1_en.srt 14.4 kB
  • 27 - Hierarchical Clustering/001 Hierarchical Clustering Intuition_en.srt 14.4 kB
  • 33 - Thompson Sampling/002 Algorithm Comparison UCB vs Thompson Sampling_en.srt 14.3 kB
  • 27 - Hierarchical Clustering/002 Hierarchical Clustering How Dendrograms Work_en.srt 14.1 kB
  • 37 - Convolutional Neural Networks/013 CNN in Python - Step 4_en.srt 13.9 kB
  • 32 - Upper Confidence Bound (UCB)/005 Upper Confidence Bound in Python - Step 3_en.srt 13.9 kB
  • 32 - Upper Confidence Bound (UCB)/008 Upper Confidence Bound in Python - Step 6_en.srt 13.8 kB
  • 03 - Data Preprocessing in Python/008 Taking care of Missing Data - Step 1_en.srt 13.6 kB
  • 33 - Thompson Sampling/006 Thompson Sampling in Python - Step 4_en.srt 13.4 kB
  • 14 - Regression Model Selection in R/002 Interpreting Linear Regression Coefficients_en.srt 13.2 kB
  • 26 - K-Means Clustering/015 K-Means Clustering in Python - Step 5c_en.srt 13.1 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/007 Natural Language Processing in Python - Step 2_en.srt 13.0 kB
  • 14 - Regression Model Selection in R/001 Evaluating Regression Models Performance - Homework's Final Part_en.srt 12.7 kB
  • 09 - Support Vector Regression (SVR)/008 SVR in Python - Step 3_en.srt 12.7 kB
  • 21 - Decision Tree Classification/001 Decision Tree Classification Intuition_en.srt 12.7 kB
  • 36 - Artificial Neural Networks/016 ANN in R - Step 2_en.srt 12.7 kB
  • 17 - K-Nearest Neighbors (K-NN)/003 K-NN in Python - Step 2_en.srt 12.6 kB
  • 32 - Upper Confidence Bound (UCB)/007 Upper Confidence Bound in Python - Step 5_en.srt 12.5 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/017 Natural Language Processing in R - Step 3_en.srt 12.4 kB
  • 21 - Decision Tree Classification/003 Decision Tree Classification in Python - Step 2_en.srt 12.2 kB
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/004 Feature Scaling_en.srt 12.2 kB
  • 23 - Classification Model Selection in Python/003 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 1_en.srt 12.0 kB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/004 How to use the ML A-Z folder & Google Colab_en.srt 12.0 kB
  • 19 - Kernel SVM/007 Kernel SVM in Python - Step 2_en.srt 12.0 kB
  • 33 - Thompson Sampling/003 Thompson Sampling in Python - Step 1_en.srt 11.9 kB
  • 22 - Random Forest Classification/003 Random Forest Classification in Python - Step 2_en.srt 11.9 kB
  • 22 - Random Forest Classification/004 Random Forest Classification in R - Step 1_en.srt 11.8 kB
  • 23 - Classification Model Selection in Python/004 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 2_en.srt 11.7 kB
  • 07 - Multiple Linear Regression/024 Multiple Linear Regression in R - Backward Elimination - Homework Solution_en.srt 11.7 kB
  • 11 - Random Forest Regression/005 Random Forest Regression in R - Step 2_en.srt 11.7 kB
  • 08 - Polynomial Regression/004 Polynomial Regression in Python - Step 2a_en.srt 11.7 kB
  • 26 - K-Means Clustering/016 K-Means Clustering in R - Step 1_en.srt 11.6 kB
  • 37 - Convolutional Neural Networks/004 Step 1(b) - ReLU Layer_en.srt 11.6 kB
  • 08 - Polynomial Regression/003 Polynomial Regression in Python - Step 1b_en.srt 11.6 kB
  • 18 - Support Vector Machine (SVM)/003 SVM in Python - Step 2_en.srt 11.6 kB
  • 07 - Multiple Linear Regression/012 Multiple Linear Regression in Python - Step 3a_en.srt 11.5 kB
  • 21 - Decision Tree Classification/002 Decision Tree Classification in Python - Step 1_en.srt 11.5 kB
  • 06 - Simple Linear Regression/004 Simple Linear Regression in Python - Step 1b_en.srt 11.5 kB
  • 06 - Simple Linear Regression/003 Simple Linear Regression in Python - Step 1a_en.srt 11.5 kB
  • 26 - K-Means Clustering/017 K-Means Clustering in R - Step 2_en.srt 11.4 kB
  • 27 - Hierarchical Clustering/007 Hierarchical Clustering in Python - Step 2c_en.srt 11.4 kB
  • 03 - Data Preprocessing in Python/019 Feature Scaling - Step 4_en.srt 11.4 kB
  • 17 - K-Nearest Neighbors (K-NN)/004 K-NN in Python - Step 3_en.srt 11.4 kB
  • 06 - Simple Linear Regression/009 Simple Linear Regression in Python - Step 4b_en.srt 11.4 kB
  • 27 - Hierarchical Clustering/004 Hierarchical Clustering in Python - Step 1_en.srt 11.4 kB
  • 16 - Logistic Regression/028 R Classification Template_en.srt 11.3 kB
  • 11 - Random Forest Regression/004 Random Forest Regression in R - Step 1_en.srt 11.3 kB
  • 16 - Logistic Regression/013 Logistic Regression in Python - Step 6a_en.srt 11.3 kB
  • 11 - Random Forest Regression/002 Random Forest Regression in Python - Step 1_en.srt 11.3 kB
  • 08 - Polynomial Regression/019 R Regression Template - Step 1_en.srt 11.3 kB
  • 03 - Data Preprocessing in Python/006 Importing the Dataset - Step 3_en.srt 11.3 kB
  • 16 - Logistic Regression/025 Logistic Regression in R - Step 5b_en.srt 11.3 kB
  • 13 - Regression Model Selection in Python/003 Preparation of the Regression Code Templates - Step 2_en.srt 11.2 kB
  • 16 - Logistic Regression/012 Logistic Regression in Python - Step 5_en.srt 11.2 kB
  • 23 - Classification Model Selection in Python/005 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 3_en.srt 11.2 kB
  • 22 - Random Forest Classification/005 Random Forest Classification in R - Step 2_en.srt 11.2 kB
  • 08 - Polynomial Regression/006 Polynomial Regression in Python - Step 3a_en.srt 11.2 kB
  • 24 - Evaluating Classification Models Performance/001 False Positives & False Negatives_en.srt 11.2 kB
  • 03 - Data Preprocessing in Python/016 Feature Scaling - Step 1_en.srt 11.1 kB
  • 18 - Support Vector Machine (SVM)/002 SVM in Python - Step 1_en.srt 11.1 kB
  • 04 - Data Preprocessing in R/010 Data Preprocessing Template_en.srt 11.1 kB
  • 07 - Multiple Linear Regression/008 Multiple Linear Regression in Python - Step 1a_en.srt 11.1 kB
  • 07 - Multiple Linear Regression/014 Multiple Linear Regression in Python - Step 4a_en.srt 11.0 kB
  • 22 - Random Forest Classification/006 Random Forest Classification in R - Step 3_en.srt 11.0 kB
  • 26 - K-Means Clustering/010 K-Means Clustering in Python - Step 3b_en.srt 11.0 kB
  • 03 - Data Preprocessing in Python/011 Encoding Categorical Data - Step 2_en.srt 11.0 kB
  • 11 - Random Forest Regression/003 Random Forest Regression in Python - Step 2_en.srt 11.0 kB
  • 19 - Kernel SVM/006 Kernel SVM in Python - Step 1_en.srt 11.0 kB
  • 17 - K-Nearest Neighbors (K-NN)/002 K-NN in Python - Step 1_en.srt 11.0 kB
  • 22 - Random Forest Classification/002 Random Forest Classification in Python - Step 1_en.srt 10.9 kB
  • 08 - Polynomial Regression/005 Polynomial Regression in Python - Step 2b_en.srt 10.9 kB
  • 03 - Data Preprocessing in Python/001 Getting Started - Step 1_en.srt 10.9 kB
  • 06 - Simple Linear Regression/008 Simple Linear Regression in Python - Step 4a_en.srt 10.9 kB
  • 16 - Logistic Regression/007 Logistic Regression in Python - Step 2b_en.srt 10.9 kB
  • 20 - Naive Bayes/005 Naive Bayes in Python - Step 1_en.srt 10.9 kB
  • 09 - Support Vector Regression (SVR)/003 SVR in Python - Step 1a_en.srt 10.9 kB
  • 04 - Data Preprocessing in R/004 Taking care of Missing Data_en.srt 10.9 kB
  • 26 - K-Means Clustering/009 K-Means Clustering in Python - Step 3a_en.srt 10.9 kB
  • 11 - Random Forest Regression/006 Random Forest Regression in R - Step 3_en.srt 10.8 kB
  • 03 - Data Preprocessing in Python/014 Splitting the dataset into the Training set and Test set - Step 2_en.srt 10.8 kB
  • 20 - Naive Bayes/006 Naive Bayes in Python - Step 2_en.srt 10.8 kB
  • 16 - Logistic Regression/006 Logistic Regression in Python - Step 2a_en.srt 10.7 kB
  • 03 - Data Preprocessing in Python/009 Taking care of Missing Data - Step 2_en.srt 10.7 kB
  • 16 - Logistic Regression/024 Logistic Regression in R - Step 5a_en.srt 10.7 kB
  • 08 - Polynomial Regression/007 Polynomial Regression in Python - Step 3b_en.srt 10.7 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/020 Natural Language Processing in R - Step 6_en.srt 10.7 kB
  • 39 - Principal Component Analysis (PCA)/003 PCA in Python - Step 2_en.srt 10.7 kB
  • 21 - Decision Tree Classification/004 Decision Tree Classification in R - Step 1_en.srt 10.7 kB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/005 Installing R and R Studio (Mac, Linux & Windows)_en.srt 10.7 kB
  • 10 - Decision Tree Regression/008 Decision Tree Regression in R - Step 2_en.srt 10.6 kB
  • 19 - Kernel SVM/008 Kernel SVM in R - Step 1_en.srt 10.6 kB
  • 07 - Multiple Linear Regression/004 Multiple Linear Regression Intuition - Step 3_en.srt 10.6 kB
  • 08 - Polynomial Regression/016 Polynomial Regression in R - Step 3c_en.srt 10.6 kB
  • 09 - Support Vector Regression (SVR)/012 SVR in R - Step 1_en.srt 10.6 kB
  • 17 - K-Nearest Neighbors (K-NN)/005 K-NN in R - Step 1_en.srt 10.6 kB
  • 03 - Data Preprocessing in Python/004 Importing the Dataset - Step 1_en.srt 10.5 kB
  • 18 - Support Vector Machine (SVM)/006 SVM in R - Step 2_en.srt 10.5 kB
  • 27 - Hierarchical Clustering/009 Hierarchical Clustering in Python - Step 3b_en.srt 10.5 kB
  • 04 - Data Preprocessing in R/005 Encoding Categorical Data_en.srt 10.5 kB
  • 26 - K-Means Clustering/013 K-Means Clustering in Python - Step 5a_en.srt 10.5 kB
  • 07 - Multiple Linear Regression/011 Multiple Linear Regression in Python - Step 2b_en.srt 10.5 kB
  • 09 - Support Vector Regression (SVR)/005 SVR in Python - Step 2a_en.srt 10.4 kB
  • 16 - Logistic Regression/004 Logistic Regression in Python - Step 1a_en.srt 10.4 kB
  • 30 - Eclat/001 Eclat Intuition_en.srt 10.4 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/022 Natural Language Processing in R - Step 8_en.srt 10.4 kB
  • 16 - Logistic Regression/010 Logistic Regression in Python - Step 4a_en.srt 10.4 kB
  • 21 - Decision Tree Classification/005 Decision Tree Classification in R - Step 2_en.srt 10.4 kB
  • 16 - Logistic Regression/015 Logistic Regression in Python - Step 7a_en.srt 10.3 kB
  • 27 - Hierarchical Clustering/006 Hierarchical Clustering in Python - Step 2b_en.srt 10.2 kB
  • 03 - Data Preprocessing in Python/002 Getting Started - Step 2_en.srt 10.2 kB
  • 08 - Polynomial Regression/015 Polynomial Regression in R - Step 3b_en.srt 10.2 kB
  • 26 - K-Means Clustering/012 K-Means Clustering in Python - Step 4_en.srt 10.2 kB
  • 11 - Random Forest Regression/001 Random Forest Regression Intuition_en.srt 10.1 kB
  • 06 - Simple Linear Regression/014 Simple Linear Regression in R - Step 4a_en.srt 10.1 kB
  • 36 - Artificial Neural Networks/008 Backpropagation_en.srt 10.0 kB
  • 10 - Decision Tree Regression/004 Decision Tree Regression in Python - Step 2_en.srt 10.0 kB
  • 26 - K-Means Clustering/008 K-Means Clustering in Python - Step 2b_en.srt 9.9 kB
  • 36 - Artificial Neural Networks/009 Business Problem Description_en.srt 9.9 kB
  • 08 - Polynomial Regression/020 R Regression Template - Step 2_en.srt 9.9 kB
  • 18 - Support Vector Machine (SVM)/005 SVM in R - Step 1_en.srt 9.8 kB
  • 19 - Kernel SVM/009 Kernel SVM in R - Step 2_en.srt 9.8 kB
  • 07 - Multiple Linear Regression/015 Multiple Linear Regression in Python - Step 4b_en.srt 9.8 kB
  • 07 - Multiple Linear Regression/020 Multiple Linear Regression in R - Step 2a_en.srt 9.8 kB
  • 27 - Hierarchical Clustering/008 Hierarchical Clustering in Python - Step 3a_en.srt 9.8 kB
  • 09 - Support Vector Regression (SVR)/013 SVR in R - Step 2_en.srt 9.7 kB
  • 06 - Simple Linear Regression/015 Simple Linear Regression in R - Step 4b_en.srt 9.6 kB
  • 10 - Decision Tree Regression/009 Decision Tree Regression in R - Step 3_en.srt 9.6 kB
  • 19 - Kernel SVM/010 Kernel SVM in R - Step 3_en.srt 9.6 kB
  • 04 - Data Preprocessing in R/006 Splitting the dataset into the Training set and Test set - Step 1_en.srt 9.5 kB
  • 10 - Decision Tree Regression/007 Decision Tree Regression in R - Step 1_en.srt 9.5 kB
  • 26 - K-Means Clustering/005 K-Means Clustering in Python - Step 1a_en.srt 9.4 kB
  • 21 - Decision Tree Classification/006 Decision Tree Classification in R - Step 3_en.srt 9.4 kB
  • 20 - Naive Bayes/003 Naive Bayes Intuition (Challenge Reveal)_en.srt 9.4 kB
  • 12 - Evaluating Regression Models Performance/002 Adjusted R-Squared Intuition_en.srt 9.3 kB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/002 Machine Learning Demo - Get Excited!_en.srt 9.3 kB
  • 10 - Decision Tree Regression/006 Decision Tree Regression in Python - Step 4_en.srt 9.2 kB
  • 04 - Data Preprocessing in R/007 Splitting the dataset into the Training set and Test set - Step 2_en.srt 9.2 kB
  • 24 - Evaluating Classification Models Performance/004 CAP Curve Analysis_en.srt 9.1 kB
  • 08 - Polynomial Regression/014 Polynomial Regression in R - Step 3a_en.srt 9.1 kB
  • 16 - Logistic Regression/026 Logistic Regression in R - Step 5c_en.srt 9.1 kB
  • 06 - Simple Linear Regression/007 Simple Linear Regression in Python - Step 3_en.srt 9.1 kB
  • 07 - Multiple Linear Regression/003 Assumptions of Linear Regression_en.srt 9.0 kB
  • 26 - K-Means Clustering/014 K-Means Clustering in Python - Step 5b_en.srt 9.0 kB
  • 08 - Polynomial Regression/013 Polynomial Regression in R - Step 2b_en.srt 9.0 kB
  • 16 - Logistic Regression/002 Logistic Regression Intuition_en.srt 8.9 kB
  • 03 - Data Preprocessing in Python/017 Feature Scaling - Step 2_en.srt 8.9 kB
  • 07 - Multiple Linear Regression/010 Multiple Linear Regression in Python - Step 2a_en.srt 8.9 kB
  • 07 - Multiple Linear Regression/013 Multiple Linear Regression in Python - Step 3b_en.srt 8.9 kB
  • 26 - K-Means Clustering/007 K-Means Clustering in Python - Step 2a_en.srt 8.9 kB
  • 27 - Hierarchical Clustering/005 Hierarchical Clustering in Python - Step 2a_en.srt 8.8 kB
  • 26 - K-Means Clustering/004 K-Means++_en.srt 8.8 kB
  • 09 - Support Vector Regression (SVR)/006 SVR in Python - Step 2b_en.srt 8.8 kB
  • 10 - Decision Tree Regression/002 Decision Tree Regression in Python - Step 1a_en.srt 8.8 kB
  • 06 - Simple Linear Regression/012 Simple Linear Regression in R - Step 2_en.srt 8.8 kB
  • 16 - Logistic Regression/019 Logistic Regression in R - Step 1_en.srt 8.8 kB
  • 03 - Data Preprocessing in Python/005 Importing the Dataset - Step 2_en.srt 8.7 kB
  • 13 - Regression Model Selection in Python/002 Preparation of the Regression Code Templates - Step 1_en.srt 8.7 kB
  • 08 - Polynomial Regression/012 Polynomial Regression in R - Step 2a_en.srt 8.7 kB
  • 08 - Polynomial Regression/002 Polynomial Regression in Python - Step 1a_en.srt 8.6 kB
  • 23 - Classification Model Selection in Python/002 Confusion Matrix & Accuracy Ratios_en.srt 8.6 kB
  • 13 - Regression Model Selection in Python/006 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 1_en.srt 8.5 kB
  • 17 - K-Nearest Neighbors (K-NN)/006 K-NN in R - Step 2_en.srt 8.5 kB
  • 18 - Support Vector Machine (SVM)/005 SVM.zip 8.5 kB
  • 17 - K-Nearest Neighbors (K-NN)/007 K-NN in R - Step 3_en.srt 8.4 kB
  • 04 - Data Preprocessing in R/009 Feature Scaling - Step 2_en.srt 8.3 kB
  • 20 - Naive Bayes/009 Naive Bayes in R - Step 2_en.srt 8.3 kB
  • 20 - Naive Bayes/008 Naive Bayes in R - Step 1_en.srt 8.3 kB
  • 03 - Data Preprocessing in Python/012 Encoding Categorical Data - Step 3_en.srt 8.3 kB
  • 12 - Evaluating Regression Models Performance/001 R-Squared Intuition_en.srt 8.3 kB
  • 13 - Regression Model Selection in Python/004 Preparation of the Regression Code Templates - Step 3_en.srt 8.2 kB
  • 16 - Logistic Regression/005 Logistic Regression in Python - Step 1b_en.srt 8.2 kB
  • 06 - Simple Linear Regression/006 Simple Linear Regression in Python - Step 2b_en.srt 8.2 kB
  • 27 - Hierarchical Clustering/011 Hierarchical Clustering in R - Step 2_en.srt 8.0 kB
  • 32 - Upper Confidence Bound (UCB)/004 Upper Confidence Bound in Python - Step 2_en.srt 7.9 kB
  • 13 - Regression Model Selection in Python/007 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 2_en.srt 7.9 kB
  • 26 - K-Means Clustering/003 The Elbow Method_en.srt 7.9 kB
  • 17 - K-Nearest Neighbors (K-NN)/001 K-Nearest Neighbor Intuition_en.srt 7.9 kB
  • 07 - Multiple Linear Regression/021 Multiple Linear Regression in R - Step 2b_en.srt 7.9 kB
  • 04 - Data Preprocessing in R/008 Feature Scaling - Step 1_en.srt 7.9 kB
  • 03 - Data Preprocessing in Python/010 Encoding Categorical Data - Step 1_en.srt 7.8 kB
  • 37 - Convolutional Neural Networks/008 Summary_en.srt 7.8 kB
  • 08 - Polynomial Regression/001 Polynomial Regression Intuition_en.srt 7.7 kB
  • 13 - Regression Model Selection in Python/005 Preparation of the Regression Code Templates - Step 4_en.srt 7.7 kB
  • 08 - Polynomial Regression/018 Polynomial Regression in R - Step 4b_en.srt 7.7 kB
  • 06 - Simple Linear Regression/011 Simple Linear Regression in R - Step 1_en.srt 7.6 kB
  • 10 - Decision Tree Regression/003 Decision Tree Regression in Python - Step 1b_en.srt 7.5 kB
  • 09 - Support Vector Regression (SVR)/002 Heads-up on non-linear SVR_en.srt 7.5 kB
  • 06 - Simple Linear Regression/005 Simple Linear Regression in Python - Step 2a_en.srt 7.4 kB
  • 16 - Logistic Regression/021 Logistic Regression in R - Step 3_en.srt 7.3 kB
  • 03 - Data Preprocessing in Python/018 Feature Scaling - Step 3_en.srt 7.3 kB
  • 16 - Logistic Regression/008 Logistic Regression in Python - Step 3a_en.srt 7.3 kB
  • 03 - Data Preprocessing in Python/013 Splitting the dataset into the Training set and Test set - Step 1_en.srt 7.2 kB
  • 03 - Data Preprocessing in Python/003 Importing the Libraries_en.srt 7.2 kB
  • 09 - Support Vector Regression (SVR)/004 SVR in Python - Step 1b_en.srt 7.2 kB
  • 37 - Convolutional Neural Networks/001 Plan of attack_en.srt 7.1 kB
  • 09 - Support Vector Regression (SVR)/011 SVR in Python - Step 5b_en.srt 7.1 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/003 Types of Natural Language Processing_en.srt 7.1 kB
  • 08 - Polynomial Regression/008 Polynomial Regression in Python - Step 4a_en.srt 7.1 kB
  • 08 - Polynomial Regression/010 Polynomial Regression in R - Step 1a_en.srt 7.0 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/021 Natural Language Processing in R - Step 7_en.srt 7.0 kB
  • 22 - Random Forest Classification/001 Random Forest Classification Intuition_en.srt 7.0 kB
  • 16 - Logistic Regression/016 Logistic Regression in Python - Step 7b_en.srt 7.0 kB
  • 07 - Multiple Linear Regression/022 Multiple Linear Regression in R - Step 3_en.srt 6.9 kB
  • 16 - Logistic Regression/003 Maximum Likelihood_en.srt 6.9 kB
  • 07 - Multiple Linear Regression/018 Multiple Linear Regression in R - Step 1a_en.srt 6.9 kB
  • 08 - Polynomial Regression/009 Polynomial Regression in Python - Step 4b_en.srt 6.9 kB
  • 10 - Decision Tree Regression/010 Decision Tree Regression in R - Step 4_en.srt 6.9 kB
  • 08 - Polynomial Regression/017 Polynomial Regression in R - Step 4a_en.srt 6.9 kB
  • 03 - Data Preprocessing in Python/015 Splitting the dataset into the Training set and Test set - Step 3_en.srt 6.9 kB
  • 08 - Polynomial Regression/011 Polynomial Regression in R - Step 1b_en.srt 6.9 kB
  • 09 - Support Vector Regression (SVR)/009 SVR in Python - Step 4_en.srt 6.9 kB
  • 19 - Kernel SVM/004 Types of Kernel Functions_en.srt 6.8 kB
  • 09 - Support Vector Regression (SVR)/010 SVR in Python - Step 5a_en.srt 6.8 kB
  • 40 - Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis (LDA) Intuition_en.srt 6.7 kB
  • 26 - K-Means Clustering/001 What is Clustering (Supervised vs Unsupervised Learning)_en.srt 6.7 kB
  • 39 - Principal Component Analysis (PCA)/001 Principal Component Analysis (PCA) Intuition_en.srt 6.6 kB
  • 26 - K-Means Clustering/011 K-Means Clustering in Python - Step 3c_en.srt 6.6 kB
  • 07 - Multiple Linear Regression/019 Multiple Linear Regression in R - Step 1b_en.srt 6.5 kB
  • 20 - Naive Bayes/010 Naive Bayes in R - Step 3_en.srt 6.5 kB
  • 33 - Thompson Sampling/009 Thompson Sampling in R - Step 2_en.srt 6.5 kB
  • 10 - Decision Tree Regression/005 Decision Tree Regression in Python - Step 3_en.srt 6.3 kB
  • 27 - Hierarchical Clustering/010 Hierarchical Clustering in R - Step 1_en.srt 6.2 kB
  • 16 - Logistic Regression/014 Logistic Regression in Python - Step 6b_en.srt 6.2 kB
  • 18 - Support Vector Machine (SVM)/004 SVM in Python - Step 3_en.srt 6.0 kB
  • 16 - Logistic Regression/009 Logistic Regression in Python - Step 3b_en.srt 6.0 kB
  • 09 - Support Vector Regression (SVR)/007 SVR in Python - Step 2c_en.srt 6.0 kB
  • 06 - Simple Linear Regression/002 Ordinary Least Squares_en.srt 5.9 kB
  • 16 - Logistic Regression/017 Logistic Regression in Python - Step 7c_en.srt 5.9 kB
  • 19 - Kernel SVM/001 Kernel SVM Intuition_en.srt 5.9 kB
  • 23 - Classification Model Selection in Python/006 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 4_en.srt 5.8 kB
  • 26 - K-Means Clustering/006 K-Means Clustering in Python - Step 1b_en.srt 5.8 kB
  • 07 - Multiple Linear Regression/001 Dataset + Business Problem Description_en.srt 5.6 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/002 NLP Intuition_en.srt 5.6 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/018 Natural Language Processing in R - Step 4_en.srt 5.6 kB
  • 06 - Simple Linear Regression/013 Simple Linear Regression in R - Step 3_en.srt 5.4 kB
  • 32 - Upper Confidence Bound (UCB)/013 Upper Confidence Bound in R - Step 4_en.srt 5.4 kB
  • 36 - Artificial Neural Networks/001 Plan of attack_en.srt 5.2 kB
  • 26 - K-Means Clustering/002 K-Means Clustering Intuition_en.srt 5.1 kB
  • 04 - Data Preprocessing in R/003 Importing the Dataset_en.srt 5.0 kB
  • 07 - Multiple Linear Regression/009 Multiple Linear Regression in Python - Step 1b_en.srt 4.9 kB
  • 27 - Hierarchical Clustering/012 Hierarchical Clustering in R - Step 3_en.srt 4.7 kB
  • 16 - Logistic Regression/001 What is Classification_en.srt 4.7 kB
  • 45 - Exclusive Offer/001 OUR SPECIAL OFFER.html 4.6 kB
  • 07 - Multiple Linear Regression/002 Multiple Linear Regression Intuition_en.srt 4.6 kB
  • 16 - Logistic Regression/020 Logistic Regression in R - Step 2_en.srt 4.3 kB
  • 06 - Simple Linear Regression/001 Simple Linear Regression Intuition_en.srt 4.2 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/019 Natural Language Processing in R - Step 5_en.srt 4.0 kB
  • 27 - Hierarchical Clustering/014 Hierarchical Clustering in R - Step 5_en.srt 4.0 kB
  • 04 - Data Preprocessing in R/002 Dataset Description_en.srt 3.9 kB
  • 16 - Logistic Regression/022 Logistic Regression in R - Step 4_en.srt 3.9 kB
  • 27 - Hierarchical Clustering/013 Hierarchical Clustering in R - Step 4_en.srt 3.8 kB
  • 16 - Logistic Regression/011 Logistic Regression in Python - Step 4b_en.srt 3.8 kB
  • 37 - Convolutional Neural Networks/006 Step 3 - Flattening_en.srt 3.6 kB
  • 07 - Multiple Linear Regression/016 Multiple Linear Regression in Python - Backward Elimination.html 3.6 kB
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/003 Splitting the data into a Training and Test set_en.srt 3.6 kB
  • 07 - Multiple Linear Regression/005 Multiple Linear Regression Intuition - Step 4_en.srt 3.5 kB
  • 24 - Evaluating Classification Models Performance/005 Conclusion of Part 3 - Classification.html 3.4 kB
  • 20 - Naive Bayes/007 Naive Bayes in Python - Step 3_en.srt 3.2 kB
  • 24 - Evaluating Classification Models Performance/002 Accuracy Paradox_en.srt 3.2 kB
  • 04 - Data Preprocessing in R/001 Getting Started_en.srt 3.1 kB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/001 Welcome Challenge!.html 3.1 kB
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/002 The Machine Learning process_en.srt 3.1 kB
  • 33 - Thompson Sampling/007 Additional Resource for this Section.html 2.3 kB
  • 16 - Logistic Regression/023 Warning - Update.html 1.9 kB
  • 13 - Regression Model Selection in Python/008 Conclusion of Part 2 - Regression.html 1.8 kB
  • 14 - Regression Model Selection in R/003 Conclusion of Part 2 - Regression.html 1.8 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/001 Welcome to Part 7 - Natural Language Processing.html 1.7 kB
  • 31 - -------------------- Part 6 Reinforcement Learning --------------------/001 Welcome to Part 6 - Reinforcement Learning.html 1.6 kB
  • 03 - Data Preprocessing in Python/007 For Python learners, summary of Object-oriented programming classes & objects.html 1.5 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/025 Homework Challenge.html 1.5 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/013 Homework Challenge.html 1.4 kB
  • 38 - -------------------- Part 9 Dimensionality Reduction --------------------/001 Welcome to Part 9 - Dimensionality Reduction.html 1.4 kB
  • 07 - Multiple Linear Regression/017 Multiple Linear Regression in Python - EXTRA CONTENT.html 1.2 kB
  • 44 - XGBoost/002 Model Selection and Boosting Additional Content.html 1.2 kB
  • 06 - Simple Linear Regression/010 Simple Linear Regression in Python - Additional Lecture.html 1.1 kB
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/012 Natural Language Processing in Python - BONUS.html 1.1 kB
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/006 BONUS Use ChatGPT to Boost your ML Skills.html 1.0 kB
  • 36 - Artificial Neural Networks/019 Deep Learning Additional Content.html 1.0 kB
  • 23 - Classification Model Selection in Python/001 Make sure you have this Model Selection folder ready.html 985 Bytes
  • 13 - Regression Model Selection in Python/001 Make sure you have this Model Selection folder ready.html 973 Bytes
  • 37 - Convolutional Neural Networks/016 Deep Learning Additional Content #2.html 923 Bytes
  • 42 - -------------------- Part 10 Model Selection & Boosting --------------------/001 Welcome to Part 10 - Model Selection & Boosting.html 921 Bytes
  • 15 - -------------------- Part 3 Classification --------------------/001 Welcome to Part 3 - Classification.html 887 Bytes
  • 35 - -------------------- Part 8 Deep Learning --------------------/001 Welcome to Part 8 - Deep Learning.html 874 Bytes
  • 05 - -------------------- Part 2 Regression --------------------/001 Welcome to Part 2 - Regression.html 829 Bytes
  • 16 - Logistic Regression/029 Machine Learning Regression and Classification BONUS.html 807 Bytes
  • 25 - -------------------- Part 4 Clustering --------------------/001 Welcome to Part 4 - Clustering.html 789 Bytes
  • 34 - -------------------- Part 7 Natural Language Processing --------------------/015 Warning - Update.html 760 Bytes
  • 07 - Multiple Linear Regression/025 Multiple Linear Regression in R - Automatic Backward Elimination.html 752 Bytes
  • 16 - Logistic Regression/018 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html 706 Bytes
  • 16 - Logistic Regression/027 Logistic Regression in R - Step 5 (Colour-blind friendly image).html 706 Bytes
  • 16 - Logistic Regression/030 EXTRA CONTENT Logistic Regression Practical Case Study.html 619 Bytes
  • 36 - Artificial Neural Networks/020 EXTRA CONTENT ANN Case Study.html 544 Bytes
  • 02 - -------------------- Part 1 Data Preprocessing --------------------/001 Welcome to Part 1 - Data Preprocessing.html 531 Bytes
  • 27 - Hierarchical Clustering/015 Conclusion of Part 4 - Clustering.html 502 Bytes
  • 28 - -------------------- Part 5 Association Rule Learning --------------------/001 Welcome to Part 5 - Association Rule Learning.html 477 Bytes
  • 01 - Welcome to the course! Here we will help you get started in the best conditions/003 Get all the Datasets, Codes and Slides here.html 442 Bytes
  • 0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 06 - Simple Linear Regression/[CourseClub.Me].url 122 Bytes
  • 24 - Evaluating Classification Models Performance/[CourseClub.Me].url 122 Bytes
  • 37 - Convolutional Neural Networks/[CourseClub.Me].url 122 Bytes
  • 46 - Annex Logistic Regression (Long Explanation)/[CourseClub.Me].url 122 Bytes
  • [CourseClub.Me].url 122 Bytes
  • 07 - Multiple Linear Regression/external-links.txt 70 Bytes
  • 07 - Multiple Linear Regression/003 Download-the-PDF.url 68 Bytes
  • 0. Websites you may like/[GigaCourse.Com].url 49 Bytes
  • 06 - Simple Linear Regression/[GigaCourse.Com].url 49 Bytes
  • 24 - Evaluating Classification Models Performance/[GigaCourse.Com].url 49 Bytes
  • 37 - Convolutional Neural Networks/[GigaCourse.Com].url 49 Bytes
  • 46 - Annex Logistic Regression (Long Explanation)/[GigaCourse.Com].url 49 Bytes
  • [GigaCourse.Com].url 49 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!